WO1990004275A1 - Semiconductor light-emitting devices - Google Patents

Semiconductor light-emitting devices Download PDF

Info

Publication number
WO1990004275A1
WO1990004275A1 PCT/US1989/004377 US8904377W WO9004275A1 WO 1990004275 A1 WO1990004275 A1 WO 1990004275A1 US 8904377 W US8904377 W US 8904377W WO 9004275 A1 WO9004275 A1 WO 9004275A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
layers
compositionally graded
Prior art date
Application number
PCT/US1989/004377
Other languages
French (fr)
Inventor
Toshiro Hayakawa
Original Assignee
Eastman Kodak Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Company filed Critical Eastman Kodak Company
Publication of WO1990004275A1 publication Critical patent/WO1990004275A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Definitions

  • the present invention relates to semiconductor light-emitting devices such as semiconductor lasers and light—emitting diodes having a high emission efficiency. It particularly relates to semiconductor light-emitting devices having high-efficiency emission layers which can be readily formed on a substrate of semiconductor mixed crystal using MBE (molecular beam epitaxy) or MOCVD (metal-organic chemical vapor deposition).
  • MBE molecular beam epitaxy
  • MOCVD metal-organic chemical vapor deposition
  • optical communication technology and optical information processing technology have assumed a central role in a wide range of fields.
  • Digital optical communication using optical fibers has made it possible to realize large increases in information carrying capacities, and in the area of optical information processing in which the technology has been extensively utilized in the form of optical disks and laser printers and the like, related fields of application are expanding at a remarkable pace.
  • light-emitting diodes and semiconductor lasers are the leading light-emitting sources.
  • Laser technology in particular has played an important part in stimulating advances in every area of optical technology in recent years.
  • gas and solid-state lasers are being supplanted by semiconductor lasers in which the output of the device can be readily controlled precisely by varying the current supply, in addition to which semiconductor lasers are small and long lasting, all qualities which are extremely useful for opening up fields of application that have been beyond the capabilities of gas or solid-state lasers.
  • Semiconductor light-emitting devices typical examples of which are light—emitting diodes and semiconductor lasers, are now -undergoing new developments on a number of fronts as a result of the introduction of semiconductor mixed crystals in place of the conventional Si crystal semiconductor.
  • the introduction of AlGaAs semiconductor mixed crystal has led to major advances in semiconductor lasers.
  • the light emission comes from the recombination of minority charged carriers injected into a forward—biased p— junction in the substrate; that is, the light is produced by direct radiative recombination when a forward current is passed across the p-n junction.
  • the device Used without further modification to the light, the device functions as a light-emitting diode.
  • such a device can be made to serve as a semiconductor laser by using the light to generate a lasing action.
  • FIG. 3 illustrates the construction of an ordinary, conventional double heterojunction laser.
  • the laser consists of a cladding layer 12, a light—emitting layer (active layer) 14, a cladding layer 16 and a cap layer 18 formed on a GaAs semiconductor substrate 10.
  • Electrodes 20 and 22 provided on the substrate side and on the cap layer causes light to be emitted by the injection of electrons or holes into the light—emitting region 14 sandwiched between the cladding layers 12 and 16.
  • the double heterojunction is formed by the light—emitting region 14 sandwiched between the cladding layers 12 and 16.
  • the electrons or holes that constitute the injected carriers are confined by the band gap of the semiconductor device.
  • the effect of confining the injected carriers is that very small current values can produce a high enough gain in the light-emitting region 14 for light amplification and oscillation to take place.
  • Optical differences in the composition of the light-emitting region 14 compared to the cladding layers 12 and 16 give the light-emitting region 14 a higher refractive index than the cladding layers 12 and 16, and the effect of this is to confine the light in the light—emitting region 14, which enables a powerful amplifying action to be imparted to the light.
  • a representative application of the quantum effect is the quantum well laser.
  • the light-emitting region in a quantum well laser is illustrated in FIG. 4.
  • the light-emitting region 14 is constituted of a light—emitter layer 30 and juxtaposed optical guide layers 32 and 34.
  • the light-emitting layer 30 is 100 to 200 A thick, and with the optical guide layers 32 and 34 forms the active region.
  • the light-emitting layer 30 By thus fabricating the light-emitting layer 30 very thin, it becomes a quantum well in which a quantum confinement effect is produced.
  • the carriers are free to move in three dimensions
  • the thickness of the light—emitting layer 30 is reduced to such a degree that the movement of the carriers is limited to two dimensions.
  • substantially the carriers can only move in a plane that includes the direction in which laser oscillation occurs, and movement in the thickness direction of the layer is suppressed.
  • the quantum confinement effect therefore enables the light—emitting efficiency to be considerably improved, and as such, has the added advantage of reducing threshold current values and improving the transient overshoot characteristics.
  • the injected carriers are themselves subjected to quantum confinement in the light-emitting layer 30 and give rise to the high—efficiency emission described
  • the optical guide layers 32 and 34 are for providing the confinement performance indicated by the emission level characteristic curve 102. Light emitted by the carriers confined in the light-emitting layer 30 is thus almost completely confined within the optical guide layers 32 and 34, as illustrated by the characteristic curve 102, thereby providing semiconductor lasers or light-emitting diodes that have a highly efficient light-emitting action.
  • the characteristic denoted in FIG. 4 by reference numeral 104 indicates the distribution of the aluminum constituent in the vicinity of the light-emitting region using a semiconductor substrate of GaAs.
  • reference numeral 104 indicates the distribution of the aluminum constituent in the vicinity of the light-emitting region using a semiconductor substrate of GaAs.
  • at least part of the optical guide layers 32 and 34 has a compositionally graded layer region whereby the composition of the connection between the cladding layers 12 and 16 and the light-emitting layer 30 changes on a continuous basis.
  • the GaAs system GRIN SCH (graded index separate confinement heterostructure) laser is a known conventional quantum well laser device that includes this type of compositionally graded layers.
  • Figures 5 shows an example of the design distribution of the ratio of Al in the light-emitting region of a conventional GaAs mixed crystal semiconductor laser. The distribution is the same as that shown in FIG. 4, except that the view has rotated 90°.
  • the horizontal axis represents the thickness direction of the semiconductor mixed crystal and the vertical axis the Al mixed—crystal ratio distribution. In practice, the vertical-axis distribution characteristics closely coincide with the band gaps. Details of the conventional fabrication by MBE of a light-emitting region that includes a compositionally graded layer structure will now be described.
  • n-GaAs When n-GaAs is used as the semiconductor mixed crystal substrate, a cladding layer 12 of n-Al Q c Ga Q ,-As is formed.
  • a GaAs substrate in a heated state is provided in a vacuum chamber that also contains cells of Al, Ga, and As, and the cells are heated to deposit the substances on the substrate in the required proportions. Regulation of the mixture ratios is effected by controlling the temperature of each cell by a suitable technique such as PID.
  • the formation of the cladding layer 12 is followed by an optical guide layer 32 that constitutes the compositionally graded layer, a light—emitting layer 30, an optical guide layer 34 and a cladding layer 16; when the device is to be used as a semiconductor laser, a continuous cap layer, not illustrated, is also provided.
  • the optical guide layer 32 that includes the said compositionally graded layer is formed by closing the Si cell shutter and gradually lowering the temperature of the Al cell as the growth of the compositionally graded layer progresses to thereby create an undoped GRIN compositionally graded region (CGR).
  • CGR compositionally graded region
  • the Al cell shutter is closed to grow an undoped GaAs quantum layer.
  • the optical guide layer 34 is grown by closing the shutter of the Al cell and gradually raising the temperature of the Al cell, thereby producing an undoped GRIN region.
  • the Be cell shutter is then opened to produce a layer of p—A1 Q r a Q -As.
  • the required layers can be readily formed by opening and closing the various cells and regulating the temperature of the Al cell.
  • the required layers can be readily formed by opening and closing the various cells and regulating the temperature of the Al cell.
  • the main cause of this error lies in the thermal capacitance of the various metal cells.
  • the thermal capacitance produces a delay in the control response, and as shown by the broken line in FIG. 5, at parts 32a and 34a where the growth of the compositionally graded regions starts, this delay produces a deviation from the required characteristics .
  • a rise in the temperature leads to overshoot while a drop in temperature produces undershoot, so that as shown in the drawing, immediately after the transition from the optical guide layer 34 to the cladding layer 16, owing to Al cell temperature overshoot a deviation 34B, indicated by a broken line, is produced.
  • Deviation might also be expected to arise in the optical guide layer 32 at the terminal end of the compositional grading. In fact, however, when the quantum well light-emitting layer 30 is being fabricated the Al cell shutter is completely closed for the transition to the formation of the quantum well, so there is not overshoot. Also, to use a different example, if the intention is to follow the GRIN region with a light-emitting layer of 8 As tkat has a fixed Al component ratio, a dip in the Al component ratio forms at the portion where the layer is started.
  • the semiconductor mixed crystal generally used for semiconductor lasers is GaAs, with the requisite band gap being obtained by varying the proportions of Al and Ga relative to the As . As shown in FIG. 5, control is effected so that when the Al component ratio is decreased the band gap value is also reduced. Also, there is a convergence between the lattice constants of the GaAs and the AlAs, the mixture ratios of which are changed, as mentioned above. As a result, where the required compositional grading has been obtained, even if there are fluctuations produced by thermal capacitance—based deviation such as shown by the broken line portions in FIG.
  • compositional deviation arising between the layers and substrate or among the layers produces strain in the layers which in turn leads to defects caused by lattice mismatching, or in the case of a strained lattice, the strain combines with the current and light-emitting energy, causing rapid degradation of the light-emitting device.
  • a fixed lattice constant can be obtained by maintaining a ratio of 0.48:0.52 between the sum of the Al and Ga, and the In.
  • the object of the present invention is to provide a semiconductor light-emitting device having a light-emitting region that includes a CGR in which lattice mismatching in the CGR and in the region in the vicinity of the CGR is reduced, and the characteristics and the reliability of the device are markedly improved.
  • the above object is attained by a semiconductor light—emitting device provided with optical guide layers that include at least part of compositionally graded layers provided adjacent to a light-emitting layer, wherein at least one end of the compositionally graded layers is provided with a bridging layer wherein the first derivative of each composition profile with respect to the layer thickness is continuous.
  • the bridging layer provides a smooth change of composition profile from an adjacent layer to its graded layer, with none of the sudden changes of prior devices.
  • the compositional change is smoothly continuous with none of the overshoot, undershoot or dips exhibited in the prior art, which considerably facilitates compositional control based on PID techniques or other such methods.
  • the present invention eliminates instability factors such as metal cell thermal capacitance and enables the compositional distribution to be controlled accurately, and also enables many other types of semiconductor mixed crystals to be used for semiconductor light-emitting devices.
  • FIG. 1 is an explanatory diagram showing the aluminum distribution and a cross—sectional view of the vicinity of the light-emitting region of an
  • FIG. 2 is an explanatory diagram of a second embodiment of a semiconductor laser according to the present invention, showing the aluminum distribution in the vicinity of an AlGalnAs mixed crystal light—emitting region.
  • FIG. 3 is an explanatory drawing of the layer structure of a conventional double heterojunction semiconductor laser.
  • FIG. 4 is an explanatory drawing of the layer structure of a semiconductor laser in which the light—emitting region is a quantum well.
  • FIG. 5 is an explanatory drawing showing the composition and compositional deviation in the conventional quantum well light—emitting layer shown in FIG. 4.
  • FIG. 1 shows the Al distribution and a cross—sectional view of the vicinity of a light—emitting region of an AlGalnP semiconductor laser according to a first embodiment of the present invention.
  • FIG. 1 an n-GaAs buffer layer 52 ⁇ o n
  • cladding layer 54 is provided on the buffer layer 52, and on the cladding layer 54 is formed a light-emitting region or structure 56 which is described in detail below.
  • a p-(Al Q & Ga Q ⁇ )Q 5 In 0 ⁇ P (beryllium: 5x10 cm , thick of 0.8 micrometer) cladding layer 58 is then formed on the light-emitting region 56, the light-emitting region 56 being thus sandwiched between the cladding layers 54 and 58 to form the same type of double heterojunction as that of a conventional device. Vapor phase deposition is then used to form
  • the central part of the light-emitting region 56 includes a light-emitting layer (active layer) 70 constituted of an undoped Ga Q 5 In 0 5 P quantum well layer (150 A thick) sandwiched between undoped (Al Ga, ) Q 5 In n 5 P GRIN optical guide layers 72 and 74, each 0.2 micrometer thick, also as in the conventional arrangement and wherein x varies from 0.6 to 0.2.
  • the optical guide layers 72 and 74 each include compositionally graded layers, which in this embodiment are denoted by reference numerals 76 and 78.
  • a characterizing feature of the present invention is that at least one end of the optical guide layer 72 or 74 or of the compositionally graded layer 76 or 78 adjacent to the light—emitting layer 70 is provided with a bridging layer wherein the first derivative of the composition profile with respect to the thickness thereof is continuous.
  • bridging layers are provided at both ends of the compositionally graded layer 76 and 78 and are denoted by reference numerals 80 and 82, in the case of the compositionally graded layer 76, and 84 and 86 in the case of the compositionally graded layer 78.
  • the bridging layers 80, 82, 84, and 86 enable deviation in composition produced by the conventional abrupt compositional changes to be securely eliminated. Details of the vapor phase deposition process used to create the light—emitting region will now be described. After the cladding layer 54 has been grown, the shutter of the Si cell in the vacuum vessel of the vapor phase deposition apparatus is closed, and PID control is used to reduce the temperature of the Al cell while at the same time raising the temperature of the Ga cell. This enables the compositional ratio between Al and Ga to be changed while maintaining the combined ratio of the Al and Ga relative to the indium at a constant level, for forming the optical guide layer 72.
  • the compositionally graded layer 76 is given a constant ratio of change, an attribute that is readily realized merely by effecting a linear adjustment of the aluminum through the use of PID control.
  • the terminal end of the compositionally graded layer 76 is also provided with a bridging layer (layer 82), so in accordance with the same principle in effect in the case of the bridging layer 80 at the initial end, the potential inversion resulting from the compositional change characteristics is imparted to the bridging layer 82, so that the ratio of compositional change gradually reverts to zero and abrupt jumps in the ratio of change at the terminal end are eliminated.
  • compositionally graded layer 78 on the p side is provided with the bridging layers 84 and 86 wherein the first derivative of the composition profile with respect to the thickness at each end of the compositionally graded layer 78 is continuous, preventing the type of deviation that occurs with the conventional arrangement.
  • the light-emitting layer 70 is formed as a Ga Q 5 In 0 5 P quantum well light—emitting layer, following the formation of the optical guide layer 72, by closing the shutters of the aluminum and gallium cells and opening the shutter of another gallium cell that is provided separately, making it difficult for the type of compositional deviation to occur at the locations shown in FIG. 5.
  • this also makes it possible to omit the bridging layer 82 provided at the terminal end of the compositionally graded layer 76.
  • the bridging layer 84 is an essential requirement at the initial end of the compositionally graded layer 78 it is preferable to provide the bridging layer 82 to achieve symmetry between the optical guide layers 72 and 74 with respect to the light-emitting layer 70.
  • the bridging layer 82 be provided.
  • the light-emitting layer 70 is sandwiched between the optical guide layers 72 and 74, and by providing bridging layers 80, 82, 84, and 86 at both ends of "the compositionally graded layers 76 and 78, a stable light-emitting region is provided that is free of compositional deviation.
  • plasma CVD is used to form a layer of Si about 0.3 micrometer thick on the p-GaAs layer, and a photolithographic process is then used to remove the SiN ⁇ layer in strips 10 micrometers wide.
  • an ohmic electrode is then formed by the alloying deposition of AuZn/Au on the p-GaAs layer 62.
  • n-side electrode of AuGe/Ni/Au is formed on the reverse side of the GaAs substrate.
  • FIG. 2 shows a second embodiment according to the present invention. As in the case of the first embodiment, it shows the Al distribution and a cross-sectional view of the vicinity of a light- emitting region of an AlGalnAs semiconductor laser.
  • the substrate 250 is constituted on n-InP(S: 1x10 cm ) .
  • buffer layer 252 (S: 1x10 cm , thickness of 0.5 micrometer) is formed on the substrate 250, then an n—(A1 Q ⁇ Ga Q ⁇ ) Q 4 7 In Q 53 As
  • 1 o cladding layer 254 (S: 1x10 cm , thickness of 1.5 micrometers) .
  • a light—emitting structure 256 is then formed on the cladding layer 254, followed by a P ⁇ ( A1 o.6 Ga 0.4 ⁇ 0.47 In 0.53 As claddin S layer 258 ⁇ g n
  • the cladding layer 258 (Zn: 4x10 cm , thickness of 0.3 micrometer) is then grown on the cladding layer 258 using MOCVD.
  • a light—emitting structure or region 256 that includes a light-emitting layer 270 sandwiched between optical guide layers 272 and 274.
  • the light-emitting layer 270 is constituted as an undoped Ga Q 7 I*1Q 53 As quantum well layer that is 150 A thick.
  • the optical guide layer 272 includes an undoped
  • the optical guide layer 274 consists of an undoped
  • just part of the optical guide layers 272 and 274 has a GRIN layer 290 and 296, respectively.
  • the ratio of the compositionally graded layer in the optical guide layer and the grading itself may be selected according to requirements.
  • the characteristic feature of this embodiment is that the GRIN layers 290 and 296 ' actually include the respective compositionally graded layers 276 and 278, at each end of which are formed respective bridging layers 280 and 282, and 284 and 286.
  • these bridging layers are provided with characteristics whereby the first derivative of each composition profile with respect to the layer thickness is continuous, for a compositional distribution whereby in the GRIN layers 290 and 296 the compositional change at the initial and terminal ends is gradual, starting from zero, with no jumps in the ratio of change.
  • the gas flows are accompanied by various delays, and with an ordinary, simple GRIN region, when there are jumps in the ratio of compositional change it is difficult to effect the various gas flow amounts so that they conform with the prescribed settings.
  • bridging layers 280 and 282, 284 and 286 at both ends -of the compositionally graded layers 276 and 278, a continuous ratio of change for a compositional change that conforms with the design values can be readily achieved using ordinary PID or other such control methods.
  • the component ratios of the constituent elements other than the elements accompanying the compositional change are always fixed, but in practice there may be cases where it is desirable to change the element ratio of these fixed components.
  • AlGalnAs for example, because in strict terms the components for lattice matching with the InP are
  • Ga 0.47 In 0.53 As and A1 0.48 In 0.52 As ' ⁇ ⁇ is better for the ratio of indium in the AlGalnAs to be reduced as the ratio of aluminum to gallium increases.
  • the growth rate of the AlGaAs in the AlGalnAs can be maintained constant while varying the ratio of the Al and Ga and slightly reducing the InAs growth rate as the Al is increased, maintaining a fixed lattice constant.
  • the mixed crystals could also be
  • any of the following preferred examples; of semiconductor mixed crystals may be used: A1 S Ga l- X >y In l-y P; ⁇ A1 x Ga l- x y n l-y AS: , Ga x In, 1-x P y As, 1-y ; ' Al x Ga, 1-x As y Sb, 1-y
  • MBE and MOCVD were used to form the semiconducting layers on the substrate, the present invention is not limited to these methods.
  • Other methods such as chemical beam epitaxy or gas source molecular beam epitaxy may be used or, depending on the characteristics of the semiconductor concerned, vapor phase epitaxy.
  • a multi-quantum well structure may also be utilized consisting of an array of multiple thin-layer quantum wells arranged in the light—emitting region, or an ordinary, relatively thick light-emitting layer.
  • semiconducting layers in a semiconductor light-emitting device in which compositionally graded layers are provided adjacent to the light—emitting layer, semiconducting layers can be grown free of strain by controlling changes in the lattice constant at the ends of the compositionally graded layers and lattice deficiency or strain accompanying changes in the lattice constant can be considerably suppressed, thereby enhancing the characteristics of the device and producing a marked improvement in device reliability.
  • the present invention can enhance the characteristics of a device based on AlGaAs, the conventional semiconductor material general used, and it can also be used to realize devices using mixed-crystal semiconductors such as AlGalnP, AlGalnAs, and GalnAsP that provide a high level of performance on a par with AlGaAs devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

A semiconductor light-emitting device is provided with optical guide layers that include at least part of compositionally graded layers provided adjacent to the light-emitting layer, and at least one end of the compositionally graded layers is provided with a bridging layer wherein the first derivative of each composition profile with respect to the layer thickness is continuous. This provides an extremely smooth change of composition from one layer to the next, and eliminates problems such as overshoot and undershoot, and can be accomplished using a general control system based on PID.

Description

SEMICONDUCTOR LIGHT-EMITTING DEVICES Technical Field
The present invention relates to semiconductor light-emitting devices such as semiconductor lasers and light—emitting diodes having a high emission efficiency. It particularly relates to semiconductor light-emitting devices having high-efficiency emission layers which can be readily formed on a substrate of semiconductor mixed crystal using MBE (molecular beam epitaxy) or MOCVD (metal-organic chemical vapor deposition). Background Art
In recent years optical communication technology and optical information processing technology have assumed a central role in a wide range of fields. Digital optical communication using optical fibers has made it possible to realize large increases in information carrying capacities, and in the area of optical information processing in which the technology has been extensively utilized in the form of optical disks and laser printers and the like, related fields of application are expanding at a remarkable pace.
In optical technology, light-emitting diodes and semiconductor lasers are the leading light-emitting sources. Laser technology in particular has played an important part in stimulating advances in every area of optical technology in recent years. Also in recent years, gas and solid-state lasers are being supplanted by semiconductor lasers in which the output of the device can be readily controlled precisely by varying the current supply, in addition to which semiconductor lasers are small and long lasting, all qualities which are extremely useful for opening up fields of application that have been beyond the capabilities of gas or solid-state lasers. Semiconductor light-emitting devices, typical examples of which are light—emitting diodes and semiconductor lasers, are now -undergoing new developments on a number of fronts as a result of the introduction of semiconductor mixed crystals in place of the conventional Si crystal semiconductor. In particular, the introduction of AlGaAs semiconductor mixed crystal has led to major advances in semiconductor lasers. In a semiconductor light—emitting device, the light emission comes from the recombination of minority charged carriers injected into a forward—biased p— junction in the substrate; that is, the light is produced by direct radiative recombination when a forward current is passed across the p-n junction. Used without further modification to the light, the device functions as a light-emitting diode. However, such a device can be made to serve as a semiconductor laser by using the light to generate a lasing action.
An important subject for realizing semiconductor light—emitting devices having a high light-emitting efficiency concerns how best to fabricate the light—emitting p—n junction region on the substrate. Conventionally, the p-n junction light—emitting region is fabricated using epitaxial growth method, such as chemical vapor phase deposition. These conventional processes will now be described with reference to semiconductor lasers. FIG. 3 illustrates the construction of an ordinary, conventional double heterojunction laser. The laser consists of a cladding layer 12, a light—emitting layer (active layer) 14, a cladding layer 16 and a cap layer 18 formed on a GaAs semiconductor substrate 10. Application of a current to the semiconductor laser by means of electrodes 20 and 22 provided on the substrate side and on the cap layer causes light to be emitted by the injection of electrons or holes into the light—emitting region 14 sandwiched between the cladding layers 12 and 16. The double heterojunction is formed by the light—emitting region 14 sandwiched between the cladding layers 12 and 16.
When utilized as a semiconductor laser, the electrons or holes that constitute the injected carriers are confined by the band gap of the semiconductor device. The effect of confining the injected carriers is that very small current values can produce a high enough gain in the light-emitting region 14 for light amplification and oscillation to take place. Optical differences in the composition of the light-emitting region 14 compared to the cladding layers 12 and 16 give the light-emitting region 14 a higher refractive index than the cladding layers 12 and 16, and the effect of this is to confine the light in the light—emitting region 14, which enables a powerful amplifying action to be imparted to the light.
With the conventionally structured double heterojunction semiconductor laser it is therefore possible to obtain a high light—emitting efficiency as a result of the above—described injected carrier confinement and light confinement effects, and recent advances in single-crystal growth techniques are bringing further improvements in the light-emitting layer. Specifically, molecular beam epitaxy and metal-organic chemical vapor deposition techniques now enable layers to be formed epitaxially which are 10 A thick, or even thinner. Thus, such techniques have made it possible to grow light-emitting-layer films of a thinness that was difficult with the previous fabrication technique of liquid phase epitaxy (LPE) and have made it possible to fabricate improved semiconductor light—emitting devices that utilize quantum effects.
A representative application of the quantum effect is the quantum well laser. The light-emitting region in a quantum well laser is illustrated in FIG. 4. As is clear from the enlarged view of FIG. 4, the light-emitting region 14 is constituted of a light—emitter layer 30 and juxtaposed optical guide layers 32 and 34. The light-emitting layer 30 is 100 to 200 A thick, and with the optical guide layers 32 and 34 forms the active region.
By thus fabricating the light-emitting layer 30 very thin, it becomes a quantum well in which a quantum confinement effect is produced. Whereas in a conventional light—emitting layer the carriers are free to move in three dimensions, in the quantum well the thickness of the light—emitting layer 30 is reduced to such a degree that the movement of the carriers is limited to two dimensions. As indicated by the arrow 100 in FIG. 4, substantially the carriers can only move in a plane that includes the direction in which laser oscillation occurs, and movement in the thickness direction of the layer is suppressed. The quantum confinement effect therefore enables the light—emitting efficiency to be considerably improved, and as such, has the added advantage of reducing threshold current values and improving the transient overshoot characteristics. There is a detailed description of this type of quantum well laser by W.T. Tsang, Chapter 7, Vol. 24, Semiconductors and Semimetals, eds. R. . Willardson and Albert C. Beer, Academic Press, 1987.
Still with reference to FIG. 4, the injected carriers are themselves subjected to quantum confinement in the light-emitting layer 30 and give rise to the high—efficiency emission described
SUBSTITUTE SHEET above. However, because the wavelength of the emitted light exceeds the thickness of the light-emitting layer 30, some of the light escapes from the confines of the light—emitting layer 30. The optical guide layers 32 and 34 are for providing the confinement performance indicated by the emission level characteristic curve 102. Light emitted by the carriers confined in the light-emitting layer 30 is thus almost completely confined within the optical guide layers 32 and 34, as illustrated by the characteristic curve 102, thereby providing semiconductor lasers or light-emitting diodes that have a highly efficient light-emitting action.
The characteristic denoted in FIG. 4 by reference numeral 104 indicates the distribution of the aluminum constituent in the vicinity of the light-emitting region using a semiconductor substrate of GaAs. As is apparent from the light-emitting region 14, at least part of the optical guide layers 32 and 34 has a compositionally graded layer region whereby the composition of the connection between the cladding layers 12 and 16 and the light-emitting layer 30 changes on a continuous basis.
The GaAs system GRIN SCH (graded index separate confinement heterostructure) laser is a known conventional quantum well laser device that includes this type of compositionally graded layers. Figures 5 shows an example of the design distribution of the ratio of Al in the light-emitting region of a conventional GaAs mixed crystal semiconductor laser. The distribution is the same as that shown in FIG. 4, except that the view has rotated 90°. In the drawing the horizontal axis represents the thickness direction of the semiconductor mixed crystal and the vertical axis the Al mixed—crystal ratio distribution. In practice, the vertical-axis distribution characteristics closely coincide with the band gaps. Details of the conventional fabrication by MBE of a light-emitting region that includes a compositionally graded layer structure will now be described.
When n-GaAs is used as the semiconductor mixed crystal substrate, a cladding layer 12 of n-AlQ cGaQ ,-As is formed. As is well known, in the case of MBE, a GaAs substrate in a heated state is provided in a vacuum chamber that also contains cells of Al, Ga, and As, and the cells are heated to deposit the substances on the substrate in the required proportions. Regulation of the mixture ratios is effected by controlling the temperature of each cell by a suitable technique such as PID.
The formation of the cladding layer 12 is followed by an optical guide layer 32 that constitutes the compositionally graded layer, a light—emitting layer 30, an optical guide layer 34 and a cladding layer 16; when the device is to be used as a semiconductor laser, a continuous cap layer, not illustrated, is also provided.
After the cladding layer 12 has been formed, the optical guide layer 32 that includes the said compositionally graded layer is formed by closing the Si cell shutter and gradually lowering the temperature of the Al cell as the growth of the compositionally graded layer progresses to thereby create an undoped GRIN compositionally graded region (CGR). To obtain the light-emitting layer 30 that constitutes the quantum well, the Al cell shutter is closed to grow an undoped GaAs quantum layer. The optical guide layer 34 is grown by closing the shutter of the Al cell and gradually raising the temperature of the Al cell, thereby producing an undoped GRIN region. For the cladding layer 16, the Be cell shutter is then opened to produce a layer of p—A1Q r aQ -As. Thus, using MBE, the required layers can be readily formed by opening and closing the various cells and regulating the temperature of the Al cell. As described in the above, it is possible to fabricate a conventional light-emitting region on a GaAs substrate, but a problem has been that, in practice, owing to various factors the Al component distribution deviates from the ideal distribution shown in FIG. 4.
The main cause of this error lies in the thermal capacitance of the various metal cells. Even when PID techniques are used to regulate temperature changes, the thermal capacitance produces a delay in the control response, and as shown by the broken line in FIG. 5, at parts 32a and 34a where the growth of the compositionally graded regions starts, this delay produces a deviation from the required characteristics . At the terminal end of the compositionally graded region, also, a rise in the temperature leads to overshoot while a drop in temperature produces undershoot, so that as shown in the drawing, immediately after the transition from the optical guide layer 34 to the cladding layer 16, owing to Al cell temperature overshoot a deviation 34B, indicated by a broken line, is produced.
Each of these deviations produces noise spikes in the Al component ratio, and the Al component distribution, also the band gap characteristics, deviate away from the ideal characteristics indicated in FIG. 5 by the solid lines, to the characteristics shown by the broken lines. Deviation might also be expected to arise in the optical guide layer 32 at the terminal end of the compositional grading. In fact, however, when the quantum well light-emitting layer 30 is being fabricated the Al cell shutter is completely closed for the transition to the formation of the quantum well, so there is not overshoot. Also, to use a different example, if the intention is to follow the GRIN region with a light-emitting layer of
Figure imgf000010_0001
8As tkat has a fixed Al component ratio, a dip in the Al component ratio forms at the portion where the layer is started. From the above, it is therefore clear that if a light-emitting region with a compositionally graded layer structure is formed on a conventional semiconductor light—emitting device with a GaAs substrate, portions where the compositional grading is not smooth give rise to deviations from the expected values. Another problem is that in this semiconductor mixed crystal, composition deviation also produces changes in the lattice constant.
The semiconductor mixed crystal generally used for semiconductor lasers is GaAs, with the requisite band gap being obtained by varying the proportions of Al and Ga relative to the As . As shown in FIG. 5, control is effected so that when the Al component ratio is decreased the band gap value is also reduced. Also, there is a convergence between the lattice constants of the GaAs and the AlAs, the mixture ratios of which are changed, as mentioned above. As a result, where the required compositional grading has been obtained, even if there are fluctuations produced by thermal capacitance—based deviation such as shown by the broken line portions in FIG. 5, because the lattice constant remains virtually the same over the entire range of change in the Al component ratio from GaAs to AlAs, it is relatively difficult to disturb the lattice matching between the substrate and the various layers, or between the layers themselves, so such fluctuation or deviation does not bring about a change in the lattice constant and, in practice, to some extent utilization is possible.
However, because in the case of ordinary mixed crystal semiconductors compositional changes produce changes in the lattice constant, only special mixed crystals such as AlGaAs can be used for semiconductor light—emitting devices.
Needless to say, even with AlGaAs it is desirable that thermal capacitance—based deviation from the required distribution characteristics be eliminated as far as possible.
In ordinary mixed crystal semiconductors, compositional deviation arising between the layers and substrate or among the layers produces strain in the layers which in turn leads to defects caused by lattice mismatching, or in the case of a strained lattice, the strain combines with the current and light-emitting energy, causing rapid degradation of the light-emitting device.
Generally, in order to keep lattice mismatching to 0.17o or less, for example, permissible composition deviation in the layers has to be kept to around 1%, but controlling the composition to within such a small permissible value is difficult. With ordinary semiconductor mixed crystals, it is known that a stable lattice constant can be achieved with respect to compositional changes by maintaining specific component ratios. If lattice matching is considered with reference to (Al GA,_χ)0 sIno 5P aτ-~ GaAs substrate, for example, if the ratio of (Al Ga, _) to In is maintained at 1:1, it is possible to obtain a layered structure in which the lattice constant will not be altered by compositional changes. Similarly, in the case of lattice matching of (Al Ga,_χ)0 As Ino 52As v^^~~-~ a substrate InP, a fixed lattice constant can be obtained by maintaining a ratio of 0.48:0.52 between the sum of the Al and Ga, and the In.
However, in order to obtain the required grading material characteristics, when growing the light-emitting region the ratio of Al to Ga has to be precisely controlled to x:l — x and the ratio of the sum of Al and Ga to the In to y:l — y, which is difficult. When in addition to this precision control requirement there is thermal capacitance—based deviation such as shown in FIG. 5, it becomes impossible to obtain a good composition distribution. Therefore, even if precision control is used to obtain the ideal distribution characteristics indicated by the solid lines in FIG. 5, it is still impossible to prevent some lattice mismatching and defects that lead to degradation of device characteristics and reliability.
The above description of the prior art refers to a conventional GRIN-SCH semiconductor laser fabricated using MBE. However, even when the light—emitting region is formed by another method such as MOCVD or other vapor phase deposition process, when varying the gas flow amount by means of, for example, a mass flow controller during formation of the GRIN region, there is a delay in response before the actual gas flow amount at the substrate equals the set flow amount, because of which it has been impossible to avoid the kind of compositional deviation shown in FIG. 5. Disclosure of the Invention
The object of the present invention is to provide a semiconductor light-emitting device having a light-emitting region that includes a CGR in which lattice mismatching in the CGR and in the region in the vicinity of the CGR is reduced, and the characteristics and the reliability of the device are markedly improved. In the present invention the above object is attained by a semiconductor light—emitting device provided with optical guide layers that include at least part of compositionally graded layers provided adjacent to a light-emitting layer, wherein at least one end of the compositionally graded layers is provided with a bridging layer wherein the first derivative of each composition profile with respect to the layer thickness is continuous. Stated differently, the bridging layer provides a smooth change of composition profile from an adjacent layer to its graded layer, with none of the sudden changes of prior devices. As a result, even with the existence of the thermal capacitance of the metal cells used in the vapor phase deposition process, the compositional change is smoothly continuous with none of the overshoot, undershoot or dips exhibited in the prior art, which considerably facilitates compositional control based on PID techniques or other such methods.
Therefore, the present invention eliminates instability factors such as metal cell thermal capacitance and enables the compositional distribution to be controlled accurately, and also enables many other types of semiconductor mixed crystals to be used for semiconductor light-emitting devices.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the invention. Brief Description of the Drawings
FIG. 1 is an explanatory diagram showing the aluminum distribution and a cross—sectional view of the vicinity of the light-emitting region of an
AlGalnP semiconductor laser according to the present invention. FIG. 2 is an explanatory diagram of a second embodiment of a semiconductor laser according to the present invention, showing the aluminum distribution in the vicinity of an AlGalnAs mixed crystal light—emitting region.
FIG. 3 is an explanatory drawing of the layer structure of a conventional double heterojunction semiconductor laser.
FIG. 4 is an explanatory drawing of the layer structure of a semiconductor laser in which the light—emitting region is a quantum well.
FIG. 5 is an explanatory drawing showing the composition and compositional deviation in the conventional quantum well light—emitting layer shown in FIG. 4.
Modes of Carrying Out the Invention
FIG. 1 shows the Al distribution and a cross—sectional view of the vicinity of a light—emitting region of an AlGalnP semiconductor laser according to a first embodiment of the present invention.
FIG. 1, an n-GaAs buffer layer 52 ιo n
(silicon: 1x10 cm , 0.3 micrometer) is formed on an
to n-GaAs substrate 50 (silicon doping: 1x10 cm ) using a conventional vapor phase growth method.
_fn n"(A10.6Ga0.4 0.5In0.5P <silicon: 1x10 cm , thickness of 1 micrometer) cladding layer 54 is provided on the buffer layer 52, and on the cladding layer 54 is formed a light-emitting region or structure 56 which is described in detail below. A p-(AlQ &GaQ ^)Q 5In0 ςP (beryllium: 5x10 cm , thick of 0.8 micrometer) cladding layer 58 is then formed on the light-emitting region 56, the light-emitting region 56 being thus sandwiched between the cladding layers 54 and 58 to form the same type of double heterojunction as that of a conventional device. Vapor phase deposition is then used to form
18 —3 a p-GaQ 5I 0 ^P layer 60 (beryllium: 1x10 cm , thickness of 0.1 micrometer) followed by a p—GaAs cap
18 —3 layer 62 (beryllium: 5x10 cm , thickness of 0.1 micrometer) on the p-cladding layer 58.
As in the conventional arrangement, the central part of the light-emitting region 56 includes a light-emitting layer (active layer) 70 constituted of an undoped GaQ 5In0 5P quantum well layer (150 A thick) sandwiched between undoped (Al Ga, )Q 5Inn 5P GRIN optical guide layers 72 and 74, each 0.2 micrometer thick, also as in the conventional arrangement and wherein x varies from 0.6 to 0.2. The optical guide layers 72 and 74 each include compositionally graded layers, which in this embodiment are denoted by reference numerals 76 and 78.
A characterizing feature of the present invention is that at least one end of the optical guide layer 72 or 74 or of the compositionally graded layer 76 or 78 adjacent to the light—emitting layer 70 is provided with a bridging layer wherein the first derivative of the composition profile with respect to the thickness thereof is continuous. In this embodiment bridging layers are provided at both ends of the compositionally graded layer 76 and 78 and are denoted by reference numerals 80 and 82, in the case of the compositionally graded layer 76, and 84 and 86 in the case of the compositionally graded layer 78.
The bridging layers 80, 82, 84, and 86 enable deviation in composition produced by the conventional abrupt compositional changes to be securely eliminated. Details of the vapor phase deposition process used to create the light—emitting region will now be described. After the cladding layer 54 has been grown, the shutter of the Si cell in the vacuum vessel of the vapor phase deposition apparatus is closed, and PID control is used to reduce the temperature of the Al cell while at the same time raising the temperature of the Ga cell. This enables the compositional ratio between Al and Ga to be changed while maintaining the combined ratio of the Al and Ga relative to the indium at a constant level, for forming the optical guide layer 72. By thus maintaining the composition ratios as described, it is possible thus to maintain a fixed lattice constant within the optical guide layer 72 that enables lattice matching with the GaAs substrate to be accomplished. As described above, in accordance with this invention, there is a bridging layer 80 at the end of which growth of the optical guide layer 72 is started, and a continuous rate of change in the compositional ratio of Al at this bridging layer 80 is applied, that is, the rate of change starting from a first derivative of zero until a constant value in the compositionally graded layer 76 is reached, which means the first derivative. This makes it possible to readily achieve a cell temperature that conforms to the initially determined characteristics, using for example ordinary PID control. As explained with reference to the conventional structure shown in FIG. 5, it becomes-possible to obtain changes in compositional ratio that conform with the design values with no compositional deviation at the beginning of the compositionally graded portions.
In this embodiment the compositionally graded layer 76 is given a constant ratio of change, an attribute that is readily realized merely by effecting a linear adjustment of the aluminum through the use of PID control. In addition, the terminal end of the compositionally graded layer 76 is also provided with a bridging layer (layer 82), so in accordance with the same principle in effect in the case of the bridging layer 80 at the initial end, the potential inversion resulting from the compositional change characteristics is imparted to the bridging layer 82, so that the ratio of compositional change gradually reverts to zero and abrupt jumps in the ratio of change at the terminal end are eliminated. In the same way, the compositionally graded layer 78 on the p side is provided with the bridging layers 84 and 86 wherein the first derivative of the composition profile with respect to the thickness at each end of the compositionally graded layer 78 is continuous, preventing the type of deviation that occurs with the conventional arrangement.
Specifically, it is possible to prevent the type of aluminum cell temperature overshoot and gallium cell temperature undershoot that are produced with the conventional arrangement where there is an abrupt compositional change.
Similarly to the conventional arrangement, in this embodiment the light-emitting layer 70 is formed as a GaQ 5In0 5P quantum well light—emitting layer, following the formation of the optical guide layer 72, by closing the shutters of the aluminum and gallium cells and opening the shutter of another gallium cell that is provided separately, making it difficult for the type of compositional deviation to occur at the locations shown in FIG. 5. In practice this also makes it possible to omit the bridging layer 82 provided at the terminal end of the compositionally graded layer 76. However, with respect to the optical guide layer 74 on the other side of the light-emitting layer 70, because the bridging layer 84 is an essential requirement at the initial end of the compositionally graded layer 78 it is preferable to provide the bridging layer 82 to achieve symmetry between the optical guide layers 72 and 74 with respect to the light-emitting layer 70.
Moreover, it is necessary to set a prescribed time to allow fluctuation to stop in the aluminum and gallium cells used to grow the optical guide layer 72 prior to forming the light-emitting layer 70, and if there is no bridging layer 82, when the light—emitting layer 70 is very thin and the growth time very short the set time may not be enough to eliminate the said fluctuation in the aluminum and gallium cells before the completion of the optical guide layer 74. In order also to eliminate such instability factors and to achieve very thin quantum well layers, it is therefore preferable that the bridging layer 82 be provided.
Thus, in accordance with this embodiment the light-emitting layer 70 is sandwiched between the optical guide layers 72 and 74, and by providing bridging layers 80, 82, 84, and 86 at both ends of "the compositionally graded layers 76 and 78, a stable light-emitting region is provided that is free of compositional deviation.
Although the drawing does not show details, to complete the semiconductor laser, plasma CVD is used to form a layer of Si about 0.3 micrometer thick on the p-GaAs layer, and a photolithographic process is then used to remove the SiN ~~~~ layer in strips 10 micrometers wide. On the p side, an ohmic electrode is then formed by the alloying deposition of AuZn/Au on the p-GaAs layer 62. On n-side electrode of AuGe/Ni/Au is formed on the reverse side of the GaAs substrate.
The laser emitting ends of the semiconductor thus fabricated are cleaved to form a resonator and the wafer is then scribed to divide it into individual chips and thereby provide the completed semiconductor laser device. In the embodiment described above, a semiconductor laser is used as a semiconductor light-emitting device according to the present invention. The bridging layer of this invention is also highly effective as a carrier injection layer with respect to light-emitting diodes, when the emission region is formed on the substrate as a light—emitting layer between compositionally graded layers. FIG. 2 shows a second embodiment according to the present invention. As in the case of the first embodiment, it shows the Al distribution and a cross-sectional view of the vicinity of a light- emitting region of an AlGalnAs semiconductor laser. In this second embodiment, the substrate 250 is constituted on n-InP(S: 1x10 cm ) . An
1 o n n-GaQ 47In0 53As buffer layer 252 (S: 1x10 cm , thickness of 0.5 micrometer) is formed on the substrate 250, then an n—(A1Q ^GaQ Λ)Q 47InQ 53As
1 o cladding layer 254 (S: 1x10 cm , thickness of 1.5 micrometers) .
A light—emitting structure 256 is then formed on the cladding layer 254, followed by a P~(A1o.6Ga0.4^0.47In0.53As claddinS layer 258 ι g n
(Zn: 1x10 cm .thickness of 1.5 micrometers). A continuous p- g 47In Q 53As caP layer 260
(Zn: 4x10 cm , thickness of 0.3 micrometer) is then grown on the cladding layer 258 using MOCVD. As in the first embodiment, there is a light—emitting structure or region 256 that includes a light-emitting layer 270 sandwiched between optical guide layers 272 and 274. The light-emitting layer 270 is constituted as an undoped GaQ 7I*1Q 53As quantum well layer that is 150 A thick. The optical guide layer 272 includes an undoped
(AlχGa1_χ)0 47In0 53As GRIN laver 290 that is 0.2 micrometer thick and an undoped (A1Q 2GaQ 8)0 7In0 53As layer 292 that is 0.1 micrometer thick. Similarly, the optical guide layer 274 consists of an undoped
(A10.2Ga0.8)0.47I 0.53As layer 294 that is 0 Λ micrometer thick and undoped (Al Ga,_χ)0 47Ino 53As GRIN layer 296 that is 0.2 micrometer thick. As shown x can vary from 0.6 to 0.2.
Thus, in the second embodiment, just part of the optical guide layers 272 and 274 has a GRIN layer 290 and 296, respectively. The ratio of the compositionally graded layer in the optical guide layer and the grading itself may be selected according to requirements.
With reference to FIG. 2, the characteristic feature of this embodiment is that the GRIN layers 290 and 296' actually include the respective compositionally graded layers 276 and 278, at each end of which are formed respective bridging layers 280 and 282, and 284 and 286. As a result, these bridging layers are provided with characteristics whereby the first derivative of each composition profile with respect to the layer thickness is continuous, for a compositional distribution whereby in the GRIN layers 290 and 296 the compositional change at the initial and terminal ends is gradual, starting from zero, with no jumps in the ratio of change.
As has been described, with MOCVD and other such vapor phase fabrication methods, the gas flows are accompanied by various delays, and with an ordinary, simple GRIN region, when there are jumps in the ratio of compositional change it is difficult to effect the various gas flow amounts so that they conform with the prescribed settings. However, in accordance with this embodiment, by providing bridging layers 280 and 282, 284 and 286 at both ends -of the compositionally graded layers 276 and 278, a continuous ratio of change for a compositional change that conforms with the design values can be readily achieved using ordinary PID or other such control methods.
In the embodiment described above, the component ratios of the constituent elements other than the elements accompanying the compositional change are always fixed, but in practice there may be cases where it is desirable to change the element ratio of these fixed components. In the case of AlGalnAs, for example, because in strict terms the components for lattice matching with the InP are
Ga0.47In0.53As and A10.48In0.52As' ~ ~ is better for the ratio of indium in the AlGalnAs to be reduced as the ratio of aluminum to gallium increases. In such a case, for example, the growth rate of the AlGaAs in the AlGalnAs can be maintained constant while varying the ratio of the Al and Ga and slightly reducing the InAs growth rate as the Al is increased, maintaining a fixed lattice constant. Although the above embodiments have been described with reference to semiconductor lasers, the same or similar layered structures can be used to fabricate high-efficiency light-emitting diodes.
Again, while the above semiconductor mixed crystals were described with reference to AlGalnP and
AlGalnAs, for purpose of achieving the object of the invention the mixed crystals could also be
GV7acVI-n",l-xPjryAΛsiSl.-y oυr_A1xGaα,l-xAsBySbJJ,l-y. In these mixed crystals, a fixed lattice constant may be maintained by inter—related changes between the component ratios denoted by x and y, so that no strain caused by differences in lattice constants produced between the substrate and the formed layers, or between layers. For the purposes of the present invention, any of the following preferred examples; of semiconductor mixed crystals may be used: A1 S Gal-X>yInl-yP; <A1xGal-xynl-yAS:, Ga x In, 1-x P y As, 1-y ; ' Al x Ga, 1-x As y Sb, 1-y
(0 < x < 1 , 0 < y < 1) .
Also, while in the embodiments described above MBE and MOCVD were used to form the semiconducting layers on the substrate, the present invention is not limited to these methods. Other methods such as chemical beam epitaxy or gas source molecular beam epitaxy may be used or, depending on the characteristics of the semiconductor concerned, vapor phase epitaxy.
For the light-emitting layer according to the present invention, a multi-quantum well structure may also be utilized consisting of an array of multiple thin-layer quantum wells arranged in the light—emitting region, or an ordinary, relatively thick light-emitting layer.
As has been described, in accordance with the present invention, in a semiconductor light-emitting device in which compositionally graded layers are provided adjacent to the light—emitting layer, semiconducting layers can be grown free of strain by controlling changes in the lattice constant at the ends of the compositionally graded layers and lattice deficiency or strain accompanying changes in the lattice constant can be considerably suppressed, thereby enhancing the characteristics of the device and producing a marked improvement in device reliability. Industrial Applicability and Advantages Thus, the present invention can enhance the characteristics of a device based on AlGaAs, the conventional semiconductor material general used, and it can also be used to realize devices using mixed-crystal semiconductors such as AlGalnP, AlGalnAs, and GalnAsP that provide a high level of performance on a par with AlGaAs devices.
UBSTITUTE SHET

Claims

CLAIMS :
1. A semiconductor light—emitting device including a substrate of semiconductor mixed crystal on which is provided a light-emitting structure that includes a light-emitting layer sandwiched between optical guide layers, each of which includes a compositionally graded layer characterized by: at least one end of each compositionally graded layer being provided with a bridging layer wherein a first derivative of the composition profile with respect to the layer thickness is continuous, so that the bridging layer provides a smooth change of composition profile to an adjacent layer.
2. The semiconductor light-emitting device of claim 1 wherein the compositionally graded layer is (AlχG_χ)0ι5In0ι5P.
3. The semiconductor light-emitting device of claim 2 wherein x varies from 0.6 to 0.2 and the light-emitting layer is GaQ CIUQ ςP.
4. The semiconductor light—emitting device of claim 1 wherein the compositionally graded layer is (AlχGa1_χ)0 47In0<53As.
5. The semiconductor light-emitting device of claim 4 wherein x varies from 0.6 to 0.2, and the light-emitting layer is Ga.- 7IHQ 53AS and further includes two layers of (A1Q 2 Gao 8^0 47In0 53As each of which connects the light—emitting layer to a compositionally graded layer.
6. The semiconductor light—emitting device of claim 2 wherein a bridging is provided on each end of each compositionally graded layer.
7. The semiconductor light—emitting device of claim 4 wherein the compositionally graded layer is (Al-^ >„ „__-_53A..
PCT/US1989/004377 1988-10-14 1989-10-10 Semiconductor light-emitting devices WO1990004275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP88/259067 1988-10-14
JP63259067A JPH02106082A (en) 1988-10-14 1988-10-14 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
WO1990004275A1 true WO1990004275A1 (en) 1990-04-19

Family

ID=17328863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/004377 WO1990004275A1 (en) 1988-10-14 1989-10-10 Semiconductor light-emitting devices

Country Status (3)

Country Link
EP (1) EP0396704A1 (en)
JP (1) JPH02106082A (en)
WO (1) WO1990004275A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827731A (en) * 1991-10-22 1998-10-27 Basf Aktiengesellschaft Thrombin-inhibitory protein from ticks
WO2008070977A1 (en) * 2006-12-11 2008-06-19 Tir Technology Lp Method and apparatus for digital control of a lighting device
US7868562B2 (en) 2006-12-11 2011-01-11 Koninklijke Philips Electronics N.V. Luminaire control system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045104B2 (en) * 1997-05-21 2000-05-29 日本電気株式会社 Semiconductor laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213705A2 (en) * 1985-07-16 1987-03-11 Sharp Kabushiki Kaisha A semiconductor laser device
EP0227865A1 (en) * 1985-10-15 1987-07-08 Kabushiki Kaisha Toshiba Light emitting semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213705A2 (en) * 1985-07-16 1987-03-11 Sharp Kabushiki Kaisha A semiconductor laser device
EP0227865A1 (en) * 1985-10-15 1987-07-08 Kabushiki Kaisha Toshiba Light emitting semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827731A (en) * 1991-10-22 1998-10-27 Basf Aktiengesellschaft Thrombin-inhibitory protein from ticks
WO2008070977A1 (en) * 2006-12-11 2008-06-19 Tir Technology Lp Method and apparatus for digital control of a lighting device
US7868562B2 (en) 2006-12-11 2011-01-11 Koninklijke Philips Electronics N.V. Luminaire control system and method
US9069341B2 (en) 2006-12-11 2015-06-30 Koninklijke Philips N.V. Method and apparatus for digital control of a lighting device

Also Published As

Publication number Publication date
EP0396704A1 (en) 1990-11-14
JPH02106082A (en) 1990-04-18

Similar Documents

Publication Publication Date Title
JP3683669B2 (en) Semiconductor light emitting device
US4794611A (en) Semiconductor laser having superlattice structure
EP0661782B1 (en) A semiconductor laser
US5496767A (en) Semiconductor laser and manufacturing method of the same
US4819036A (en) Semiconductor device
EP0989643B1 (en) Semiconductor light-emitting device and manufacturing method for the same
JPH06326407A (en) Semiconductor laser
US4974231A (en) Visible light semiconductor laser
US4916708A (en) Semiconductor light-emitting devices
US7141829B2 (en) Semiconductor laser device with antimony and crystal growth method
US6639926B1 (en) Semiconductor light-emitting device
WO1990004275A1 (en) Semiconductor light-emitting devices
JP2000277867A (en) Semiconductor laser device
JPH10284795A (en) Semiconductor laser element providing distortion amount and layer thickness modulating multiple quantum-well structure and manufacture therefor
JPH065920A (en) Light emitting element
US5302847A (en) Semiconductor heterostructure having a capping layer preventing deleterious effects of As-P exchange
JP4199835B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JPH07120838B2 (en) Semiconductor light emitting device
JPH0669589A (en) Semiconductor laser element
EP0867949B1 (en) Semiconductor light-emitting device
JPH05218565A (en) Semiconductor light emitting device
US6023483A (en) Semiconductor light-emitting device
JPH09232691A (en) Semiconductor laser
JPH0563290A (en) Semiconductor laser
JPH0529715A (en) Semiconductor element having distortion quantum well structure

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989912535

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989912535

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1989912535

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989912535

Country of ref document: EP