WO1988009342A1 - (n-alpha-acyl, 8-glycine, des-19-leucine)-calcitonin - Google Patents

(n-alpha-acyl, 8-glycine, des-19-leucine)-calcitonin Download PDF

Info

Publication number
WO1988009342A1
WO1988009342A1 PCT/US1988/001711 US8801711W WO8809342A1 WO 1988009342 A1 WO1988009342 A1 WO 1988009342A1 US 8801711 W US8801711 W US 8801711W WO 8809342 A1 WO8809342 A1 WO 8809342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
boc
resin
calcitonin
peptide
Prior art date
Application number
PCT/US1988/001711
Other languages
French (fr)
Inventor
Ronald C. Orlowski
Jay K. Seyler
Original Assignee
Rorer International (Overseas) Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rorer International (Overseas) Inc. filed Critical Rorer International (Overseas) Inc.
Priority to AT88906272T priority Critical patent/ATE100467T1/en
Publication of WO1988009342A1 publication Critical patent/WO1988009342A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/585Calcitonins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • A61P5/12Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH for decreasing, blocking or antagonising the activity of the posterior pituitary hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to calcitonins having biological activity and to peptides which can be converted to biologically active calcitonins and to processes for preparing such calcitonin analogs.
  • All known natural calcitonin peptides contain an amino acid sequence of 32 amino acids.
  • the natural calcitonins include the salmon, eel, bovine, porcine, ovine, rat and human calcitonins.
  • Salmon calcitonin for example, has the following formula
  • the new peptides have higher potency and quality when compared to known calcitonins.
  • the present invention relates to a modified calcitonin which comprises [N-alpha- propionyl, 8-glycine, des-19-leucine] calcitonin.
  • the present invention also relates to a process for preparing a modified calcitonin by sequentially adding the amino acids normally required to form calcitonin which comprises omitting leucine at the 19th position, substituting glycine for valine at the 8th position and acetylating the N-alpha to form [N-alpha-propionyl,
  • BHA resin benzhydrylamine resin
  • This resin is derived from a cross-linked polystyrene bead resin manufactured by copolymerization of styrene and divinylbenzene. Resin of this type is known and its preparation is further demonstrated by Pietta, et al. [Pietta, P.S. and Marshall, G.R., Chem. Commun., 650 (1970)], and Orlowski, et al. [J. Org. Chem., 41, 3701 (1976)].
  • the cross-linked polystyrene BHA resin is available from chemical supply houses. We use the designation ⁇ to represent the BHA resin in which is the polystyrene portion of the resin.
  • the amino acids are added one at a time to the insoluble resin until the total peptide sequence has been built up on the resin.
  • the functional group of the amino acids are protected by blocking groups.
  • the alpha-amino group of the amino acids is protected by a tertiary butyloxycarbonyl group or an equivalent thereof. This alpha-tertiary butyloxycarbonyl group we designate as BOC.
  • benzyl or benzyl derivative group such as 4-methoxybenzyl, 4-methylbenzyl, 3,4-dimethylbenzyl, 4-chlorobenzyl, 2,6-dichlorobenzyl, 4-nitrobenzyl, benzhydryl or an equivalent thereof.
  • Bz we use the term Bz to represent the benzyl or benzyl derivative group.
  • the hydroxyl function of tyrosine may be unprotected, may be protected by a benzyl or benzyl derivative group as described above, as a Bz group, or may be protected by a benzyloxycarbonyl or a benzyloxycarbonyl derivative such as 2-chlorobenzyloxycarbonyl or 2-bromo- benzyloxycarbonyl group or equivalent thereof.
  • W we use the term W to represent either no protective group, a Bz group, a benzyloxycarbonyl group or a benzyloxycarbonyl derivative group.
  • the thiol function of cysteine may be protected by benzyl or benzyl derivative protective groups described above and designated Bz, or by an n-alkylthio group such as methylthio, ethylthio, n-propylthio, n-butylthio or equivalents thereof.
  • R 2 to represent an n-alkylthio group or Bz
  • R 1 to represent Bz when R 2 is n-alkylthio and to represent n-alkylthio when R 2 is Bz.
  • R 1 may be another cysteine group and when this is the case R 2 is Bz.
  • the guanidine function of arginine may be protected by a nitro group, a tosyl group or an equivalent thereof.
  • the epsilon-amino function of lysine may be protected by a benzyloxycarbonyl group or a benzyloxycarbonyl derivative such as as 2-chlorobenzyloxycarbonyl, 3,4-dimethylbenzyloxycarbonyl, or equivalents thereof.
  • the protective groups used on the imidazole nitrogen of histidine are the benzyloxycarbonyl group and benzyloxycarbonyl derivatives such as described above for lysine and are designated as V.
  • the gamma- carboxylic acid group of glutamic acid is protected by a benzyl or benzyl derivative group such as described for the protection hydroxyl function of serine and threonine.
  • These protective groups are represented by the character Bz.
  • the reaction vessel used in all steps of the resin peptide synthesis may be a glass vessel equipped with inlet ports at the top for addition of materials and sintered glass disk at the bottom for removal of soluble reaction mixtures and wash solvents by filtration. Filtration may be performed either by vacuum or the use of nitrogen pressure.
  • the contents of the vessel may be agitated by shaking the entire vessel or by mechanical stirrer.
  • the BHA resin is placed in the reaction vessel and suspended in a solvent such as methylene chloride, chloroform, dimethylformamide, benzene or equivalents thereof in proportions of about 3 to 12 ml. of solvent per gram of resin.
  • a solvent such as methylene chloride, chloroform, dimethylformamide, benzene or equivalents thereof in proportions of about 3 to 12 ml. of solvent per gram of resin.
  • BOC-L- proline in an amount of about 1 to 6 equivalents per free amine equivalent of the BHA resin employed.
  • a coupling reagent such as dicyclohexylcarbodiimide (DCC) may be added, or other diimide coupling agents may be used.
  • the diimide coupling agent may be used in the amount of 0.5 to 2.0 equivalents per equivalent of BOC-L-proline use.
  • the BOC-L-proline may be coupled in the absence of a coupling reagent if its active ester derivative, its azide derivative, its symmetrical derivative, or a suitably chosen mixed anhydride derivative is used.
  • Active ester derivatives that may be employed are 2-nitrophenyl ester, 4-nitrophenyl ester, pentafluorophenyl ester, N- hydroxysuccimide ester or equivalents thereof.
  • the active esters are used in amounts of 1 to 10 equivalents per free amine equivalent of BHA resin.
  • the reaction mixture consisting of the BHA resin, the solvent, the BOC-L-proline, and the coupling reagent or BOC-L-proline active ester is stirred or shaken mechanically until the reaction is complete as indicated by a ninhydrin test [E. Kaiser, et al., Anal. Biochem., 34, 595-8 (1970)] on a test sample.
  • the BOC-L-proline resin may be washed with solvents such as methylene chloride, chloroform, methyl alcohol, benzene, dimethyIformamide, or acetic acid.
  • the amount of wash solvent may suitably be 5 to 20 ml. of solvent for each gram of BHA resin used initially.
  • the washing procedure may be used and the remaining free amino groups on the BOC-L-proline resin may be blocked from further reaction by acetylation with an excess of acetylation reagents.
  • the acetylation procedure may be performed by agitating the BOC-L-proline resin with a solution of the acetylation reagent for a period of 0.5 to 12 hours.
  • Acetylation reagents such as N-acetylimidazole in methylene chloride solution or a mixture of acetic anhydride and triethyl- amine in chloroform may be used.
  • the acetylation reagent may be used in the amount of 0.5 to 5.0 equivalents per equivalent of free amine titer of the starting BHA resin.
  • the coupling reaction to produce the BOC-L- proline resin may be described by the following formula:
  • the BOC-L-proline resin produced as above described may be washed with a solvent such as referred to above and deprotected by agitating it with an agent such as a mixture of trifluoroacetic acid (TFA) in a solvent such as methylene chloride, chloroform, benzene or equivalents thereof.
  • TFA trifluoroacetic acid
  • the amount of TFA in the solvent may vary from 10 to 100% of the mixture.
  • the amount of TFA-solvent mixture may vary from 3 to 20 ml. per gram of BHA resin used initially.
  • the reaction time may be from about 10 minutes to 4 hours.
  • the deprotection step is terminated by filtration to remove the TFA-solvent mixture.
  • the residual TFA may be removed from the BOC- L-proline resin by washing with 3 to 20 ml.
  • BHA resin per gram of BHA resin of a 5 to 30% triethylamine solution in a solvent such as methylene chloride, chloroform, benzene or equivalents thereof.
  • a solvent such as methylene chloride, chloroform, benzene or equivalents thereof.
  • Other tertiary or secondary organic amines may be used in place of the triethylamine, such as trimethylamine, N-ethylpiperidine, diisopropylamine or equivalents thereof.
  • the free amine titer of the BOC- L-proline resin may be determined by the Dorman titration procedure [Dorman, L.C., Tetrahedron Letters, 1969, 2319- 21].
  • the deprotection reaction may be described by the following formula:
  • the prolyl-BHA resin obtained as a result of cycle 31 may be suspended in a coupling solvent,
  • the reaction mixture may be removed from the BOC-O-Bz-threonylprolyl-BHA resin by filtration.
  • the peptide resin may be washed with solvents.
  • the amounts of reactants and solvents and reaction times may be the same as described in cycle 31.
  • the BOC group may be removed from the peptide resin by the deprotection method described in the cycle 31.
  • the resulting O-Bz-threonyl- prolyl-BHA resin is then ready for cycle 29.
  • the reactions of the cycle 30 may be shown by the following formula:
  • CYCLE 29 In cycle 29, the coupling reaction and also the deprotection reaction may be performed in the same manner as in cycle 30 except that BOC-glycine is used in place of BOC-O-Bz-L-threonine.
  • the reaction through coupling and deprotection may be written:
  • CYCLE 25 the coupling reaction is performed using an active ester derivative of BOC-L-asparagine.
  • the active ester procedure is used in place of the DCC coupling agent with BOC-L-asparagine or BOC-L-glutamine.
  • the reaction using the active ester derivative of BOC-L- asparagine may be performed in the amount of 2 to 10 equivalents per free amine equivalent of BHA resin in dimethylformamide, mixtures of dimethylformamide with benzene, methylene chloride or chloroform or with equivalents thereof in the amount of 2 to 20 ml. of solvent per gram of BHA resin used initially. Reaction times range from 1 to 72 hours.
  • the reaction mixture may be removed from the BOC peptide resin by filtration after completion of the reaction as indicated by a ninhydrin test.
  • the active ester derivatives employed may be 2-nitrophenyl esters, 4-nitro- phenyl esters, pentafluorophenyl esters, or equivalents thereof. We use AE to designate the active ester portion of the derivative.
  • the coupling reaction may be written:
  • the deprotection reaction to remove the BOC group is performed as in cycle 31.
  • CYCLES 24-21 In each of cycles 24-21, the coupling and deprotection reactions may be conducted using the methods and proportions of reactants as in cycle 30, using BOC-O- Bz-L-threoninein cycle 24, BOC-omega-T-L-arginine in cycle 23, BOC-L-proline in cycle 22, BOC-W-L-tyrosine in cycle 21, and BOC-O-Bz-L-threonine in cycle 20.
  • the compound resulting from the completion of cycle 20 may be written:
  • the coupling and deprotection reactions may be performed using the methods and proportions of reactants as in cycle 25 using BOC-O-Bz-L- threonine as the amino acid derivative, resulting in the compound:
  • cycle 19 the reactions are performed as in cycle 25 using a BOC-L-glutamine active ester as the amino acid derivative.
  • the compound resulting from cycle 19 is:
  • cycle 18 we may use as the amino acid derivative BOC-epsilon-V-L-lysine. Otherwise, cycle 18 methods may be performed as in cycle 30 resulting in the compound:
  • Cycles 17 to 15 may be performed as in cycle 30 except for the use of BOC-N- (im)-V-L-histidine in cycle 17, BOC-L- glutamic acid Bz ester (Bz represents the same groups as it represents for serine and threonine) as the reactant in cycle 15, resulting in the following compound from cycle 15:
  • Cycle 14 may be performed identically to cycle 19 using BOC-L-glutamine-AE as the amino acid derivative.
  • Cycles 13 to 8 may be performed as in cycle 30 except for the use of BOC-O-L-serine in cycle 13, BOC-L-leucine in cycle 12, BOC-epsilon-V-L-lysine in cycle 11, BOC-glycine in cycle 10, BOC-L-leucine in cycle 9, and BOC-L-valine in cycle 8 resulting in the compound:
  • Cycle 7 may be performed as in cycle 30 except for the use of BOC-S-ethylthio-L-cysteine or equivalent for the amino acid derivative.
  • the compound resulting from cycle 7 is described by the formula:
  • R 2 is an alkylthio or Bz group.
  • Cycles 6 to 2 may be performed as in cycle 30 except that BOC-O-Bz-L-threonine may be used as the amino acid derivative in cycle 6, BOC-O-L-serine may be used as the amino acid derivative in cycle 5 and cycle 2, and BOC-L-leucine may be used in cycle 4 as the amino acid derivative.
  • Cycle 3 may be performed identically to cycle 25 using BOC-L-asparagine active ester. The compound resulting from cycle 2 is:
  • CYCLE 1 This cycle is performed identically to cycle 7 using BOC-S-R 1 -L-cysteine derivatives.
  • the R 1 group chosen for the cysteine may be the same as used in cycle 7 or different.
  • the derivative chosen for cycle 7 is BOC-S-ethylthio-L-cysteine
  • the derivative in cycle 1 may be BOC-S-4-methoxybenzyl-L-cysteine or if BOC-S-4-methoxybenzyl-L-cysteine was chosen for cycle 7, then this derivative or BOC-S-ethylthio-L-cysteine may also be used in cycle 1.
  • the compounds resulting from cycle 1 are illustrated by the formula:
  • R 1 is S-n-alkyl, Cys or Bz and R 2 is S-n-alkyl or Bz; R 1 being S-n-alkyl or Cys when R 2 is Bz, and R 1 being Bz when R 2 is S-n-alkyl.
  • the BOC group may be removed from the peptide resin by the deprotection method previously described.
  • the resulting de-BOC'd 1 to 32 BHA resin peptide is then ready for coupling with propionic acid.
  • This acylation cycle is performed identically to cycle 1 except that propionic acid is used instead of BOC-L-alanine.
  • the compound resulting from the acylation cycle is illustrated by the formula:
  • the acetylation cycle represents the completion of the resin peptide.
  • the resin peptide may be removed from the reaction vessel and dried in a vacuum.
  • the weight of the resin peptide may be expected to be from 2.0 to 3.5 times the weight of BHA resin used initially in the synthesis.
  • the peptide is cleaved from the resin peptide resulting from the acylation cycle by treatment with liquid hydrogen fluoride (HF).
  • HF liquid hydrogen fluoride
  • the HF cleavage reaction may be performed by treating a mixture of the resin peptide and anisole (0.5 to 5 ml. for each gram of resin peptide) with liquid HF to 2 to 20 ml for each gram of resin peptide) for 0.5 to 20 hours at -20 degrees to +15 degrees centigrade. After the reaction period, the excess HF may be removed by evaporation and the resulting mixture of peptide and resin beads may be extracted with organic solvent such as ethyl acetate, diethyl ether, benzene or the like to remove the anisole and residual HF.
  • organic solvent such as ethyl acetate, diethyl ether, benzene or the like to remove the anisole and residual HF.
  • the peptide may be separated from the resin beads by extraction into aqueous acetic acid.
  • the peptide at this stage is not cyclic but is the non-cyclic product without the disulfide bond between the cysteines at positions 1 and 7 in the molecule.
  • the HF treatment removes all blocking groups from the peptide, except the S-alkylthio blocking groups on the thiol function of cysteine residue at either position 1 or 7.
  • the S-n-alkylthio-L-cysteine residue is stable to the HF cleavage procedure and remains intact through the cleaved procedure and remains intact through the cleavage and extraction procedures.
  • the S-BZ-L- cysteine residue is cleavage by HF to yield a cysteine residue with a free thiol function. Both types of blocking groups have been employed, during our synthesis in combination with each other at positions 1 and 7.
  • the peptides obtained after HF cleavage can be one or four types depending upon the blocking groups chosen for the thiol function of the cysteine derivative used during the resin peptide synthesis. If BOC-S-Bz-L-cysteine derivatives are used in the resin peptide synthesis cycle 1 and BOC-S-n-alkylthio-
  • HF cleavage would be of Type I and would have a free thiol function at position 1 and have a S-n-alkylthio function on the cysteine residue at position 7.
  • the conversion of Types I, II and III peptides to the cyclic disulfide peptides may be performed by diluting with distilled water the aqueous acetic acid solution of the crude peptides from HF cleavage to a final volume of 50 to 200 ml. per gram of resin peptide cleaved.
  • the pH of this solution may be adjusted from 5 to 10 by the addition of ammonium hydroxide solution and the mixture may be stirred in a closed container under a stream of an inert gas such as nitrogen for about 2 to 48 hours.
  • the reaction period can be stopped when the effluent gas stream no longer contains n-alkylmercaptan.
  • the pH of the reaction mixture may be lowered to about 3.5 to 5.5 by the addition of glacial acetic acid.
  • Type IV peptides to the cyclic disulfide peptide may be performed by the classical method known to the art in which the peptides are oxidized to form a ring structure to include the cysteines at positions 1 and 7.
  • the intermediate peptides are of Type I, II, III or IV; we may synthesize peptides having amino acid chains corresponding to any known calcitonin. Such peptides synthesized as herein set forth, may be purified an found to have the same type of biological activity as the known calcitonin. Any calcitonin so synthesized is designated 8-glycine, des-19-leucine-calcitonin. This is in accordance with the IUPAC-IUP method of nomenclature.
  • the crude peptide solutions at pH 5.0 from the above synthesis may be concentrated using an ion-exchange procedure.
  • the concentrate may be purified by a combination of gel-filtration procedures, ion-exchange chromatography methods and partition chromatography.
  • the final purified product may be obtained from solution by freeze drying as a fluffy white solid. The product gives the correct amino analysis for the desired peptide.
  • the BHA resin (5 g.) with an amine titer of 0.61 meq./g. was placed in the reactor vessel of a peptide synthesizer marketed by Vega Biochemicals of Arlington, Arizona.
  • the resin was treated with 25 ml. of the following solvents filtering after each treatment: Methylene chloride for 2 minutes Chloroform for 2 minutes two times each 10% triethylamine in chloroform for 5 minutes two times each Chloroform for 2 minutes
  • the BOC-protected resin was agitated for 5 minutes with a mixture of 15 ml. of trifluoroacetic acid (TFA) and 15 ml. of methylene chloride. This mixture was removed by filtration and the resin was agitated with a second mixture of 15 ml. of TFA and 15 ml. of methylene chloride for 30 minutes. The reaction mixture was removed by filtration and the resin subject to the following 25 ml. washes:
  • TFA trifluoroacetic acid
  • the L-proline BHA resin was titrated to establish the amine or proline titer. This value was 0.55 milliequivalents of .amine or proline per gram of resin.
  • Cycle 22 Coupling The peptide resin obtained from cycle
  • Cycle 18 2.20 g. (0.0053 mole) of BOC- epsilon-2-chloro benzyloxy-L-lysine Cycle 17 -- 2.06 g. (0.0053 mole) of BOC-N(im)- carbobenzyloxy-L-histidine Cycle 16 -- 1.32 g. (0.0053 mole) of BOC-L- leucine Cycle 15 -- 1.79 g. (0.0053 mole) of BOC-L- glutamic acid-gamma-benzyl ester
  • Cycle 11 The reactants were the same as in cycle 18
  • Propionolation The resin peptide, 35 ml. of methylene chloride and 0.74 g. (0.01 mole) propionic acid were agitated for 10 minutes. The 11 ml. of methylene chloride solution of dicyclohexylcarbodiimide (1 meq. of DCC per 1 ml.) was added to the reaction and the mixture agitated for 2 hours. The reaction mixture was removed from the reactor and the resin washed as described in cycle 31. The resin peptide was finally washed with two successive 25 ml. portions of n-hexane. The peptide material was removed from the reactor and dried in a vacuum oven at 40°C. at 0.1 mm. of Hg. for 24 hours.
  • the dried resin peptide (2 g.) and 2 ml. of anisole were placed in a Teflon reaction vessel.
  • the vessel, equipped with a Teflon-coated magnet stirrer was placed in a dry ice-acetone bath and 15 ml. of hydrogen fluoride gas was condensed into the vessel. This mixture was stirred at 0 degrees Centigrade in an ice bath for 1 hour.
  • the hydrogen fluoride was removed by evaporation at reduced pressure. The residue was triturated with six 25 ml. portions of ethyl acetate.
  • the peptide was extracted from the resin beads with 120 ml. of 0.1 molar aqueous acetic solution.
  • the aqueous acetic acid extract obtained from hydrogen fluoride cleavage was diluted to 200 ml. by addition of 80 ml. of distilled water.
  • the pH of the solution was adjusted to 7.5 by the addition of concentrated ammonium hydroxide.
  • the solution was stirred in a closed vessel under a stream of nitrogen for 24 hours. At this time no ethyl mercaptan could be detected in the emerging nitrogen stream.
  • the ethyl mercaptan content of the nitrogen stream was measured by passing the stream through a solution of Ellman's reagent [Ellman, G.L., Arch. Biochem. Biophys., 82, 70-7 (1969)].
  • the pH of the reaction mixture was adjusted to 5.0 by addition of glacial acetic acid. Purification of the Crude [N-Alpha-
  • the 200 ml. of solution from the above synthesis at pH 5.0 was concentrated using a SP-25 ion-exchange column.
  • the 25 ml. concentrate removed from the column with 0.7 mol sodium chloride solution was desalted and purified by passing through a Sephadex G-25 (fine) gel- filtration column and eluting with 0.03 molar aqueous acetic acid solution.
  • the [N-alpha-Propionyl, Gly 8 , des- Leu 19 ]-SCT fraction from this column was adjusted to pH
  • the solid was then gel-filtered on a Sephadex G-25 (fine) column with 0.2M acetic acid solution.
  • the purified peptide fraction was collected and lyophilized.
  • the biological potency of [N-alpha-propionyl, 8-glycine, des-19-leucine] salmon calcitonin was determined by comparing the reduction of serum calcium concentration which followed administration by graded doses of [N-alpha-Propionyl, Gly 8 , des-Leu 19 ]-SCT and synthetic salmon calcitonin standard. Rats were divided into four groups of seven animals, and each group was assigned at random to a dose of standard or test solution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

New hypocalcemic peptides are disclosed of formula (I), wherein X represents acyl groups for the acylation of the N-alpha-amino group and the radicals of carboxylic acids especially of formic, acetic, propionic, buteric, valeric, hexanoic, heptanoic, octanoic, and nonanoic acids along with all their respective isomers. We also wish to include L-lactic acid along with the half amides of malonic, succinic glutaric and adipic acids.

Description

(N-ALPHA-ACYL,8-GLYCINE, DES-19-LEUCINE)-CALCITONIN This invention relates to calcitonins having biological activity and to peptides which can be converted to biologically active calcitonins and to processes for preparing such calcitonin analogs.
All known natural calcitonin peptides contain an amino acid sequence of 32 amino acids. The natural calcitonins include the salmon, eel, bovine, porcine, ovine, rat and human calcitonins. Salmon calcitonin, for example, has the following formula
Figure imgf000003_0001
In U.S. Patent Nos . 3,926,938, 4,062,815, 3,929,758, 4,033,940, 4,336,187, 4,401,593 and 4,528,132 are disclosed improved syntheses of calcitonins including the salmon calcitonin referred to above.
We have discovered synthetic calcitonin analogs of the above-mentioned naturally occurring calcitonin peptides with 31 amino acids that have biological activity of the same type as the known calcitonins. A significant difference in structure is that in our new peptides leucine at position 19 is omitted, valine-8 has been replaced by glycine and the N-alpha is acylated. These new peptides are termed [N-alpha-acyl 8-Glycine Des-19- Leucine] calcitonin using the IUPAC-IUP method of nomenclature for synthetic modifications of peptides [Biochem. J., (1984) 219, 345-377]. The new peptides have higher potency and quality when compared to known calcitonins. The present invention relates to a modified calcitonin which comprises [N-alpha- propionyl, 8-glycine, des-19-leucine] calcitonin.
The present invention also relates to a process for preparing a modified calcitonin by sequentially adding the amino acids normally required to form calcitonin which comprises omitting leucine at the 19th position, substituting glycine for valine at the 8th position and acetylating the N-alpha to form [N-alpha-propionyl,
8-glycine, des-19-leucine] calcitonin.
The formula of our new [N-alpha-propionyl,
8-glycine, des-19-leucine] salmon calcitonin having activity of the same type as known salmon calcitonin may be written as follows:
Figure imgf000004_0002
The formula of our new [N-alpha-Propionyl, 8-Glycine, Des-19-Leucine] eel calcitonin may be written as follows:
Figure imgf000004_0001
The formula of our new [N-alpha-Propionyl,
8-Glycine, Des-19-Leucine] chicken calcitonin may be written as follows:
Figure imgf000005_0001
As may be seen from the formula given above, 31 amino acids are involved and in this formula the positions are numbered according to the accepted procedure beginning at position 1 for the Cys on one end of the chain, and ending with Pro at position 31 at the other end of the chain. For clarity of description, this same numbering system will be followed in referring to the cycles of the synthesis. The assembly of the amino acids begins with cycle 31 which involves the coupling of threonine, etc.
In general, we use a solid phase methodology of syntheses and start with a resin called benzhydrylamine resin (BHA resin). This resin is derived from a cross-linked polystyrene bead resin manufactured by copolymerization of styrene and divinylbenzene. Resin of this type is known and its preparation is further demonstrated by Pietta, et al. [Pietta, P.S. and Marshall, G.R., Chem. Commun., 650 (1970)], and Orlowski, et al. [J. Org. Chem., 41, 3701 (1976)]. The cross-linked polystyrene BHA resin is available from chemical supply houses. We use the designation
Figure imgf000006_0001
Θ to represent the BHA resin in which is the polystyrene portion of the resin.
Figure imgf000006_0002
Resin Peptide Synthesis
In this synthesis the amino acids are added one at a time to the insoluble resin until the total peptide sequence has been built up on the resin. The functional group of the amino acids are protected by blocking groups. The alpha-amino group of the amino acids is protected by a tertiary butyloxycarbonyl group or an equivalent thereof. This alpha-tertiary butyloxycarbonyl group we designate as BOC. The hydroxyl functions of serine and threonine are protected by a benzyl or benzyl derivative group such as 4-methoxybenzyl, 4-methylbenzyl, 3,4-dimethylbenzyl, 4-chlorobenzyl, 2,6-dichlorobenzyl, 4-nitrobenzyl, benzhydryl or an equivalent thereof. We use the term Bz to represent the benzyl or benzyl derivative group.
The hydroxyl function of tyrosine may be unprotected, may be protected by a benzyl or benzyl derivative group as described above, as a Bz group, or may be protected by a benzyloxycarbonyl or a benzyloxycarbonyl derivative such as 2-chlorobenzyloxycarbonyl or 2-bromo- benzyloxycarbonyl group or equivalent thereof. We use the term W to represent either no protective group, a Bz group, a benzyloxycarbonyl group or a benzyloxycarbonyl derivative group. The thiol function of cysteine may be protected by benzyl or benzyl derivative protective groups described above and designated Bz, or by an n-alkylthio group such as methylthio, ethylthio, n-propylthio, n-butylthio or equivalents thereof. We use the character R2 to represent an n-alkylthio group or Bz, and the character R1 to represent Bz when R2 is n-alkylthio and to represent n-alkylthio when R2 is Bz. Alternatively, R1 may be another cysteine group and when this is the case R2 is Bz. The guanidine function of arginine may be protected by a nitro group, a tosyl group or an equivalent thereof. We use the character T to represent either a nitro group or a tosyl group. The epsilon-amino function of lysine may be protected by a benzyloxycarbonyl group or a benzyloxycarbonyl derivative such as as 2-chlorobenzyloxycarbonyl, 3,4-dimethylbenzyloxycarbonyl, or equivalents thereof. We use the character V to represent a benzyloxycarbonyl group or a benzyloxycarbonyl derivative group. The protective groups used on the imidazole nitrogen of histidine are the benzyloxycarbonyl group and benzyloxycarbonyl derivatives such as described above for lysine and are designated as V. The gamma- carboxylic acid group of glutamic acid is protected by a benzyl or benzyl derivative group such as described for the protection hydroxyl function of serine and threonine. These protective groups are represented by the character Bz.
Preferred amino acid reactants for use in each of the 31 cycles of the synthesis of salmon calcitonin (used for exemplification only) are given in the following Table I:
Figure imgf000008_0001
Figure imgf000009_0001
Each of the amino acid derivatives mentioned in Table I may be purchased from supply houses. CYCLE 31
Coupling of Proline to BHA Resin
The reaction vessel used in all steps of the resin peptide synthesis may be a glass vessel equipped with inlet ports at the top for addition of materials and sintered glass disk at the bottom for removal of soluble reaction mixtures and wash solvents by filtration. Filtration may be performed either by vacuum or the use of nitrogen pressure. The contents of the vessel may be agitated by shaking the entire vessel or by mechanical stirrer.
In cycle 31 the BHA resin is placed in the reaction vessel and suspended in a solvent such as methylene chloride, chloroform, dimethylformamide, benzene or equivalents thereof in proportions of about 3 to 12 ml. of solvent per gram of resin. To this is added BOC-L- proline in an amount of about 1 to 6 equivalents per free amine equivalent of the BHA resin employed. After a period of mixing of 5 to 10 minutes, a coupling reagent (CA) such as dicyclohexylcarbodiimide (DCC) may be added, or other diimide coupling agents may be used. The diimide coupling agent may be used in the amount of 0.5 to 2.0 equivalents per equivalent of BOC-L-proline use.
The BOC-L-proline may be coupled in the absence of a coupling reagent if its active ester derivative, its azide derivative, its symmetrical derivative, or a suitably chosen mixed anhydride derivative is used. Active ester derivatives that may be employed are 2-nitrophenyl ester, 4-nitrophenyl ester, pentafluorophenyl ester, N- hydroxysuccimide ester or equivalents thereof. The active esters are used in amounts of 1 to 10 equivalents per free amine equivalent of BHA resin. The reaction mixture consisting of the BHA resin, the solvent, the BOC-L-proline, and the coupling reagent or BOC-L-proline active ester is stirred or shaken mechanically until the reaction is complete as indicated by a ninhydrin test [E. Kaiser, et al., Anal. Biochem., 34, 595-8 (1970)] on a test sample. After completion of the coupling reaction, the BOC-L-proline resin may be washed with solvents such as methylene chloride, chloroform, methyl alcohol, benzene, dimethyIformamide, or acetic acid. The amount of wash solvent may suitably be 5 to 20 ml. of solvent for each gram of BHA resin used initially. If it is desired to terminate the coupling reaction before completion, the washing procedure may be used and the remaining free amino groups on the BOC-L-proline resin may be blocked from further reaction by acetylation with an excess of acetylation reagents. The acetylation procedure may be performed by agitating the BOC-L-proline resin with a solution of the acetylation reagent for a period of 0.5 to 12 hours. Acetylation reagents such as N-acetylimidazole in methylene chloride solution or a mixture of acetic anhydride and triethyl- amine in chloroform may be used. The acetylation reagent may be used in the amount of 0.5 to 5.0 equivalents per equivalent of free amine titer of the starting BHA resin. The coupling reaction to produce the BOC-L- proline resin may be described by the following formula:
Figure imgf000011_0001
Deprotection of BOC-L-Proline Resin
The BOC-L-proline resin produced as above described may be washed with a solvent such as referred to above and deprotected by agitating it with an agent such as a mixture of trifluoroacetic acid (TFA) in a solvent such as methylene chloride, chloroform, benzene or equivalents thereof. The amount of TFA in the solvent may vary from 10 to 100% of the mixture. The amount of TFA-solvent mixture may vary from 3 to 20 ml. per gram of BHA resin used initially. The reaction time may be from about 10 minutes to 4 hours. The deprotection step is terminated by filtration to remove the TFA-solvent mixture. The residual TFA may be removed from the BOC- L-proline resin by washing with 3 to 20 ml. per gram of BHA resin of a 5 to 30% triethylamine solution in a solvent such as methylene chloride, chloroform, benzene or equivalents thereof. Other tertiary or secondary organic amines may be used in place of the triethylamine, such as trimethylamine, N-ethylpiperidine, diisopropylamine or equivalents thereof. The free amine titer of the BOC- L-proline resin may be determined by the Dorman titration procedure [Dorman, L.C., Tetrahedron Letters, 1969, 2319- 21]. The deprotection reaction may be described by the following formula:
Figure imgf000012_0001
CYCLE 30
The prolyl-BHA resin obtained as a result of cycle 31 may be suspended in a coupling solvent,
BOC-O-Bz-L-threonine added and the mixture equilibrated in the same manner. The coupling agent, DCC, may be added, and after completion of the reaction as indicated by the isatin test. [E. Kaiser, et al., Anal. Chem. Acta, 118,
149-51 (1980)], the reaction mixture may be removed from the BOC-O-Bz-threonylprolyl-BHA resin by filtration. The peptide resin may be washed with solvents. The amounts of reactants and solvents and reaction times may be the same as described in cycle 31. The BOC group may be removed from the peptide resin by the deprotection method described in the cycle 31. The resulting O-Bz-threonyl- prolyl-BHA resin is then ready for cycle 29. The reactions of the cycle 30 may be shown by the following formula:
Figure imgf000013_0001
For convenience, we may write this resulting resin peptide using abbreviated nomenclature as follows:
Figure imgf000014_0001
CYCLE 29 In cycle 29, the coupling reaction and also the deprotection reaction may be performed in the same manner as in cycle 30 except that BOC-glycine is used in place of BOC-O-Bz-L-threonine. The reaction through coupling and deprotection may be written:
Figure imgf000014_0002
CYCLE 28 In cycle 28, the coupling and deprotection reactions may be performed in the same manner as in cycle 30 except for the substitution of BOC-O-Bz-L-serine as the amino acid derivative . This may be written:
Figure imgf000014_0003
CYCLE 27
In cycle 27, the coupling and deprotection reactions are performed as described in cycle 30, except that BOC-glycine is substituted as the amino acid reactant. These reactions through coupling and deprotection may be written as follows:
BOC-Gly
Figure imgf000015_0002
CYCLE 26 In this cycle, the coupling and deprotection reactions may be as in cycle 30 using the same amino acid reactant, resulting in the following compound:
Figure imgf000015_0001
CYCLE 25 In cycle 25, the coupling reaction is performed using an active ester derivative of BOC-L-asparagine. The active ester procedure is used in place of the DCC coupling agent with BOC-L-asparagine or BOC-L-glutamine. The reaction using the active ester derivative of BOC-L- asparagine may be performed in the amount of 2 to 10 equivalents per free amine equivalent of BHA resin in dimethylformamide, mixtures of dimethylformamide with benzene, methylene chloride or chloroform or with equivalents thereof in the amount of 2 to 20 ml. of solvent per gram of BHA resin used initially. Reaction times range from 1 to 72 hours. The reaction mixture may be removed from the BOC peptide resin by filtration after completion of the reaction as indicated by a ninhydrin test. The active ester derivatives employed may be 2-nitrophenyl esters, 4-nitro- phenyl esters, pentafluorophenyl esters, or equivalents thereof. We use AE to designate the active ester portion of the derivative. The coupling reaction may be written:
Figure imgf000016_0001
The deprotection reaction to remove the BOC group is performed as in cycle 31.
CYCLES 24-21 In each of cycles 24-21, the coupling and deprotection reactions may be conducted using the methods and proportions of reactants as in cycle 30, using BOC-O- Bz-L-threoninein cycle 24, BOC-omega-T-L-arginine in cycle 23, BOC-L-proline in cycle 22, BOC-W-L-tyrosine in cycle 21, and BOC-O-Bz-L-threonine in cycle 20. The compound resulting from the completion of cycle 20 may be written:
Figure imgf000017_0001
CYCLE 20 In cycle 20, the coupling and deprotection reactions may be performed using the methods and proportions of reactants as in cycle 25 using BOC-O-Bz-L- threonine as the amino acid derivative, resulting in the compound:
Figure imgf000017_0002
CYCLE 19 In cycle 19, the reactions are performed as in cycle 25 using a BOC-L-glutamine active ester as the amino acid derivative. The compound resulting from cycle 19 is:
Figure imgf000017_0003
CYCLE 18 In cycle 18, we may use as the amino acid derivative BOC-epsilon-V-L-lysine. Otherwise, cycle 18 methods may be performed as in cycle 30 resulting in the compound:
Figure imgf000018_0002
CYCLES 17-15 Cycles 17 to 15 may be performed as in cycle 30 except for the use of BOC-N- (im)-V-L-histidine in cycle 17, BOC-L- glutamic acid Bz ester (Bz represents the same groups as it represents for serine and threonine) as the reactant in cycle 15, resulting in the following compound from cycle 15:
Figure imgf000018_0001
Θ
CYCLES 14-18
Cycle 14 may be performed identically to cycle 19 using BOC-L-glutamine-AE as the amino acid derivative. Cycles 13 to 8 may be performed as in cycle 30 except for the use of BOC-O-L-serine in cycle 13, BOC-L-leucine in cycle 12, BOC-epsilon-V-L-lysine in cycle 11, BOC-glycine in cycle 10, BOC-L-leucine in cycle 9, and BOC-L-valine in cycle 8 resulting in the compound:
Figure imgf000018_0003
CYCLE 7
Cycle 7 may be performed as in cycle 30 except for the use of BOC-S-ethylthio-L-cysteine or equivalent for the amino acid derivative. The compound resulting from cycle 7 is described by the formula:
Figure imgf000019_0001
wherein R2 is an alkylthio or Bz group.
CYCLES 6-2 Cycles 6 to 2 may be performed as in cycle 30 except that BOC-O-Bz-L-threonine may be used as the amino acid derivative in cycle 6, BOC-O-L-serine may be used as the amino acid derivative in cycle 5 and cycle 2, and BOC-L-leucine may be used in cycle 4 as the amino acid derivative. Cycle 3 may be performed identically to cycle 25 using BOC-L-asparagine active ester. The compound resulting from cycle 2 is:
Figure imgf000020_0001
CYCLE 1 This cycle is performed identically to cycle 7 using BOC-S-R1-L-cysteine derivatives. The R1 group chosen for the cysteine may be the same as used in cycle 7 or different. For example, if the derivative chosen for cycle 7 is BOC-S-ethylthio-L-cysteine, the derivative in cycle 1 may be BOC-S-4-methoxybenzyl-L-cysteine or if BOC-S-4-methoxybenzyl-L-cysteine was chosen for cycle 7, then this derivative or BOC-S-ethylthio-L-cysteine may also be used in cycle 1. The compounds resulting from cycle 1 are illustrated by the formula:
Figure imgf000020_0002
Θ where R1 is S-n-alkyl, Cys or Bz and R2 is S-n-alkyl or Bz; R1 being S-n-alkyl or Cys when R2 is Bz, and R1 being Bz when R2 is S-n-alkyl.
ACETYLATION CYCLE The BOC group may be removed from the peptide resin by the deprotection method previously described. The resulting de-BOC'd 1 to 32 BHA resin peptide is then ready for coupling with propionic acid. This acylation cycle is performed identically to cycle 1 except that propionic acid is used instead of BOC-L-alanine. The compound resulting from the acylation cycle is illustrated by the formula:
Figure imgf000021_0001
The acetylation cycle represents the completion of the resin peptide. The resin peptide may be removed from the reaction vessel and dried in a vacuum. The weight of the resin peptide may be expected to be from 2.0 to 3.5 times the weight of BHA resin used initially in the synthesis. Resin Peptide Cleavage
The peptide is cleaved from the resin peptide resulting from the acylation cycle by treatment with liquid hydrogen fluoride (HF). The HF cleavage reaction may be performed by treating a mixture of the resin peptide and anisole (0.5 to 5 ml. for each gram of resin peptide) with liquid HF to 2 to 20 ml for each gram of resin peptide) for 0.5 to 20 hours at -20 degrees to +15 degrees centigrade. After the reaction period, the excess HF may be removed by evaporation and the resulting mixture of peptide and resin beads may be extracted with organic solvent such as ethyl acetate, diethyl ether, benzene or the like to remove the anisole and residual HF. The peptide may be separated from the resin beads by extraction into aqueous acetic acid. The peptide at this stage is not cyclic but is the non-cyclic product without the disulfide bond between the cysteines at positions 1 and 7 in the molecule.
The HF treatment removes all blocking groups from the peptide, except the S-alkylthio blocking groups on the thiol function of cysteine residue at either position 1 or 7. The S-n-alkylthio-L-cysteine residue is stable to the HF cleavage procedure and remains intact through the cleaved procedure and remains intact through the cleavage and extraction procedures. The S-BZ-L- cysteine residue is cleavage by HF to yield a cysteine residue with a free thiol function. Both types of blocking groups have been employed, during our synthesis in combination with each other at positions 1 and 7.
Thus, the peptides obtained after HF cleavage can be one or four types depending upon the blocking groups chosen for the thiol function of the cysteine derivative used during the resin peptide synthesis. If BOC-S-Bz-L-cysteine derivatives are used in the resin peptide synthesis cycle 1 and BOC-S-n-alkylthio-
L-cysteine is used in cycle 7, the peptide resulting after
HF cleavage would be of Type I and would have a free thiol function at position 1 and have a S-n-alkylthio function on the cysteine residue at position 7. We call this Type
I peptide which is represented by the formula:
Figure imgf000023_0002
Conversely, if BOC-S-n-alkylthio-L-cysteine derivative is used in cycle 1 and the BOC-S-Bz-L-cysteines were used in position 7, the peptide resulting from the cleavage would be of Type II and would be represented by the formula:
Figure imgf000023_0001
In place of the protecting group S-n-alkyl at position 1 we may use an S-cysteinyl group (which with the cysteine at this position forms a cystine group) and when we do this we use a Bz group for protecting the cysteine at position 7. If Bis-BOC-L-cystine is used as the reactant in cycle 1 and the BOC-S-Bz-L-cysteine is used as the reactant in cycle 7, the peptide resulting from the cleavage will be of Type III and may be represented by the following formula:
Figure imgf000024_0002
If BOC-S-Bz-L-cysteine is used as the reactant in both positions 1 and 7, the peptide resulting from the cleavage will be of the Type IV and represented by the formula:
Figure imgf000024_0001
The conversion of Types I, II and III peptides to the cyclic disulfide peptides may be performed by diluting with distilled water the aqueous acetic acid solution of the crude peptides from HF cleavage to a final volume of 50 to 200 ml. per gram of resin peptide cleaved. The pH of this solution may be adjusted from 5 to 10 by the addition of ammonium hydroxide solution and the mixture may be stirred in a closed container under a stream of an inert gas such as nitrogen for about 2 to 48 hours. The reaction period can be stopped when the effluent gas stream no longer contains n-alkylmercaptan. The pH of the reaction mixture may be lowered to about 3.5 to 5.5 by the addition of glacial acetic acid.
The conversion to Type IV peptides to the cyclic disulfide peptide may be performed by the classical method known to the art in which the peptides are oxidized to form a ring structure to include the cysteines at positions 1 and 7.
Whether the intermediate peptides are of Type I, II, III or IV; we may synthesize peptides having amino acid chains corresponding to any known calcitonin. Such peptides synthesized as herein set forth, may be purified an found to have the same type of biological activity as the known calcitonin. Any calcitonin so synthesized is designated 8-glycine, des-19-leucine-calcitonin. This is in accordance with the IUPAC-IUP method of nomenclature.
Purification of the Crude [N-Alpha-Propionyl -8-Glycine, Des-19-Leucine] Salmon Calcitonin
The crude peptide solutions at pH 5.0 from the above synthesis may be concentrated using an ion-exchange procedure. The concentrate may be purified by a combination of gel-filtration procedures, ion-exchange chromatography methods and partition chromatography. The final purified product may be obtained from solution by freeze drying as a fluffy white solid. The product gives the correct amino analysis for the desired peptide.
Following is the specific example of the preparation of the peptide.
EXAMPLE 1
Resin Activation
The BHA resin (5 g.) with an amine titer of 0.61 meq./g. was placed in the reactor vessel of a peptide synthesizer marketed by Vega Biochemicals of Tucson, Arizona. The resin was treated with 25 ml. of the following solvents filtering after each treatment: Methylene chloride for 2 minutes Chloroform for 2 minutes two times each 10% triethylamine in chloroform for 5 minutes two times each Chloroform for 2 minutes
Methylene chloride for 2 minutes three times each
Cycle 31
Coupling: The BHA resin, 25 ml. of methylene chloride and 1.31 g. (0.0061 moles) of BOC-L-proline was stirred for 10 minutes. 6.1 ml. of methylene chloride solution of dicyclohexylcarbodiimide (1 milliequivalent of DCC per 1 ml. of solution) was added to the reactor and the mixture agitated for 6 hours. The reaction mixture was removed from the reactor by filtration and the BOC- prolyl BHA resin was subjected to the following successive 2 minute, 25 ml. washes, removing the wash by filtration each time:
Methylene chloride two times
Methyl alcohol two times
Methylene chloride three times Acetylation: The resin was then agitated with a mixture of 1.5 ml. of triethylamine (TEA), 1 ml. of acetic anhydride and 25 ml. of chloroform for 2 hours. The reaction mixture was removed by filtration and the resin subjected to the following 2 minute, 25 ml. washes:
Chloroform two times
Methyl alcohol two times
Methylene chloride three times
Deprotection: The BOC-protected resin was agitated for 5 minutes with a mixture of 15 ml. of trifluoroacetic acid (TFA) and 15 ml. of methylene chloride. This mixture was removed by filtration and the resin was agitated with a second mixture of 15 ml. of TFA and 15 ml. of methylene chloride for 30 minutes. The reaction mixture was removed by filtration and the resin subject to the following 25 ml. washes:
Methylene chloride two times two minutes each Methyl alcohol two times two minutes each Chloroform two times two minutes each 10% TEA in chloroform two times ten minutes each Chloroform two times two minutes each Methylene chloride two times two minutes each
The L-proline BHA resin was titrated to establish the amine or proline titer. This value was 0.55 milliequivalents of .amine or proline per gram of resin.
Cycle 30
Coupling: The L-proline resin, 25 ml. of methylene chloride and 1.64 g. (0.0053 mole) of BOC-O- benzyl-L-threonine were agitated for 10 minutes. Then 5.5 ml. of methylene chloride solution of dicyclohexylcarbodiimide (1 milliequivalent of DCC) was added to the reactor and the mixture agitated for 2 hours. The reaction mixture was removed from the reactor and the resin was subjected to the following successive 2 minute, 2 ml. washes, removing the wash by filtration each time.
Methylene chloride two times
Methyl alcohol two times
Methylene chloride three times
An isatin test was negative
Deprotection: The deprotection procedure described in cycle 31 was repeated for this cycle.
Cycles 29 through 26
The coupling and deprotection procedures used in these cycles were the same as in cycle 31 except that the following amino acid derivatives were used in place of the threonine derivative:
Cycle 29 -- 0.93 g. (0.0053 mole) of BOC-glycine Cycle 28 -- 1.55 g. (0.0053 mole) of
BOC-O-benzyl-L-serine Cycle 27 -- The reactant used was the same as cycle 30 Cycle 26 -- The reactant used was the same as cycle 31 Cycle 25
Coupling: The peptide resin obtained from cycle 26 was washed twice with 25 ml. portions of dimethylformamide (DMF). The resin was then agitated for 24 hours with a solution of 2.82 g. (0.008 mole) of BOC-L- asparagine p-nitrophenyl ester in 35 ml. of DMF. The reaction mixture was filtered and the resin peptide subjected to two minute washes with two successive 25 ml. portions of the following solvents: DMF, methylene chloride, methanol, methylene chloride. Each individual solvent was removed by filtration. A ninhydrin test was negative.
Deprotection: The deprotection procedure used in cycle 31 was repeated.
Cycle 24
Coupling and deprotection procedures were the same as in cycle 30 using the same reactants and amounts.
Cycle 23
Coupling: The resin peptide obtained from cycle 24 was washed with two successive 25 ml. portions of DMF. The resin peptide was then agitated for 10 minutes with a mixture of 3.42 g. (0.008 mole) of BOC-N-omega-tosyl-L- arginine and 25 ml. of DMF. Then 8 ml. of DCC in methylene chloride (equivalent to 0.008 mole of DCC) was added and the mixture agitated for 6 hours. The reaction mixture was removed by filtration. The resin peptide was subjected to two minute washes with two successive 25 ml. portions of the following solvents: DMF, methylene chloride, methyl alcohol, methylene chloride,. The ninhydrin test was negative. Deprotection: The deprotection used in cycle 31 was repeated.
Cycle 22 Coupling: The peptide resin obtained from cycle
23 was agitated for 10 minutes with 1.72 g. (0.008 mole) of BOC-L-proline and 25 ml. of methylene chloride. 8 ml. of DCC in methylene chloride (equivalent to 0.008 mole of DCC) was added and the mixture agitated for 6 hours. The reaction mixture was removed by filtration and the resin peptide subjected to two minute washes with two successive 25 ml., portions of the following solvents: methylene chloride, methyl alcohol, methylene chloride. Each individual wash was removed by filtration. The ninhydrin test was negative.
Deprotection: The deprotection used in cycle 31 was repeated.
Cycle 21 and 20
The coupling and deprotection procedures used in this cycle was the same as in cycle 22 except that in the coupling reaction the following amino acid derivative was used in place of BOC-L-proline .
Cycle 21 -- 4.07 g. (0.008 mole) BOC-O-2- bromobenzyloxycarbonyl-L-tyrosine Cycle 20 -- 2.47 g. (0.008 mole) BOC-O-benzyl- L-threonine
Cycle 19
This procedure is the same as cycle 25 except that 2.94 g. (0.008 mole) of BOC-L-glutamine p-nitrophenyl ester is used in place of the asparagine derivative.
Cycles 18 through 15
The procedure is the same as used in cycle 30 except that the following amino acid derivatives were used in place of the threonine derivative:
Cycle 18 -- 2.20 g. (0.0053 mole) of BOC- epsilon-2-chloro benzyloxy-L-lysine Cycle 17 -- 2.06 g. (0.0053 mole) of BOC-N(im)- carbobenzyloxy-L-histidine Cycle 16 -- 1.32 g. (0.0053 mole) of BOC-L- leucine Cycle 15 -- 1.79 g. (0.0053 mole) of BOC-L- glutamic acid-gamma-benzyl ester
Cycle 14
Same as cycle 19.
Cycle 13
The procedure used was the same as was used in cycle 22 except that in the coupling reaction 2.36 g. (0.008 mole) of BOC-O-benzyl-L-serine was used in place of the proline derivative.
Cycles 12 through 9
The procedures used were the same as used in cycle 30 except that in the coupling reactions the following amine acid derivatives were used in place of the threonine derivative. Cycle 12 -- Same reactants as used in cycle 19
Cycle 11 -- The reactants were the same as in cycle 18
Cycle 10 -- Same reactants as used in cycle 29
Cycle 9 -- Same reactants as used in cycle 19
Cycle 8
Coupling: The resin peptide from cycle 9 was agitated for 10 minutes with 1.40 g (0.008 mole) of BOC- L-glycine and 25 ml. of methylene chloride. Then 8 ml. of DCC in methylene chloride (equivalent to 0.008 mole of DCC) was added and the mixture agitated for 16 hours. The reaction mixture was removed by filtration. The resin peptide was subjected to two minute washes with two successive 25 ml. portions of the following solvents: methylene chloride, methyl alcohol, methylene chloride. Each individual wash was removed by filtration.
Deprotection: See cycle 30.
Cycle 7
The procedure was the same as used in cycle 30 except that in the coupling reaction 1.59 g. (0.0053) of BOC-S-ethylthio-L-cysteine was used in place of the threonine derivative.
Cycle 6
The reactants and procedures used were the same as cycle 30. Cycle 5
The reactants and procedures used were the same as cycle 28.
Cycle 4.
The reactants and procedures used were the same as cycle 16.
Cycle 3
The reactants and procedures used were the same as cycle 25.
Cycle 2
The reactants and procedures used were the same as cycle 28.
Cycle 1
The reactants and procedures used were the same as cycle 30 except that 1.81 g. (0.0053 mole) of BOC-S-p- methoxybenzyl-L-cysteine was used in place of the threonine derivative.
Deprotection: The deprotection procedure described in cycle 32 was repeated for this cycle.
Propionolation: The resin peptide, 35 ml. of methylene chloride and 0.74 g. (0.01 mole) propionic acid were agitated for 10 minutes. The 11 ml. of methylene chloride solution of dicyclohexylcarbodiimide (1 meq. of DCC per 1 ml.) was added to the reaction and the mixture agitated for 2 hours. The reaction mixture was removed from the reactor and the resin washed as described in cycle 31. The resin peptide was finally washed with two successive 25 ml. portions of n-hexane. The peptide material was removed from the reactor and dried in a vacuum oven at 40°C. at 0.1 mm. of Hg. for 24 hours.
Cleavage with Hydrogen Fluoride
The dried resin peptide (2 g.) and 2 ml. of anisole were placed in a Teflon reaction vessel. The vessel, equipped with a Teflon-coated magnet stirrer was placed in a dry ice-acetone bath and 15 ml. of hydrogen fluoride gas was condensed into the vessel. This mixture was stirred at 0 degrees Centigrade in an ice bath for 1 hour. The hydrogen fluoride was removed by evaporation at reduced pressure. The residue was triturated with six 25 ml. portions of ethyl acetate. The peptide was extracted from the resin beads with 120 ml. of 0.1 molar aqueous acetic solution.
Cyclization of the Peptide
The aqueous acetic acid extract obtained from hydrogen fluoride cleavage was diluted to 200 ml. by addition of 80 ml. of distilled water. The pH of the solution was adjusted to 7.5 by the addition of concentrated ammonium hydroxide. The solution was stirred in a closed vessel under a stream of nitrogen for 24 hours. At this time no ethyl mercaptan could be detected in the emerging nitrogen stream. The ethyl mercaptan content of the nitrogen stream was measured by passing the stream through a solution of Ellman's reagent [Ellman, G.L., Arch. Biochem. Biophys., 82, 70-7 (1969)]. The pH of the reaction mixture was adjusted to 5.0 by addition of glacial acetic acid. Purification of the Crude [N-Alpha-
Propionyl, Gly8, des-Leu19]-SCT
The 200 ml. of solution from the above synthesis at pH 5.0 was concentrated using a SP-25 ion-exchange column. The 25 ml. concentrate removed from the column with 0.7 mol sodium chloride solution was desalted and purified by passing through a Sephadex G-25 (fine) gel- filtration column and eluting with 0.03 molar aqueous acetic acid solution. The [N-alpha-Propionyl, Gly8, des- Leu 19]-SCT fraction from this column was adjusted to pH
5.0 by the addition of glacial acetic acid. This solution was concentrated using a SP-Sephadex C-25 ion-exchange column. The 30 ml. concentrate removed from the column with 0.7 molar sodium chloride solution was desalted with a Sephadex G-25 (fine) gel-filtration column. The peptide fraction was collected and freeze-dried. The product was further purified by partition chromatography using a
Sephadex G-25 fine column and the solvent system: n-butanol, ethanol, 0.2 N ammonium acetate containing
0.04% acetic acid (4-1-5). The product elutes from the column at an Rf value of 0.33. The fractions containing the product were combined and the n-butanol removed by evaporation. The product was recovered by lyophilization.
The solid was then gel-filtered on a Sephadex G-25 (fine) column with 0.2M acetic acid solution. The purified peptide fraction was collected and lyophilized.
The product was obtained as a fluffy white solid. Amino acid analysis of the product gave the following ratios with the theoretical values given in parenthesis: Asp 2.0 (2), Thr 5.2 (5), Ser 3.8 (4), Glu
2.8 (3), Pro 2.0 (2), Gly 4.0 (4), Leu 4.0 (4), His 0.92
(1), Lys 2.9 (2), Arg 0.94 (1), Cys 1.91 (2), Tyr 0.91
(1). Biological Assay of Calcitonin Analogs in Vivo
The biological potency of [N-alpha-propionyl, 8-glycine, des-19-leucine] salmon calcitonin was determined by comparing the reduction of serum calcium concentration which followed administration by graded doses of [N-alpha-Propionyl, Gly8, des-Leu19]-SCT and synthetic salmon calcitonin standard. Rats were divided into four groups of seven animals, and each group was assigned at random to a dose of standard or test solution.
Low and high doses were chosen from the linear portion of the dose-response curve. For the salmon calcitonin standard, the values were 0.7 and 2.1 ng. peptide/100 g.
BW. Peptides were given by subcutaneous injection (0.2 ml/100 g. BW) and blood was withdrawn 1 hour later for serum calcium determination. Sera are processed and analyzed within two hours of collection. Results were analyzed within two hours of collection. Results were analyzed by a 2 X 2 parallel line assay [Gaddum, J.H., J.
Pharm. Pharmacol., 6, 345 (1953)]. The standard salmon calcitonin used was independently determined to contain greater than 4,000 IU/mg. [N-alpha-Propionyl, Gly8, des-Leu19]-SCT assayed at 9,700 IU/mg.
While only certain embodiments of our invention have been described in specific detail, it will be apparent to those skilled in this art that many other specific embodiments may be practiced and many changes may be made, all within the spirit of the invention and the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A modified calcitonin which comprises [N- alpha-propionyl, 8-glycine, des-19-leucine] calcitonin.
2. The calcitonin of Claim 1 wherein said calcitonin is a salmon calcitonin substitution deletion analog, an eel calcitonin substitution deletion analog or a chicken calcitonin substitution deletion analog.
3. The calcitonin of Claim 1 having the structure:
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000038_0003
The calcitonin of Claim 1 having the structure:
Figure imgf000039_0001
Figure imgf000039_0002
Figure imgf000039_0003
where R1 is S-n-alkyl, Cys or H and R2 is S-n-alkyl or H, R1 being S-n-alkyl, Cys or H when R2 is H and R2 being S-n-alkyl or H when R1 is H.
5. A pharmaceutical composition useful in the regulation of blood calcium levels comprising an effective amount of the modified calcitonin of Claim 1 and a pharmaceutically acceptable carrier.
6. The composition according to Claim 5 having a unit dosage of from about 0.7 to about 2.1 mg of said modified calcitonin.
PCT/US1988/001711 1987-05-26 1988-05-24 (n-alpha-acyl, 8-glycine, des-19-leucine)-calcitonin WO1988009342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88906272T ATE100467T1 (en) 1987-05-26 1988-05-24 (N-ALPHA-ACYL, 8-GLYCINE, DES-19-LEUCINE)KALCITONIN.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/054,451 US4764589A (en) 1987-05-26 1987-05-26 [N-alpha-acyl,8-glycine, des-19-leucine]-calcitonin
US054,451 1987-05-26

Publications (1)

Publication Number Publication Date
WO1988009342A1 true WO1988009342A1 (en) 1988-12-01

Family

ID=21991154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1988/001711 WO1988009342A1 (en) 1987-05-26 1988-05-24 (n-alpha-acyl, 8-glycine, des-19-leucine)-calcitonin

Country Status (6)

Country Link
US (1) US4764589A (en)
EP (1) EP0315687B1 (en)
JP (2) JPS6416800A (en)
AU (1) AU602228B2 (en)
DE (1) DE3887271D1 (en)
WO (1) WO1988009342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948647A (en) * 1990-10-29 1999-09-07 Chiron Corporation Nucleic acids encoding antigen-binding sites specific for cancer antigens

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU609911B2 (en) * 1987-12-16 1991-05-09 Rorer International (Overseas) Inc. 8-glycine,16-x, des-19-leucine-calcitonin
US5001222A (en) * 1988-05-23 1991-03-19 Rhone-Poulenc Rorer Pharmaceuticals Inc. Des-17-histidine-calcitonin
CA2030795C (en) * 1989-04-21 1999-11-30 Ronald C. Orlowski Novel physiologically active peptide and calcium metabolism-regulating agent comprising said peptide as effective ingredient
US5710244A (en) * 1992-12-31 1998-01-20 Labroo; Virender M. Derivatized calcitonins
US6083480A (en) * 1997-05-01 2000-07-04 Diatide, Inc. Calcitonin receptor binding reagents
ES2622877T3 (en) 2009-01-22 2017-07-07 Keybioscience Ag Obesity treatment
JP6170933B2 (en) * 2011-11-02 2017-07-26 キーバイオサイエンス・アクチエンゲゼルシャフト Use of peptides
US9533022B2 (en) 2011-11-02 2017-01-03 KeyBioscience A/S Peptide analogs for treating diseases and disorders
HUE039105T2 (en) * 2011-11-02 2018-12-28 Keybioscience Ag Calcitonin mimetics for treating diseases and disorders

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632978A (en) * 1985-10-15 1986-12-30 Armour Pharmaceutical Corp. 6-serine, des-19-leucine calcitonin
US4639511A (en) * 1985-11-12 1987-01-27 Armour Pharmaceutical Company Des-19-leucine-calcitonin analogs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003280A1 (en) * 1983-02-15 1984-08-30 Armour Pharma Glycine-8 calcitonin
US4514331A (en) * 1983-06-29 1985-04-30 University Patents, Inc. Peptide hormones with calcitonin-like activity
US4764590A (en) * 1987-04-21 1988-08-16 Rorer Pharmaceutical Corporation Des-19-leucine, 20-glutamine, 21-threonine-calcitonin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632978A (en) * 1985-10-15 1986-12-30 Armour Pharmaceutical Corp. 6-serine, des-19-leucine calcitonin
US4639511A (en) * 1985-11-12 1987-01-27 Armour Pharmaceutical Company Des-19-leucine-calcitonin analogs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0315687A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948647A (en) * 1990-10-29 1999-09-07 Chiron Corporation Nucleic acids encoding antigen-binding sites specific for cancer antigens

Also Published As

Publication number Publication date
EP0315687B1 (en) 1994-01-19
DE3887271D1 (en) 1994-03-03
AU602228B2 (en) 1990-10-04
EP0315687A4 (en) 1990-03-21
JPH01503390A (en) 1989-11-16
EP0315687A1 (en) 1989-05-17
JPS6416800A (en) 1989-01-20
US4764589A (en) 1988-08-16
AU1959488A (en) 1988-12-21

Similar Documents

Publication Publication Date Title
US4401593A (en) Glycine - 8 calcitonin
US4597900A (en) Des2 -glycine8 -des22 -calcitonin
US4217268A (en) Synthesis of peptides
US4606856A (en) [Des-1-amino, 8-glycine]calcitonin
US4537716A (en) Des-serine2 or des-glycine2 -leucine22 calcitonin
US4397780A (en) Leucine22 -calcitonin
US4604238A (en) Analogs of calcitonin
US4497731A (en) Glycine 8-des-tyrosine 22 calcitonin
US4764589A (en) [N-alpha-acyl,8-glycine, des-19-leucine]-calcitonin
US4495097A (en) Des-serine2 -glycine8 calcitonin
US4414149A (en) Glycine8 -D-arginine24 calcitonin
US4639511A (en) Des-19-leucine-calcitonin analogs
US4528132A (en) [16-Alanine]calcitonin
US4632978A (en) 6-serine, des-19-leucine calcitonin
US5001222A (en) Des-17-histidine-calcitonin
US4764590A (en) Des-19-leucine, 20-glutamine, 21-threonine-calcitonin
US4746728A (en) 8-glycine, des-19-leucine-calcitonin
US4764591A (en) Des-19-leucine, 20-glutamine, 21-threonine, 22-tyrosine-calcitonin
US4451395A (en) Des-serine2 -des-tyrosine22 calcitonin
US4639509A (en) [16,19-Di-alanine] calcitonin
US4732969A (en) Des-19-leucine, 20-glutamine-calcitonin
US4604237A (en) Des-21-threonine-calcitonin
US4391747A (en) Des asparagine-3-calcitonin
US4604236A (en) Calcitonin analogs
US4820804A (en) Analogs of [1,7-di-alanine, des-19-leucine]calcitonin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988906272

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988906272

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988906272

Country of ref document: EP