WO1988002795A1 - High-density polyethylene net-like fiber, nonwoven fabric made of the fiber and production of them - Google Patents

High-density polyethylene net-like fiber, nonwoven fabric made of the fiber and production of them Download PDF

Info

Publication number
WO1988002795A1
WO1988002795A1 PCT/JP1987/000765 JP8700765W WO8802795A1 WO 1988002795 A1 WO1988002795 A1 WO 1988002795A1 JP 8700765 W JP8700765 W JP 8700765W WO 8802795 A1 WO8802795 A1 WO 8802795A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
fiber
dimensional
solvent
pressure
Prior art date
Application number
PCT/JP1987/000765
Other languages
French (fr)
Japanese (ja)
Inventor
Kohzoh Ito
Ikuo Ueno
Yoshiaki Nakayama
Katsuji Hikasa
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61241450A external-priority patent/JPH0772388B2/en
Priority claimed from JP9523187A external-priority patent/JPS6350512A/en
Priority claimed from JP62172960A external-priority patent/JPS6420366A/en
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP87906606A priority Critical patent/EP0285670B1/en
Priority to DE3751793T priority patent/DE3751793T2/en
Priority to KR1019880700670A priority patent/KR910005573B1/en
Publication of WO1988002795A1 publication Critical patent/WO1988002795A1/en
Priority to US08/233,947 priority patent/US5607636A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/11Flash-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins

Definitions

  • High density polystyrene network woven fabric nonwoven fabric made of the woven fabric, and method of manufacturing them.
  • the present invention relates to a novel three-dimensional reticulated fiber, a nonwoven fabric composed of three-dimensional reticulated fibers, and a method for producing the same, which can be used as a special material for various applications. More specifically, the present invention is made from high density polyethylene, has a highly fibrillated three-dimensional network morphology, has extremely high strength and very high thermomechanical properties.
  • a novel three-dimensional network fiber capable of suitably producing a nonwoven fabric having a mature adhesive property, a nonwoven fabric having excellent opacity, excellent covering power and high strength composed of the novel three-dimensional network fiber The present invention relates to a high-strength nonwoven fabric having an unfused portion, a nonwoven fabric having excellent uniformity, and a novel method for producing the nonwoven fabric having the excellent uniformity.
  • a New dimensional reticulated fiber A New dimensional reticulated fiber.
  • ⁇ _ A new method for producing three-dimensional network fibers using the melting zone melting polymer sealing method.
  • This Amibushi fiber has a characteristic net-like structure and a stable fibril, so it has the characteristic of high whiteness and high covering power by diffusely reflecting light, and it can be used for various purposes. Can be.
  • Non-woven sheets are a particularly important application, and various polymers are used as the polymer used as the mesh steel, but polyolefins, especially high-density polyethylene Much research has been done on the use of carbon fibers for flash spinning.
  • the principle of flash spinning is that the reticulation is caused by the structural change of the solution accompanying the transition from a high-temperature, high-pressure homogeneous solution to a low-pressure region, and the solidification of the flash and polymer of the solvent. It expresses structural fibers. Therefore, spinning from a homogeneous solution consisting of a polymer and a solvent is indispensable for continuously and stably producing Amibushi textile fabric.
  • the solvent used in the spinning method is capable of dissolving the polymer at high temperatures and high pressures, and those having a comparatively low boiling point having a flash property are selected. Does not have the ability to dissolve lima: dissolving the polymer only at high temperature and high pressure.
  • a polymer is heated in a pressure vessel having a stirrer.
  • the method is known as a batch method.
  • Various spinning processes are disclosed in US Pat. No. 3,227,794 as a method for obtaining textiles. That is, a predetermined amount of the molten polymer and the solvent are introduced into the screw mixer, and then the mixture is melted and spun in a dissolving tank having a stirring mechanism.
  • the slurry is fed into a melting tank with a baffle, melted and spun, or the slurry is melted and spun with a slurry pump and piping.
  • Conventionally known three-dimensional mesh fibers are steel fibers manufactured by such a method.
  • the boundary between one liquid phase and two liquid phases is limited in temperature and pressure, and it is of low temperature melting type and high pressure melting type. It is disclosed in the above-mentioned prior art that the change from one liquid phase to two liquid phases by descent and the necessity of extraction in two liquid phases are required.
  • conventionally known reticulated fibers are fibers produced by changing a polymer solution into a two-liquid phase region and then spinning.
  • Non-woven fabrics made using a three-dimensional meshed steel fiber formed from a network of fibrils, as disclosed in ⁇ F 3,081,519, have been known. .
  • Non-woven fabrics using a melted filament as a sheet are known.
  • fiber sheet before mature bonding Is referred to as a nonwoven web.
  • Flash spinning uses molten flash yuka. It is known that the spinning speed usually reaches 9,000 to 13,500 m / min at 4,900 m / min or more. It is extremely useful as a method for obtaining a nonwoven sheet with good productivity.
  • a nonwoven fabric in which the continuous spun net fabric as spun is spread and arranged in a random direction is formed as a nonwoven fabric (hereinafter, the nonwoven fabric obtained by joining the nonwoven fabrics is referred to as a nonwoven fabric). It is heat bonded according to the retention, strength development and other purposes.
  • the mature bonding is performed by bonding with a force renderer, by embossing or by a felt calender.
  • a nonwoven fabric with a paper-like surface with a flat surface and a nonwoven fabric with an embossed pattern Opacity due to the formation of fine fibrillar braided steel, covering power and degree, surface smoothness, i-fuzziness, or flexibility, and a certain level of It can be used for various purposes by utilizing the target strength.
  • the web is joined with an adhesive.
  • non-woven fabrics having various forms are known. That is, there are known a non-woven cloth which is softly raised, an ⁇ -like non-woven cloth, a lightly heat-bonded surface only, and a non-woven cloth which is not completely bonded at all. These nonwoven fabrics are used for various applications by utilizing their high covering power, whiteness, and strength. '
  • the polymer used for producing the nonwoven fabric of the mesh fiber various polymers are used, but a nonwoven fabric made of polyolefin, especially high-density polyethylene made of flash-spun iron fiber is used. Much research has been done to make this suitable.
  • the spinning speed in flash spinning is extremely high as described above, and the gap between the spinning speed and the drawing speed is too large. It has various problems and is not practical.
  • a flash spun textile is used as a sheet, it is necessary to carry out mature drawing of a three-dimensional network fiber. Is virtually impossible. That is, an operation for giving a difference between the spinning speed and the drawing speed cannot be included in the process.
  • the ripening operation can be used, the ripening can increase the mechanical strength of ripening, but the whiteness and S-force, which are the characteristics of the three-dimensional netted fabric, decrease, and the wrapping becomes transparent. Nature occurs.
  • the physical properties of the non-woven fabric obtained by devising a method of spreading fibers into a sheet or a method of thermally bonding the sheet are considered to be the mechanical, thermal, and optical properties of the constituent steel Sex Depends on S.
  • the destructive properties of the heat-bonded non-woven fabric depend on the mechanical properties and thermal properties of the fibers to be formed.
  • the optical properties of the non-woven fabric and the optical properties and thermal properties of the textile It depends on the nature. Therefore, a nonwoven fabric having excellent performance cannot be obtained.
  • Various known methods can be used as a method for heat-bonding a sheet made of textile obtained by flash spinning.
  • High-density polyethylene is bonded at a temperature close to the melting point of the crystal to develop strength and maintain shape as a nonwoven fabric and to prevent surface fuzz. Therefore, when considering a mature bonded nonwoven fabric, the thermal adhesion between fibers is strong. At the same time, it is required for the steel that the shrinkage does not easily occur during thermal bonding and that the mechanical strength of the textile is high at a high temperature near the bonding temperature.
  • one of the objects of the present invention is as-spun fabric, which has high mechanical strength and excellent three-dimensional properties near the bonding temperature suitable for forming a heat-bonded nonwoven fabric.
  • the purpose is to provide a mesh fiber.
  • polymer swollen using pie plies is mixed by laminar flow mixing.
  • dissolution only the shear force and the flow rate difference required for dissolution require an extremely long pipeline, which results in an increase in residence time.
  • turbulent mixing the polymer solution has a high viscosity of about 30: 100 centimeters, so that extremely high flow is required and a huge pump that is difficult to implement in practice is required. I need.
  • the solvent used for flash spinning must dissolve the polymer at normal and normal pressure, and must dissolve the polymer only at high pressure and high temperature.
  • high temperature and high pressure are indispensable. Therefore, the conventional known technology inevitably increases the Banning time, and conversely, the high pressure is limited. .
  • the cause of this situation is thought to be the affinity between the polymer and the solvent. That is, as described in the flash spinning method. SP 3: 22: 794, a high-temperature, high-pressure homogeneous solution was depressurized by a decompression orifice. This is a technology that utilizes the structural change of the solution and the flushing force of the solvent and the solidification of the solvent by ejecting it from the spinning nozzle, and thus the affinity between the polymer and the solvent. Has a very important meaning. From this, the solvent used for flash spinning is selected so as not to dissolve the polymer at normal temperature and normal pressure and to form a uniform solution with the polymer at high temperature and high pressure. Therefore, the polymer solvents used for flash spinning do not dissolve each other unless the temperature and pressure are high, and the dissolving power decreases as the degree of polymerization of the polymer increases. Is also clear.
  • Another major problem of the prior art is the mixing ⁇ dissolution tank and O stirring shaft. That is, according to the prior art, a uniform polymer solution is obtained by a stirring tank driven by an external driving source, or a long time is required by using a long pipe line. To obtain the desired polymer solution. For the latter, there is no forced mixing, so it is of practical value A substantially uniform solution of the polymer having a molecular weight as high as L2 cannot be obtained.
  • the former method using a stirring shaft is more practical, but since this method also includes a sliding part in the device used, it cannot be made to have a certain high pressure or more, and it is special and expensive. There is a problem such as the necessity of a sealing device for a suitable sliding part.
  • the polymer solvent system that performs flash spinning forms a solution at high temperature and pressure, and in order to impeach the affinity between the polymer and the solvent, the higher the pressure, the higher the dissolution speed even at the same temperature.
  • a uniform polymer solution can be obtained smoothly.
  • This is the same for the molecular weight of the polymer, which results in a high molecular weight and its dissolution requires high pressure.
  • the conventional method it is not possible to obtain a high pressure enough to dissolve the high molecular weight polymer due to the problem of the sealing mechanism of the sliding part. Spinning the quantity polymer was virtually impossible.
  • Line EF is the phase separation line (phase equilibrium line), from which it shows that the upper part is one liquid phase and the lower part is two liquid phases.
  • changing from one liquid phase region to two liquid phase region in the prior art means transition from the state of point C to the state of point D. That is, the pressure in the decompression chamber immediately before the discharge is limited.
  • the stretching and orientation of the textile is performed by the solvent, fluff, so that the higher the pressure, the higher the flash force.
  • the use of the flash yuka is restricted in the conventional technology, and further improvement is expected particularly in view of the strength of the mesh fabric.
  • the present invention provides a method for activating a solution in a flash spinning method using industrially useful high-density polyethylene 'and fluoro--11 to remove the solvent flusher.
  • the aim of this paper is to make further use of a fully stretched and oriented higher-strength, high-density polyethylene reticulated fiber, and a new method for obtaining the reticulated fiber.
  • F_ Non-woven fabrics using a flash-spun woven fiber having a three-dimensional network structure are used for various applications by utilizing the unique properties of the woven fiber fabric.
  • the nonwoven fabric of the aforementioned US P3:.. 169, as disclosed in 899 report the Tetsu ⁇ spun used - i.e., spread was Furatsushu spun O ⁇ with baffle ⁇ like sheet — A simple process of heat bonding is adopted.
  • a paper-like nonwoven fabric having a certain degree of opacity and covering power and mechanical strength of a three-dimensional meshed steel is disclosed in US Pat. No. 3,532,589.
  • this nonwoven fabric has a specific surface of 0.5 to 5.0 m / g in each of the layers arranged in the thickness direction of the sheet. It has a non-woven fabric structure composed of a three-dimensional net-like fiber having a specific surface area that is at least 0.3 m 2 ng higher than that of any of the outer layers.
  • a non-bonded fiber sheet has a large tear strength, but a low tensile strength, and has no fuzz on the surface. This is thermally bonded-this can increase the tensile strength and improve the surface fluff, but the tear strength decreases. This tendency becomes stronger as the degree of mature bonding increases.
  • opacity is also an important physical property.
  • increasing the degree of thermal bonding with the aim of increasing the tensile strength impairs this opacity.
  • a very strong, mature bond is a transparent filter. It will be nolem-like.
  • a mesh-like steel nonwoven fabric having a preferable relationship between tensile strength and tear strength and having excellent opacity.
  • the tensile strength and crack strength in a region with a large adhesion of 60 gZ ⁇ f or less are desired.
  • strength ⁇ is high, has been eagerly awaited is excellent nonwoven fabric opacity, hiding power, the present invention is one object that you provide such nonwoven c
  • Non-woven sheets of three-dimensional silky fiber are subjected to various types of heat bonding for the purpose of maintaining shape, developing strength, and reducing surface fuzz. Normally, these sheets have a multi-layer structure in which three-dimensional mesh fibers are spread and deposited, and each layer in the cross-sectional direction of the sheet can provide a bonding state between different fibers. .
  • the object of the present invention is to form a non-woven fabric as one of the non-woven fabrics.
  • a non-woven fabric having at least a part of the non-woven fabric having at least a part of a loose layer with a low degree of adhesion is formed. That is, the surface of the nonwoven fabric, or the inner layer when the nonwoven fabric is exfoliated in layers, includes a partially non-fused nonwoven fabric having an independent reticulated 'state' of iron.
  • Such a nonwoven fabric is a nonwoven fabric that is excellent in bulkiness, flexibility, covering power, and has high tear strength.
  • Example in such a nonwoven fabric, a sheet-like material of a three-dimensional network woven 'Wei high density polyethylene Wechiren, partially thermally adhered Ty V e k ® 14 type (E. I. Du pon t Is known.
  • This nonwoven fabric consists of a surface layer that is relatively firmly heat bonded and an inner layer that is relatively loosely bonded, and that is partially pressed. It has a pattern. When the non-woven fabric is separated as a layer, it is possible to obtain an independent continuous net of 20 TM or more from the inner layer which is relatively slowly bonded by heat.
  • nonwoven fabrics composed of reticulated fibers
  • these nonwoven fabrics have large irregularities in the opening width of the opened three-dimensional mesh fibers constituting the nonwoven fabric, and contain many bundled bundles having an extremely large fiber density.
  • the nonwoven fabric has a non-uniform appearance in which a portion having a high fiber density and a portion having a low fiber density are mixed, and the nonwoven fabric has one large spot.
  • nonwoven fabrics are unsuitable for use in filter fields and sanitary materials where uniformity of the nonwoven fabric is required. Pinholes were formed in small areas, and it was not possible to use them in fields requiring shielding properties such as liquids and batteries.
  • An object of the present invention is to provide a uniformly spun flash-spun nonwoven fabric and a method for producing the same, which can be sufficiently used in the field of filters, sanitary materials and the like. Orchid of invention
  • An object of the present invention is to provide a novel tertiary fiber of high-density polyethylene, which is useful, a variety of nonwoven fabrics made of the fiber, and a method for producing the same.
  • a three-dimensional morphology with extremely high maturation characteristics and extremely high strength J,
  • a steel extruder (J_) manufactured using a screw extruder which is manufactured by a manufacturing method in which the inlet of the ⁇ immersion region is sealed with a molten boiler,
  • Bollima a textile manufactured by a liquid-activating manufacturing method
  • the non-woven fabric (F) which has a high specific surface area and high mechanical strength of the inner layer produced from the fibers of the above (), Seventh, non-woven fabric (_G), which is manufactured from the fiber of (A) above and has excellent covering power and strength, from which independent m-fiber can be taken out,
  • the object of the present invention is to provide a manufacturing method (! _) For manufacturing the non-woven fabric having high uniformity (-H-) using a dispersing device having a special structure and a dispersing condition. .
  • a first object of the present invention is to provide a fibrillated, high-density, polystyrene-based three-dimensional reticulated fiber characterized by having a long-period scattering intensity ratio of 40 or less. Is achieved.
  • a second object of the present invention is to continuously supply the polymer to the polymer dissolving zone while melting it by using a heated screw extruder, and to continuously enter the dissolving zone into the inlet.
  • a solvent is added to the molten polymer while closing with the molten polymer supplied to the furnace, and the two are mixed and dissolved under high pressure to produce a polymer solution, which is used for the melting zone.
  • Three-dimensional network of fibrillated high-density polyethylene obtained by the method of manufacturing a mesh-like fiber by the flash spinning method, in which a polymer solution is continuously discharged from a wool into a low-pressure region. Achieved by weaving.
  • a third object of the present invention is to provide a high-pressure homogeneous solution comprising a high-density polyethylene-based polymer and trichlorofluoromethane from a reduced-pressure orifice, a reduced-pressure chamber and a spinning nozzle.
  • a spinning device made of Achieved by a fibrillated, high-density polyethylene-based three-dimensional mesh fiber obtained by a method of manufacturing a mesh fiber by a flash spinning method that activates and activates a liquid. Is done.
  • a matured screw extruder is used; A solvent is added to the molten polymer while the inlet of the melting area is closed with the molten polymer supplied continuously, and the two are mixed and dissolved under high pressure to produce a polymer solution.
  • a method for continuously producing high-density polyethylene-based three-dimensional reticulated fibers characterized by discharging the polymer solution from the nozzle used for the dissolution zone to the low-pressure zone in a continuous manner. Achieved.
  • the fifth aspect of the present invention is that a high-pressure homogeneous solution comprising a high-density polyethylene-based polymer and trichlorofluoromethane is applied to a reduced-pressure orifice, a reduced-pressure chamber, and a spinning nozzle.
  • a high-pressure difference is generated before and after the high-pressure orifice. This is achieved by a method for producing a high-density polyethylene-based three-dimensional network fiber, which is characterized by activating a liquid.
  • a high-density polyethylene-based fibrous continuous three-dimensional network fiber is deposited in a random direction and strongly heat-bonded to each other.
  • An integrated nonwoven fabric comprising a surface layer and an inner layer that is weaker than the surface layer and is thermally bonded to the film-like textile layer, characterized in that the specific surface area of the inner layer exceeds 5 nf / g. High tear strength three-dimensional nonwoven fabric Achieved by cloth.
  • a seventh object of the present invention is to provide a high-density polyethylenic fibrillated three-dimensional network fiber which is arranged in a random direction, deposited in layers, and partially unfused.
  • nonwoven fabrics containing a layer of fibrous fibers in an independent mesh form the
  • nonwoven fabric made of a three-dimensional net-like fabric, which has a long-period scattering intensity ratio of 40 or less.
  • An eighth object of the present invention is to provide a nonwoven fabric in which an opened high-density polyethylene-based three-dimensional reticulated iron is deposited in a random direction, a bundle portion present in continuous reticulated fibers constituting the nonwoven fabric.
  • the bundle has a density of less than 100 mm / MI width or a bundle with a density of 40 denier Z mm or more, the width is 5 mm or less; F and length are 3 Achieved by a uniform non-woven fabric that is characterized by the following bundle.
  • a ninth object of the present invention is to provide a rotatable disk portion, a cylindrical portion extending vertically from the center of the disk portion and having a circular outer surface with a smaller diameter than the disk portion, and one surface of the disk portion And a skirt portion that is inclined and disposed in a space between the cylindrical portion and the circular eclectic surface of the cylindrical portion.
  • the skirt portion comes into the skirt portion in a direction substantially parallel to the axis of the cylindrical portion.
  • a plurality of oscillating surfaces for oscillating the unopened three-dimensional net-like fiber, and the oscillating direction of the three-dimensional net fibers which are alternately arranged with the oscillating surface and are oscillated by the oscillating surface.
  • a three-dimensional mesh fabric composed of a cushioning surface that mitigates a rapid change in the size of the fabric.
  • the center of the oscillating surface and the upper surface of the disk The angle of inclination formed is almost equal to the angle of inclination between the center of the airplane and the upper surface of the disk, and the cushioning surface has a fan-shaped shape whose width near the disk is wider than that near the cylinder.
  • FIG. 1 is a view showing the principle for producing a high-performance, high-density polyethylene three-dimensional network key of the present invention.
  • a polymer liquid is activated by a high force difference. This is a draft explaining the spinning method and the relationship between pressure and temperature in the conventional spinning method.
  • FIG. 2 is a diagram showing a small-angle X-ray scattering image of the reticulated fiber of the present invention.
  • FIG. 3 is a drawing for explaining a method for obtaining a long-period scattering intensity ratio in small-angle X-ray scattering PSPC. .
  • the fifth surface is a schematic flow sheet showing one embodiment of the method for producing a reticulated fiber of the present invention.
  • Fig. 6, Fig. 7 and Fig. 8 are schematic diagrams showing an example of the press, screw and special mixing structure (Dalmage-type, pin-type) used in this kikin. is there.
  • 9 and 10 show other examples of the method for producing the reticulated fiber of the present invention. It is a schematic flow chart showing the implementation of Kiyoshi.
  • FIG. 11 is a flow sheet showing one embodiment of a method for producing a mesh fiber using a conventionally known screw mixer for comparison with the present invention.
  • FIG. 12 is a diagram showing the relationship between the tensile and tear strength of the nonwoven fabric of the present invention.
  • FIG. 13 is a schematic perspective view showing an example of a suitable shape of a rotational dispersion plate for producing the nonwoven fabric of the present invention.
  • Fig. 14 is a diagram showing details of the rotational dispersion shape of Fig. 13;
  • Fig. 14 (a) is a plan view, and
  • Fig. 14 (b) is a line in Fig. 14). It is sectional drawing by A-A '.
  • FIG. 15 is a schematic front view for explaining the action of the rotary dispersion plate according to the present invention on a textile.
  • FIG. 16 (a) to Fig. 16 (d) show the three-dimensional case where the rotation dispersion plate according to the present invention is installed at a distance where the fluctuation change point of the three-dimensional network fiber is on the collection surface.
  • FIG. 3 is a schematic view of a high-speed photographing apparatus for explaining the action on a reticulated fiber in detail in order of $ 0.
  • FIG. 17) to FIG. 17 (d) show three-dimensional images obtained when the rotational dispersion according to the present invention is installed at a distance where the swing change point of the three-dimensional mesh fabric is higher than the collecting surface. It is a high-speed imaging device observation schematic diagram explaining the effect
  • FIG. 18 (a) to FIG. 18 (d) are schematic views of observations of a high-speed photographing device for sequentially explaining in detail the action of a conventionally known rotary dispersion plate on a textile.
  • FIG. 19 is a micrograph showing a cross section of the nonwoven fabric.
  • FIG. 19 (a) shows a nonwoven fabric according to the present invention
  • FIG. 19 (b) shows a cross section of a nonwoven fabric of a comparative example.
  • Fig. 20 is a photograph showing the surface condition of the nonwoven fabric.
  • Fig. 20 (a) shows the nonwoven fabric according to the present invention
  • Fig. 20 (b) Fig. Shown respectively.
  • the textile of the present invention is a textile formed from a high-density polyethylene-based polymer. And, it is a connected three-dimensional net-like fiber made up of many fine fibrils and having substantially no free ends.
  • the three-dimensional reticulated fiber of the present invention is a novel three-dimensional silk-shaped fiber that is completely different from conventionally known fibers in the mosaic structure of the fiber and in the fibrous form. It is. Therefore, it has excellent mechanical strength and high-temperature properties, and is particularly suitable for producing a heat-bonded nonwoven fabric.
  • the fiber of the present invention has a special feature in long-period feeding in the direction of the fiber axis on a fine-grained structure. And this can be clearly understood by measuring small-angle X-ray scattering.
  • FIG. 2 schematically shows a small-angle scattering photograph of the textile of the present invention.
  • a scattered image 2 showing the presence of fibrils and voids is shown, and a laminar scattered image 3 is shown on the meridian.
  • a long-period small-angle X-ray scattering image of a polymer substance circular scattering, layered linear scattering, layered two-point scattering, layered four-point scattering, and the like are known. It can be seen that the fibers resemble the long-period structure of the drawn and drawn yarns that are subjected to ordinary spinning and drawing.
  • the reticulated fiber of the present invention has a long period of 150 to 200 A. And, they have found an unexpected feature of the present invention that the scattering intensity due to the long period of the Amibushi fiber is not large. That is, from the viewpoint of the long-period scattering intensity, a small scattering intensity means that the long-period structure is not uniform. Or, it was thought that it was not clear, and it was expected that the iron and steel structure would be unfavorable in terms of mechanical properties and mature characteristics.
  • PSPC meridional position-sensitive proportional counter
  • the three-dimensional reticulated fiber excellent in these physical properties shown in the present invention does not unexpectedly have a high scattering intensity and provides a fiber having a novel structure. And, because of this structure, it excels in high-temperature characteristics near the melting point, and becomes a three-dimensional network fiber suitable for a heat-bonded nonwoven fabric.
  • the long period and the scattering intensity ratio are quantified. Then, these are explained.
  • Figure 3 shows the measured scattering intensity vs. angle plot by the PSPC in the meridian direction.
  • the position showing the maximum scattering intensity at the peak of the scattering intensity curve or the shoulder is defined as the long-period scattering angle (2). Let this value be M.
  • the measured scattering intensity value of the angle ⁇ is G, and the value on the line ⁇ is ⁇ .
  • the three-dimensional reticulated fiber of the present invention has a long-period of L50 to 200 A and a long-period scattering intensity ratio of 40 or less.
  • the X-ray 'small-angle scattering described above was measured using the following apparatus and method.
  • ⁇ X-rays were Cu—K with 1.54 persons and 1st SLIT 0.5 mm ⁇ 2nd SLIT 0.3 dragon was used as the pinhole slit.
  • the measurement voltage was 45 kV
  • the current was UOmA
  • the irradiation time was 2 x 10 3 sec.
  • the sample for the measurement was made such that the sample width of the irradiated part was about 2.5 by aligning the mesh fibers.
  • thermophysical measurement is performed without feeling, assuming use as nonwoven fabric.
  • the reticulated fiber of the present invention is characterized by excellent ripening mechanical properties near a ripening bonding temperature and a low elongation rate upon heating.
  • TMA thermomechanical test machine
  • the temperature of 130 at the time of heating under a constant load of 1/10 of denier is preferable. 3% or less, more preferably 2% or less.
  • the measurement was performed at a rate of temperature increase of 2 ° C using “T-3000” manufactured by Vacuum Riko Co., Ltd.
  • thermal and dynamic properties can be determined by measuring with a piperon. That is, the reticulated fiber of the present invention shows a high dynamic elastic modulus even at a high temperature.
  • the temperature at which the dynamic elastic modulus becomes 101 Q dyn / afl is preferably 115 ° C or more.
  • the stability of the crystal at high temperatures is evaluated at the onset temperature of the crystal dispersion of tan5.
  • the fiber of the present invention exhibits a high starting temperature of the stuffing crystal dispersion, preferably 123 ° C. or more, and more preferably 125 or more, and shows that the crystal stability near the bonding temperature is high. You can see that she is overkill in sex. These measurements were carried out using an active viscoelasticity measuring device.
  • the three-dimensional reticulated fiber of the present invention is excellent in ripening stability at high temperatures and ripening mechanical properties, and is suitable for a ripened nonwoven fabric. Caused by the structure.
  • the reticulated fiber of the present invention is also a highly oriented fiber, which becomes clear by measuring the crystal orientation angle by X-ray diffraction. That is, the orientation angle of the textile of the present invention by X-rays is 30. The following are preferred: 20 is more preferable. It is as follows. It is also known that the orientation of the crystalline part and the amorphous part of the polymer can be measured from the infrared absorption dichroism, and is evaluated by the dichroic ratio orientation coefficient F °. '' A parallel dichroic band for polystyrene, 2017 cm— 1 The dichroic ratio orientation coefficient of the textile of the present invention is preferably 0.3 or more. In the present invention, the measurement was performed by using a JIR-100 JFT-100 IS FT-IS apparatus manufactured by JEOL Ltd. and using KRS-5 as an ATR crystal.
  • birefringence measurement of fibers using microwaves can also be used as a measure of the degree of molecular orientation.
  • the birefringence of the present invention is preferably 0.13 or more in the birefringence of 4 GHz using the Micron ⁇ -wave molecular orientation meter j M0A-2001.4 manufactured by Shinwa Paper Co., Ltd. You.
  • the three-dimensional network fiber of the present invention is a highly oriented fiber and has extremely good properties.
  • the three-dimensional network fiber of the present invention has extremely excellent mechanical strength.
  • the fiber In the case of a three-dimensional net-like fiber, the fiber is branched into a net, and when measuring the high elongation of the yarn as it is, a slip-through or the like occurs between the fiber elements, resulting in a large variation in the value. Therefore, in the present invention, in the tensile test, the measurement was performed by burning four times in cm.
  • the steel $ ⁇ of the present invention measured under such conditions has an initial modulus of 15 to 50 g Zd, preferably 20 to 50 g Zd, and a breaking strength of 4 g / d or more. Or more than 7 g / d.
  • a high-strength fiber as shown in the present invention is not known.
  • the three-dimensional mesh steel of the present invention is preferably made of extremely fine fibrils in the form of fibrillation. It is preferable that the specific surface area of the three-dimensional network fiber is 30 irf / g or more.
  • the use of the specific surface area as a scale for expressing the fineness of the fibrils constituting a three-dimensional network fiber is publicly known as disclosed in USP 3: 169,899. It is.
  • the three-dimensional network fiber of the present invention is composed of a fiber which is clearly evident as compared with a known fiber.
  • the specific surface area of the mesh ⁇ of the present invention is 3 0 rrf / g on than is rather preferred, is rather to favored by al 3 5 rrf Roh g or more,
  • reticulated fibers having a value of 100 m / g or more.
  • the reticulated fiber of the present invention is less than the conventionally known fibers in terms of whiteness, covering power, and adsorption performance. I'm stray. When non-woven fabrics using these fibers are manufactured, the fine fibrils can spread the fibers easily and form a uniform sheet. It has many excellent properties such as large surface area, good ripe adhesion, high whiteness and high opacity, and excellent adsorption and filtration performance.
  • the specific surface area was determined by a nitrogen adsorption method, and in the present invention, the specific surface area was measured using “Soft Tomato 180” manufactured by Carlo Elba.
  • a pore-sigma meter for measuring pore distribution by a mercury intrusion method into fiber may be used as a method for measuring the fineness of the fiber.
  • the fiber of the present invention may be used. It can be seen that the amount of mercury intrusion is larger than that of conventionally known textiles, and that it is composed of fine fibrils.
  • the three-dimensional reticulated fiber of the present invention has a unique long-period fiber, despite being composed of extremely fine fibrils. It has structure. It has excellent properties at high temperatures close to the melting point, and also has useful properties such as higher mechanical strength than ever before.
  • an increase in the specific surface area of the fiber indicates an increase in the cross-sectional irregularity, and the mechanical strength decreases.
  • the increase in the specific surface area and the increase in the mechanical strength are simultaneously performed, which cannot be achieved from the conventional concept.
  • the textile of the present invention is a three-dimensional netted iron fiber and is obtained by a spinning method known as franosch yarn.
  • a spinning method known as franosch yarn.
  • the three-dimensional reticulated fiber of the present invention can be obtained from fluffy yarn using a polymer and a solvent.
  • the flash spinning mechanism for obtaining the woven fabric i of the present invention is conventionally known, and is completely different from that.
  • US Pat. No. 3,227,794 discloses that a polymer solution is subjected to a pressure drop at a pressure of a pressure.
  • a technique in which a liquid phase is changed from a single liquid phase to a two liquid phase region and then discharged from a spinning nozzle is disclosed.
  • the present inventors have determined that the fiber structure of the flash-spun textile fiber is determined by the fact that the polymer and the solvent have a citrus separation structure.
  • the discovery of the spinning mechanism has led to the completion of the novel three-dimensional network shown in the present invention.
  • the new flash spinning mechanism provides instantaneous activation of a homogeneous solution of the polymer, and is a two-step process from the previously known one-liquid phase. After forming an activation structure different from the phase separation structure due to the change to the liquid phase, spinning nozzles are spun out to form a knowledge structure based on the activation structure.
  • "Activation" as used herein refers to increasing the pressure loss of the polymer-liquid through the decompression orifice, ie, before and after the decompression orifice. To increase the pressure difference by at least 80 kg, more preferably
  • Activation is performed by setting the pressure difference to more than 120 kg /. This activation is caused by large fluctuations in the density and concentration of the polymer solution, and temporarily gives the solution a structure as if it were extremely difficult to separate.
  • the three-dimensional network fiber of the present invention is obtained.
  • the solvent that has been released to the low-pressure region rapidly evaporates from this condensed activation structure, and the flashing force that expands causes the polymer to begin to solidify, causing the polymer to start to solidify.
  • the flashing force that expands causes the polymer to begin to solidify, causing the polymer to start to solidify.
  • the fibers obtained from this activated structure are made of extremely fine fibrils having a specific surface area of 30 of / g or more, and are unique to the present invention.
  • This is a high-strength three-dimensional network fiber with a long-period structure.
  • the activation of a solution composed of this polymer and a solvent causes the polymer to have a high degree of polymerization and a narrow molecular weight distribution. difference It has been clarified in the study of the present inventors that increasing the value effectively works. .
  • the three-dimensional mesh fabric of the invention of the present invention has a high strength due to its special structure, and the conventional high-density polyethylene cannot be put into practical use due to a decrease in strength by blending with a polymer. It is also possible to blend different types of polymers. Polymers blended with high-density polyethylene include low-density polyethylene, ethylene copolymers, vinyl copolymers, ionomers, polypropylene, polystyrene, and polymethylene. Tactylate and the like.
  • the textile of the present invention is based on a new mechanism for forming a fiber, and the high-density polyethylene constituting the net-like steel of the present invention preferably has a high degree of polymerization.
  • the melt index (MI) I1 of the fiber to be spun is preferably 1 or less. More preferably, it is 0.5 or less (MI measurement is based on iSTM D-1238-5TT condition E).
  • MI measurement is based on iSTM D-1238-5TT condition E).
  • the molecular weight of the polymer that composes the textile It is also important that the distribution is narrow. That is, even with similar MI, if the molecular weight distribution is wide, the performance tends to be inferior.
  • the molecular weight distribution of the protein of the present invention is 15 or less in Mw / n, and more preferably 10 or less.
  • the MI of the raw material polymer used for obtaining the fiber of the present invention is equal to or less than the MI of the fiber of the present invention.
  • the lysis process for obtaining the IS fiber of the present invention is not particularly limited, and a conventionally known lysis process can be used. However, it is preferable to use a method in which the polymer is fed while being melted by a screw extruder, and then mixed and dissolved with a solvent in a mixing tube.
  • the textile of the present invention is made of high-density polyethylene having a high molecular weight and a narrow molecular weight distribution, and the raw material polymer is dissolved in a solvent in a short time, spun, and the polymer is dissolved. It is preferable to prevent any deterioration. Further, dissolution at a high pressure is preferable from the viewpoint of the dissolution rate and the spinning mechanism of the present invention.
  • the solvent used for obtaining the fiber of the present invention is not particularly limited as long as it can be used for fiber spinning, and a conventionally known solvent may be used.
  • a conventionally known solvent may be used.
  • it is Fluorone-1i, such as methylene chloride, tricyclo mouth trifluorene, etc., or hydrogenated hydrocarbons, cyclohexane, etc. A hydrocarbon or a mixture thereof is used.
  • the spinning assembly for obtaining the fiber of the present invention is not limited as long as it can take the above-described spinning mechanism. That is, the orifice for decompression, the decompression chamber, and the nozzle for activating the homogeneous solution may have any conventionally known shape. Next, a method for producing the three-dimensional silk-like iron fiber of the present invention will be described.
  • the production method of the present invention which belongs to Class II, melts using a heated screw extruder and supplies the polymer intermittently to the polymer dissolution area while melting the polymer.
  • a solvent is added to the molten polymer while sealing the inlet of the melting zone with the continuously supplied molten polymer, and the two are mixed and dissolved under high pressure to produce a polymer solution. It specially discharges the polymer solution from the used nozzle to the low pressure region.
  • a method for continuous production of reticulated fibers wherein the method is carried out by using a mechanical mixing region provided in the extruder screw at least in the polymer dissolving zone with little mixing and dissolving. It is preferable that :::: It is more preferable that the above method is a continuous production method of a network fiber in which the mixing and dissolution of a polymer and a solvent are performed in multiple stages in a polymer dissolution region.
  • the above-mentioned method is a continuous production method of a reticulated fiber in which the addition of a solvent and the mixing and dissolution of a polymer and a solvent are performed in multiple stages in a polymer dissolution region.
  • the above method when adding a solvent and mixing and dissolving a polymer and a solvent in multiple stages, each time a solvent is added, the polymer is mixed and dissolved in a polymer dissolving zone, and the polymer is sequentially dissolved. It is preferable to use a continuous method for producing a mesh fabric with a reduced degree. ⁇ More preferably, the above method uses a screw extruder to continuously supply the melted polymer, and the supplied polymer melts the polymer melt zone. When the polymer and solvent are mixed and dissolved under pressure, multi-stage addition of the solvent to the polymer in the polymer dissolution zone causes less mixing. In particular, the first stage is continuously melted by screw extruder. For the lined polymer, it is attached to the extruder screw.
  • Reticulation of the network so as to be carried out in the area of mechanical mixing comprises the step of dissolving the solvent for the polymer in the polymer dissolving zone.
  • At least the first stage of multi-stage addition, mixing, and dissolution involves pressing the molten polymer continuously supplied by a screw extruder.
  • the mixing is performed in the area of the active mixing attached to the screw of the machine, the solvent is added in the second and subsequent stages.
  • the mixing and dissolution are performed using the static mixing element. This is a continuous production method for net fiber.
  • the most significant feature of the present invention is that a high-temperature and high-pressure uniform polymer solution can be easily and stably obtained by using a screw extruder. .
  • the consequence of this is that the solution leaks at high pressure can be resolved, the pressure can be easily increased, and a screw extruder can easily supply the polymer, even if it has a high molecular weight. It can be dissolved.
  • the pole Dissolution occurs in a short period of time, and it also has the effect of significantly preventing polymer degradation.
  • a high molecular weight polymer particularly a high molecular weight polymer which is easily deteriorated in flash spinning, can be used for the first time according to the present invention.
  • Polymer dissolution zone J is defined as a state in which the polymer is in a molten state, and a state in which the solvent and the polymer begin to dissolve in a state in which the solvent and the polymer begin to dissolve from a state without the solvent to a state with a predetermined amount of the solvent.
  • “Seal” means that the gap is filled with molten polymer and contains no flutes, and no flutes can enter.
  • Mating / dissolving refers to a state in which the polymer and the melt are mixed and both are melting.
  • Mechanism mixing refers to the mixing that occurs when an element is forcibly agitating the liquid and that element is driven by an external drive source.
  • high-density polyethylene is used as the polymer
  • the continuous supply means is a screen commonly used in the production of textiles and other various extruded products.
  • An extruder can be used.
  • the screw press machine is composed of a driving motor, a high-speed machine, a hopper for supplying polymer, and a barrel section for ripening and melting the polymer. Power, become.
  • This knurl has a structure that can be ripened by mounting a heater.
  • a screw is installed inside the barrel, and this screw is connected to the drive motor through a thrust bearing and reduction gear.
  • the screw can be divided into three main areas: the supply section, the E ⁇ section, and the measurement section.
  • the polymer is propelled to the exit while being pre-ripened in the supply section. . It melts while being compressed in the compression section and reaches the measuring section.
  • the extruder used in the present invention is provided with a container injection port at the measuring section where the polymer is completely melted, and the check valve is grounded. This valve is connected to a high-pressure metering pump for supplying the solvent.
  • the solvent is injected into the metering section filled with the molten polymer coming from the screw pouring section, and the polymer and the solvent are mixed and dissolved by the screw in this metering section. .
  • the pressure inside the barrel becomes lower than in the case of supplying the screw, and the backflow and ejection of the solvent to the supplied portion of the screw can be prevented.
  • This mixing ⁇ The pressure in the melting section can be freely changed by changing the nozzle size on the outlet side of the extruder. As a result, a pressure suitable for the type and molecular weight of the polymer can be obtained.
  • the residence time of the polymer in this part can be freely changed by controlling the length of the screw.
  • the pressure * temperature * mixing shear force * residence time can be set freely. result As a result, a uniform polymer solution can be easily and stably obtained.
  • Flash spinning solvents and polymers dissolve only after high pressure. Therefore, it is necessary to use a high-pressure vessel instead of adjusting the volume of the solution. In particular, it requires a high-pressure vessel under temperature conditions up to 350 ° c. In addition, a high-E container with stirring is required.
  • a difficult task called the sealing of the movable eclipse.
  • a high molecular weight in the franchiss spinning system for example, a high-density polyethylene with a melt index (Ml) of 4 or less (weight-average molecular weight of 10 10 4 or more). If so, it is necessary to increase the pressure. If the pressure is not high, the molecular weight used is not only limited, but also a relatively low molecular weight takes a long time to dissolve, causing deterioration of the polymer. -The present invention developed a technique called liquid sealing with a molten polymer, and-solved this problem.
  • the space formed by the extruder barrel and the screw is filled with a polymer to prevent the ejection of the solvent gas. What is important in this case is that the space is filled with the molten polymer and flowing toward the front of the screw, and therefore a pressure gradient is created.
  • the length of the supply section is increased to some extent in order to complete the melting. In most cases, the diameter of the extruder is the same as the screw screw's pinch.
  • the length of the feed section is at least ⁇ pitch, preferably at least 9 pitch.
  • the compression ratio of the screw is important for pressure build-up.
  • the compression ratio is 3.0 or more, and when the powder supply is powder, it is 4.0 or more. Is good.
  • the length of the compression section is sufficient to be 5 pitches, but it is preferable that the length be 7 pitches or more.
  • a so-called mixing zone may be provided near the start point of the measurement section. This part is short and should be subjected to high shear.
  • the form of the metering section is preferably longer because a solvent supply port is provided in this section. That is, it is 7 pitches or more, preferably 8 pitches or more. It is better to install the solvent supply port at the third or fourth pitch after the start of the metering section. Of course, even if it is longer than this Good. Further, to facilitate the introduction of the solvent, the diameter of the screw at the portion where the solvent is introduced is reduced. In other words, it is better to increase the groove depth. It is desirable that the length of this portion be at least two pitches, including a little or an increase in the screw diameter.
  • the groove depth of the metering section is 1 mm if the extruder diameter is 35 TM ⁇ . 3 mm density, 65 mm-2 mm: about mm, 90 ma. 3 ⁇ 4 3 ⁇ 4> 2 .5 ⁇ 3 ⁇ 4 4.5, 120 mm ⁇ 3 ⁇ 4 ⁇ ⁇ ram sword; ⁇ ⁇ am, 150 ⁇ 3 mm to -6 mm is preferred.
  • the gap between the outer diameter of the screen and the barrel diameter of the extruder is usually 0.1 to 0.8 mm. The smaller the bore, the better the gap. .
  • ⁇ conditions scan click Li Interview - a in terms of the above dimensions, temperature, disk re-menu rpm -.,
  • P a predetermined temperature - Te Solvent
  • the pressure at the maximum pressure point in the pressing machine is preferably at least 100 kg. This does not mean that operation is not possible even under pressure, but the pressure may fluctuate further due to fluctuations in the discharge amount and the solvent may be ejected.
  • This method is for obtaining a net-like fiber from flash spinning, and after performing this step,
  • step (1) it is necessary to increase the hole-up volume of the mixing section of the present invention in consideration of the residence time required for mixing, but this is the simplest process and is preferable. is there.
  • the high-temperature and high-pressure solution of the polymer and the solvent is flash-flushed by a spinning device to obtain a mesh fabric.
  • This flash discharge method uses a well-known technique, and often uses a depressurizing orifice, a depressurizing chamber, and a spout assembly composed of a spinning nozzle. Discharge is preferred.
  • the shape and structure of these devices can be arbitrarily selected.
  • the polymer solvent system used in the present invention does not dissolve at normal temperature and normal pressure, but dissolves only at high temperature and high pressure. Therefore, as a general feature, they belong to mutually insoluble systems, and do not easily dissolve even at high temperatures and high pressures. For this reason, it is preferable to provide a region for mechanical mixing by attaching to the screw of the extruder. That is, by increasing the contact area between the polymer and the solvent, the dissolving area is increased and the polymer is rapidly dissolved.
  • One way to do this is to provide a special mechanical mixing section on the same floor as the extruder-the term "special" refers to the extruder screw feed, compression section It also means a structure that is different from the screw structure of the measuring section and aims to improve the mixing and stirring effects. For example, a structure called dalmage corresponds to this.
  • the drive system of the extruder is one, and the screw of the extruder has a melting supply section and a special mechanical mixing section with a solvent, and In addition, it has a solvent injection part in the barrel of the middle part.
  • a feeder, a presser, and a meterer which are used for normal melt molding, are added to the front of the normal screw, which has a mixing function. It can be formed by adding a barrel having a special mechanical mixing section provided with a solvent injection port. Also, it may be one uniquely designed for use in the present invention.
  • the molten polymer is supplied by the rotation of the extruder screw, and the molten polymer is surrounded by a solvent provided separately by a metering pump or the like. Is mixed mechanically.
  • the extruder and the structure have a drive system.
  • the sliding part of the extruder has the same structure as that of a normal extruder, and the low-viscosity 'solvent' solvent is blocked by the molten polymer. It does not reach this part in shape.
  • silica structures having a mixing function used for mixing the molten polymer and the solvent there are various types, and these have various shapes, and these can be used in the present invention.
  • it may be of a dal-mage type, of a multi-threaded structure with a notch, of a dam structure, of a multi-row pin structure, or a combination thereof.
  • dams, grooves and pins may be provided on the barrel side to combine with the above-mentioned structure.
  • the revolving body and the barrel may be polygonal, aiming at the second impeachment. These are selected according to the type of polymer used, melt viscosity, type of solvent, mixing ratio, and the like.
  • the first stage involves adding one part of the solvent to the mechanical mixing area attached to the screw, mixing and dissolving it, and then mixing the second and subsequent stages.
  • a static mixing element is used as a dissolving means, and the remaining solvent is sequentially added to each of the static mixing elements to mix and dissolve.
  • the present inventors have considered this problem in various ways, and as a result, have found that the polymer solvent system used for flash spinning is more easily dissolved as the polymer concentration is higher. And found that it was easier to dissolve. As a result, a more preferable method of the extruder dissolution method of the present invention has been invented.
  • the solvent is added in multiple stages using a pump or the like, but it is preferable to add a polymer and solvent mixing operation after each addition of the solvent.
  • This mixing operation can be performed by any technique, such as mechanical stirring using a stirring blade or a mixing screw, or static mixing. Etc. may be employed. Also, by combining these, it is possible to make a very preferable process. :
  • the multi-stage addition of a solvent means an addition divided into two or more stages, where the portion where the polymer and the solvent first merge is one step, and the limit is two steps or more. Not done.
  • the means for adding the solvent after the second stage is not particularly limited, but it is preferable to use a static mixing element. In other words, these are assumed to be devices that have sufficient mixing capacity and do not have a sliding part.
  • the type of the static mixing element is not particularly limited, and may be a conventionally known type or an improved type thereof. Examples of known types include Kenix's Static Mixer, Sulza's Mixer, and Toray's High Mixer. ' •
  • the polymer is preliminarily mixed with a part of the solvent in the early stage of mixing, the viscosity is reduced, and the affinity with the added solvent is also increased.
  • the pressure loss in the static mixing element is small, and a uniform solution can be easily obtained. Therefore, the degree of freedom with respect to the shape and the number of stages of the static mixing element is large and can be selected as appropriate.
  • an arbitrary solvent is employed depending on the polymer used. That is, a combination of a well-known polymer and a Z solvent used for obtaining a network fiber from a flash spinning can be used.
  • the solvent include methylene chloride, and trichloride. Fluoromethane (b), Tricyclone trifrenoleuroethane, hydrogenated hydrocarbons, etc. are used. And these can be mixtures
  • An object of the present invention is to obtain a reticulated fiber from flash spinning, and the ratio of the polymer and the solvent in the present invention can be arbitrarily selected within the range of the object. You. From this viewpoint, the polymer concentration of the spinning solution for obtaining the network is preferably 5 to 20 wt%.
  • the amount of the solvent necessary for achieving the final polymer concentration of the spinning solution is determined for the continuously supplied polymer. Divide and inject. Since the addition is carried out in substantially multiple stages, it is preferable to add a solvent amount in the range of 1 to 99% of the total solvent amount in each stage. Preferably, 1 to 90% of the solvent is added in the first stage, more preferably 5 to 80%. Then, the necessary remaining solvent is added at a later stage. However, it is also optional to add these in a more divided manner, and the dividing method may be arbitrarily selected. '
  • I 0 weight average molecular weight of about 7 ⁇ 10 4 or less, preferably 1 (weight average molecular weight of about 15 ⁇ 10 or less, more preferably 0.8 (weight average molecular weight of 16 ⁇ 10 4 ) or less; It can be used up to 0.05 (weight-average molecular weight of about 40 ⁇ 10 4 ).
  • 'A melt index of 1.0 to 0.1 can be recommended as a particularly preferred range. The polymer is melted in an extruder in the range of 200 to 300. The melt index is increased by 0.8 as the force decreases.
  • the ripening temperature needs to be set high
  • the screw shape used may be a pitch structure with the same screw screw pitch and screw diameter that are usually used, but the high molecular weight (Ml is small) Polymer requires a longer feed section
  • the polymer dissolution zone has a solvent inlet through which solvent is injected.
  • the solvent injection pressure depends on the pressure of the polymer dissolution zone. The pressure in this polymer dissolution zone is used to create a homogeneous polymer solution.
  • the pressure in the polymer dissolution zone is determined according to the molecular weight of the polymer, and the solvent injection pressure is determined correspondingly. Therefore, it is advisable to use a pump that raises the maximum shochu pressure (approximately 500 kg / cm 2 ⁇ G in a row) and pumps out a constant volume regardless of the pressure. There is a pump.
  • the solvent to be injected may be ripened or may not be ripened. A little heating is preferred because mixing and dissolving can be performed stably.
  • the force depending on the type of the solvent is within a temperature range of 50 ° to 200 ° C. for fluorocarbons.
  • the check valve may be of a commonly used structure, but preferably has a structure that is easy to clean when the boiler is clogged. Further heating this valve is recommended.
  • the pressure in the polymer dissolution zone is the point at which it is completely filled with the decayed vol- ume, that is, shortly before the solvent inlet, the screw in the screw of the screw.
  • the pressure in the area starting from two to three pitches before reaching the decompression chamber orifice.
  • This pressure is as follows when the polymer is a high-density polyethylene. In other words, if it is a polymer with a mole index of 5.0 (M i), it is about 150 kg / crf ⁇ G to 350 kg Z cn! Ma in a flat et 1 60 ⁇ 360 kg cm 2 - about G, 0. 8 the volume Li Ma - if 1 70 ⁇ 400 kg / ci 'G , 450 200 ⁇ if port re-mer 0. 3 kg d - G, if it goes beyond 0.3 and reaches 0.03rd place, 250 Mixing and dissolving can be performed sufficiently by applying a pressure of ⁇ 500 kg / dG.
  • a hollow metal 0 ring type is easy to use as a seal for the flange.
  • the metal seal is convenient for the seal of the detector.
  • the sealing in the direction of the end of the screw 1 is performed with a fluid sealing force of the melted vol- mer, so that at least the number of screws of the screw of the screw is used.
  • the pressure at the position before the touch must be higher than the pressure at the solvent injection section.
  • the space volume of the solvent injection section should be larger than the space volume of the extruder hopper side. That is, the groove depth may be increased. Due to such a structure, the pressure immediately before the solvent injection port is higher than the pressure in the polymer dissolution zone. Due to this pressure gradient, the solvent is completely sealed and does not flow back to the hopper or blow out.
  • a gear pump should be installed at any point in the polymer melting zone.
  • the most preferred installation point is after the special equipment mixing section. With such a configuration, a fluid seal made of a polymer melter is more complete. ⁇ At the solvent injection section, the polymer and solvent merge and pull into a special mechanical mixing section. This 0 portion has the same shape as the screw as a preferable form. Therefore, the rotation speed is the same as the screw rotation speed. However, in the case of the mixing unit of this type, the pump capacity is not provided, and the mixing and stirring function is mainly used.
  • the temperature of the destructive mixing section is preferably set lower than the temperature of the screw extruder.
  • the solvent system used for flash spinning is a LCST-type solution as described in the polymer solution theory. There is no need to increase the temperature of this part.
  • the appropriate temperature is also preferable from the viewpoint of preventing polymer deterioration.
  • the form is preferably a dull-mage type, or a kneader type or a rear type, but this type is adopted.
  • the load becomes large, and a large amount of heat is generated. It tends to be.
  • a part thereof may be changed to a pin-type mixed structure.
  • the addition amount in the first stage should be 10 to 70% of the total addition amount.
  • a gear port and a pump may be provided next to the special local mixing section.
  • the form of the gear pump may be the one usually used for extrusion molding.
  • the shaft seal of the gear pump is the shaft seal of the gear pump.
  • the viscosity of the mixed polymer solution in this part is about 30 to 500 centipoise, which is higher than that of the fluid on the port side. Therefore, it can be used with a normal ground seal.
  • a better sealing method is to allow a small amount of the solution to leak at the beginning-because the leak precipitates and fills the erosion gap with the polymer, which encourages the lubricant.
  • the pressure in the subsequent area can be further increased, and the degree of dissolution can be freely controlled.
  • the pressure of the special mechanical mixing section can be freely controlled by the rotation speed of the gear-pump. Therefore, by increasing the pressure in this part, dissolution at a higher pressure can be performed, and dissolution can be accelerated.
  • the setting of these pressures depends on the type and amount of polymer 'solvent Since it changes, an optimum value may be set by a trial and error method.
  • the mixed polymer solution from the previous stage may be discharged into the solvent as if it were "Sou", or a number of solvent jets D. may be provided in the piping cross section. I prefer to do it.
  • At least 40 stages are required for the static mixing element. Therefore, even if the pressure loss per static mixing element is small, the total pressure loss is as follows. Therefore, it is recommended to collectively support each unit, collect all stages and collectively support at the outlet side. Unless such measures are taken, buckling may occur at the final stage.
  • the temperature of the piping system including this static mixing element may be lower than that of the previous stage. Since the temperature of the polymer solution is determined in this part, it is preferable to lower the temperature unless a trouble occurs. 160-200 for high density polystyrene examples, preferably '170-180 It is.
  • the pressure fluctuation width immediately after the final stage of mixing and immediately after the compression chamber is preferably 5 / cm 1 'G or less, more preferably 3 kg / erf ⁇ G or less.
  • a filter may be provided in the final stage of mixing and immediately before the pressure chamber. ⁇ There are various types of filters, but a filter having a large filtration area and a small pressure loss is preferable. In general, a pre-type or disk-type surface filtration method may be used.
  • the distribution system including the mixed area, shall have a structure in which no ban part occurs as much as possible. If there is a blind spot that causes stagnation, a degraded bolimer will occur, and this degraded material will fall off and plug the orifice hole. This has very undesirable consequences.
  • This part is Wheels ⁇ Consists of a decompression chamber and a spout orifice.
  • the shape, dimensions, and the like of this part are the same as those of a conventionally known technique. However, the dimension of the orifice will be determined in consideration of the pressure in the polymer melting zone and the pressure in the compression chamber.
  • the pressure and temperature of this part of the decompression chamber flash spinning section is 40 kg ⁇ ⁇ ! ⁇ G 1 50 kg cr crf ⁇ G and 1 501 in the case of high-density polyethylene. 90 c.
  • the optimum value of the temperature ⁇ pressure varies depending on the operating conditions, and is particularly affected by the molecular weight of the polymer. Basically, in some sense, a disadvantage of phase separation occurs. Therefore, the conditions of the decompression chamber are determined in consideration of the operating conditions and the state of phase separation.
  • FIG. 5 to FIG. 10 show an embodiment of an apparatus for carrying out the method for producing a reticulated fiber of the present invention.
  • FIG. 5 shows a flow chart of a typical process of the present invention
  • FIG. 6 shows the inside of a screw extruder used for this. That is, as shown in FIG. 5, the manufacturing apparatus is provided with an extruder 4 barrel 5, a solvent pump 6, and a spinning device 7. The melt is melted by the extruder 4 and sent to the melt zone where the melted polymer in the renole 5 is closed. Solvent is pumped from a separate solvent pump 6 through a polymer check valve (not shown) into the poly-dissolution zone. The rotating screw in the barrel 5 mixes and dissolves the solvent and the poly to form a uniform poly solution, which is sent to the spinning device 7.
  • the spinning device 7 comprises a decompression orifice, a decompression chamber and a spinning orifice, and a heating device. At this point, the polymer solution is spun into a low-pressure region through the spout orifice, forming a continuous mesh fabric.
  • the extruder barrel 5 has a screw 1i in the barrel as shown in Fig. 6, and this screw is provided with a lined section 12, a compression section 13 and a weighing section 14, 15, It consists of 16. 'Looking closer at this metering section, metering section 14 is filled with molten polymer coming from compression section 3 and cannot flow back to hopper port 1 if melted .
  • the measuring section 1554 has a larger depth than the front section 16 and the rear section 14, so that a minimum pressure portion is formed in the measuring section. For this reason, the solvent from the solvent inlet 18 is easily injected into the extractor barrel.
  • the molten polymer coming from the front of the metering section 14 and the solvent coming from the inlet 18 are mixed by the screw rotating at the rear section 16 of the metering.
  • the solution flows out of the opening 20 as a solution.
  • the metering units 14, 15, 16 are optimized by the polymer flow rate and the solvent flow rate.
  • FIG. 8 shows another preferred embodiment of the extruder.
  • Fig. 7 shows the structure of the extruder used to carry out the present invention and the special mixing structure (mixing mixer) of the screw and the co-wheel.
  • the polymer is supplied from 17 and is melted by the screw 21 by the face rolling of the driving system 19 and extruded forward (to the right in the figure).
  • the solvent is added from the solvent inlet 18 installed in the barrel 5, and the two are mixed by the mixing structure (dalmage type) 22 to reach the outlet opening 20 of the mixture.
  • Fig. 8 is a structural diagram with mixed structures (Dalmage type and Pin type) 22 'and 22 "having different shapes from Fig. 7.
  • the mixture coming out of the outlet opening 20 is directly guided to the spinning device, or after that, a solvent is further added and a mixing operation is performed, and then the mixture is guided to the spinning device. To obtain a reticulated fiber. .
  • the diameter of the screw of the extruder is selected according to the production amount of the mesh fiber to be produced, and the diameter of the same structure is the same as the diameter of the screw of the extruder. Or different. In each case, the length of the structure is arbitrarily determined depending on the required mixing degree and the volume of the hole-up in consideration of the residence time.
  • FIGS. 9 and 10 show the present invention.
  • 4 is a schematic flow chart showing a further preferred embodiment (equipment) of the present invention, wherein reference numeral 4 denotes an extruder 5, a barrel 8, a special mixing section 8 coaxially with the extruder 5, and a solvent bottle 6.
  • 9 shows a mixing section composed of a static mixing element
  • FIG. 9 shows an example of multi-stage mixing, that is, the polymer was mixed and melted in a special mixing section denoted by reference numeral 8. Thereafter, the mixture is further mixed and dissolved in the static mixing section 9.
  • Figure 10 shows the process flow sheet in which the solvent is added in multiple stages and mixed and dissolved each time. That is, the solvent is added to the first-stage mixing section 8 from the first-stage solvent pump 6, mixed and dissolved, and further added and mixed and dissolved in the second-stage mixing section 9 from the second-stage pump 6. To obtain a polymer solution of the same polymer concentration.
  • the stirring mechanism for dissolving the polymer can be reliably closed,
  • '' ⁇ polymer can be dissolved in a short time to dissolve the polymer in a short time because the mixing effect is large, and the mixing effect is large, and the polymer is dissolved using the thermal power and chemical characteristics of the solution. Since high molecular weight and narrow molecular weight distribution of the polymer can be dissolved uniformly, and the flashing force can be extremely increased by spinning under high pressure, A high-density polyethylene-based three-dimensional network fiber with a long-period scattering intensity ratio of 40 or less is generated, and a three-dimensional network fiber with a long period of 150 A or more and 200 mm or less is obtained. -In addition, a three-dimensional network fiber having a specific surface area of 30 nf ng or more is produced.
  • a high-pressure uniform solution comprising a high-density polyethylene-based polymer and chlorofluorocarbon is composed of a decompression orifice, a decompression chamber, and a spinning nozzle.
  • a high pressure difference is generated before and after the high pressure orifice. And activates the body.
  • the production method of the present invention which belongs to a further class, differs from the conventionally known method of spinning by setting the conditions of the pressure chamber so that the polymer liquid belongs to the two liquid phase region. Spinning from one liquid phase region As a result, there is a clear advantage that the pressure in the decompression chamber during spinning can be increased.
  • the present invention it is possible to obtain a higher solvent flashing force than conventionally known techniques, and it is possible to obtain a high-strength fiber that is stretched and oriented more highly. . Further, since the pressure in the decompression chamber can be increased, it is possible to obtain high-strength steel by spinning at a relatively low temperature at which the decomposition of the polymer solvent does not occur. Means both one-phase solution and two-phase solution.
  • the high pressure difference referred to in the present invention means that, for example, an orifice is provided at an inlet of a decompression chamber and a pressure difference is generated by this orifice ', which is not implemented by a conventional method.
  • a high pressure difference means a pressure difference of at least 80 kg / oi G or more.
  • Activation means that when a phase separates from one liquid phase to two liquid phases, the liquid undergoes kinetic fluctuations so that phase separation occurs easily. For example, it means that fluctuation such as density occurs. Whether it is activated or not can be determined by measuring light transmission through a pressure vessel with an optical window and a container. That is, when a high pressure difference is generated in the one liquid phase solution, the transmitted light is not transmitted at all. After a while, a clear solution is obtained. This temporary fluctuation means activation of the liquid.
  • This pressure difference must be high enough to activate the liquid, and is arbitrarily selected according to the polymer used, the concentration, and the like. For example, it is preferably at least 30 kg / erf G.
  • a large pressure difference is suddenly generated in the ⁇ pressure orifice, causing some structural change in the solution, leading to a ⁇ pressure chamber, and discharging the solution at a higher pressure than the spinning nozzle.
  • This ⁇ 0 structural change is caused by thermodynamic fluctuation due to high pressure difference.
  • This thermodynamic fluctuation generally means, for example,
  • phase diagram showing the boundary condition h of one liquid phase and two liquid phases of the polymer solvent referred to in the present invention is obtained by measuring the phase equilibrium of the polymer solution.
  • the pressure is gradually changed while keeping 25 at a constant temperature. Also remove the solution Gradually change the temperature while maintaining a constant pressure. Alternatively, depending on the case, the temperature and the pressure may be simultaneously and slowly changed, or the like, and any method may be searched for.
  • the specific solution activation method in the present invention means a large pressure change, as shown in A : - ⁇ B of FIG. That is, A is the pressure of the solution and B is the pressure in the pressure chamber. And, as described above, the mesh steel obtained from such a large pressure difference is a non-conventional weaving fiber, and as shown in Fig. 1, point B is one liquid phase.
  • the spinning method is preferred.
  • the amount of the polymer in the polymer solution is 4 to 25 wt%, and preferably 5 to 20 wt%.
  • the batch type generally uses an autoclave equipped with a stirrer device.
  • the autoclave is a stirrer for mixing and stirring the polymer solution, a resistance thermometer for detecting the temperature inside the autoclave, and a diaphragm type for detecting the pressure inside the autoclave. It has a pressure gauge.
  • a polymer is added into the autoclave, and the lid and the body, which form part of the autoclave, are connected by a mounting bolt.
  • the inside of the autoclave is evacuated through a valve to completely remove the air, and then the solvent is introduced from the valve and sealed.
  • the polymer and the solvent in the autoclave are ripened by the built-in heater provided on the entire surface of the autoclave while being stirred by the stirrer.
  • the polymer can be dissolved in a solvent.
  • the temperature and pressure conditions be such that the polymer solution can be maintained in a clear, homogeneous phase. This is equivalent to setting the stirring in the autoclave to one liquid phase condition in the Kanazu diagram.
  • a flash which occurs adiabatically at a temperature of a preferable solution is higher than a temperature at which the polymer dissolves in the solvent. This is the temperature at which the amount of heat required to evaporate the existing solvent is needed. If the extrusion temperature is too high, the degradation of the polymer will be marked by radicals generated by the aging of the polymer and the thermal decomposition of the fermentation medium, and the degradation of the polymer will be significant. Causes deterioration and coloring.
  • the pressure of the solution in the autoclave can be arbitrarily selected as long as the pressure is higher than the above-mentioned boundary pressure for maintaining a clear homogeneous solution.
  • the required pressure can be obtained by a mechanical pump or pressurization of an inert gas.However, the inside of the autoclave is completely filled with the solution, and the desired pressure is applied by utilizing the ripening of the solution. The method of obtaining is preferred.
  • the pressure of the solution is measured by a diaphragm pressure gauge.
  • the polymer solution consisting of a large phase passes through the autoclave and the vacuum chamber by the pressure in the autoclave, and then through the spinning nozzle. It is rapidly released under atmospheric pressure and flash spinning is performed.
  • patch operation such as autoclaving
  • the solution is In order to keep the internal pressure of the lave constant and to keep the flow rate of the solution through the spinning nozzle constant, a method of increasing the pressure using an inert gas pressure or a liquid pressure such as nitrogen may be used.
  • the polymer solution extruded from the discharge valve causes a pressure drop when passing through the decompression orifice, and the pressure in the decompression chamber measured by the diaphragm type pressure gauge and the pressure of the solution are increased.
  • the difference between the pressure and the pressure is set to a high pressure difference sufficient to activate the liquid. For example, at least 80 kg Z cm ; G or more is preferred.
  • the temperature of the pressure chamber is maintained at the same level as the solution or slightly lowered.
  • the solution discharged from the spinning nozzle is highly fibrillated due to the flash of the solvent and solidification of the polymer, and is fully stretched.
  • the vacuum orifice, vacuum chamber and spinning nozzle used in these spinning processes may have any conventionally known shape and structure. That is, it is sufficient that the pressure difference of the low pressure orifice, which is a necessary condition for the present invention, is sufficient to activate the liquid.
  • the depressurization orifice appropriately corresponds to the viscosity, flow rate, extrusion pressure, and spinning temperature of the solution so that the polymer liquid belongs to one liquid phase region in the phase diagram in the decompression chamber.
  • the diameter and shape of the spinning nozzle are arbitrarily selected.
  • the volume of the pressure chamber is selected so as to have a residence time for maintaining the activated state of the liquid, and is usually about 0.5 to 1 O c c, but is not particularly limited.
  • the spinning method of the present invention can be carried out in either a batch system or a continuous system.
  • a continuous method if a method is used in which the entrance of the polymer dissolving area is sealed with a molten polymer using a screw extruder, it is easy to produce a high-pressure homogeneous solution.
  • Multi-stage addition of solvent to the polymer At least the first stage of mixing and dissolving, for the polymer that is illegally melt-filled by the screw extruder, This is performed in the area of the target mixing provided in the screw of the extruder. When the solvent addition, mixing, and dissolution in the second and subsequent steps are performed using a static mixing element, a more uniform solution is used. It is easy.
  • the present invention which belongs to the category, is characterized in that a high force difference is generated in a polymer solution, instantaneous thermodynamic fluctuations are generated, and the spinning is performed in an activated manner.
  • a high force difference is generated in a polymer solution, instantaneous thermodynamic fluctuations are generated, and the spinning is performed in an activated manner.
  • the fiber is spun from the liquid area, there is no upper limit to the force in the “pressure chamber”, high pressure conditions can be taken, and flash flushing is large.
  • a highly fibrillated three-dimensional network fiber having an intensity ratio, a long period of 150 mm or more and 200 A or less, and a specific surface area of 30 or more is produced.
  • FIG. 4 shows a phase diagram of high-density polyethylene and fluoro-1i measured in the example of the present invention, and illustrates the polymer concentrations of 12 wt% and 15 wt%. .
  • the nonwoven fabrics belonging to the category I are composed of high-density polyethylen-based fluffy three-dimensional mesh fibers deposited in random directions and firmly and firmly bonded to each other. And an inner layer that is weaker than the surface layer and is thermally bonded to the film-like fiber layer, and has an inner layer having a specific surface area of 5 rrf / 'g. It is a continuous mesh fabric with high tensile strength and high tear strength, and more preferably, the nonwoven fabric has a tear strength of X (kg / 50 g). Method), the tensile strength is defined as Y (kg 3 cm 50 g / m), and the strength of each of the non-woven fabrics is proportional to the standard basis weight of 50 g / m 2. 3 ⁇ 4 0.4,
  • a high-density polystyrene-based three-dimensional continuous mesh fabric is randomly arranged and deposited. — That is, the flash-spun three-dimensional network substantially free of ends is spread, and the fiber elements are arranged so as to be substantially uniform in all directions, and are deposited and accumulated. Has become a texture.
  • the textile is heat-bonded in the surface layer.
  • This surface layer has a firm bond and does not fluff even if the surface is strongly rubbed with a finger. And this firmly bonded layer Both sides of the front and back sides, or any one side are formed.
  • the heat bonding strength of the inner layer of the nonwoven fabric is different from the heat bonding strength of the surface layer. That is, the inner layer is a film-iron layer in which the degree of aged adhesion is more gradual than that of the intermediate layer, and thus the inner layer fiber form is left in a large amount. As a result, the D surface layer and the inner layer are independent and form a nonwoven fabric structure.
  • non-woven fabrics belonging to Class J1 are conventionally known; they are characterized by having a higher specific surface area in each layer than a paper-like three-dimensional network fibrous non-woven fabric. It has physical properties.
  • the inner film-like fiber layer in the present invention refers to a layer that is partially film-shaped and partially fiber-shaped, and is a layer that is forcibly connected to another layer.
  • the independent three-dimensional net-shaped steel fiber having a length of 10 to several tens ⁇ or more It is a layer that has not been able to find a fiber as a continuum and has undergone sufficient bonding to be cut in the middle.
  • Non-woven fabrics belonging to the category are characterized in that the specific surface area of this inner layer exceeds 5 tn 2 / g. That is, it is a non-woven fabric having a high specific surface area, which is unprecedented as a layer constituting a three-dimensional net-like nonwoven fabric such as paper, and excellent in opacity and covering power.
  • the specific surface area of the inner layer is determined by mechanically peeling off the surface layer and the inner layer, and without peeling off the film-like or textile-like material straddling between the layers at the time of separation, using a cutter or the like. It can be obtained by cutting into layers and measuring the specific surface of each layer. In the present invention, the measurement of this area was carried out by the BET method of nitrogen adsorption, and was measured by using a soromatic 1800 manufactured by Carlo Elba.
  • the specific surface area of the nonwoven fabric measured without obstructing the inner layer / surface layer of the nonwoven fabric is 5 / g or more.
  • This nonwoven fabric has an unprecedentedly high mechanical strength, despite having a high specific surface area as described above.
  • a large specific surface area means that the bonding between the fabrics is insufficient and mechanical strength cannot be expected, but in the present invention, both are achieved simultaneously.
  • the surprising effect is obtained. That is, the relationship between the tensile strength and the tear strength, which represents the mechanical strength of the nonwoven fabric, has never been better. Between the tensile strength Y (kg 3 cm width 50 gnf) and the tear strength X (kg / 50 g / m) by Elmendorf, X ⁇ 0.4
  • the strength of the nonwoven fabric is a value converted in proportion to the standard weight, and in the present invention, the standard weight is 50 g / rf. That is, the basis weight of the non-woven fabric belonging to the category I may be 15 to 200 g / m, but is preferably 20 to 120 g / rri, and the central basis weight is 50 g / m '. The strength was determined on the basis of 50 g according to.
  • the dotted line in the scope of the present invention indicates data using the fabric described in the comparative example.
  • nonwoven fabrics usually have directionality, the vertical and horizontal directions, and, if necessary, the oblique direction are measured when determining their physical properties.
  • Non-woven fabrics belonging to the JL category are arranged in such a way that each fiber element of the mesh fabric is arranged almost uniformly in all directions as in the previous arrest. Can be measured and the average can be found.
  • the physical ratio of vertical / horizontal is included in the range of 1.3 ⁇ 1 to 1 ⁇ 3 for non-woven fabric belonging to classification ⁇ .
  • the directionality of the fiber in the nonwoven fabric can be relatively easily obtained from the transmittance of the Mic polarization in each direction, and by using this method, it belongs to the classification of the present invention. The effect on the direction of the nonwoven fabric can be confirmed.
  • the directionality of the nonwoven fabric due to the microwave is measured using, for example, “Microwave Molecular Orientation Meter” OA-200 U manufactured by Shinzaki Paper. -'
  • the tensile strength of the nonwoven fabric is measured according to J IS- 1068 and converted to a standard basis weight of 50 g Z rrf and Y (kg / 3 cm width 50 g / m).
  • the elemendorf tear strength of the nonwoven fabric was measured in accordance with JIS-L-1085, and converted to the standard basis weight as X (kg / 50 g / m).
  • JIS-L-1085 JIS-L-1085
  • High-density polyethylene adheres at a temperature close to the melting point of the crystal in order to achieve strength as a nonwoven fabric, maintain its shape, and fuzz the surface. Therefore, in order to obtain a mature bonded nonwoven fabric, it is necessary that the mature bond between the fibers is strong, that shrinkage does not easily occur during the mature bond, and that the fiber has a high strength at the high temperature near the bonding temperature.
  • the above-described three-dimensional network fiber is used as a woven fiber.
  • heat bonding is performed by using the net-like textile according to the present invention, which is made of extremely fine fibrils, has a unique structure for a long period, and has excellent high-temperature characteristics.
  • a nonwoven fabric belonging to the above is obtained, and the nonwoven fabric has a high destructive strength.
  • the non-woven fabric of the present invention belonging to the above-mentioned category II is also characterized by being opaque. That is, the conventional heat bonding method However, because of the large specific surface area of the reticulated fiber, it reflects light irregularly and has excellent opacity. " Furthermore, since the mechanical strength is high and the high-temperature properties are good, the fiber is not easily damaged by the mature bonding, and the mechanical strength is developed even if the bonding degree is not increased. And opacity
  • the opacity of this non-fiber fabric is different from that of covering materials such as packaging materials, envelopes, and clothing.
  • the laser light was applied to a non-woven fabric, the amount of light transmitted through the non-woven fabric was measured with a laser parmeter, and this position was continuously shifted and averaged.
  • the amount of transmitted light varies depending on the basis weight of the non-woven cloth, and if the basis weight increases, the amount of light decreases.
  • the basis weight is 25 g Z m and the light quantity is 25 W or less, and at 40 g /
  • the weight is less than 12: ⁇ W at 60 g of below W W.
  • other useful physical properties can be imparted to the nonwoven fabric of the present invention to which the classification belongs, while maintaining the above-described mechanical strength and opacity.
  • the nonwoven fabric of the present invention can employ various conventionally known methods in the heat bonding step. Usually, the nonwoven fabric has a large bonding area in order to increase the mechanical strength of the nonwoven fabric. A possible thermal bonding method is adopted. In these heat bonding methods, a flat roll method using a flat roll, a shallow emboss roll of 100 pcs / cnf or more, or a mouthless press method using a sandblast roll is used. It is possible to adopt the rule of force rendering and the method of full calendar rendering. The bonding surface of the nonwoven fabric of the present invention belonging to the category #L obtained from these has a smooth appearance.
  • the water pressure resistance was measured according to JIS L 1092, and the Gurley-hill i3 temper was measured using a B-type Gurley-type densometer.
  • the nonwoven fabric of the present invention belonging to the class J1 is a non-adhesive sheet in which the fiber elements are arranged in a random direction by spreading the three-dimensional netted fabric as it is, as described above. It is heat bonded.
  • any conventionally known process may be selected.
  • the dissolution process for obtaining the fibers constituting the nonwoven fabric of the present invention is not particularly limited, and a conventionally known dissolution process can be used.
  • This fiber is composed of high-density polyethylene with a high molecular weight and a narrow molecular weight distribution.
  • the raw polymer is dissolved in a solvent in a short time and spun to prevent deterioration of the polymer.
  • To do And melting at high pressure from the spinning machine is required.
  • Spindle assembly for obtaining this textile is not limited as long as it can take the above-mentioned spinning mechanism. That is, the orifice for decompression, the m-chamber nozzle, and the like for activating the homogeneous solution may be arbitrarily used.
  • any known method and apparatus may be used. Basically, it consists of a collision device that spreads the reticulated steel that is spun-a device that determines the direction of travel of the fiber that has spread by collision, a device that gives charge to the spread fiber, and a device that receives and deposits the fiber. ing. That is, a number of methods such as [63, 899, Special Publication No. 44-218 ⁇ , and l) SP3 : 456, 156, and improvements thereof are known, and these methods can be used. , Especially restricted ⁇ , o
  • nonwoven fabrics belonging to the classification are made of high-density polyethylene-based fibrous three-dimensional netted fibers, arranged in random directions, deposited in an S-shape, and partially unfused independent A nonwoven fabric including a layer made of mesh-shaped steel fibers, wherein the independent mesh fibers have a long-period scattering intensity ratio of 40 or less.
  • nonwoven fabrics belonging to the class are composed of high-density polyethylene-based three-dimensional network-connected fibers, which are randomly arranged and deposited. That is, the flash-spun three-dimensional net-like fiber substantially free of ends is unrolled and each steel element is expanded.
  • the layers are arranged so as to be substantially uniform in all directions, and the series is deposited in layers to form a non-woven fabric.
  • the nonwoven fabric has a partially unfused, or at least part of, a loosely bonded layer in at least a part of the many fiber layers constituting the nonwoven fabric. That is, the above-mentioned layer is provided on the surface of the nonwoven fabric or on the inner layer portion, and an independent net-like fiber can be taken out from this layer.
  • the independent net-like fabric referred to here is, for example, a bundle of steel-like materials generated on the end face when the layers are separated, and separated from other materials by careful pulling. A net-like fiber that can be pulled continuously. Therefore, in this layer, it is not firmly adhered to the film, is not adhered at all, or is loosely adhered '. Therefore, unlike this non-woven fabric belonging to the category i, the woven fabric has a freedom of movement of the reticulated fabric formed in the non-woven fabric, and as a result, flexibility is provided.
  • Such an independent reticulated fiber retains the fiber form and is a continuous fiber of 20 ⁇ or more, and X-ray small-angle scattering can be measured in line.
  • the characteristics of the fine structure of the mesh fiber constituting the nonwoven fabric of the present invention appear. That is, it is characterized in that the long-period scattering intensity due to small-angle X-ray scattering is 40 or less. This indicates that the characteristics of the mesh fabric used to produce the nonwoven fabric of the present invention are manifested as they are. In other parts, the long-period scattering intensity ratio of the part that retains the fiber shape even when the fiber is subjected to a strong thermal bonding process is almost the same as that immediately after spinning. It does not change. On the other hand, the independent reticulated filament in the nonwoven fabric which has undergone the mature bonding treatment tends to increase in long cycle, and is preferably 150 A or more.
  • Non-woven fabrics belonging to the above-mentioned category are made of fibrous fibers which are extremely gross, similar to non-woven fabrics which belong to the above-mentioned category. It is a mature glued apricot, and is highly opaque to soldiers because of its high mechanical strength and high temperature characteristics near the melting point.
  • the nonwoven fabric of the present invention belonging to the category ⁇ includes a layer capable of taking out an independent reticulated fiber form, and the other layers are more firmly adhered to the film even if they are similar layers. May be. That is, any conventionally known method for deeply bonding the sheet may be employed, such as pressing between rolls, force-rendering, and embossing.
  • the nonwoven fabric may be a non-adhesive state or a state of being compacted by pressure without performing any heat treatment contributing to adhesion to the sheet-like material.
  • nonwoven fabrics in which fibers are entangled with a needle punch or water punch or the like, and nonwoven fabrics in which mature bonding is used in combination are also included.
  • the nonwoven fabric according to the present invention belonging to the category is a nonwoven fabric in which spread three-dimensional mesh fibers are deposited in random directions, and is a bundle present in the mesh fabric constituting the nonwoven fabric. If the shape is a bundle having a density of 40 denier or less, or a bundle having a density of 40 denier mm or more, the width is 5 TM or less and the length is It must be a bundle of 30 or less.
  • the present inventors have found that when the opened three-dimensional mesh fabric constituting the nonwoven fabric does not have a specific opening defect portion, the nonwoven fabric becomes a very uniform nonwoven fabric in terms of appearance and weight distribution, A non-woven fabric belonging to the classification ox by Kakimoto Kamoto of the keen study was obtained.
  • This specific unwoven area is defined as a three-dimensional net-woven fiber that has been unwound after flash spinning, which has been condensed during the sheeting process and has a width of 40 denier-mm. It is a bundle that has been bundled to a fiber density or higher and has a width of 5 mm or more and a length of 30 nm or more.
  • the bundle portion means a bundle formed by fibrils of the entire three-dimensional network fiber and a bundle formed by consolidating a part of the fibrils of the three-dimensional network fiber.
  • the fiber density was determined by taking continuous fibers having a length of 2 on or more for about 100 cm in length, measuring the spread width every 2 cm, and dividing the weave degree by the spread width.
  • Such a nonwoven fabric made of an opened three-dimensional net-like fiber having no specific opening defect portion is a sheet width variation rate of the sheet expressing the macroscopic uniformity of the nonwoven fabric ( R) is 0.3 or less, and a laser spot expressing microscopic uniformity of the nonwoven fabric. It is more preferable that the transmission light quantity change rate of the incident light is 0.5 or less. Dropping such conditions can provide a very uniform illusion.
  • the bulk variation rate (R) and the transmitted light quantity variation rate are defined as follows.
  • the basis weight Xi was measured with a 1 cm II X 5 cm long sample, and the average value was obtained.
  • R X ma X - is calculated by using the X m in.
  • the nonwoven fabric belonging to the classification JL according to the present invention is a macroscopically and microscopically uniform nonwoven fabric.
  • the unwoven fabric constituting the nonwoven fabric does not form a bundle having a width of 50 mm or more and a length of 30 or more, which is focused to a fiber density of 40 denier dish width.
  • the nonwoven fabric according to the present invention employs the nonwoven fabric according to the flash spinning method, which is the first to achieve the uniformity. A three-dimensional reticulated fabric is obtained.
  • the opened high-density polyethylene-based three-dimensional network fiber constituted by the nonwoven fabric has a long-period scattering intensity ratio of 40 or less and a long-period of 150 A or more.
  • a nonwoven fabric with high strength, high thermal nucleus properties, high opacity, and high covering power, which has never been seen before, is excellent in uniformity.
  • the nonwoven fabric belonging to the classification day obtained in this way can be applied to applications such as filter fields using the high degree of uniformity.
  • the manufacturing method belonging to the classification _L includes: a rotatable disk portion; a cylindrical portion extending vertically from the center of the disk portion and having a circular outer surface having a diameter smaller than that of the disk portion; It comprises a scart portion that is inclined and disposed in a space between one surface and the circular outer surface of the cylindrical portion, and the force seat portion has a direction substantially parallel to the eclipse line of the cylindrical portion.
  • the inclination angle between the center of the disk and the upper surface of the disk is the angle between the center of the collision surface and the upper surface of the disk.
  • the angle of inclination is approximately equal to the angle of inclination ⁇ and the cushioning surface is near the cylindrical part
  • the feature is to use the diffusion / oscillating rotation dispersion of three-dimensional mesh dog fabric, which has a fan-shaped shape whose width near the disk is wider than the width of the disk.
  • the present inventors have developed a high-speed photographing device tf '(a stobovision ionizer manufactured by Sugawara Laboratories) to elucidate the cause of the non-uniformity existing in this nonwoven fabric.
  • tf a stobovision ionizer manufactured by Sugawara Laboratories
  • the preferred open IS dispersion technology is a high-speed rotation. This method is based on the high-speed production of non-woven fabrics because the method of colliding undistributed three-dimensional mesh fibers against the dispersion plate and dispersing the open fabric is left behind. The method was used.
  • the largest cause of uneven opening of the synthetic fibers in the non-woven sheet by the flash spinning method is the most unusual reason.
  • the three-dimensional filamentary fiber made by the flash spinning method has a continuous three-dimensional net-like structure, it can be easily opened with a slight tension acting on the textile even after it has been opened. It has the property of being focused on a bundle of several millimeters wide.
  • tension is generated in the fabric due to viscous resistance with the surrounding air. This tension has the effect of reducing the width of the expanded three-dimensional braided mesh.
  • the three-dimensional mesh fiber impinged on the rotating dispersing plate when traveling in the spatial region between the rotating dispersing plate and the web collecting surface, changes the swing direction of the three-dimensional mesh fiber.
  • the forward speed toward the Ura collecting surface is reduced, and it falls as if it were floating in space.
  • the three-dimensional mesh fabric had a small opening width, was easily affected by external factors, for example, the surrounding airflow, and was easily converged into a bundle. .
  • the tube including such a bundle portion When the tube including such a bundle portion is made non-woven by appropriate thermal bonding, it has an uneven appearance in which a portion having a high fiber density and a portion having a low fiber density are mixed, and The spots are extremely large.
  • the present inventors have conducted intensive studies in order to obtain uniformity-added ignorance, and have arrived at a manufacturing method belonging to the above-described configuration classification.
  • a diffusing and oscillating dispersion plate in which the oscillating surface constituting the scart portion is substantially flat, and the collision surface is a substantially convex curved surface, and more preferably.
  • the distance between the bottom of the rotating dispersion plate and the open surface of the opened three-dimensional mesh fiber is set to be equal to or less than the distance between the bottom of the rotating dispersion plate and the point where the swing direction of the three-dimensional mesh fiber changes.
  • the three-dimensional net shape refers to the point at which a two-dimensional network fiber that is reciprocated in a direction substantially orthogonal to the axis of the cylindrical portion of the rotation dispersing plate is turned by a change in the direction of movement.
  • the O distance between the lowermost part of the rotating dispersion plate and the collecting surface of the three-dimensional net-like fiber is determined by the amount of solution discharged per spindle of the spinning nozzle and the positional relationship between the spinning nozzle and the rotating dispersion plate. It should be less than the distance between the bottom of the tillage dispersion plate and the swing change point of the net-like debris. Good. Confirmation of ⁇ of this' is, ⁇ serial high-speed image capturing device by 1 Z 3 X 10 5 Extract of the moment de be done by observing with a photograph - kill.
  • the rotating dispersion plate according to the present invention is such that the three-dimensional net-like fiber is guided on the surface of the ura while maintaining the shape of the three-dimensional steel fiber which has been sufficiently widened and opened.
  • the high-speed fluid and the three-dimensional mesh fiber that have been ejected from the nozzle are widened and opened by a fan having the same width regardless of whether they collide with the swinging part or the buffer part in the skirt.
  • the falling speed in the direction is almost constant, and the widened open-woven three-dimensional reticulated steel is guided on the surface of the ura without generating tension to converge it.
  • the fluid ejected from the nozzle scatters in the atmosphere when it collides with the rotating dispersion plate, but most of the fluid conceals leading the three-dimensional mesh fabric to the collection surface.
  • the width of the unwoven woven fabric constituting the nonwoven fabric converged to a fiber density of 40 denier m or more is 5 or more.
  • the distance between the rotational dispersion plate according to the present invention and the rotational dispersion ⁇ the bottom and the opened three-dimensional net-like weir surface is increased by the rotational dispersion ⁇ the oscillation of the bottom part and the three-dimensional net-like fabric.
  • the three-dimensional mesh fiber constituting the nonwoven fabric obtained by combining the setting with the distance not more than the distance between the direction changing point does not include the above-mentioned bundled capital, and the width is not limited. It was almost constant over the entire area of the fabric.
  • Such a uniform nonwoven fabric is not limited in terms of basis weight in terms of the production principle, but is usually useful having an average basis weight of 5 to 500 g Zm 2 (preferably 15 to 300 g).
  • Such a uniform non-woven fabric can be used to expand the range of use as a non-woven fabric of a flash-spun reticulated fiber which has excellent characteristics as a special fiber. Something is immeasurable.
  • a preferred example of the production of the non-woven fabric comprising the three-dimensional mesh fiber of the present invention belonging to the category I will be described in detail with reference to the accompanying drawings.
  • reference numeral 32 denotes a cylindrical projection, which is a part of the three-dimensional reticulated fiber colliding with the skirt part 33 and the high-speed airflow. It serves to prevent blow-up.
  • Reference numeral 3 denotes a disk, which controls the traveling direction of the three-dimensional net-shaped beam deflected by the skirt portion 33.
  • the skirt portion 33 swings the widened open weave three-dimensional net-like fiber for widening and weaving the three-dimensional net-like fibre.
  • the swinging surface 3 4 and the cushioning surface 3 5 are alternately arranged in the scar section 33.
  • 2 to 5 rocking surfaces 34 are arranged.
  • the oscillating surface S 4 is formed substantially in a flat shape, and the collision surface 35 is formed substantially in a convex curved shape.
  • the oscillating surface 34 is substantially flat if the intersection line 37 between the oscillating surface 34 and the disk surface is almost straight as shown in Fig. 14 (a). means.
  • the intersection line 37 ' may be a curved surface having an extremely gentle curvature, that is, a concave surface or a convex surface.
  • the contact surface between the oscillating surface 34 and the cushioning surface 35 is designed so that the shape of the cushioning surface 35 that comes into contact with the disk has a fan shape whose width near the disk is wider than that near the cylinder. It is preferable that an end shape is formed.
  • a buffer surface 35 is substantially convex curved surface, the high seat Y 2 of intersection of the cylindrical portion 3 2 represented by the 1 4 (b) Fig means that the conical curved surface is constant .
  • connection between the rocking surface 34 and the cushioning surface 35 with the side surface of the cylindrical portion 32 and the connection with the upper surface of the disk portion 31 may be made smoothly with a curvature.
  • the width near the disc 31 is wider than the scorpion near the fan.
  • the contact surface 35 has a wedge shape in which the width near the disk portion 31 is narrower than the width near the cylindrical portion 32.
  • the inclination angle is preferably in the range of 30 ° to 60 °, and is selected according to the relationship between the discharge flow rate and the desired tube width.
  • the unspread three-dimensional reticulated fiber 26 ejected from the nozzle 24 together with the high-speed fluid is a rotating dispersion plate provided near the tip of the nozzle 24.
  • the cloth is widened and collides with the scat part 33 to change the traveling direction of the three-dimensional net-like fiber.
  • the three-dimensional reticulated weave oscillating surface 34 and the contact surface 35 constituting the skirt portion 33 are arranged so as to be inclined with respect to the axis of the nozzle 25.
  • the corona discharge device 27 and the like arranged downstream of the rotating dispersion plate immediately after being ejected from the rotating dispersion plate on the widened and opened three-dimensional mesh fiber.
  • the tertiary layer since the silk-like fiber can be uniformly opened and a more uniform non-woven web can be obtained. Since the degree of widening and weaving of the original reticulated fiber is temporally uniform, the state of dispersion by static electricity obtained by the corner discharge device S can be made extremely uniform. Since the three-dimensional network steel can be stably deposited on the surface of the ura collection surface, the turbulence of the web due to the air current on the ura collection surface is suppressed, and the uniformity of the nonwoven web is further improved. be able to.
  • Figures 16 (a) to 16 (d) ⁇ are the high-speed rotating books.
  • the rotating dispersion plate according to the present invention is installed at a distance where the swing change point of the mesh fabric is on the ft collecting surface.
  • 5 is a schematic view of the state of action on a three-dimensional reticulated fiber observed by the high-speed imaging apparatus described above.
  • Rotational dispersion ⁇ was performed at a speed of 10 to 3000 rpm using a Z axis shown in Fig. 15 as the axis of rotation using a 200 W servomotor.
  • the actual HI number of the three-dimensional silk fiber was 300 to 900. Speed.
  • FIG. 16 (a) shows a state in which the three-dimensional netted fabric colliding with the central portion of the oscillating surface 34 is falling almost in the vertical direction while widening on the rotational dispersion.
  • Fig. 16 (b) shows the three-dimensional network that swelled about 50 'from the figure in Fig. 16 (a) and collides with the swinging surface of the rotation dispersion plate. Indicates a state in which the width is widened and falls diagonally to the left on the surface.
  • Fig. 16 (c) is from Fig. 16 (b).
  • Fig. 16 (d) shows that the three-dimensional mesh fiber rotated about 10 ° more than Fig. 16 (c) and collided with the left end of the oscillating surface 34 of the rotating dispersion plate was rotated and dispersed. This shows a state in which it is expanding on the board and falling in the right-upward direction on the drawing. As shown in Fig. 16 (a) to Fig.
  • the three-dimensional mesh fiber that collided with the rotating dispersion plate is widened in a fan-like shape, and the scat section starts from the fiber collision point 39.
  • Intersection line between 3 3 and the upper surface of the disk portion 3 1 (intersection line 37 between the swinging surface 34 and the upper surface of the disk portion 31 or the cushioning surface 35 and the upper surface of the circular portion 3 1 In the direction perpendicular to the intersection line 38), the widening is maintained while maintaining the three-dimensional net-like fiber shape, and is guided along with the fluid onto the ura collection surface 3.6.
  • Figs. 16 (a), 16 (b) and L6 (d) show the falling state of the three-dimensional reticulated fiber after impact on the revolving surface 34 of the rotating dispersion plate.
  • Fig. 16 (c) which shows the falling state of the three-dimensional net-like steel after the collision with the buffer surface 35
  • the widening open state of the three-dimensional net-like fiber is shown on the Ura converging surface 36. It is confirmed that they are almost the same until they are derived.
  • the width of the three-dimensional mesh fiber is increased without changing the position of the collision point, and the traveling three-dimensional mesh fiber is uniformly collected on the collecting surface. Leading to.
  • FIGS. 18 (a) to 18 (d) show wedge-shaped cushioning surfaces disclosed in FIGS. 3 and 4 of US Pat. No. 3,497,918.
  • 16 (a) to 16 (d) are schematic views showing the effect of the rotating dispersion plate on the three-dimensional network fiber by the same method as in FIGS. 16 (a) to 16 (d).
  • FIGS. 18 (a) to I8 (d) correspond to FIGS. 16 (a) to 16 (d) ; ⁇ l, respectively.
  • Fig. 17 (a) II to Fig. 17 (d) show that the rotation dispersion plate according to the present invention was placed at a distance where the swaying change point of the three-dimensional Aboshi steel was above the Ura junction.
  • Fig. 16 (a) to 16 (d) are schematic diagrams showing the effects on the three-dimensional silk-like steel in the same case as those shown in Figs. 16 (a) to 16 (d).
  • FIGS. 17 (a) to 17 (d) correspond to FIGS. I6 (a) to 16 (d), respectively.
  • the three-dimensional reticulated fiber falling after the swing change point is in a floating state with a slow falling speed as shown in the region in the figure.
  • This O floating three-dimensional network ⁇ is, external factors, for example, outside of the influence the susceptibility rather ⁇ degree 4 0 denier / / «Ri by width is small but produces a ⁇ part focused slight tendency of the airflow is there.
  • the screw size is 35 ⁇ in diameter
  • the length / depth of the measuring section is 245 / 1.6.
  • the shape of the damaging part is a multi-thread screw made of steel, the length is 210 mm, the diameter is about 50 ⁇ , the screw used is 16 threads, it has a semicircular groove, the groove depth 3 ; 6 (maximum), the twist angle is .35 ° right.
  • the shape of the pin mixing section is a multi-row array of cylindrical pins, the pin arrangement is 8 ⁇ 17 rows, the size is 285, and the diameter is about 50 °.
  • pins of the same shape are also planted in the same row of 8 i7 rows on the barrel side, as in the case of planting the pins on the axis coaxial with the screw.
  • the movable pin on the same axis as the screw moves between the fixed pins.
  • the polymer and solvent are mixed.
  • the gap between the barrel and the movable pin shaft is 5-1
  • the static mixing element used is a mixer SMX type (nominal diameter 15 TM) manufactured by Sulzer. For example, metal pieces are welded in parallel, and they are connected at an angle of 90 °. This was used in 50 stages.
  • Each mixing unit is provided with a solvent injection port, each of which is connected to a double plunger pump.
  • a spinning device indicated by reference numeral 7 in FIG. 10 was attached to the end of the extruding / dissolving device. ⁇
  • the yarn device is equipped with a filter for filtration and a 0.6-5 L decompression filter.
  • the pressure was 350 kg / ( ⁇ , indicating that the pressure was llOK Z crf at room temperature 19 and therefore the pressure difference before and after the pressure relief was 240 kg Z crf.
  • the conditions were in the liquid phase region, and as a result, a three-dimensional net-like fabric of pure white, which was more highly spun than the spinning nozzle, was discharged.
  • This fiber has a density of 112 d, a specific surface area of 48 niZg, and a long period due to small-angle X-ray scattering.
  • the scattering intensity ratio was 6.
  • the initial modulus was 40.3 g / d and the breaking strength was 9.5 gd in the tensile test with 4 burns of Z cm.
  • the elongation rate at 130 in TMA is 1.5%
  • the dynamic viscoelastic modulus in ⁇ , ⁇ is 1 O: 1 .
  • a dynZcrf temperature 123 ° C the crystal fraction diverging of tan 5: starting temperature of Tsu der Te 127.
  • the orientation angle by X-ray diffraction is 16 °, and the orientation coefficient F by infrared absorption dichroism at a wave number of 201 cm- 1 . 2 ° showed a value of 0.50.
  • Microwave birefringence was 0.149.
  • the tip assembly was equipped with a 0.4 ⁇ 5 TM L decompression orifice, a decompression chamber of about 2 cc, and
  • the spinning nozzle had a hole of 0.5 mm ⁇ 0.5 L and a 3 ma 3 3 mm L of tunnel flares.
  • the pressure in the decompression chamber was 105 kg Z Cm 2 and the temperature was 185 ° C.
  • This fiber had an intensity of 85 d and a specific surface area of 40 crf Zg.
  • the long period due to small-angle X-ray scattering was 168 A, and the scattering intensity ratio due to long period was 7.2. .
  • the temperature in the decompression chamber was -184 ° C, and the pressure was 70 / G.
  • the number of twists was 4 times, and the tensile modulus was 18 g nod and the elongation at break was 4.3 g / d in a tensile test with Z cni.
  • the positions on the phase diagram in the autoclave and the pressure chamber are-the points indicated by points C and D in Fig. 1, respectively. You.
  • the decompression orifice is 0.6 ra ⁇ , 5 TM L
  • the spinning nozzle is 0.5 m ⁇
  • the hole of 0.5 L is 4 ⁇ , 4 mL.
  • a spinner assembly consisting of a Tunnel Flare was used.
  • the knowledge discharged from the spinning nozzle was a pure white continuous three-dimensional reticulated weave with a weave of 106 d.
  • the conditions in the decompression chamber are within one liquid phase region.
  • This fiber has a specific surface area of 38 frf no g: and has an initial modulus of 33 g / (1, breaking strength 7.9 The values of g and d are shown.
  • the small-angle X-ray scattering of this fiber showed that the long period was 175 A and the long period scattering intensity ratio was 15.0.
  • the orientation angle of this fiber by X-ray diffraction is 20 °, and the orientation coefficient F in the infrared. 2 ° was 0.53, indicating high orientation.
  • a homogeneous solution having a polymer concentration of 9.2 wt% was prepared by circling the same apparatus and the same solvent as in Experimental Example 1, and a 0.55 mm and ⁇ mmL dependent pressure orifice was prepared. Flash spinning was carried out using a mouth assembly consisting of a spinning nozzle having a hole of 55 m ⁇ , 0.55 L and a 3 ML. 3 thigh L tunnel tunnel.
  • the solution showed a temperature of 131 ° C and a pressure of '325 kg./oi G, and in a pressurized chamber, the temperature changed to 191 and the pressure changed to 110 ° o4 G, and then spun.
  • the mixture was discharged from the nozzle into the atmospheric pressure to obtain a pure white continuous three-dimensional reticulated fiber with a filth of 101 d.
  • the long period due to small-angle X-ray scattering was 162 A, and the scattering intensity ratio due to the long-term period was 8.4. '
  • X-ray diffraction shows an orientation angle of 13 'and an orientation coefficient F ° of 0.43 due to infrared absorption dichroism at wavenumber 2017 OR-.
  • the number of microwaves is 0.147.
  • the solution pressure is reduced from 210 kg / oi G to 210 kg / oi G.
  • the room pressure is changed to 33 kg Zen! G (decompression room temperature 190) and discharged from the spinning nozzle.
  • This fiber had a specific surface area of 33 m / g .
  • the long period of X-ray small angle scattering was 173, and the ratio of the scattering intensity due to the long period was 19.2.
  • the crystal orientation angle by X-ray diffraction is 27 °, and the infrared orientation coefficient F ⁇ at a wave number of 20 ⁇ 7 cm- '. Is 0.51. Microwave birefringence showed a value of 0.133.
  • the solution pressure of 130 kg / dG dropped to a decompression chamber pressure of 53 kg / G (temperature of 173 ° C) .
  • a continuous three-dimensional with a weave of 157 d was obtained. Reticulated. Weave was obtained.
  • the conditions of the pressure chamber were stirring in the two liquid phase region.
  • This textile has a specific surface area of 18 m 2 / g, an initial modulus of 10.8 g d in a tensile test of 4 times of burning ' ⁇ / on, and a shear strength of 3.8 g d It was only. .
  • the long period was 133 A and the scattering intensity ratio was 52.4.
  • the elongation at 130 by TMA was' 3.6%, and the crystal dispersion starting temperature of tan ⁇ in Viselon at 113 c was inferior in thermal properties.
  • this steel was stretched about twice while twisting 4 cm on a hot plate ripened to 120 V.
  • this hot-stretched fiber had an initial modulus of 19.2 g Zd and a breaking strength of 10.1 g Zd, but the yarn became transparent and the specific surface area decreased to 9.1 of / g. .
  • the long-period in X-ray small-angle scattering was shifted to 235, and the scattering intensity ratio was increased to 90.
  • method A a method using the extruder screw 2 shown in FIG. 6 (hereinafter referred to as method A) and FIG. was A flash-spun at law using an extruder scan click Li Interview first and special mixing structure shown in (called hereinafter A 2 method).
  • the extruder shown in FIG. 5 has a barrel diameter of 35 ⁇ , and the screw used for the method is described using the reference numeral in FIG. 1 6 «TM (9 peaks), groove depth about 5 Compressed section length of code 1 3 245 7 peaks), code 1 40 front quantification section length 1 40 (4 peaks), groove depth 1.6
  • the length of the solvent addition section of symbol 15 is 0 ram (two peaks), the groove depth 3
  • the length of the rear measurement section (mixing / melting part) of symbol 16 is 140 TM (four threads) )
  • the groove depth is 1.6.
  • a screen 'device was attached to the tip of this extruder, and a spinning device was attached via piping.
  • the orifice diameter of the decompression chamber of the spinning device is 0.5 ⁇
  • the volume of the decompression chamber is about 2 cc
  • the diameter of the spinning orifice is 0.5. ⁇
  • the co-feeding of the solvent in the extruder was performed through an inlet 18 using a double-junction pump.
  • the heating temperature of the piping and the spinning device after the tip of the extruder was 175, and the heating temperature of the solvent was 100 ° C. At this time, the liquid temperature immediately before spinning was 175'c, and the pressure in the compression chamber was about 40 NOG. The spinning state is extremely stable, and the pressure fluctuation in the decompression chamber is 45 kg / cm ⁇ G 0
  • the pressure at the tip of the extruder was about 200 kg / cii-G, but no leakage occurred from anywhere.
  • a hollow metal 0 ring was used for the seal of the flange portion, no leakage of the solution occurred. -.
  • the shape of the dal image is a multi-threaded screw structure, the length is 210 »m, the diameter is about 50 thighs, the screw used is 16 threads, it has a semicircular shape, and the groove depth is 3 6 mm (max), right torsion angle
  • the shape of the pin mixing section is a multi-row structure of P3 cylindrical pins, with a length of 285 plates, a diameter of about 50 dragons, and 8 pins and 17 rows if the pins are arranged.
  • pins of the same shape are planted on the barrel side in the same eighteen and seventeen rows, as in the case of planting the pins on the shaft on the same section as the screw.
  • the movable pin on the same surface as the screw moves between the fixed pins, and the polymer and the tether are mixed.
  • Roh barrel and between clearance of the movable pin eclipse is a ⁇ books'. 0.
  • Flash spinning was performed under exactly the same method and conditions as the t method. ⁇ Spinning was extremely stable even when the discharge amount was 1000 g, that is, the polymer flow rate was llO g Z, and the solvent flow rate was 890 g / min. At this time, the pressure in the decompression chamber was 55 kg / crf-G, and the fluctuation range of the pressure was 4 to 5 kgcm ⁇ G.
  • the pressure at the tip of the extruder was about 250 kg / crf'G, and there was no leakage of the agent from anywhere.
  • Example 6 was placed a mixed system consisting of the static mixed-element corresponding to the code 9 of FIG. 9.
  • the static mixing element used was a mixer SMX type manufactured by Sulzer (nominal diameter 15 dragon ⁇ ), in which the metal strips were welded in a cross-girder shape, and they were shifted 90 °. Are linked. This was used in 50 stages.
  • main Le preparative Lee emissions de click scan is 1.2 (weight average molecular weight of about 14 104), high density poly ethylene les emissions (manufactured by Asahi Kasei Corporation Sante click B - 161) and off A polymer solution consisting of lon-111 was used.
  • the temperature of the screw extruder is 230
  • the temperature of the special mixing section of the A3 method is 200 ° c.
  • the temperature of the piping and static mixing section is 175, and the polymer concentration is 11 weight. %.
  • the polymer melted by the extruder reaches the polymer dissolution zone.
  • a solvent is added to this region from a pranjar pump, and the polymer and the solvent are mixed in the special mixing section 8 to dissolve the polymer. Further, the mixed solution reaches the static mixing zone from the extruder tip. During this time, a solvent is further added.
  • This polymer / solvent mixture leads to a static mixture, which is discharged from the outlet as a completely uniform polymer solution for mixing-dissolution.
  • the spinning was carried out using a polymer solution having a polymer concentration of 1 and a solid density of 1.
  • the spinning section was performed at an extruder temperature of 270, a special mixing section temperature of 200, and a static mixing section temperature of 175.
  • the pressure was set to 5 s C.
  • the pressure chamber nozzle was 0.5 mm, the decompression chamber volume was 2 cc, and the spinning nozzle was 0.5 m ⁇ .
  • the mixture was mixed and dissolved at a static mixing unit pressure of 200 kff / oi ⁇ G.
  • the liquid temperature immediately before spinning was 1 to 5.
  • the pressure in the pressure chamber was extremely stable at 80 kg / ⁇ * G.
  • the pressure fluctuation in the pressure chamber was 2-3 / era ⁇ .
  • the solvent flow rate was 623 g Z minute, and the solvent was added directly to the first stage special mixing section.
  • the addition amount in the previous step was 77 g, and the remaining solvent flow rate of 546 g / min was added immediately before the static mixing section in the second stage. Therefore, the first stage has a polymer concentration of 50 wt% and the second stage has a concentration of 11 ⁇ t%.
  • the dissolved state of the polymer corresponds to the pressure change immediately before spinning, especially the pressure change in the decompression chamber. 'In other words, the more the polymer was incompletely dissolved, the greater the pressure fluctuation in the decompression chamber, and finally the spinning became impossible. Even if spinning was possible, undissolved polymer would be ejected if the pressure variation was large, and the fibers were crumpled and the strength was too low to use.
  • the conditions are as follows.
  • the temperature of the extruder screw section was 300: the temperature of the special mixing section connected at the same speed was 200, and the temperature of the piping and the static mixing section was 170.
  • the pressure in the polymer zone is t-, 250 / d-G in the special mixing section, and 20 (Hg / crf'G) in the static mixing section.
  • a gear pump with an extrusion volume of 35 per one-side transfer is installed at the end of the special mixing section.
  • the liquid temperature in the decompression chamber was 110 g / ci'G.
  • the melt index (VII) is 0.35 (weight-average molecular weight, about 21 x 10 high-density polystyrene (Santech HD: B87 manufactured by Asahi Kasei Corporation)
  • the chips of 1) are continuously melt-extruded by an extruder, while Fluorine-11 is added as a solvent by a fixed-quantity pump, and the mixture is extruded and mixed in a special mixing section.
  • the structure of the extruder and the mixing section used at this time are as shown in Fig. 8, and the screw has a screw section, a dam section, and a pin section.
  • Each length was 700 dragons, 210 mm x 250 dragons, and the corresponding barrels were 35 thighs, 50 ⁇ ⁇ , 50 ⁇ , and 'Solvent inlet was provided in the barrel in front of the dalmage.
  • Disk Po Li mer supply amount of Li-menu rotation number 4 6 r P m is 7 4 g Z min, the amount of solvent is injected into the mixer unit was 240 g / min.
  • This mixture was introduced into the static mixing section together with 360 g / min of the solvent to be added to obtain a solution having a predetermined polymer concentration.
  • a static mixing element a mixer S MX type manufactured by Sulza
  • This screw mixer is a mixed arresting mixer with two inlets, with a projection on the 35 mm ⁇ barrel side and a notch in the screw hole.
  • the decompression chamber volume is 3 ⁇ 42 cc
  • a circular assembly of circular nozzle was used.
  • the pressure in the decompression chamber during this fiber spinning was 110 kg / cifi G, and the pressure loss at the decompression orifice, that is, the pressure difference before and after the decompression orifice was 190. / cn! —
  • the pressure in the decompression chamber is 90 kgV ai G
  • the pressure difference before and after the depressurization orifice is 190 kg cii G
  • the filament intensity is 202 d
  • the strength was 3.6 g / d. Also activates liquid! It was measured by the same method as T-kiyoshi 11 and it was confirmed that it was activated. And it was also confirmed that these decompression chamber conditions belonged to one liquid phase.
  • the pressure in the decompression chamber becomes 90 kg ⁇ ⁇ G.
  • a pure white filament of d was obtained. This The filament was a reticulated filament consisting of very fine fibrils with a narrow thread width and seemingly insufficient fibrillation. Activation of the liquid was also observed, confirming that the decompression chamber conditions belonged to one liquid phase.
  • the textile obtained in Experimental Kiyoshi 4 was transferred to a net using a dispersing device S having a rotating deflector and a corona discharge device. Collected on a conveyor. At this time, the three-dimensional reticulated ⁇ yawei discharged from the spinneret was deposited on the net conveyor in a width m of 30 to 60 mm while continuously oscillating from side to side. .
  • the non-adhesive tape was pressed between the entire surface pressure roll (at a temperature of 135) and the rubber port with a linear pressure of 13 kg / cm, once for each of the front and back sides for 10 m / min.
  • the non-woven fabric thus obtained had a specific surface of 8.6 nf / g and 6.0 m / g, respectively, when the inner layer and the surface layer had difficulty.
  • the specific surface area measured as a whole non-woven fabric without separating the layers was 6.4 rr? / G.
  • This nonwoven fabric, basis weight 4 0 g / tensile strength nf the vertical Z ® co is 13.3 / 14.2 (k ff Z 3 cm width), e Leme down Dorf tear strength 1.02Z 1.02 (kg), the reference basis weight 5 this
  • the converted value was a high-strength nonwoven fabric with a tensile strength of 17.3 to 0.7 (kgZ3 oii width) in vertical / horizontal and an elementary tear strength of 1.28Z1.28 (kg).
  • the nonwoven fabric had a bacterial water of 3600 mH 2 O and a Gurley HI air permeability of 900,5 ec 50 mi.
  • the MI and molecular weight distribution of the nonwoven fabric are different from those of the textile.
  • Non-bonded solids obtained by the same method as in Experiment No. 15 were bonded under various conditions using the same press. The bonding was performed once for each of the front and back sides, and the results are shown in Table 2. No. 2
  • non-adhesive non-woven webs were obtained from the three-dimensional steel tube obtained in Experimental Example 1. This non-adhesive nonwoven web was treated on both sides with a vinyl toka render. The ripened drum at 136 was treated at a high speed of 35 m / min to obtain a nonwoven fabric whose surface was ripely bonded. .
  • this non-woven cloth has a laser transmission of 8 ⁇ W at 60 g Z trf and a Gare Hill air permeability of 44 s ec. It is a non-woven city and can be used for envelopes, labels, breathable wrapping materials, and various other paper-based uses.
  • the physical properties of this non-woven fabric are 50 g / nf The tensile strength was reduced to IT ⁇ ⁇ IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT
  • Photo 19 (b) is a photomicrograph of a cross section obtained in the same manner as in the case of T y v-ek @C in Comparative Example 5 described below.
  • the three-dimensional silky fissures are more densely packed, despite the similar weight per unit compared to the comparative example.
  • the fibers of the textile are fine. The shows.
  • Comparative Kiyoshi 4-Non-adhesive web was obtained using the textile of Comparative Example 2 in the same manner as in Experimental Example 15 and subjected to the same thermal bonding.
  • the Tyvek ⁇ paper-like type (10 type) was compared with the three-dimensional net-woven nonwoven fabric of the present invention.
  • the specific surface area of the inner layer was less than 5 rrf / g, and the opacity and tensile / tear strength indicated by the amount of transmitted laser light were inferior to those of the fabric of the present invention.
  • the fiber obtained in Experimental Example 4 is moved using a dispersing device having a rotating deflecting plate and a corona discharge device, as shown in Shi 'SP 3,456,156. I gathered on a conveyor. At this time, the three-dimensional reticulated fiber discharged from the spinning nozzle was deposited on the net conveyor while continuously oscillating from side to side with a width of 30 to 60 m.
  • each embossing roll is a square of 0.7 mx 0.7 «in the width and circumferential directions.
  • the pitch of each was 1.25 TM and the emboss depth was 0.3 us.
  • the embossing roll was heated to 132 ° C, and both sides of the front and back were treated by dip- ing with a rubber roll to obtain a patterned, non-adhesive non-woven cloth. Although this cloth was excellent in the friction resistance of the surface, the texture was a little hard, so it was kneaded by hand.
  • This seriously cloth is extremely flexible, has excellent surface friction, and has no fuzz even when strongly rubbing the surface with a finger, and has a very high covering power, protective clothing, simple clothing, Desiccant-suitable as a breathable packaging material, such as a removable material, and other flexible packaging.
  • This nonwoven fabric had a weight of 5 Qg nf and an average amount of transmitted laser light of 14 W.
  • Example 30 The flexibility by the method was 5.25 ⁇ 6.6 ().
  • the non-adhesive non-woven fabric obtained in Experimental Example 29 was treated between the entire surface of the crimping hole and the rubber roll. In this case, only the surface was treated, and the roll temperature was set to 135 and the roll linear pressure was set to 10 kg / cm.
  • the obtained non-woven fabric is a non-woven fabric that has one surface firmly and strongly bonded to the other surface and is not heat-bonded to the other surface and the inner layer.
  • the long-period scattering intensity ratio was 8.5, and the long-period was 180 mm.
  • This non-woven fabric can be used for applications that make use of the difference between the two surfaces. For example, an adsorbent or deodorant is added to the non-adhered surface to make it a filter for adsorption or a deodorant finoletter. Materials (files, woven fabrics, etc.) are bonded together and used as a composite material with high covering power and high tear strength.
  • This O nonwoven fabric has an average transmitted light amount of laser of 5'W at a basis weight of 50 g, and shows extremely high covering power.
  • the physical properties of non-woven fabric vertical / horizontal are as follows: tensile strength is 11.2 11.8 (k / 3 cm width), and Elemendorf tear strength is 1.6-1.6. (kg) and extremely high value.
  • the non-adhesive nonwoven fabric obtained in Experimental Example 29 was subjected to a double-sided treatment using a flute calender.
  • the surface layer was heat-bonded by a high-speed treatment in which the contact with the drum heated for 1 second was performed for 1 second, and a non-woven fabric having a net-like weave shape in the inner layer ⁇ was obtained.
  • the small-angle X-ray scattering of the fiber extracted from the inner layer of this nonwoven fabric has a long-period scattering intensity ratio of 7.0 and a long-period of 230 mm.
  • this nonwoven fabric has a basis weight of 40 g / ⁇ ⁇ ⁇ ⁇ ⁇ and a laser average transmitted light of 8 ⁇ W, has excellent covering power, is a bulky paper-like nonwoven fabric, and is used for envelopes, labels, and other various paper uses. Can be used for
  • tensile strength is 10.8 12-0 (kg / 3 cm width) and Elmendorf tearing strength is high.
  • the steel obtained in Experimental Example 5 was collected as a non-adhesive non-woven fabric in the same manner as in Experimental Example 29, and then a soft non-iron cloth with an embossed pattern was formed.
  • measurement of small-angle X-ray scattering of fibers taken from the inner layer has a long-period scattering intensity ratio of 20 and a long-period of 210 A.
  • This nonwoven fabric has a weight of 50 g / rf and a laser average. The amount of transmitted light was 15'W.
  • the physical properties of the nonwoven fabric length / width are tensile strength of 3-3Z 9.0 (13 ⁇ 43 cm width), single tongue tear strength of 7 / 1.8 (kg), and The degree of flexibility 0 by the lever method was 5.h / 5.0 (cm).
  • the long-period scattering intensity ratio is 6 Q and the long-period is 240 A /
  • This nonwoven fabric had a basis weight of 50 g / m 2 and an average laser transmission light quantity of 20′W, which was inferior to that of Experimental Example 29.
  • This non-woven fabric is a flexible non-woven fabric having an embossed pattern, and as shown in the present invention, retains the form of reticulated iron wire in the inner layer.
  • the long-period scattering intensity ratio was 50 and the long-period was 172 A.
  • the basis weight of the nonwoven fabric was 44 g / m
  • the average amount of transmitted laser light was 22'W
  • the nonwoven fabric was conspicuous and had poor covering power.
  • the physical properties of the nonwoven fabric's vertical / horizontal properties are 7.9 /
  • the single tongue tear strength was 1.4 / 1.6 (kg), and the flexibility by the cantilever method was 6.2 to 6.3 (cm).
  • MI Molelet index 0.71 in fluorocarbon solvent
  • a solution with a concentration of 11 in which polyethylene resin is dissolved is passed through a 0.8 mm diameter and 5 mm long decompression orifice to form an 8 mm diameter and 40 plate long pressure chamber.
  • After pressurizing with a nozzle pass through a nozzle with a nozzle diameter of 0.90 mm and a length of 0.75 mm:
  • Table 5 shows the spinning conditions and yarn properties.
  • FIG. 14 (a) An example of the spun three-dimensional netted steel fiber and gas stream suitable for producing the nonwoven fabric of the present invention arranged perpendicular to the spinneret at a distance of 5 plates in the horizontal direction from the spinneret was supplied to a rotary dispersion plate to produce a nonwoven web.
  • the rotating dispersion plate has three swinging surfaces similar to those shown in Figs. 14 (a) and 14 (b). The dimensions of the rotating dispersion plate are as follows. It is right.
  • the rotating dispersion plate was rotated at an E number of revolutions of 1,000 rpm 2,000 rpm and 3000 rpm. ⁇ The corona discharge was applied to the three-dimensional reticulated fabric that had exited the rotating dispersion to cause the electric charging to increase. Corona discharge was performed by applying a negative DC high voltage of 3 ⁇ 420 kv to electrode needles arranged in a semicircle around a rotating disk with 11 mm pitch and 16 needles.
  • the three-dimensional reticulated fiber can oscillate in a swing cycle three times the rotation speed. While being pendulum-moved, a uniform non-woven tube having a net conveyor vertical effective width of about 30 on was formed with the aid of a suction duct provided below the net conveyor.
  • the state of drop of the open fiber was observed using a high-speed imaging device. confirmed.
  • the speed of the net conveyer is different from that of the
  • the formed non-woven web was subjected to mature pressing once between the front and back sides between a metal roll having a smooth surface 132) and rubber.
  • a laser beam with a power of 5 mW and a beam diameter of 2.5 sm H is irradiated on the non-bonded non-woven fabric by a He-e laser, and the amount of light transmitted through the non-woven fabric is detected by a laser power meter.
  • ⁇ ⁇ Measure continuously in the width direction of the cloth and 10 points in 5 cm length direction.
  • the change in the basis weight in the width direction representing macroscopic unevenness of the nonwoven fabric is within 30%, and the variation in the amount of laser-spot transmitted light in the widthwise direction that causes microscopic unevenness in the nonwoven fabric.
  • the ratio was within 50%, and it was proved that the nonwoven fabric of the present invention was a highly uniform nonwoven fabric. After softening this nonwoven fabric, an independent three-dimensional mesh fiber was collected from the inner layer, and the small-angle X-ray scattering state was examined.
  • the long-period scattering intensity ratio was .11 and the long-period was 1. 80 A.
  • the rotational dispersion was performed under the same conditions as in Experimental Example 33, except that the distance between the bottom and the net conveyor was changed to 320 dragons.
  • the rotation speed of the rotation dispersing plate is 200 ⁇ ⁇ ⁇
  • the net moving speed is 17 mZ
  • the formed web has an effective width of 45 cm.
  • the average basis weight is 39 g / m 2.
  • the three-dimensional reticulated fabric composed of the web with a length of 100 cm was taken out and the width of iron opening was examined. As a result, the average opening width is about 75 dragons, the minimum opening width is 20 m (steel density is 13.5 denier Luno dragon), and the net fiber is 40 denier / width or more. There were no bundles converging to density.
  • the formed nonwoven web was subjected to hot pressing in the same manner as in Experimental Example 33. This was performed once for each of the front and back sides to obtain a nonwoven fabric. _
  • This non-woven fabric was a uniform non-woven fabric with a variation rate of 30% in the width direction and a variation rate of laser-spot transmitted light of 49%, which was sufficient for both macroscopic and microscopic spots.
  • Table 7 shows the uniformity of the obtained nonwoven fabric and the openability of the obtained nonwoven fabric under the same conditions as in Experimental Example 33, except that the rotating dispersion plate was changed to the one having the scar shape shown in Table 7.
  • the rotation speed of the rotation dispersion plate was 3000 rpm, and the net movement speed was constant at 2 Om minutes.
  • the formed web has an effective width of about 3 Qcm and an average batting of 48 g / m
  • the flat steel width was about 70 TM and the minimum fabric width was 5 cm (the fabric density was 54 denier. / Job) contained many bundles of 60 mm in length.
  • This web was made into a nonwoven fabric by hot pressing once on each of the front and back sides as in Experimental Example 33.
  • the nonwoven fabric which deviates from the nonwoven fabric of the present invention has a variation in the basis weight in the width direction expressing macroscopic spots of 30% or more, and transmission of laser spot light expressing microscopic spots.
  • the rate of change in light quantity was more than 50%, which was an uneven ignorance.
  • Cylindrical part diameter C. 1 D 2 — 50 Any ⁇ , g-2, C-3 D 40 iaia
  • Table 8 shows the basis weight and openability of the nonwoven fabric obtained under the same conditions as in Experimental Example 33 except that the rotational dispersion was changed to the one with the scar part shape shown in Table 8. .
  • the rotation speed of the rotation dispersion plate was set to SOOOrpm, and the net moving speed was set to 20 m / min.
  • the density of the fibers in most bundles of the three-dimensional net-woven fabric that forms the obtained web is 40 denier or less, and the density of steel mixed with a very small amount is 40 denier / m.
  • the size of the binding part larger than the width was 5 or less in width and 30 or less in length.
  • This web was hot-pressed once on each of the front and back sides in the same manner as in Experimental Example 33 to obtain a non-woven fabric.
  • the obtained non-woven fabric had a sufficient degree of uniformity.
  • Photo 20 (a) is a photo taken from the top of the nonwoven fabric of E-2 in this experimental example, with light being irradiated from the bottom.
  • Photo 20 (b) is a photograph of Tyvek® B of Comparative Example 5 taken in the same manner.
  • Table 9 shows the spinning conditions and yarn properties.
  • the distance between the bottom of the rotating dispersion plate and the net conveyor is set to 150 TM.
  • the fiber density of most bundles in the opened three-dimensional reticulated fiber constituting the obtained web is less than 40 denier Lunong width, and the fiber density mixed in a very small amount is 40 denier.
  • the size of the bundles over the width of // was also less than 5 mm in width and less than 30 in length.
  • the formed web was subjected to a mature press between the entire surface pressing roll (temperature 130.c) and the rubber call once each on the front and back to make the fabric non-woven.
  • the nonwoven fabric obtained in this manner is an extremely uniform nonwoven fabric having an effective width of 100 cm and a weight variation of 19% in the width direction of 41 Zm and a laser-spot transmission light quantity variation of 40%.
  • the three-dimensional net-like fiber, the non-woven fabric made of the three-dimensional net-like fiber, and the method for producing them according to the present invention have excellent characteristics and applications, respectively, because they are configured as described above. ⁇
  • the explanation will be given in the following order. -
  • the present invention has an advantage as described above, though it is an as-spun iron fiber, so that it is industrially advantageously produced and used. Therefore, it is also expected to be applied to various industrial materials and textiles, which required the strength of fiber and required stretching in the past. '--Book;
  • the continuous fiber nonwoven fabric of the yarn direct connection type using the three-dimensional mesh fiber of Akira is extremely useful, and it is likely that it will be a nonwoven fabric with unprecedented performance.
  • this fiber Due to its strength, whiteness, reticulated structure and high specific surface area, this fiber can be used for various purposes by making it into a nonwoven fabric or using it as a fiber.
  • the size is also large. In addition, 2
  • high-strength fibers can be obtained by spinning at a low temperature, polymer degradation and solvent decomposition are suppressed, stabilizing products and reducing solvent recovery costs.
  • the three-dimensional reticulated fiber non-woven fabric as in the present invention has a large specific surface area and a large mechanical strength (tensile strength and tear strength) based on the mechanical properties and thermal adhesive properties of the fabric that composes it. It is a new nonwoven fabric having This makes it possible to develop unprecedented performance in terms of covering power, uniformity, and mechanical strength, and is preferably applied to a relatively low basis weight area (25 to 70 g / rrf).
  • non-ferrous cloth of the present invention that belong to the classification include envelopes, book covers, wall coverings, house wraps, building materials such as under roof materials, sterile packaging materials, sanitary materials, and filtration performance. It can be used for filters, floppy disk drives, ventilated packaging materials, various bags, recording paper, dust-free paper, difficult paper, impregnated paper, various tapes, materials for FRP, etc.
  • the 12 ⁇ non-woven fabric is a non-woven fabric made of the three-dimensional reticulated fiber according to the present invention, and is a non-iron fabric having high opacity and high covering property, particularly excellent in mechanical strength and ripened mechanical properties.
  • non-woven cloth can be used for protective clothing, safety clothing, sterile clothing, non-dust clothing, moisture-permeable waterproof cloth, s water cloth, stamp cloth, bag, etc.
  • the uniform nonwoven fabric according to the present invention has high uniformity in grooving over the entire effective width and excellent uniformity in appearance. Therefore, this non-woven fabric is extremely useful as a non-woven fabric having a high degree of strength required from the end use of unknowing cloth and a non-woven fabric having high uniformity even with a low basis weight.
  • the method of manufacturing a mesh-like nonwoven fabric using the rotating dispersion plate according to the present invention can provide a web having uniform openness and excellent openability over the complete destruction of the required sheet width. Therefore, the method using the rotational dispersion plate according to the present invention can easily cope with a high degree of uniformity required for the final use of the nonwoven fabric and a low-weight nonwoven fabric of 30 gZ ⁇ f or less.

Abstract

A high-density polyethylene three-dimensional net-like fiber (26) obtained by supplying a polymer to a melting zone (compression portion 13, metering portions 14 - 16) while melting the polymer by use of a heated screw extruder, supplying a solvent (CCl3F) to the molten polymer (supply port 18), preparing a polymer solution by mixing and dissolving them under a high pressure and discharging the polymer solution from a nozzle (24) disposed in the melting zone into a low-pressure zone. The fiber (26) is caused to impinge against a skirt portion (33) having a fiber rocking surface (34) and a buffer surface (35) and is expanded and opened to obtain a nonwoven fabric. This nonwoven fabric is excellent in strength, coverability and whiteness.

Description

明 細 書 高密度ポ リ ヱチ レ ン網状織維、 該織維より 成る不織布及びそれらの製造方法 技 術 分 野 .  Description High density polystyrene network woven fabric, nonwoven fabric made of the woven fabric, and method of manufacturing them.
本発明は特殊素材と して各種用途に使用しう る新規な三次 元網状織維、 三次元網状繊維より成る不織布及びそれらの製 造方法に閡する。 さ らに詳し く は本発明は高密度ポリ エチ レ ンから作られ、 高度にフ ィ ブ リ ル化された三次元の網状形態 を有し、 かつ極めて高い強度と極めて高い熱機械特性を有し. 熟接着性を有する不織布を好適に製造することができる新規 な三次元網状繊維、 その,新規な三次元網状繊維から成る優れ た不透明性、 優れた被覆力および高い強度を有する不織布:、 未融着部分を有する高強力不織布、 優れた均一性を有する不 織布および前記優れた均一性を有する不織布を製造する新規 な方法に関する。  The present invention relates to a novel three-dimensional reticulated fiber, a nonwoven fabric composed of three-dimensional reticulated fibers, and a method for producing the same, which can be used as a special material for various applications. More specifically, the present invention is made from high density polyethylene, has a highly fibrillated three-dimensional network morphology, has extremely high strength and very high thermomechanical properties. A novel three-dimensional network fiber capable of suitably producing a nonwoven fabric having a mature adhesive property, a nonwoven fabric having excellent opacity, excellent covering power and high strength composed of the novel three-dimensional network fiber: The present invention relates to a high-strength nonwoven fabric having an unfused portion, a nonwoven fabric having excellent uniformity, and a novel method for producing the nonwoven fabric having the excellent uniformity.
本出願は前述のように閡連する多数の発明を含有する もの であるので、 説明の便宜および容易な理解のために、 下記の よう に A ,且…上と符号を付けて分類し、 後述の各説明にお いて関連する説明の文頭等にこの符号を付することにする。  Since the present application contains a large number of related inventions as described above, for convenience of explanation and easy understanding, the present invention is categorized by assigning the symbols A, and above as described below. In each of the descriptions above, this symbol will be appended to the beginning of the related description.
A 新規ョ次元網状繊維。  A New dimensional reticulated fiber.
B_ 溶解域溶融ポリ マ —封鎮法を用いる製造方法によつて 製造される新規三次元網状織維。  B_ Melting zone melt polymer-A new three-dimensional netted fiber manufactured by a manufacturing method using the sealing method.
' 高圧力差活性化法を用いる製造方法によって製造され る新規三次元網状織維。 '' Manufactured by a manufacturing method using high pressure differential activation New three-dimensional net-like weave.
Ό_ 溶解域溶融ポリマ ー封鎖法を用いる三次元網状織維の 新規製造方法。  Ό_ A new method for producing three-dimensional network fibers using the melting zone melting polymer sealing method.
_Ε 高圧力差活性化法を用いる三次元網状織維の新規製造 方法。  _Ε A new method for producing three-dimensional reticulated fibers using high pressure differential activation.
_F_ 三次元網状鐡維から成る新規な高強力不織布。  _F_ A new high-strength non-woven fabric made of three-dimensional mesh steel.
三次元網状織維から成る新規な未融着部分を有する高 強力不裰布。/  High-strength non-woven fabric with a new unfused part consisting of a three-dimensional network fabric. /
iL 三次元網状鐡維から成る新規な均一性不織布。  iL A new uniform non-woven fabric made of three-dimensional braided steel.
I 均一性不織布の新規な製造方法。 背 景 技 術 .— .  I New production method of uniform nonwoven fabric. Background technology.
三次元網状織維を得る技術として、' ポリ マーと溶剤を 高温:' 高圧条件からノ ズルを柽て 温;' 低圧域へ吐出し、 溶 剤をフラ ッ シュさせて鐡維とするフラ yシュ紡糸技術が知ら れている。 この織維は、 例えば USP3 , 08 1 , 519号報に開示され ているように、 織維軸方向に引き延ばされ、 フ ィ ブリ ルが三 次元に網状に構成され、 実質的に自由端が含まれない、 フ ィ ブリ ルの]?さが 4 以下である鐡維である。  As a technique for obtaining a three-dimensional network fiber, 'polymer and solvent at high temperature:' high pressure conditions apply to nozzle and heat; 'discharge to low pressure area, flush solvent to make iron fiber The spinning technology is known. This fiber is stretched in the fiber axis direction, as disclosed in, for example, US Pat. No. 3,081,519, and the fibrils are formed into a three-dimensional net-like structure, and are substantially free ends. Is not included in the fibre] It is a steel fiber with a size of 4 or less.
この網伏織維は、 特有の網状構造と共に、 維かなフイ ブリ ルを有するため、 光を乱反射することによって、 白度が高く 又被覆力が高いという特徴を有し、 各種の用途に用いること ができる。 特に重要な用途としては不織シ一 トがあげられる , この網祅鐡維となるボリ マ一としては、 各種のポリ マーが 用.いられるが、 ボリオレフイ ン、 とりわけ高密度ボリ エチレ ンがフ ラ ッ シュ紡糸に適する ものと して多 く の研究が成され ている。 This Amibushi fiber has a characteristic net-like structure and a stable fibril, so it has the characteristic of high whiteness and high covering power by diffusely reflecting light, and it can be used for various purposes. Can be. Non-woven sheets are a particularly important application, and various polymers are used as the polymer used as the mesh steel, but polyolefins, especially high-density polyethylene Much research has been done on the use of carbon fibers for flash spinning.
次に網状繊維とその製造方法に関する従来の技術を説明す る。  Next, conventional techniques relating to the reticulated fiber and its production method will be described.
且及び フ ラ ッ シュ紡糸の原理は、 高温 ' 高圧の均一溶 液から、 低圧領域への移行に伴なう溶液の構造変化及び溶剤 のフ ラ ッ シュ とポ リ マーの固化によ つて網状構造織維を発現 させる ものである。 それ故に、 連続して安定に網伏織維を製 造するためには、 ボ リ マー と溶剤から成る均一溶液からの紡 糸が必須である。  In addition, the principle of flash spinning is that the reticulation is caused by the structural change of the solution accompanying the transition from a high-temperature, high-pressure homogeneous solution to a low-pressure region, and the solidification of the flash and polymer of the solvent. It expresses structural fibers. Therefore, spinning from a homogeneous solution consisting of a polymer and a solvent is indispensable for continuously and stably producing Amibushi textile fabric.
したがって紡糸方法において用いられる溶剤は高温 · 高圧 でポ リ マ—を溶解でき、 フ ラ ッ シュ性を有する比較"的低沸点 'のものが選択される。 また、 これらは常温 ' 常圧ではポ リ マ —に対する溶解能を有しておらず、:高温 ' 高圧下で始めてボ リ マ一を溶解する。  Therefore, the solvent used in the spinning method is capable of dissolving the polymer at high temperatures and high pressures, and those having a comparatively low boiling point having a flash property are selected. Does not have the ability to dissolve lima: dissolving the polymer only at high temperature and high pressure.
フ ラ ッ シュ紡糸繊維を得るためのプロセスと して、 U S P 3 , 169 , 899号報に示すよう に、 攪拌装置を有する耐圧容器内 でポ リ マ—を加熱 ♦ 加圧し溶解して紡 する方法が回分式方 法と して公知である。 又、 連铙して.織維を得る方法と して、 U S P 3 , 227 , 794号に各種の紡糸プロセスが開示されている。 即 ち、 溶融ポ リ マーと溶剤を所定量スク リ ユ ー ミ キサーに導入 した後に、 攪拌機構を有する溶解槽にて溶解して紡糸する方 法、 ボ リ マ一粉末と溶剤をス ラ リ一状にして、 バッ フル付溶 解槽に導き、 溶解して紡糸する方法、 あるいはス ラ リ ーをス ラ リ一ポ ンプと配管とで溶解して紡糸する方法等が公知であ る。 従来公知の三次元網状镞維はこのような方法によつて製 造された鐡維である。 As a process for obtaining flash spun fibers, as shown in USP 3,169,899, a polymer is heated in a pressure vessel having a stirrer. The method is known as a batch method. Various spinning processes are disclosed in US Pat. No. 3,227,794 as a method for obtaining textiles. That is, a predetermined amount of the molten polymer and the solvent are introduced into the screw mixer, and then the mixture is melted and spun in a dissolving tank having a stirring mechanism. There is a known method in which the slurry is fed into a melting tank with a baffle, melted and spun, or the slurry is melted and spun with a slurry pump and piping. You. Conventionally known three-dimensional mesh fibers are steel fibers manufactured by such a method.
_ ^及び 前記製造方法を別の観点で見た場合の従来公知 の製造方法と該製造方法によつて製造される網状譏維を說明 する。 このフラ ノ シ ュ紡糸方法における重要な技術として、 ポリ マー溶液を一液相頜域から二液柑镇域へと変化させた後 に紡出する技術が 115? 3 , 227 : 794号報 (第 23 ff 43〜 49行) に開 示されている。 即ち、 この方法ば、 __________________________________________ Conventionally known production methods when the production method is viewed from another viewpoint, and reticulated fibrils produced by the production method will be described. As an important technology in this furanosh spinning method, a technology of spinning a polymer solution from a one-liquid phase region to a two-liquid citrus region and then spinning the polymer solution is disclosed in Japanese Patent Publication No. 115-3, 227 : 794. 23 ff, lines 43-49). That is, with this method,
① ポリ マ—及び溶荊の均一溶液を作成し、  ① Make a uniform solution of polymer and binder
② 减圧オ フィ スを通過させて減圧室に移すことで圧力 降下によって一液相領域から二液相領域へ変化させ、 ③ 紡糸ノ ズルより紡出し、 ポリマーを固化させるフラ ッ シュ紡糸方法である。 ' 又、 この方法を実施するための紡出部装置として用いられ る、 減圧オリ フ ィ ス、 減圧室及び紡糸ノ ズルより成る紡ロア センブリ ーについて各種の形状ゃ搆造のも が提案されてい これらフラ ッ シュ紡糸方法については、 特にポリ オレフィ ン zハロゲン化炭化水素系を対象として多く の研究がなされ ている。 例えばこれら方法は US P 3 , 227 , 794号報等に開示され ている。 又これらのポリ マ—/溶剤系において、 一液相 · 二 液相境界線は温度と圧力に相閲があること、 抵温溶解型、 高 圧溶解型であり、 減圧オリ フ ィ スによる圧力降下で一液相か らニ液枏に変化させう ること、 及び二液相での钫出が必要で あること等が前述の先行技術に開示されている。 こ のよ う に従来公知の網状繊維は、 ポ リ マ一溶液を二液相 領域へ変化させた後、 紡出して製造された識維である。 ② By passing through the 减 -pressure office and moving to the decompression chamber, the pressure drops to change from one liquid phase region to two liquid phase region. ③ A flash spinning method that spins out from the spinning nozzle and solidifies the polymer is there. 'In addition, there have been proposed various types of spinner assemblies composed of a decompression orifice, a decompression chamber, and a spinning nozzle, which are used as a spinning unit for performing this method. Many studies have been made on these flash spinning methods, especially for polyolefin z halogenated hydrocarbons. For example, these methods are disclosed in US Pat. No. 3,227,794. Also, in these polymer / solvent systems, the boundary between one liquid phase and two liquid phases is limited in temperature and pressure, and it is of low temperature melting type and high pressure melting type. It is disclosed in the above-mentioned prior art that the change from one liquid phase to two liquid phases by descent and the necessity of extraction in two liquid phases are required. As described above, conventionally known reticulated fibers are fibers produced by changing a polymer solution into a two-liquid phase region and then spinning.
次に三次元網状,織維から成る不裰布に関する従来技術を説 明する。  Next, a description will be given of a conventional technique relating to a three-dimensional net-like nonwoven fabric.
_F_ し ·δΡ3, 081, 519号報に開示されているよ う にフ ィ ブ リ ル から成る網状組織で形成された三次元網状鐡維を用いて作ら れた不織布が従来から知られている。  Non-woven fabrics made using a three-dimensional meshed steel fiber formed from a network of fibrils, as disclosed in δF 3,081,519, have been known. .
即ち特公昭 '36- 16460号公報に開示されているよ う に前記網 状織維の短織維をシ— ト にした不織布、 あるいは USP3, 169, 899 号報に開示されているよ う に、 瑢融フ ィ ラメ ン トをシ一 卜 に した不織布が知られている。 特に後者に示される フ ラ ッ シ ュ 紡糸した織維を邪魔板等にあて、. 網状璣維を広げて堆積し不 ' 織ゥ ブ (以後、 熟接合前の繊維 ¾積シ一 ト状物を不織ゥ ェ ブと称する。 ) とする方法,は好ま しい方法である。 即ち:、 フ ラ ッ シ ュ紡糸においては溶剂の フ ラ ッ シユカを利用する もの であり 、 通常その紡糸速度は 4, 900 m.ノ分以上で 9,000〜 13,500 m/分に達する こ とが知られており 、 生産性よ く 不織 シ— トを得る方法と して極めて有用である。  That is, as disclosed in Japanese Patent Publication No. 36-16460, a nonwoven fabric in which short fibers of the above-mentioned reticulated fiber are made into sheets, or as disclosed in USP 3,169,899. Non-woven fabrics using a melted filament as a sheet are known. In particular, apply the flash-spun textile shown in the latter to a baffle plate, etc., spread the net-like fibre, and deposit it on the non-woven fabric (hereinafter referred to as fiber sheet before mature bonding). Is referred to as a nonwoven web.) Is a preferred method. In other words: Flash spinning uses molten flash yuka. It is known that the spinning speed usually reaches 9,000 to 13,500 m / min at 4,900 m / min or more. It is extremely useful as a method for obtaining a nonwoven sheet with good productivity.
この紡糸したままの連続した網状織維を広げて、 ラ ンダム な方向に配置した不織ゥ ブは、 不織布 (以後前記不織ゥ ェ ブを接合したものを不織布と称する) と しての形態の保持、 強度の発現やその他の目的に応じて熱接着される。 熟接着は 力 レ ンダ一 口 一 ノレ、 エ ンボス ロ ー ノレによる接着やフ ェ ル ト カ レ ンダーによる接着等によ って行われる。 か く して、 表面力く フ ラ ッ 卜 な紙様表面の不織布、 エ ンボス模様を有する不織布 等が得られ、 微細なフ ィブリ ルの網状鐡維から成るこ とによ る不透明性 · 被覆力や 度、 表面の平滑性、 i 毛羽性、 ある いは柔軟性、 そして一定レベルの機據的強度を利用して各種 捃途へ使用するこ とができる。 なお前記ゥェブの接合を接着 剤で行う ことも知られている。 A nonwoven fabric in which the continuous spun net fabric as spun is spread and arranged in a random direction is formed as a nonwoven fabric (hereinafter, the nonwoven fabric obtained by joining the nonwoven fabrics is referred to as a nonwoven fabric). It is heat bonded according to the retention, strength development and other purposes. The mature bonding is performed by bonding with a force renderer, by embossing or by a felt calender. Thus, a nonwoven fabric with a paper-like surface with a flat surface and a nonwoven fabric with an embossed pattern Opacity due to the formation of fine fibrillar braided steel, covering power and degree, surface smoothness, i-fuzziness, or flexibility, and a certain level of It can be used for various purposes by utilizing the target strength. It is also known that the web is joined with an adhesive.
G. 更に網伏镞維から成る不镄布としては、 各種の形態を 有する不織布が知られている。 即ち、 柔軟に ί士上げられたク αスライ クな不镞布、 表面のみ軽く熱接着したものあるいは 全く熟接着されていない不織ゥュブ等が知られている。 これ ら不織布は高い被覆力や白度、 そして強度を活かして各種の 用途に用いられる。 '  G. Further, as a non-woven fabric made of a mesh fabric, non-woven fabrics having various forms are known. That is, there are known a non-woven cloth which is softly raised, an α-like non-woven cloth, a lightly heat-bonded surface only, and a non-woven cloth which is not completely bonded at all. These nonwoven fabrics are used for various applications by utilizing their high covering power, whiteness, and strength. '
前記網状鎩維の不織布を製遣するために用いられるポリ マ —としては、 各種のポリマ一が用いられているが ポリ オレ フィ ン、 とりわけ高密度ポリ エチレンがフラ ッ シュ紡糸鐡維 から成る不織布に適するものとして多 く の研究が成されてい る。  As the polymer used for producing the nonwoven fabric of the mesh fiber, various polymers are used, but a nonwoven fabric made of polyolefin, especially high-density polyethylene made of flash-spun iron fiber is used. Much research has been done to make this suitable.
1Lおよび丄 網祅搆造鐡維から不織ゥ ブを作る装 aとし て U S P 3 , 169 , 899号報に開示されるように紡糸ノ ズルより出て きた束状の網状鐡維を揺勣する桶ゃ层倚装置に衝突させるこ とにより拡幅開織した絹扰織維をつく り、 次いで動いている 捕集面上に堆積させることにより不織ゥ ブとする装置が知 られている。 - 又し :SP 3 , 497 , 918号報に開示されるように、 網状織維を拡幅 蘭織し分散させる装置として、 円盤部、 ΡΪ盤中央に設置され た円筒部そじて円筒部側面から傾斜を持って円盤部上表面に ひろがる多葉体状ス力 — ト部を有する回転衝突板も公知であ る。 As disclosed in USP 3, 169, 899, a bundle of mesh-shaped steel wire coming out of a spinning nozzle was used as a device for making a non-woven web from a 1L and steel mesh steel wire. 2. Description of the Related Art There has been known a device in which a silk fiber woven by widening and opening is made by colliding with a tub biasing device, and then deposited on a moving collecting surface to make a nonwoven fabric. -Also : As disclosed in SP 3, 497, 918, as a device to widen orchid and disperse the net-like weave, the disk part, the cylindrical part installed at the center of the disk, and the side of the cylindrical part From the top of the disk with an inclination A rotating collision plate having a spread polylobal seat is also known.
さ らに不織ウ ェブの目付け均一性を向上させるために、 三 次元網状^維を浦集面上に堆積させる前にコ ロナ放電によ つ て^維に電荷を与える技術が特公昭 44-21817号公報に開示さ れてい る。 又、 USP3, 593, 074号報、 じ SP3 , 851 , 023号報には、 衝突開镊した網状織維の浦集面への前進径路を制御する方法 が開示されている。  Furthermore, in order to improve the uniformity of the basis weight of the non-woven web, a technique for imparting electric charge to the fiber by corona discharge before depositing the three-dimensional network on the converging surface of the ura is described in Tokuho Shosho. It is disclosed in JP-A-44-21817. Further, US Pat. No. 3,593,074 and SP3,851,023 disclose methods of controlling a forward path of a collision-opened mesh-like fiber to a surface of a ura.
前述のよ う に説明された従来公知の網状繊維、 網状織維の 製造方法、 網状鐡維から成る不織布、 および不織布の製造方 法には種々 の問題点すなわち不利益点を有する。 以下それら 問題点について説明する。  There are various problems, ie, disadvantages, in the conventionally known methods for producing reticulated fibers and reticulated fibers, nonwoven fabrics made of reticulated iron, and nonwoven fabric production methods described above. The following describes these problems.
従来公知の紡糸したままの三次元網状 維は、 好適な 素材の高密度ポ リ エ チ レ ンを用いた場合においても、 その性 能はいまだ満足すべき ものでないこ と も明らかにされている c 即ち、 USP3, 081, 519号報において、 7ラ ッ シュ紡糸法によ つ て作られた繊維は、 紡糸したままでも分子配向性を示しある 程度の物理的性質を有する も のの、 望ま しい物理的性質を持 たせるために、 こ の緻維を熱延伸する こ とを必要だと し、 そ の技術が開示されている。  It has also been clarified that conventionally known three-dimensional as-spun fibers are still unsatisfactory in performance even when a high-density polyethylene of a suitable material is used. c In other words, in USP 3,081,519, fibers produced by the 7 lash spinning method show molecular orientation even after being spun and have a certain degree of physical properties. The technology discloses that it is necessary to heat stretch this fiber in order to obtain new physical properties, and the technology is disclosed.
しかし、 フ ラ ッ シュ紡糸における紡糸速度は先述の如 く 極 めて高速であり 、 延伸ス ピ一 ドとのギ ヤ ッ プが大きすぎるた め、 連続繊維を熟延伸する こ とは、 工業的には種々問題を有 し、 実用的ではない。 特に、 フ ラ ッ シ ュ紡糸織維をシー ト に する方法においては、 三次元網状繊維の熟延伸を実施する こ とは事実上不可能である。 即ち、 紡糸速度と延伸速度に差を 与える操作を工程上入れ ¾ことができない。 例え熟延伸する 操作を用いることができたとしても熟延伸することによって- $哉維の機械的強度は上るが、 三次元網状織維の特徵である白 度や被 S力が低下して透明性が生じる。 又網状鐡維を広げる ことが出来ず、 又均一な不裰ゥニブにならない、 熟接着時の ¾縮が生じやすく なるといつた数多く の問題点が生じる。 ' 従って、 三次元網状鐵維からなる不織ゥ ブを製造する場 合、 USP 3 , ί 69 , 899号報に示される如く紡糸したままの璣維が 用いられる。 即ち、 フ ラ ッ シュ紡糸した譏維を邪魔扳等で広 げてシー ト状にして、 熟接着する シ ンプルなプロセスが採 されている。 しかし、 不織布の物理的性質は基本的にそれを 構成する織維の性質によっていること 明らかである。 繊維 を広げてシー トにする方法、 あるいはそのシー トを熱接着す る方法に工夫をこらしても得られる不織布の物理的な性質は 構成する鐡維の機械的性質、 熱的性質、 光学的性 S等に左右 される。 即ち、 熱接着された不織布の璣滅的性質は、 搆成す る璣維の襪械的性質及び熱的性質によっていること、 また、 不織布の光学的性質ば、 織維の光学的性質及び熱的性質に左 右される。 したがって性能の優れた不織布が得られない。 フ ラ ッ シュ紡糸で得られた織維から成るシー トを熱接着する方 法として各種.公知の方法が採られる。 高密度ポリ エチ レ ンで は、 不織布としての強度の発現や形態保持、 そして表面毛羽 止めのためには結晶融点に近い温度で接着される。 従って、 熟接着不織布を考える場合、 織維間の熱接着性が強固である と共に、 熱接着時に収縮が生じに く いこ と、 接着温度近 ί旁の 高温で織維の機械強度が高いこ と等が鐡維と して要求される。 However, the spinning speed in flash spinning is extremely high as described above, and the gap between the spinning speed and the drawing speed is too large. It has various problems and is not practical. In particular, in a method in which a flash spun textile is used as a sheet, it is necessary to carry out mature drawing of a three-dimensional network fiber. Is virtually impossible. That is, an operation for giving a difference between the spinning speed and the drawing speed cannot be included in the process. Even if the ripening operation can be used, the ripening can increase the mechanical strength of ripening, but the whiteness and S-force, which are the characteristics of the three-dimensional netted fabric, decrease, and the wrapping becomes transparent. Nature occurs. In addition, there are many problems when the mesh-like steel cannot be spread, the uniform nib does not occur, and the shrinkage at the time of ripe bonding tends to occur. Therefore, in the case of producing a nonwoven fabric made of a three-dimensional reticulated fiber, as-spun fiber is used as shown in USP 3, 69, 899. In other words, a simple process is used in which the flash-spun creatures are spread with a barrier or the like to form a sheet, and then the adhesive is matured. However, it is clear that the physical properties of a nonwoven fabric basically depend on the properties of the fibers that make it up. The physical properties of the non-woven fabric obtained by devising a method of spreading fibers into a sheet or a method of thermally bonding the sheet are considered to be the mechanical, thermal, and optical properties of the constituent steel Sex Depends on S. In other words, the destructive properties of the heat-bonded non-woven fabric depend on the mechanical properties and thermal properties of the fibers to be formed. In addition, the optical properties of the non-woven fabric and the optical properties and thermal properties of the textile It depends on the nature. Therefore, a nonwoven fabric having excellent performance cannot be obtained. Various known methods can be used as a method for heat-bonding a sheet made of textile obtained by flash spinning. High-density polyethylene is bonded at a temperature close to the melting point of the crystal to develop strength and maintain shape as a nonwoven fabric and to prevent surface fuzz. Therefore, when considering a mature bonded nonwoven fabric, the thermal adhesion between fibers is strong. At the same time, it is required for the steel that the shrinkage does not easily occur during thermal bonding and that the mechanical strength of the textile is high at a high temperature near the bonding temperature.
このよ う な意味から、 従来公知の紡糸したままの三次元網 状镍維で滴足すべき襪維は知られていない。 即ち、 璣 的強 度が劣っている、 熟機械特性が劣っている、 接着温度近辺で の劣化が大きい、 そ して熱接着不織布と した場合の璣核的強 度 (引張 · 引裂等) が悪い、 白度 · 被覆力が不十分である 、 斑が目立つ等の問題点を有している - そして、 そのため用途 が制限されているのが実情である。  From such a meaning, it is not known that dropping can be performed with a conventionally known three-dimensional mesh fiber as spun. That is, the thermal strength is inferior, the ripened mechanical properties are inferior, the deterioration near the bonding temperature is large, and the core strength (tension, tear, etc.) of the heat-bonded nonwoven fabric is low. Poor, whiteness · Insufficient covering power, spots are noticeable, etc.-And the actual situation is that the use is limited.
従って、 本発明の目的の 1 つは紡糸したままの.織維で、 高 い機狨的強度を有し、 かつ、 熱接着不織布とするのに適する 接着温度近傍の特性にす ぐれた三次元網状織維を提供する こ とである。  Therefore, one of the objects of the present invention is as-spun fabric, which has high mechanical strength and excellent three-dimensional properties near the bonding temperature suitable for forming a heat-bonded nonwoven fabric. The purpose is to provide a mesh fiber.
および — 既に述べた公知の製造技術を用いてポ リ マー の均一溶液を作成し、 フ ラ ッ シュ紡糸を行って網状織維を連 ^して製造する場合に、 下記のよ う な各種の問題点が存在す 公知技術を用いた場合、 ポ リ マーの溶剤への溶解に長時間 要する。 この理由と して、 ォ一 ト ク レーブ型の攪拌槽では、 溶解に必要な強力な剪断力が働かず、 単に滞留時間を増すこ とによ って溶解時間を長く と り 、 この結果と して均一なポ リ マ—溶液を得ている。 従って大容量の容器を用いる こ とが前 提となり 、 必然的に滞留時間が増し、 且つ大容量であるため、 容器内圧力も 20 0 ccl · Gを越える こ とは極めて難しい。 又パイ プライ ンを用いて膨潤したポ リ マ -を層流混合によ り溶解する場合は、 溶解に必要な剪断力 流速差のみであり、 極めて長大なパイ プラィ ンが必要となり、 これは滞留時間の 増大を生ずる。 又乱流混合を行う場合は、 ボリ マ ー溶液は 30 : 100セ ンチボ ンズ位の高い粘度を持っているため、 極めて :高い流達が必要となり現実には実施困難である巨大なポ ンプ を必要とする。 And — using a well-known manufacturing technique as described above to prepare a homogenous solution of the polymer, and performing flash spinning to form a reticulated fabric; There is a problem. When the known technique is used, it takes a long time to dissolve the polymer in the solvent. The reason for this is that in the autoclave-type stirring tank, the strong shearing force required for dissolution does not work, and the dissolution time is lengthened simply by increasing the residence time. To obtain a uniform polymer solution. Therefore, it is premised to use a large-capacity container, and the residence time is inevitably increased, and since the container has a large capacity, it is extremely difficult for the pressure in the container to exceed 200 ccl · G. In addition, polymer swollen using pie plies is mixed by laminar flow mixing. In the case of dissolution, only the shear force and the flow rate difference required for dissolution require an extremely long pipeline, which results in an increase in residence time. In addition, when turbulent mixing is performed, the polymer solution has a high viscosity of about 30: 100 centimeters, so that extremely high flow is required and a huge pump that is difficult to implement in practice is required. I need.
いずれにしても、 フラ ソ シュ紡糸に用いられる溶剤は、 常 · 常圧ではポ.リ マーを溶解してばならず、 高圧 · 高温にし て初めてポリ マ 一を溶解する ものでなければならない。 フラ ッ シュ紡糸において高温 · 高圧は必須であり、 従つて従来の 公知技術では必然的に潘留時間は増加し、 逆により高圧化に は制限を受ける。 .  In any case, the solvent used for flash spinning must dissolve the polymer at normal and normal pressure, and must dissolve the polymer only at high pressure and high temperature. In flash spinning, high temperature and high pressure are indispensable. Therefore, the conventional known technology inevitably increases the Banning time, and conversely, the high pressure is limited. .
高温下に 1:ポリ マ.一が長時間系内に滞留すれば、 これは直 ちにポリ マーの劣化に繫がり、 良好な網伏鐡維を安定して得 ることが出来ない。 ポリ マーが高分子量となるとこの困難は ますます增加し、 或る分子量を越えると事実上溶解しなく な る。 一方、 フラ-ッ シュ钫糸から網扰镞維を製造するのに際し、 製品の強度 · タ フネス ♦ 各種の »性を考慮して高分子量のボ リ マ一を用いることが必要となる。 更に、 フ ラ ッ シュ紡糸に 於いては溶液として紡糸を行う:ため、 通常の溶融紡糸では紡 糸が函難な高分子量ボリ マ ーを用いることが可能である。 む しろフラ ッ シュ紡糸の有用性は溶融紡糸困難な高分子量ポリ マ—を使用できて初めていかんなく発揮出来る  If the polymer 1 stays in the system for a long time at high temperature, this immediately leads to the deterioration of the polymer, and it is not possible to obtain good netted steel stably. This difficulty is increasingly compounded as the polymer becomes higher molecular weight, and becomes practically insoluble above a certain molecular weight. On the other hand, when fabricating fiber from flash yarn, it is necessary to use a high molecular weight polymer in consideration of the strength, toughness, and various properties of the product. Furthermore, spinning is performed as a solution in flash spinning: therefore, it is possible to use a high molecular weight polymer which is difficult to spin in ordinary melt spinning. On the other hand, the usefulness of flash spinning can be fully demonstrated only by using high molecular weight polymers that are difficult to melt spin.
—しかしながら、 従来公知の技術では、 ポリ.マーの溶解は高 分子量になる程囷難さが増し、 フ ラ ッ シュ紡糸の有用性を生 かした望ま しい物性の網状鐡維を連镜的に安定して得る こ と が出来ないという事態に至る。 —However, with the conventionally known technology, the dissolution of the polymer becomes more difficult as the molecular weight increases, and the usefulness of flash spinning is increased. As a result, it is not possible to continuously obtain the desired properties of the mesh-shaped steel wire stably.
このよ う な事態に至る原因は、 ボ リ マー と溶剤との親和力 にある と考え られる。 即ち、 フ ラ ッ シュ紡糸 し' . S P 3 : 22了: 7 9 4 号報に開示されているよ う に、 高温 · 高圧の均一溶液を- 旦 減圧ォ リ フ ィ スによ つて減圧した後、 紡糸ノ ズルから吐出さ せる こ とによる、 溶液の構造変化と溶剤のフ ラ ッ シ 'ュ力、 及 びボ リ マ —固化を利用した技術であり 、 したがってポ リ マー と溶剤の親和力は極めて重要な意味を有している。 このこ と からフ ラ ッ シュ紡糸に用いる溶剤は、 常温 · 常圧ではボ リ マ -を溶解させず、 高温 ' 高圧でポ リ マーと均一溶液を.形成し 得る ものが選択される。 従って、 フ ラ ッ シュ紡糸に用いるポ リ マ —ノ溶剤は高温 · 高圧でなければ相互に溶解しない系で あり 、 そしてポ リ マ -の重合度が大き く なる程溶解力が低下 する こ と も明らかである。  The cause of this situation is thought to be the affinity between the polymer and the solvent. That is, as described in the flash spinning method. SP 3: 22: 794, a high-temperature, high-pressure homogeneous solution was depressurized by a decompression orifice. This is a technology that utilizes the structural change of the solution and the flushing force of the solvent and the solidification of the solvent by ejecting it from the spinning nozzle, and thus the affinity between the polymer and the solvent. Has a very important meaning. From this, the solvent used for flash spinning is selected so as not to dissolve the polymer at normal temperature and normal pressure and to form a uniform solution with the polymer at high temperature and high pressure. Therefore, the polymer solvents used for flash spinning do not dissolve each other unless the temperature and pressure are high, and the dissolving power decreases as the degree of polymerization of the polymer increases. Is also clear.
連^して望ま しい物性及び形態の網状繊維を得るためには、 紡出条件の適正化と共にポ リ マ一/溶剤よ り成る均一溶液の 供袷が必須である。 特に高分子量ポ リ マーを用いる場合、 従 来技術とは異なる技術が待望される。  In order to continuously obtain the desired properties and form of reticulated fiber, it is essential that the spinning conditions be optimized and that a uniform solution of polymer / solvent be supplied. In particular, when a high molecular weight polymer is used, a technology different from the conventional technology is expected.
従来技術のも う一つの大きな問題点と して、 混合 ♦ 溶解槽 O攪拌軸がある。 即ち、 従来技術による と外部駆動源によ つ て駆動された攪拌槽によ つて均一なポ リ マ ー溶液を得るか、 も し く は長大なパイ プラ イ ンを用いて長時間を要して目的と するポ リ マー溶液を得るかのいずれかの方法しか採用できな い。 後者に閡しては、 強制混合がない為実用上価値のある程 L2 度に高い分子量を持つたポリ マーの実質的に均一な溶液が得 られない。 Another major problem of the prior art is the mixing ♦ dissolution tank and O stirring shaft. That is, according to the prior art, a uniform polymer solution is obtained by a stirring tank driven by an external driving source, or a long time is required by using a long pipe line. To obtain the desired polymer solution. For the latter, there is no forced mixing, so it is of practical value A substantially uniform solution of the polymer having a molecular weight as high as L2 cannot be obtained.
従って、 前者の攪拌軸による方法の方が実用性があるが、 この方法も使用する装置に摺勖部を含んでいるので、 ある一 定以上の高圧にすることが出来ず、 又特殊で高価な摺動部の - 封鎮機搆が必要である等の問題がある。  Therefore, the former method using a stirring shaft is more practical, but since this method also includes a sliding part in the device used, it cannot be made to have a certain high pressure or more, and it is special and expensive. There is a problem such as the necessity of a sealing device for a suitable sliding part.
フラ ッ シュ紡糸を行うポリ マーノ溶剤系は、 高温 ·高圧で 溶液を形成し、 しかもポリ マ—と溶剤間の親和力を有劾に励 かすには同一温度においても圧力を高めれば高める程溶解 速ぐなり、 R滑に均一ポリ マー溶液が得られる。 - これは、 ポリ マーの分子量に対しても同じであり、 高分子 量になる瑝、 その溶解には高圧を必要とする。 所が従来の方 ' 法でばこの摺動部の封鎖機構の問題から、 高分子量ポリ マー を溶解させる程の高圧を得るこ とが出来ず、 従って高分?量 ポリ マ一の紡糸は事実上函難であつた。  The polymer solvent system that performs flash spinning forms a solution at high temperature and pressure, and in order to impeach the affinity between the polymer and the solvent, the higher the pressure, the higher the dissolution speed even at the same temperature. A uniform polymer solution can be obtained smoothly. -This is the same for the molecular weight of the polymer, which results in a high molecular weight and its dissolution requires high pressure. However, if the conventional method is used, it is not possible to obtain a high pressure enough to dissolve the high molecular weight polymer due to the problem of the sealing mechanism of the sliding part. Spinning the quantity polymer was virtually impossible.
この様にポリ マ—劣化防止の意味からも、 又高分子量ポリ マ—を用いる意味からも高圧プロセスに適した紡糸方法が強 く要望されている。 As described above, there is a strong demand for a spinning method suitable for a high-pressure process from the viewpoint of preventing polymer deterioration and the use of a high molecular weight polymer.
'および 前記フラ ッ シュ紡糸方法における重要な技術 として、 ポリマー溶液をー液租領域から二液相領域へと変化 させた後に紡出する USP3 , 227 , 794号報 (第 23橱 43〜49行) の 公知技術では、 ポリ マー及び溶剤を块定すれば、 紡出液の温 度に従って、 缄圧室でと ¾ う る圧力に上限を有し、 即ち相分 離線より低圧側でフラ ッ シュ紡糸せざるを得ず、 このために 溶剤のフラ シユカの活用が制限されるという問題がある。 - このこ とを第 1 図を用いて説明する。 この図は高密度ボ リ ェ チ レ ンノ ト リ ク ロ ルフル才 ロ メ タ ンの相の状態図を示す一 例である。 線 E F は相分離線 (相平衡線) であり 、 これよ り ; 上部は一液相であり 、 下部は二液相である こ とを示す。 この : 5 図において従来技術の一液相領域から二液相領域へ変化させ る こ とは点 Cの状態から点 Dの状態へ移る こ とを意味する。 即ち吐出される直前の減圧室の圧力に制限を有している。 As an important technique in the flash spinning method, USP3, 227, 794, which spins a polymer solution after changing the polymer solution from a liquid confinement region to a two liquid phase region (No. 23-43-49) According to the known technique of (1), if the polymer and the solvent are determined, there is an upper limit to the pressure in the vacuum chamber according to the temperature of the spinning liquid, that is, the flushing is performed on the low pressure side below the phase separation line. There is a problem in that spinning must be performed, which limits the use of the solvent, Yushuka. -This will be explained with reference to Fig. 1. This figure is an example showing the phase diagram of the high-density polyethylene chlorotrichloromethane phase. Line EF is the phase separation line (phase equilibrium line), from which it shows that the upper part is one liquid phase and the lower part is two liquid phases. In FIG. 5, changing from one liquid phase region to two liquid phase region in the prior art means transition from the state of point C to the state of point D. That is, the pressure in the decompression chamber immediately before the discharge is limited.
フ ラ ン シ ュ紡糸にお 、'ては、 剤のフ ラ ッ シュによ って高 钫速が得られ、 したがって引き取り 張力あるいは牽引張力を 1 0 必要とせず、 通常の溶融紡糸や乾式紡糸とは異なり 、 ^維の 形成や延伸 · 配向は溶液の有するエネルギーのみによ って行 われる。  In the case of French spinning, a high speed can be obtained by flushing the agent, so that no drawing or drawing force is required and ordinary melt spinning or dry spinning is required. Unlike this, fiber formation, stretching and orientation are performed only by the energy of the solution.
'特に織維の延伸 · 配向は溶剤のフ ラ フ シユカによ って行わ れており 、 高 高圧にする ほどフ ラ ッ シュ力が高ま り 、 す 'Especially, the stretching and orientation of the textile is performed by the solvent, fluff, so that the higher the pressure, the higher the flash force.
1 5 ぐれた性能の織維となる。 従って、 高配向の高強力な繊維を 得るためには、 紡出 · 織維形成の直前の減圧室の条件が極め て重要である。 1 5 Weave of performance. Therefore, in order to obtain highly oriented, high-strength fibers, the conditions of the decompression chamber immediately before the formation of the spun / textile are extremely important.
前述の公知技術によれば、 減圧室でと り う る圧力には、 各 温度に応じた上限が存在する。 従って、 溶液温度を上げる試 According to the above-mentioned known technology, there is an upper limit corresponding to each temperature in the pressure taken in the decompression chamber. Therefore, try increasing the solution temperature.
20 みが行われるが、 温度の上昇はポ リ マー Z溶剤系に熟分解を 生じさせる。 こ の熱分解は、 ボ リ マーズ溶剤の相互作用によ る ものであり 、 溶剤ではハロゲンイ オ ンが遊離し、 ポ リ マ— では水素引き抜きによる劣化が生じ、 互いの存在で熟分解が 加速化される。 これらの熱分解は高温.になるほど激し く なる。 5 又、 採用する温度や、 溶解及び紡糸の滞留時間等に応じて熟 安定剤が使用され、 ある程度の効果 与える ものの本質的な 熟分解防止は困難である。 したがって例えば、 高密度ポリ エ チ レ ン Z ト リ ク ロルフルォ ロ メ タ ン (以後、 フ ロ ン— 1 1 と 省略する) の場合に. 、 L9 Q °cを超える温度で O紡糸は困難 である。 However, an increase in temperature causes the polymer Z solvent system to degrade rapidly. This thermal decomposition is due to the interaction of the polymer solvent, which releases halogen ions in the solvent, degrades by hydrogen abstraction in the polymer, and accelerates the rapid decomposition in the presence of each other. Is done. These thermal decompositions become more severe at higher temperatures. 5 Also, depending on the temperature to be adopted and the residence time of melting and spinning, etc. Stabilizers are used, and although they provide some effect, it is difficult to prevent substantial degradation. Therefore, for example, in the case of high-density polyethylene Z trichlorofluorometan (hereinafter abbreviated as fluoro-11), O-spinning is difficult at temperatures exceeding L9 Q ° c. is there.
このように、 従来技術ではフラ ッ シユカの活用が制限され ており、 特に網状織維の強度という点からはさ らに改善が望 まれる。  As described above, the use of the flash yuka is restricted in the conventional technology, and further improvement is expected particularly in view of the strength of the mesh fabric.
したがって本発明は、 工業上有用な高密度ポリェチ レ ン'と フ ロ ン - - 1 1を甩ぃたフラ ッ シュ紡糸方法に於いて、 溶液を 活性化することにより、 溶剤のフラ ッ シユカをさ らに活用し、 充分に延伸 ' 配向されたより高強力な高密度ポリ エチ レ ンの 網状繊維、 及び該網伏織維を得ることができる新規な方法を 提洪することを目 S勺の 1 つとする。 ;  Accordingly, the present invention provides a method for activating a solution in a flash spinning method using industrially useful high-density polyethylene 'and fluoro--11 to remove the solvent flusher. The aim of this paper is to make further use of a fully stretched and oriented higher-strength, high-density polyethylene reticulated fiber, and a new method for obtaining the reticulated fiber. One. ;
F_ 三次元網状構造を有するフラ ッ シュ紡糸された織維を 用いる不織布は、 その独待の織維撙造による特性を活用して、 各種用途に用いられている。 そして、. その不織布は先述の US P3 : 169 , 899号報に開示されているように、 紡糸したままの 鐵維が用いられる- 即ち、 フラツシュ紡糸した.織維を邪魔扳 等で広げてシ— ト扰にして、 熱接着する シ ンプルなプロ セス が採用されている。 F_ Non-woven fabrics using a flash-spun woven fiber having a three-dimensional network structure are used for various applications by utilizing the unique properties of the woven fiber fabric. Then, the nonwoven fabric of the aforementioned US P3:.. 169, as disclosed in 899 report, the Tetsu維spun used - i.e., spread was Furatsushu spun O維with baffle扳like sheet — A simple process of heat bonding is adopted.
又三次元網状鐡維が有する不透明性 · 被覆力と機械的強度 をある程度兼ね備えた紙様の不議布が、 USP3 , 532 , 589号公報 に開示されている。 即ちこの不織布はシ一 トの厚み方向にわ たつて配置された層のいずれもが 0. 5 〜 5, 0 m / gの比表面 積を有し且つ、 内層の比表面積がいずれもの外層よ り も少な く と も 0. 3 m2ノ g高い値である三次元網状織維から成る不織 布構造を有する。 Further, a paper-like nonwoven fabric having a certain degree of opacity and covering power and mechanical strength of a three-dimensional meshed steel is disclosed in US Pat. No. 3,532,589. In other words, this nonwoven fabric has a specific surface of 0.5 to 5.0 m / g in each of the layers arranged in the thickness direction of the sheet. It has a non-woven fabric structure composed of a three-dimensional net-like fiber having a specific surface area that is at least 0.3 m 2 ng higher than that of any of the outer layers.
しかしながら、 本発明者らの検計によれば、 このよ う な構 造であっても、 そ O不織布の性能が満足すべき ものではない こ とが明らかとなった。 また従来公知のいかなる搆造であろ う と も、, 機械的強度と被覆力の双方を満足する不織布は得ら れていない。 即ち、 三次元網状繊維不織布と して期待される 物性である不透明性 · 被覆力及 5び引張強度と引裂強度につい ては極めて不満なものであった。  However, according to the meter of the present inventors, it has become clear that even with such a structure, the performance of the O-woven fabric is not satisfactory. Also, no conventional nonwoven fabric has been obtained, which satisfies both mechanical strength and covering power. That is, they were extremely dissatisfied with the opacity, covering power, tensile strength and tear strength, which are the physical properties expected of a three-dimensional reticulated fiber nonwoven fabric.
周知の如く 、 不織布においては、 同じ接着されてない镍維 シ」 ト に熱接着を実施した場合、 得られた不織布の引張強度 と引裂強度は略ね逆相関する。 そして、 これらの二つの強度 の内、 一方の'強度を满足させるためには他方の強度を犠牲に しなければならないという問題がある。 一般に、 非接着の镙 維シー ト は大きな引裂強力を有している ものの引張強力が弱 く 、 表面の毛羽も全 く とめ られていない。 これを熱接着する - こ とによ って引張強力を高めて表面毛羽も良好なものとする こ とができるが引裂強度が低下してい く 。 そして熟接着の程 度を強める程、 この傾向が強まる。  As is well known, in a nonwoven fabric, when heat bonding is performed on the same non-bonded fibrous sheet, the tensile strength and the tear strength of the obtained nonwoven fabric are substantially inversely correlated. Then, there is a problem that in order to increase the strength of one of these two strengths, the strength of the other must be sacrificed. In general, a non-bonded fiber sheet has a large tear strength, but a low tensile strength, and has no fuzz on the surface. This is thermally bonded-this can increase the tensile strength and improve the surface fluff, but the tear strength decreases. This tendency becomes stronger as the degree of mature bonding increases.
一方、 網状織維よ り成る不織布においては、 この.織維特有 の高い被覆力を活かした用途も多 く 、 不透明性も重要な物性 である。 上記の如く 、 例えば引張強度の増大を目指し熱接着 の程度を強 く してい く こ とは、 この不透明性を損う こ とにな る。 そ してあま り に強く 熟接着する こ とは透明性のある フィ ノレムライ クなものとなってしま う。 On the other hand, in a nonwoven fabric made of a net-like fabric, there are many uses that make use of the high covering power inherent in the fabric, and opacity is also an important physical property. As described above, for example, increasing the degree of thermal bonding with the aim of increasing the tensile strength impairs this opacity. And a very strong, mature bond is a transparent filter. It will be nolem-like.
従って、 好ましい引張強度と引裂強度の関係を有し、 かつ 不透明性にすぐれた網状鐡維不織布が要望されており、 特に 6 0 g Z «f以下の巨付の低い領域で引張強度および ί裂強度 δ が高く 、 不透明性 · 被覆力にすぐれた不織布が待ち望まれて おり、 本発明はこのような不織布を提供するこ とを目的の 1 つとする c Therefore, there is a demand for a mesh-like steel nonwoven fabric having a preferable relationship between tensile strength and tear strength and having excellent opacity. Particularly, the tensile strength and crack strength in a region with a large adhesion of 60 gZ <f or less are desired. strength δ is high, has been eagerly awaited is excellent nonwoven fabric opacity, hiding power, the present invention is one object that you provide such nonwoven c
^ 三次元絹伏璣維の不織シ一 トは形態保持、 強度発現、 そして表面毛羽どめ等の目的で各種の熱接着がなされる。 通0 常これらのシー は三次元網状織維が広げられて堆積された 多層の構造を有しており、 シ— トの断面方向の各層で異なる 織維間の接着 ¾態を設けることができる。  ^ Non-woven sheets of three-dimensional silky fiber are subjected to various types of heat bonding for the purpose of maintaining shape, developing strength, and reducing surface fuzz. Normally, these sheets have a multi-layer structure in which three-dimensional mesh fibers are spread and deposited, and each layer in the cross-sectional direction of the sheet can provide a bonding state between different fibers. .
" 本発明が目的とす ¾不織布の 1つとして不織布を搆成する ' 多層の織維層の ち、 少な く もその一部に接着程度のゆる5 やかな層を有する不織布が舍まれる。 即ち、 不織布の表面、 -あるいは、 不織布を層状に剥離した場合の内部の層中に、 部 - 分的に未融着の独立した網状形'態の鐡維を有する不織布が含 まれる。 従って、 このようなタイプの不織布は、 嵩高性、 柔 軟性、 被覆力において優れ、 且つ引裂強度が高い不織布であ0 る。  "The object of the present invention is to form a non-woven fabric as one of the non-woven fabrics. A non-woven fabric having at least a part of the non-woven fabric having at least a part of a loose layer with a low degree of adhesion is formed. That is, the surface of the nonwoven fabric, or the inner layer when the nonwoven fabric is exfoliated in layers, includes a partially non-fused nonwoven fabric having an independent reticulated 'state' of iron. Such a nonwoven fabric is a nonwoven fabric that is excellent in bulkiness, flexibility, covering power, and has high tear strength.
えば、 このよう な不織布と して、 高密度ポリ ヱチレンの 三次元網状織'維のシー ト状物を、 部分的に熱接着した TyV ek ® 14タイ プ (E . I . du pon t社製) が知られている。 この不織布は、 比較的強固に熱接着された表面層と、 比較的ゆるやかに熟接5 着された内層とから成り、 かつ部分的に圧着されたェン'ボス 模様を有している。 そ して、 この不織布を層と して剝離した 場合、 比較的ゆるやかに熱接着された内層から 2 0 ™以上の 独立する連続網状襪維をと り 出すこ とが可能である。 Example, in such a nonwoven fabric, a sheet-like material of a three-dimensional network woven 'Wei high density polyethylene Wechiren, partially thermally adhered Ty V e k ® 14 type (E. I. Du pon t Is known. This nonwoven fabric consists of a surface layer that is relatively firmly heat bonded and an inner layer that is relatively loosely bonded, and that is partially pressed. It has a pattern. When the non-woven fabric is separated as a layer, it is possible to obtain an independent continuous net of 20 ™ or more from the inner layer which is relatively slowly bonded by heat.
しかしながら、 このよ う な従来公知の不裰布には、 その性 能上に種々問題点を有する。 即ち、 三次元網状 維不辚布の 最も基本的な物性である、 不透明性 · 被覆力及び引張強度と 引裂強度については極めて不満である。  However, such conventionally known nonwoven fabrics have various problems in performance. That is, they are extremely dissatisfied with the most basic physical properties of the three-dimensional network fiber fabric, that is, opacity, covering power, tensile strength, and tear strength.
且および丄 網状織維から成る不織布の製造法についての 公知技術を躯使しても均一性に関して満足しう る不 '織布を得 る こ とはできなかった。 これらの不織布は、 不璣布を構成す る開織した三次元網状镙維の開璣幅の斑が大き く 、 極めて大 きな織維密度を有する集束した束伏部を多 く 含む。 このため 不織布は、 織維密度の大きな部分や織維密度の小さ 部分が 混在する不均一な外観となり 、 又目付け斑の 1大きなものであ る。 Even with the use of known techniques for the production of nonwoven fabrics composed of reticulated fibers, it was not possible to obtain nonwoven fabrics with satisfactory uniformity. These nonwoven fabrics have large irregularities in the opening width of the opened three-dimensional mesh fibers constituting the nonwoven fabric, and contain many bundled bundles having an extremely large fiber density. For this reason, the nonwoven fabric has a non-uniform appearance in which a portion having a high fiber density and a portion having a low fiber density are mixed, and the nonwoven fabric has one large spot.
このよ う な不織布は、 不織布の均一性の要求される フ ィ ル タ ー分野、 衛生材等の用途には不適当であり 、 特に 4 0 g / n 以下の低目付けの不織布は鐡維密度の小さいところがピン ホールとなり 、 液体やバク テ リ ア等の遮蔽性が要求される分 野での使用は不可能であつた。  Such nonwoven fabrics are unsuitable for use in filter fields and sanitary materials where uniformity of the nonwoven fabric is required. Pinholes were formed in small areas, and it was not possible to use them in fields requiring shielding properties such as liquids and batteries.
又その不均一な外観や、 目付け斑から も不織布と しての用 途は極めて制限される ものであった。  In addition, its use as a nonwoven fabric is extremely limited due to its uneven appearance and unevenness of the surface.
従って、 フラ ッ シュ紡糸された三次元網状繊維から成る不 織布の均一性を向上させる こ とは要望されているが、 現在そ れを^足させる もの、 及びそれを達成する方法は出現してい ない。 — Therefore, while there is a need to improve the uniformity of non-woven fabrics made of flash-spun three-dimensional reticulated fibers, what can be achieved at present and how to achieve them have emerged. And Absent. —
本発明は、 フ ィルタ—分野、 衛生材等の用途に充分使用で きる均一に開織されたフラ ッ シュ紡糸不織布及びその製造方 法を提供することを百的の' 1 つとする。 発明の蘭示  An object of the present invention is to provide a uniformly spun flash-spun nonwoven fabric and a method for producing the same, which can be sufficiently used in the field of filters, sanitary materials and the like. Orchid of invention
本発明の目的ば有用な高密度ポリヱチレン系の新規な三次 元稱状鐵維、 該璣維より成る新規な各種の不織布、 及びそれ らの製造方法を提供することにある ^ 詳しく は、 第 1 に、 極 めて高い熟機狨特性と、 極めて高い強度とを有する三次元に 状の形態を威した镞維 ( J 、  An object of the present invention is to provide a novel tertiary fiber of high-density polyethylene, which is useful, a variety of nonwoven fabrics made of the fiber, and a method for producing the same. In addition, a three-dimensional morphology with extremely high maturation characteristics and extremely high strength (J,
第 2に、 フラ 7シュ紡糸法において、 スク リ ユ ー押出機を 用いて、 ^リ マー溶解域の入 を溶融ボリ マーで封'鎮する製 造方法によって製造される鐡維 (J_) 、  Secondly, in the flash spinning method, a steel extruder (J_) manufactured using a screw extruder, which is manufactured by a manufacturing method in which the inlet of the ^ immersion region is sealed with a molten boiler,
第 3 に、 フラ ッ シュ紡糸法において、 高圧力差を発生させ、 Third, in the flash spinning method, a high pressure difference is generated,
.ボリマ —液体を活性化させる製造方法によつて製造される織 維 、 Bollima—a textile manufactured by a liquid-activating manufacturing method,
第 4に、 フラ ッ シュ紡糸法において、 スク リ ユー押出機を 用いて、 ポリマ一溶解域の入口を溶融ポリ マーで封鎮する上 記 の織維の製造方法 ( D_) 、  Fourth, in the flash spinning method, the above-mentioned textile manufacturing method (D_) in which the entrance of the polymer dissolving area is sealed with a molten polymer using a screw extruder,
第 5 に、 フラ ツシュ紡糸において、 高圧力差を発生させ、 ポリ マー液体を活性化させることによる上記 ( ) の鐡維の -製造方法 ( ) 、  Fifth, in flash spinning, a high pressure difference is generated to activate the polymer liquid, and the above-mentioned () method for producing steel (),
第 Sに、 上記 ( ) の镞維から製造される内層の比表面積 が高く 、 機械的強度の高い不織布 ( F ) 、 第 7 に、 上記 (A) の ϋ維から製造され、 独立した連 m纖 維を取り 出すこ とのでき る、 被覆力、 強度に優れる不織布 ( _G ) 、 First, the non-woven fabric (F), which has a high specific surface area and high mechanical strength of the inner layer produced from the fibers of the above (), Seventh, non-woven fabric (_G), which is manufactured from the fiber of (A) above and has excellent covering power and strength, from which independent m-fiber can be taken out,
第 8 に、 目付け、 外観の均一性の高い、 上記 (A) の.線維 から成る不裰布 (1L) 、  Eighth, the nonwoven fabric (1L) consisting of the fibers described in (A) above,
第 9 に、 上記 (—H—) の均一性の高い不織布を、 特殊な構造 の分散装置及び分散条件によ って製造する製造方法 ( !_ ) 、 をそれぞれ提供する こ とを目的とする。  Ninth, the object of the present invention is to provide a manufacturing method (! _) For manufacturing the non-woven fabric having high uniformity (-H-) using a dispersing device having a special structure and a dispersing condition. .
本発明の第 1 の目的は 4 0 以下の長周期散乱強度比を有す る こ とを特徴とする フ ィ プリ ル化された高密度ポ リ エチ レ ン 系の三次元網状織維によ って達成される。  A first object of the present invention is to provide a fibrillated, high-density, polystyrene-based three-dimensional reticulated fiber characterized by having a long-period scattering intensity ratio of 40 or less. Is achieved.
本発明の第 2 の目的は加熱されたスク リ ユ ー押出機を用い て溶融しつつ * リ マーを連続的にポ リ マ—溶解域へ供耠し、 溶解域の入:口を連続的に供給される溶融ポ リ マーで封鎖しつ つ溶融ポ リ マーに溶剤を添加し、 高圧下で両者を混合 · 溶解 してポ リ マ—溶液を製造し、 溶解域に用けられたノ ズルから ポ リ マー溶液を低圧域に連続的に吐出させる フ ラ ッ シュ紡糸 法による網状織維の製造方法によ つて得られる フ ィ ブリ ル化 された高密度ポ リ エチレン系の三次元網状織維によ つて達成 される。  A second object of the present invention is to continuously supply the polymer to the polymer dissolving zone while melting it by using a heated screw extruder, and to continuously enter the dissolving zone into the inlet. A solvent is added to the molten polymer while closing with the molten polymer supplied to the furnace, and the two are mixed and dissolved under high pressure to produce a polymer solution, which is used for the melting zone. Three-dimensional network of fibrillated high-density polyethylene obtained by the method of manufacturing a mesh-like fiber by the flash spinning method, in which a polymer solution is continuously discharged from a wool into a low-pressure region. Achieved by weaving.
本発明の第 3 の目的は、 高密度ポ リ ヱチ レ ン系ボ リ マー と ト リ ク ロルフルオルメ タ ンより成る高圧の均一溶液を、 減圧 オ リ フ ィ ス、 減圧室及び紡糸ノ ズルから成る紡出装置を柽て 低圧域へ吐出し、 高密度ボ リ ヱチ レ ン系ポ リ マ一の網状譏維 を得る方法において、 減圧オ リ フ ィ スの前後で高庄カ差を発 生ざせ、 液体を活性化するフ ラ ッ シュ紡糸法による網状遨維 の製造方法によつて得られるフ イ ブリ ル化された高密度ポリ ェチ レン系の三次元網状織維によつて達成される。 A third object of the present invention is to provide a high-pressure homogeneous solution comprising a high-density polyethylene-based polymer and trichlorofluoromethane from a reduced-pressure orifice, a reduced-pressure chamber and a spinning nozzle. In the method of obtaining a net-like debris of a high-density polyethylene polymer by using a spinning device made of Achieved by a fibrillated, high-density polyethylene-based three-dimensional mesh fiber obtained by a method of manufacturing a mesh fiber by a flash spinning method that activates and activates a liquid. Is done.
本発明の第 4の百的 、 フ ラ ッ シュ紡糸法による網状織維 の製造法において、 加熟されたス ク リ ユ ー押出機を用いて;容 融しつつポ マーを連镜的にポリマー溶解域へ供給し、 溶解 域の入口を連繞的に供給される溶融ボリ マーで封鎖しつつ溶 融ポリマーに溶剤を添加し、 高圧下で両者を混合 * 溶解して ポリ マー溶液を製造し、 溶解域に用けられたノ ズルからポリ マ—溶液を低圧域に連繞的に吐出することを特 i とする高密 度ポリェチレ ン系三次元網状繊維の連続的な製造方法によつ て達成される。 . 本発明の第 5'の巨的は、 高密度ポリ ヱチ レン系ポリ マーと 卜 リ ク口ルフルオルメ タ ンより成る高圧の均一溶液を、 減圧 オ リ フ ィ ス、 減圧室及び紡糸ノ ズルから成る紡出装置を柽て 低圧埭へ吐出し、 高密度ポリ ェチレ ン系ボリ マ—の網状織維 を得る方法において、 缄圧ォリ フ ィスの前後で高圧力差を発 生させ、 液体を活性化することを特徵とする高密度ポリ ェチ レン系三次元網状織維の製造方法によつて達成される。  In the fourth method of the present invention for producing a net-like textile by a flash spinning method, a matured screw extruder is used; A solvent is added to the molten polymer while the inlet of the melting area is closed with the molten polymer supplied continuously, and the two are mixed and dissolved under high pressure to produce a polymer solution. And a method for continuously producing high-density polyethylene-based three-dimensional reticulated fibers characterized by discharging the polymer solution from the nozzle used for the dissolution zone to the low-pressure zone in a continuous manner. Achieved. The fifth aspect of the present invention is that a high-pressure homogeneous solution comprising a high-density polyethylene-based polymer and trichlorofluoromethane is applied to a reduced-pressure orifice, a reduced-pressure chamber, and a spinning nozzle. In a method of obtaining a high-density polyethylene-based polymer network web by discharging a spinning device consisting of a spinning device comprising a high-pressure polyethylene, a high-pressure difference is generated before and after the high-pressure orifice. This is achieved by a method for producing a high-density polyethylene-based three-dimensional network fiber, which is characterized by activating a liquid.
本発明の第 6 の百的は、 高密度ポリ ヱチ レ ン系のフ イ ブリ ル化された連続三次元網状镞維が、 ラ ンダムな方向に堆積さ れ、 互いに強固に熱接着された表面層と、 表面層より も弱く フ ィルム状織維層に熱接着された内層とからなる一体化され た不織布において、 内層の比表面積が 5 nf / gをこえること を特徴とする引張強度と引裂強度の高い三次元網伏鐡維不織 布によ つて達成される。 According to a sixth aspect of the present invention, a high-density polyethylene-based fibrous continuous three-dimensional network fiber is deposited in a random direction and strongly heat-bonded to each other. An integrated nonwoven fabric comprising a surface layer and an inner layer that is weaker than the surface layer and is thermally bonded to the film-like textile layer, characterized in that the specific surface area of the inner layer exceeds 5 nf / g. High tear strength three-dimensional nonwoven fabric Achieved by cloth.
本発明の第 7 の目的は、 高密度ポ リ エチ レ ン系のフ ィ ブリ ル化された三次元網状織維が、 ラ ンダムな方向に配置され、 層状に堆積され、 部分的に未融着の独立した網状形態の璣維 から成る層を含む不裰布において、 ¾独立した網状 ί 維が A seventh object of the present invention is to provide a high-density polyethylenic fibrillated three-dimensional network fiber which is arranged in a random direction, deposited in layers, and partially unfused. In nonwoven fabrics containing a layer of fibrous fibers in an independent mesh form, the
4 0 以下の長周期散乱強度比を有する こ とを特墩とする三次 元網状織維から成る不織布によ って達成される。 This is achieved by a nonwoven fabric made of a three-dimensional net-like fabric, which has a long-period scattering intensity ratio of 40 or less.
本発明の第 8 の目的は、 開镍した高密度ボ リ エチ レ ン系三 次元網状鐡維がラ ンダムな方向に堆積された不織布において、 不織布を構成する連続網状繊維に存在する束状部が 4 Q デニ An eighth object of the present invention is to provide a nonwoven fabric in which an opened high-density polyethylene-based three-dimensional reticulated iron is deposited in a random direction, a bundle portion present in continuous reticulated fibers constituting the nonwoven fabric. Is 4 Q Deni
- ル / MI幅以下の密度を有する束状部か、 4 0 デニー ル Z mm 幅以上の密度を有する束伏部である場合には、 その幅が 5 mm 以; F、 且つ長さが 3 0 .以下の束状部である'こ とを特徵とす る均一な不鐡布によ って達成される。 -If the bundle has a density of less than 100 mm / MI width or a bundle with a density of 40 denier Z mm or more, the width is 5 mm or less; F and length are 3 Achieved by a uniform non-woven fabric that is characterized by the following bundle.
本発明の第 9 の目的は、 回転可能な円盤部と、 該円盤部の 中央よ り垂直方向に延び且つ円盤部よ り小さい直径の円形外 面を有する円筒部と、 前記円盤部の片方表面と前記円筒部 の円形外衷面との間の空間に傾斜して配置されたスカ― ト部 から成り 、 該スカ ー ト部には前記円筒部の軸線に実質的に平 行な方向で飛来する未開織の三次元網状織維を揺勣させる複 数の揺動面と、 該揺動面と交互に配置され、 前記揺動面によ つて揺勤される三次元網状繊維の揺動方向の急激な変化を缓 和する緩衝面とによ って構成されている三次元網状織維の拡 散 · 揺動回転分散板を用いる網状繊維不織布の製造方法にお いて、 スカ ー ト部を構成する揺動面の中央と円盤部上表面と のなす傾斜角度 が锾衞面の中央と円盤部上表面とのなす傾 斜角度 にほぼ等し く、 緩衝面が円筒部近く の幅より円盤部 近く の幅の方が広い扇型形状である三次元網状織維の摅散 - 揺 回転分散扳を用いることを特徵とする均一な不裰布の製 造方法によって達成される。 図面の簡単な説明 A ninth object of the present invention is to provide a rotatable disk portion, a cylindrical portion extending vertically from the center of the disk portion and having a circular outer surface with a smaller diameter than the disk portion, and one surface of the disk portion And a skirt portion that is inclined and disposed in a space between the cylindrical portion and the circular eclectic surface of the cylindrical portion. The skirt portion comes into the skirt portion in a direction substantially parallel to the axis of the cylindrical portion. A plurality of oscillating surfaces for oscillating the unopened three-dimensional net-like fiber, and the oscillating direction of the three-dimensional net fibers which are alternately arranged with the oscillating surface and are oscillated by the oscillating surface. Of a three-dimensional mesh fabric composed of a cushioning surface that mitigates a rapid change in the size of the fabric. The center of the oscillating surface and the upper surface of the disk The angle of inclination formed is almost equal to the angle of inclination between the center of the airplane and the upper surface of the disk, and the cushioning surface has a fan-shaped shape whose width near the disk is wider than that near the cylinder. Achieved by a method for producing a uniform nonwoven fabric, which employs the use of a three-dimensional mesh fiber dispersion-rotational dispersion. BRIEF DESCRIPTION OF THE FIGURES
第 1図 、 本発明の高性能高密度ポリ エチレン三次元網状 鍵維を製造するための原理を示した図であり、 本発明の製造 方法の内、 高 力差によってボリ マ—液体を活性化し紡糸す る方法と、 従来の紡糸法での圧力と温度関係を説明するダラ フである。  FIG. 1 is a view showing the principle for producing a high-performance, high-density polyethylene three-dimensional network key of the present invention. In the production method of the present invention, a polymer liquid is activated by a high force difference. This is a draft explaining the spinning method and the relationship between pressure and temperature in the conventional spinning method.
. 第 2図は、 本発明の網状镞維の X線小角散乱像を示す様式 図である。 FIG. 2 is a diagram showing a small-angle X-ray scattering image of the reticulated fiber of the present invention.
第 3図は X線小角散乱の P SP Cにおける、 長周期による散乱 強度比を求める方法を說明するための図面である。 .  FIG. 3 is a drawing for explaining a method for obtaining a long-period scattering intensity ratio in small-angle X-ray scattering PSPC. .
第 4図は高密度ポリ エチレン (M I = 1. 2、 重量平均分子 量約 14 X 104 、 旭化成社製サンテッ ク B - 161 )と ト リ ク ロ口 フルォロメ タ ンからなるポ リ マ 一溶液の相図である。 Figure 4 is a high density polyethylene ethylene (MI = 1. 2, weight average molecular weight of about 14 X 10 4, manufactured by Asahi Kasei Corporation Sante' click B - 161) and Application Benefits click throat Furuorome port Li Ma first solution consisting of data down FIG.
第 5面ば本発明の網状織維の製造方法の一実施例を示す略 示フ ローシー トである。  The fifth surface is a schematic flow sheet showing one embodiment of the method for producing a reticulated fiber of the present invention.
第 6図、 第 7図および第 8図はそれぞれ本癸明において使 用される押岀機及びスク リ ュー、 特殊混合構造体 (ダルメ 一 - ジ形、 ピン形) の一例を示す概略図である。  Fig. 6, Fig. 7 and Fig. 8 are schematic diagrams showing an example of the press, screw and special mixing structure (Dalmage-type, pin-type) used in this kikin. is there.
第 9図および第 1 0図は本発明の網状織維の製造方法の他 の実施洌をそれぞれ示す略示フロー ン— トである。 9 and 10 show other examples of the method for producing the reticulated fiber of the present invention. It is a schematic flow chart showing the implementation of Kiyoshi.
第 1 1 図は本発明と比較のために従来公知のスク リ ュ ー ミ キサーを用いた網状繊維の製造方法の一実施例を示すフロー シ ー 卜 であ る 。  FIG. 11 is a flow sheet showing one embodiment of a method for producing a mesh fiber using a conventionally known screw mixer for comparison with the present invention.
第 1 2図は本発明の不織布の引張 · 引裂強度の関係図であ る。  FIG. 12 is a diagram showing the relationship between the tensile and tear strength of the nonwoven fabric of the present invention.
第 1 3図は、 本発明の不織布を製造する好適な回転分散板 形状の一例を示す略示钭視図である。 ' 第 1 4図は、 第 1 3図の回転分散扳形状の詳細を示す図で あり第 1 4 (a) 図は平面図、 第 1 4 (b) 図は第 1 4 ) 図の ' 線 A - A ' による断面図である。  FIG. 13 is a schematic perspective view showing an example of a suitable shape of a rotational dispersion plate for producing the nonwoven fabric of the present invention. '' Fig. 14 is a diagram showing details of the rotational dispersion shape of Fig. 13; Fig. 14 (a) is a plan view, and Fig. 14 (b) is a line in Fig. 14). It is sectional drawing by A-A '.
第 1 5図は、 本発明に係る回転分散板の織維への作用を説 • 明する略示正面図である。  FIG. 15 is a schematic front view for explaining the action of the rotary dispersion plate according to the present invention on a textile.
第 1 6 (a) 図〜第 1 6 (d) 図は、 本発明,に係る回転分散板 を三次元網状繊維の揺勣変化点が捕集面上になる距離に設置 した場合の三次元網状繊維への作用を順を追って詳 $0に説明 する高速度撮影装置観察略示図である。  Fig. 16 (a) to Fig. 16 (d) show the three-dimensional case where the rotation dispersion plate according to the present invention is installed at a distance where the fluctuation change point of the three-dimensional network fiber is on the collection surface. FIG. 3 is a schematic view of a high-speed photographing apparatus for explaining the action on a reticulated fiber in detail in order of $ 0.
第 1 7 ) 図〜第 1 7 (d) 図は、 本発明に係る回転分散扳 を三次元網状織維の揺動変化点が捕集面より上方になる距雞 に設置した場合の三次元網状織維への作用を詳細に説明する 高速度撮影装置観察略示図である。  FIG. 17) to FIG. 17 (d) show three-dimensional images obtained when the rotational dispersion according to the present invention is installed at a distance where the swing change point of the three-dimensional mesh fabric is higher than the collecting surface. It is a high-speed imaging device observation schematic diagram explaining the effect | action on a reticulated fiber in detail.
第 1 8 (a) 図〜第 1 8 (d) 図は、 従来公知の回転分散板の 織維への作用を順を追って詳細に說明する高速度撮影装置観 察略示図である。  FIG. 18 (a) to FIG. 18 (d) are schematic views of observations of a high-speed photographing device for sequentially explaining in detail the action of a conventionally known rotary dispersion plate on a textile.
第 1 9図は不織布の断面を示す顕微鏡写真であって、 第 1 9図(a) は本発明による不織布、 第 1 9図(b ) 図は、 比較 例の不織布の断面をそれぞれ示す。 FIG. 19 is a micrograph showing a cross section of the nonwoven fabric. FIG. 19 (a) shows a nonwoven fabric according to the present invention, and FIG. 19 (b) shows a cross section of a nonwoven fabric of a comparative example.
第 2 0図は不織布の表面状態を示す写真であって、 第 2 0 図(a) は本発明による不織布、 第 2 0図(b ) 図 .. 比較例の 不簿布の衷面状態をそれぞれ示す。 発明を実施するための最良の形態  Fig. 20 is a photograph showing the surface condition of the nonwoven fabric. Fig. 20 (a) shows the nonwoven fabric according to the present invention, Fig. 20 (b) Fig. Shown respectively. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の理解を容易にす'るために、 本発明による網状 維、 その製造方法、 該網状織維から作られた不織布、 その不織布 の製造方法を説明するのに役立つ添付図面を参照して本発明 を詳細に説明する。  In order to facilitate the understanding of the present invention, reference is made to the accompanying drawings, which are useful for explaining a reticulated fiber according to the present invention, a method for producing the same, a nonwoven fabric made from the reticulated fiber, and a method for producing the nonwoven fabric. The present invention will be described in detail.
本発明の織維は、 前述のように高密度ポリ ヱチレン系のポ リ マ一から搆成された織維である。 そして、 多数の微細なフ ィブリ ルより成り、 実質的に自由端を含まない連繞した三次 元網状镞維である。  As described above, the textile of the present invention is a textile formed from a high-density polyethylene-based polymer. And, it is a connected three-dimensional net-like fiber made up of many fine fibrils and having substantially no free ends.
このような三次元網状織維は公知のように、 フラ ッ シュ紡 糸から得られる。 しかし、 本発明の三次元網状織維は、 織維 の遨雜構造において、 そしてフィ ブリ ル形態の^かさにお 、 て、 従来公知の鎩維とは全く異なる新規な三次元絹状鐡維で ある。 したがって、 機械的な強度及び高温時の特性にすぐれ ており、 特に熱接着不織布を製造するのに適している。  As is known, such three-dimensional network fibers are obtained from flash spinning. However, the three-dimensional reticulated fiber of the present invention is a novel three-dimensional silk-shaped fiber that is completely different from conventionally known fibers in the mosaic structure of the fiber and in the fibrous form. It is. Therefore, it has excellent mechanical strength and high-temperature properties, and is particularly suitable for producing a heat-bonded nonwoven fabric.
本発明の鎩維は、 微細搆造上、 織維軸方向の長周期搆遣に 特徵を有している。 そして、 このことは X線小角散乱を測定 することによって明確に知ることができる。  The fiber of the present invention has a special feature in long-period feeding in the direction of the fiber axis on a fine-grained structure. And this can be clearly understood by measuring small-angle X-ray scattering.
第 2図に本発明の織維の小角散乱写真を模式的に図示する。 直射ビーム 1 の近 く の赤道上.にフ ィ ブリ ルやボイ ドの存在を 示す散乱像 2 を示すと共に、 子午線上に層镍状散乱像 3 を示 す。 一般に高分子物質の長周期の X線小角散乱像と して、 円 環状散乱、 層線状散乱、 層線様二点散乱、 層線状四点散乱等 が知られており 、 本発明の镍維は通常の紡糸 · 延伸を逄る延 伸糸の長周期構造に類似している こ とが判る。 FIG. 2 schematically shows a small-angle scattering photograph of the textile of the present invention. On the equator near the direct beam 1, a scattered image 2 showing the presence of fibrils and voids is shown, and a laminar scattered image 3 is shown on the meridian. Generally, as a long-period small-angle X-ray scattering image of a polymer substance, circular scattering, layered linear scattering, layered two-point scattering, layered four-point scattering, and the like are known. It can be seen that the fibers resemble the long-period structure of the drawn and drawn yarns that are subjected to ordinary spinning and drawing.
そ して、 子午線方向の位置敏感型比例計数管(P S P C )による 洌定での散乱ピーク の解折によれば、 本発明の網状織'維は 150〜 200 Aの長周期を有する。 そして、 本発明の,網伏璣維 の長周期による散乱強度は大き く ないという 予想外の特徴を 見い出し,た。 即ち、 長周期の散乱強度の意味から考えれば、 散乱強度が小さいという こ とは長周期構造が不均一である。 あるいは明確でないと考え られ、 鐡維の遨钿構造と しては機 械的物性上,、 又熟的特性上好ま し く ないこ とが予想された。 しかし、 本発明に示される これらの物性にす ぐれている三次 元網状織維は意外にも散乱強度は大き く な く 、 新規な構造の 織維を提供する ものである。 そして、 この構造故に融点近辺 の高温特性にす ぐれており 、 熱接着不織布に適する三次元網 状镙維となる。  Then, according to the analysis of the scattering peaks in the meridional position-sensitive proportional counter (PSPC) at the time of Kiyoshidori, the reticulated fiber of the present invention has a long period of 150 to 200 A. And, they have found an unexpected feature of the present invention that the scattering intensity due to the long period of the Amibushi fiber is not large. That is, from the viewpoint of the long-period scattering intensity, a small scattering intensity means that the long-period structure is not uniform. Or, it was thought that it was not clear, and it was expected that the iron and steel structure would be unfavorable in terms of mechanical properties and mature characteristics. However, the three-dimensional reticulated fiber excellent in these physical properties shown in the present invention does not unexpectedly have a high scattering intensity and provides a fiber having a novel structure. And, because of this structure, it excels in high-temperature characteristics near the melting point, and becomes a three-dimensional network fiber suitable for a heat-bonded nonwoven fabric.
本発明において網状織維の特性を把握するために、 長周期 及びその散乱強度比を定量する。 そこで これらについて說明 する。  In the present invention, in order to understand the characteristics of the reticulated fiber, the long period and the scattering intensity ratio are quantified. Then, these are explained.
子午線方向の PSPCによる、 実測散乱強度対角度プロ 'ン トを 第 3 図に示す。 散乱強度曲線のピーク又はシ ョ ルダ一の部分 の極大散乱強度を示す位置を長周期散乱角度 ( 2 ) と し、 この値を Mとする。 第 3図における長周期散乱ピ―ク又はシ ョ ルダ一の両端の変曲部の共通接線 Pを描く 。 角度 ίの実測 散乱強度値を Gとし、 線 Ρ上の値を Ηとする。 一方角度 Figure 3 shows the measured scattering intensity vs. angle plot by the PSPC in the meridian direction. The position showing the maximum scattering intensity at the peak of the scattering intensity curve or the shoulder is defined as the long-period scattering angle (2). Let this value be M. Draw a common tangent P to the inflections at both ends of the long-period scattering peak or shoulder in FIG. The measured scattering intensity value of the angle ί is G, and the value on the line Η is Η. One angle
( 2 5 ) · 2. 5 ° の実測散乱強度 (ブラ ンク) の値を I とし て、 散乱強度比 Rを R = ( G - Η ) Ζ I として求める。  (25) · The measured scattering intensity (blank) value of 2.5 ° is defined as I, and the scattering intensity ratio R is determined as R = (G-Η) Ζ I.
λ  λ
- 長周期は Braggの式 L = に 2 Θ = Mを入れるこ と  -For long period, insert 2 Θ = M into Bragg's equation L =
2 s I η σ  2 s I η σ
によって求められる。 Required by
本発明の三次元網状織維について、 このようにして得た長 周期ば L50〜 200 Aであり、 長周期散乱強度比は 4 0以 - ある。  The three-dimensional reticulated fiber of the present invention has a long-period of L50 to 200 A and a long-period scattering intensity ratio of 40 or less.
なお前述の X線'小角散乱は、 次に示す装置 · 方法を用いて 測定された。 X線回折装置ば理学電機社製 RU - 200 - PL. X ■ 線は Cu— K で 1.54人、 ピ ンホールスリ ツ ト として 1 s t SLIT 0. 5 mm φ 2 nd SLIT 0. 3 龍 を用いた。 測定電圧は 4 5 kV、 電流は UOmAで、 照射時間ば 2 x l03secとした。 測定用のサ ンプルは網状鐵維を揃えて照射部分のサンプル巾が約 2. 5 になるように作つた。 The X-ray 'small-angle scattering described above was measured using the following apparatus and method. X-ray diffractometer RU-200-PL.X manufactured by Rigaku Denki Co., Ltd. ■ X-rays were Cu—K with 1.54 persons and 1st SLIT 0.5 mm φ2nd SLIT 0.3 dragon was used as the pinhole slit. The measurement voltage was 45 kV, the current was UOmA, and the irradiation time was 2 x 10 3 sec. The sample for the measurement was made such that the sample width of the irradiated part was about 2.5 by aligning the mesh fibers.
この镞維の熟的な性質は各種方法の測定で知ることが出来 る。 そして、 この熱物理的な測定は、 不裰布としての使用を 想定し、 感'りのない状態で行なわれる。  The mature nature of this fiber can be determined by various methods of measurement. Then, this thermophysical measurement is performed without feeling, assuming use as nonwoven fabric.
本発明の網状織維は、 熟接着温度近傍での熟機械特性が良 好で加熱時の伸長率が小さいことに特徵を有している。 即ち、 熱機裱試験機 (T M A ) の試験において、 デニールの 1 /10 の一定荷直下で异温する時の 130ででの俾¾率が好まし く は 3 %以下であり 、 さ らに好ま し く は 2 %以下である。 測定は、 真空理工社製 「T - 3000」 を用いて、 2 °c 分の昇温速度で 測定された。 The reticulated fiber of the present invention is characterized by excellent ripening mechanical properties near a ripening bonding temperature and a low elongation rate upon heating. In other words, in the test of a thermomechanical test machine (TMA), the temperature of 130 at the time of heating under a constant load of 1/10 of denier is preferable. 3% or less, more preferably 2% or less. The measurement was performed at a rate of temperature increase of 2 ° C using “T-3000” manufactured by Vacuum Riko Co., Ltd.
又、 パイ ブロ ンによ る測定においても、 熱的及び動的性質 を知る こ とが出来る。 即ち、 本発明の網状 維は、 高温でも 高い動的弾性率を示し、 例えば動的弾性率が 1 0 1 Q dyn/ afl になる温度は、 115 °c以上が好ま しい。 In addition, thermal and dynamic properties can be determined by measuring with a piperon. That is, the reticulated fiber of the present invention shows a high dynamic elastic modulus even at a high temperature. For example, the temperature at which the dynamic elastic modulus becomes 101 Q dyn / afl is preferably 115 ° C or more.
さ らに、 高温時の結晶の安定性は tan 5 の結晶分散の開始 温度で評価される。 そして、 本発明の織維は、 詰晶分散の開 始温度が好ま し く は 123°c以上、 さ らに好ま し く は 125 以 上の高い値を示し、 接着温度近傍での結晶の安定性にす ぐれ ている こ とが判る。 これらの測定は、 勤的粘弾性測定装置を 用いて実施され、 本発明では東洋ホール ドウ イ ン社製  In addition, the stability of the crystal at high temperatures is evaluated at the onset temperature of the crystal dispersion of tan5. Further, the fiber of the present invention exhibits a high starting temperature of the stuffing crystal dispersion, preferably 123 ° C. or more, and more preferably 125 or more, and shows that the crystal stability near the bonding temperature is high. You can see that she is overkill in sex. These measurements were carried out using an active viscoelasticity measuring device.
「RHE0VIB O ' DDV - Π — ΕΑ」 を用い、 周波数 110 Hz、 昇温 i 。Cノ分で行った。  Using “RHE0VIB O 'DDV-Π — ΕΑ”, frequency 110 Hz, heating i. I went for C minutes.
こ のよ う に、 本発明の三次元網状織維は高温での熟安定性、 熟機械特性にす ぐれており 、 熟接着不織布に適しており 、 前 述の特性は本発明の繊維の微細構造によ って生ずる。  As described above, the three-dimensional reticulated fiber of the present invention is excellent in ripening stability at high temperatures and ripening mechanical properties, and is suitable for a ripened nonwoven fabric. Caused by the structure.
本発明の網状繊維は、 また高度に配向された織維であり 、 このこ とは X線回折による結晶配向角を測定する こ とにより 明らかになる。 即ち、 本発明の織維の X線による配向角は 3 0 。 以下が好ま しい。 さ らに好ま し く は 2 0 。 以下である。 また、 赤外吸収二色性から も高分子の結晶部と非晶部の配 向が測定される こ とが知られており 、 二色比配向係数 F °で 評価される。' ポ リ エ チ レ ンの平行二色性バン ドである 2017 cm— 1 での本発明の織維の二色比配向係数ば 0. 3以上であることが 好ましい。 本発明では、 日本電子社製 「 J I R - 100 j の FT - I S装置を使用し、 A T R結晶として KRS— 5を用いる方法で 測定した。 ; . The reticulated fiber of the present invention is also a highly oriented fiber, which becomes clear by measuring the crystal orientation angle by X-ray diffraction. That is, the orientation angle of the textile of the present invention by X-rays is 30. The following are preferred: 20 is more preferable. It is as follows. It is also known that the orientation of the crystalline part and the amorphous part of the polymer can be measured from the infrared absorption dichroism, and is evaluated by the dichroic ratio orientation coefficient F °. '' A parallel dichroic band for polystyrene, 2017 cm— 1 The dichroic ratio orientation coefficient of the textile of the present invention is preferably 0.3 or more. In the present invention, the measurement was performed by using a JIR-100 JFT-100 IS FT-IS apparatus manufactured by JEOL Ltd. and using KRS-5 as an ATR crystal.
さ らに、 マイ ク ロ波による镲維の複屈折測定も分子の配向 の程度を現わすものとして用いることが出来る。 神掎製紙社 製 「マイ ク π波分子配向計 j M0 A - 2001.4 型による 4 GH z の 複屈折において、 本発明の網扰鎩維は好ましく は 0 . 13以上の. 複屈折の値を未す。  Furthermore, birefringence measurement of fibers using microwaves can also be used as a measure of the degree of molecular orientation. The birefringence of the present invention is preferably 0.13 or more in the birefringence of 4 GHz using the Micron π-wave molecular orientation meter j M0A-2001.4 manufactured by Shinwa Paper Co., Ltd. You.
このように、 本発明の三次元網状篛維は、 高度に配向され た繊維であり、 極めて良好な性質を有している。  Thus, the three-dimensional network fiber of the present invention is a highly oriented fiber and has extremely good properties.
本発明の三次元網状織維は、 極めて機械的強度がすぐれて いる。 三次元網.状織維'ば、 網扰に分岐しており、 その'ままで 糸の強伸度を測定する場合、 織維要素間ですり抜け等が生じ 値のバラッヰが大き く なる。 従って、 本発明では引張試験に おいて、 4回ノ cmの燃りをかけて測定した。 このような条件 で測定された本発明の鐡 $ίは、 初期モジュラスが 15〜50 g Z- dであり、 好ましく は 20〜50 g Z dであり、 破断強度は 4 g ノ d以上好ま し く は 7 g / d以上である。  The three-dimensional network fiber of the present invention has extremely excellent mechanical strength. In the case of a three-dimensional net-like fiber, the fiber is branched into a net, and when measuring the high elongation of the yarn as it is, a slip-through or the like occurs between the fiber elements, resulting in a large variation in the value. Therefore, in the present invention, in the tensile test, the measurement was performed by burning four times in cm. The steel $ ί of the present invention measured under such conditions has an initial modulus of 15 to 50 g Zd, preferably 20 to 50 g Zd, and a breaking strength of 4 g / d or more. Or more than 7 g / d.
紡糸したままの三次元網状織維においては、 本発明に示さ れるような高強度の鎩維は知られていない。  As for the three-dimensional reticulated fiber as-spun, a high-strength fiber as shown in the present invention is not known.
本発明の三次元網状鐡維は、 そのフィ ブリ ル化の形態にお いて、 極めて微細なフイ ブリ ルから成っていることが好まし い。 そして、 この三次元網状織維の比表面積が 3 0 irf / g以 上であることが好ましい。 三次元網状織維を構成する フ ィ ブリ ルの微細さを表現する 尺度と して比表面積を用いる こ とは、 U S P 3 : 1 69 , 8 99号報に開 示されているよ う に公知である。 本発明の三次元網状镍維は 公知の^維と比較して明らかによ り なフ ィ ブ リ ルよ り 搆 成されている。 本発明の網状镞維の比表面積は 3 0 rrf / g以 上が好ま し く 、 さ らに好ま し く は 3 5 rrf ノ g以上であり 、The three-dimensional mesh steel of the present invention is preferably made of extremely fine fibrils in the form of fibrillation. It is preferable that the specific surface area of the three-dimensional network fiber is 30 irf / g or more. The use of the specific surface area as a scale for expressing the fineness of the fibrils constituting a three-dimensional network fiber is publicly known as disclosed in USP 3: 169,899. It is. The three-dimensional network fiber of the present invention is composed of a fiber which is clearly evident as compared with a known fiber. The specific surface area of the mesh镞維of the present invention is 3 0 rrf / g on than is rather preferred, is rather to favored by al 3 5 rrf Roh g or more,
1 0 0 m / g以上の値を有する網状.織維を得る こ と も可能であ る。 It is also possible to obtain reticulated fibers having a value of 100 m / g or more.
2  Two
このよ う に、 よ り微細なフ ィ 9ブ リ ルから成るために本発明 の網状織維は、 白度や被覆力、 そ して吸着性能の点で従来公 知の繊維に対してす ぐれている。 これらの織維を用いた不織 布を製造し'た場合に、 その凝細なフ ィ ブリ ルのために織維が 広げられやす く 均一なシ— トにする こ とが出来る。 表面積が 大き く 熟接着性が良好である、 白度が高 く 不透明性が高い、' そして吸着性能やろ過性能にす ぐれる等の多 く のす ぐれた特 性を持たせる こ とが出来る。  As described above, since the mesh fiber is composed of 9 finer fibers, the reticulated fiber of the present invention is less than the conventionally known fibers in terms of whiteness, covering power, and adsorption performance. I'm stray. When non-woven fabrics using these fibers are manufactured, the fine fibrils can spread the fibers easily and form a uniform sheet. It has many excellent properties such as large surface area, good ripe adhesion, high whiteness and high opacity, and excellent adsorption and filtration performance.
この比表面積は、 窒素吸着法によ って求め られ、 本発明に おいてはカルロエルバ社製 「ソ 一フ。 ト マチ ッ ク 1 8 0 0」 を用い て測定した。  The specific surface area was determined by a nitrogen adsorption method, and in the present invention, the specific surface area was measured using “Soft Tomato 180” manufactured by Carlo Elba.
フ ィ プリ ルの微細さを測定する方法と して、 璣維への水銀 圧入法による铂孔分布測定用のポ σ シメ ータ ーを用いても良 く 、 この場合、 本発明の繊維の水銀圧入量が従来公知の織維 よ り も多 く 、 細なフ ィ ブリ ルよ り成っている こ とが判る。  As a method for measuring the fineness of the fiber, a pore-sigma meter for measuring pore distribution by a mercury intrusion method into fiber may be used. In this case, the fiber of the present invention may be used. It can be seen that the amount of mercury intrusion is larger than that of conventionally known textiles, and that it is composed of fine fibrils.
このよ う に本発明の三次元網状織維は、 極めて微細なフ ィ ブリ ルから構成されているにも拘らず、 独特の長周期織維搆 造を有している。 そして、 融点近い高温での性質にすぐれて おり、 機棱的強度が従来になく高いという有用な性質を合わ せ有する。 一般的に織維においては繊維の比表面積の増加は 断面の異形度の増大を示し、 機械的な強度は低下する。 しか し、 本発明による三次元絹状織維においては、 比表面積の増 加と機械的強度の増大が併立しており-、 この事は従来の概念 から 到達しえないことである。 As described above, the three-dimensional reticulated fiber of the present invention has a unique long-period fiber, despite being composed of extremely fine fibrils. It has structure. It has excellent properties at high temperatures close to the melting point, and also has useful properties such as higher mechanical strength than ever before. In general, in textiles, an increase in the specific surface area of the fiber indicates an increase in the cross-sectional irregularity, and the mechanical strength decreases. However, in the three-dimensional silk-like textile according to the present invention, the increase in the specific surface area and the increase in the mechanical strength are simultaneously performed, which cannot be achieved from the conventional concept.
本 ¾明の織維は、 三次元網伏鐡維であり、 フ ラ ノ シュ 糸 として知られる紡糸方法によって得られる。 以下本発明の三 次元絹状織維を得る好ましい例を説明する。  The textile of the present invention is a three-dimensional netted iron fiber and is obtained by a spinning method known as franosch yarn. Hereinafter, preferred examples for obtaining the three-dimensional silk-like fiber of the present invention will be described.
本発明の三次元網状織維ば、 ボリ マーと溶剤を用いるフラ フ シュ钫糸から得られる。 しかし、 本発明の織 iを得る-フ ラ ッ シュ紡糸機構は、 従来公知の.それとは全く異つたものであ o  The three-dimensional reticulated fiber of the present invention can be obtained from fluffy yarn using a polymer and a solvent. However, the flash spinning mechanism for obtaining the woven fabric i of the present invention is conventionally known, and is completely different from that.
従来公知の三次元網伏鐡維を得るフラ ッ シュ紡糸の重要な 技術として、 US P 3 , 227 , 794号報には、 ポリ マー溶液を减圧ォ '; フ ィ スで圧力降下させることで、 一液相から二液相領域へ と変化させた後、 紡糸ノ ズルより吐出する技術が開示されて いる。  As an important technology of flash spinning for obtaining a conventionally known three-dimensional netted iron fiber, US Pat. No. 3,227,794 discloses that a polymer solution is subjected to a pressure drop at a pressure of a pressure. Thus, there is disclosed a technique in which a liquid phase is changed from a single liquid phase to a two liquid phase region and then discharged from a spinning nozzle.
本発明者らは、 フラ ッ シュ紡糸された織維の搆造を決定す るのは、 ポリマ一と溶剤の柑分離構造にあるこ とに着巨し、 鋭意研究を重ねて新らしいフラ 'ン シュ紡糸機構を見い出すこ とによ 'り、 本発明に示される新規な三次元網状镞維の完成に 到達した。 その新規なフラ ッ シュ紡糸機構とは、 ポリ マーの 均一溶液に瞬間的な活性化を与え、 従来公知の一液相から二 液相への変化による相分離構造とは異なつた活性化構造と し た後、 紡糸ノ ズルょ り紡出し、 その活性化構造に基づく 識維 構造を形成させる こ とにある。 こ こでいう 「活性化」 とは、 ポ リ マ -液体が減圧ォ リ フ ィ スを通過す:る際の圧力損失を大 き く する こ と、 即ち减圧オ リ フ ィ スを前後で圧力差を大き く する こ とであり 、 少な く と も 8 0 kgノ 、 さ らに好ま し く はThe present inventors have determined that the fiber structure of the flash-spun textile fiber is determined by the fact that the polymer and the solvent have a citrus separation structure. The discovery of the spinning mechanism has led to the completion of the novel three-dimensional network shown in the present invention. The new flash spinning mechanism provides instantaneous activation of a homogeneous solution of the polymer, and is a two-step process from the previously known one-liquid phase. After forming an activation structure different from the phase separation structure due to the change to the liquid phase, spinning nozzles are spun out to form a knowledge structure based on the activation structure. "Activation" as used herein refers to increasing the pressure loss of the polymer-liquid through the decompression orifice, ie, before and after the decompression orifice. To increase the pressure difference by at least 80 kg, more preferably
1 20 kg / 以上の圧力差とする こ とによ つて活性化を行う こ とにある。 この活性化は、 ポ リ マー溶液の密度や濃度の大き なゆらき'によ って生じる ものであり 、 溶液に極めて敏 mに相 分難したかの如き構造を一時的に与える。 Activation is performed by setting the pressure difference to more than 120 kg /. This activation is caused by large fluctuations in the density and concentration of the polymer solution, and temporarily gives the solution a structure as if it were extremely difficult to separate.
そして、 この状態で紡糸ノ ズルよ り吐出する こ とによ って 本発明の三次元網状繊維が得られる。 即ち、 この凝 ¾な活性 化構造か.ら低圧 '· 低温域に開放された溶剤が急激に'気化し、, 膨張しょ う とするフ ラ ッ シュ力が凝固をはじめるポ リ マーに 配向を与える こ とになり 、 高度に配向した三次元網状織維を 形成する。  Then, by discharging from the spinning nozzle in this state, the three-dimensional network fiber of the present invention is obtained. In other words, the solvent that has been released to the low-pressure region rapidly evaporates from this condensed activation structure, and the flashing force that expands causes the polymer to begin to solidify, causing the polymer to start to solidify. To form a highly oriented three-dimensional mesh fabric.
この活性化は瞬間'的なものであり 、 静的平衡状態で測定さ れる相図の一液相領域内からの紡糸でも好ま しい三次元網状 織維を得る こ とが出来る。 従って、 この活性化構造から得ら れる織維は、 従来公知の繊維とは異なり 、 比表面積が 3 0 of / g以上の極めて微細なフ ィ ブリ ルよ り成り 、 本発明に示さ れる独特の長周期構造を有する高強度な三次元網状織維であ このポ リ マーと溶剤から成る溶液の活性化は重合度が大き く 、 かつ分子量分布の狭いポ リ マ—に対して、 上記の圧力差 を大き く することが有効に作用することが本発明者らの研究 で明確になった。 . - 本究明の織維は、 高密度ボ エチ レン系より成っている a 主として用いられる高密度ポリ エチレンに特に制限はなく密 度 0. 94以上の高密度ボリ ヱチレンでよい。 又、 100 %ェチ レ ン単位から成るものの外、 1 0 モル% K内のヱチ レ ン以外の モノ マ ー成分をラ ンダム又はブロ ックで共重合したポリ マ— であってもよい (当然、 ポリマ —中に添加剤が含まれるこ と も任意であり、 熟安定剤、 紫外線安定剤、 滑剤や顔料等も本 発明を損わない範囲の量で含まれていてよい。 ) 又、 この高 密度ボリ エチレンと他のボリ マ一をプレン ドして成ることも 当然可能であり、 巨的に応じ.て用いることが出来る。 特に' ¾ 発明の三次元網扰織維はその特殊な構造故に高強度であり、 従来高密度ポリ エチレンに维のボリ マ一を':ブレン ドすること , で強度低下を生じ実用できなかつた種類のポリ マーをブレン ドする ことも可能である。 高密度ポ リ エチレンとブレ ン ドさ れるボリ マ一としては、 低密度ポリ エチレン、 エチレン一酔 該ビニル共重合体、 アイ オノ マ一、 ポリ プロ ^ レ ン、 ポ リ ス チレン、 ポリ メ チルメ タク リ レー ト等が挙げられる。 This activation is instantaneous, and a spinning from within one liquid phase region of a phase diagram measured in a static equilibrium state can obtain a preferable three-dimensional network fiber. Therefore, unlike the conventionally known fibers, the fibers obtained from this activated structure are made of extremely fine fibrils having a specific surface area of 30 of / g or more, and are unique to the present invention. This is a high-strength three-dimensional network fiber with a long-period structure. The activation of a solution composed of this polymer and a solvent causes the polymer to have a high degree of polymerization and a narrow molecular weight distribution. difference It has been clarified in the study of the present inventors that increasing the value effectively works. . - O維of this investigation can be a density 0.94 above dense Helsingborg Wechiren not particularly limited a predominantly high density polyethylene ethylene used which is made from high-density board ethylene interconnection. In addition to a polymer composed of 100% ethylene units, a polymer obtained by randomly or block copolymerizing monomer components other than polyethylene in 10 mol% K may be used. (Of course, the polymer may optionally contain additives, and ripening stabilizers, ultraviolet stabilizers, lubricants, pigments, and the like may be contained in amounts not to impair the present invention.) Naturally, it is also possible to blend this high-density polyethylene with another polymer, and it can be used in a huge manner. In particular, the three-dimensional mesh fabric of the invention of the present invention has a high strength due to its special structure, and the conventional high-density polyethylene cannot be put into practical use due to a decrease in strength by blending with a polymer. It is also possible to blend different types of polymers. Polymers blended with high-density polyethylene include low-density polyethylene, ethylene copolymers, vinyl copolymers, ionomers, polypropylene, polystyrene, and polymethylene. Tactylate and the like.
先逮の如く、 本発明の織維は新らしい機維形成機構に基づ く ものであり、 本発明の網状鐡維を成す高密度ポリエチ レン は、 重合度が高いことが好ましい。 紡出される織維のメ ル ト ィ ンデックス (M I ) I 1以下であることが好ましい。 さ ら に好ましく ば 0. 5以下である ( M I の測定はiSTM D - 1238 - 5TT 条件 Eによる) 。 又、 織維を構成するポリ マ -の分子量 分布が狭いこ と も重要である。 即ち、 同様の M I であって も 分子量分布が広ければ、 性能の劣つた ものになる傾向がある。 本発明の錄'維の分子量分布は M w / n で 1 5 以下、 さ らに 好ま し く は 1 0 以下である。 当然ながら本発明の镊維を得る ために用いる原料ポ リ マ —の M I は、 本発明の 維の M I と 等しいか、 それ以下のボ リ マ一.が用い られる。 As mentioned earlier, the textile of the present invention is based on a new mechanism for forming a fiber, and the high-density polyethylene constituting the net-like steel of the present invention preferably has a high degree of polymerization. The melt index (MI) I1 of the fiber to be spun is preferably 1 or less. More preferably, it is 0.5 or less (MI measurement is based on iSTM D-1238-5TT condition E). Also, the molecular weight of the polymer that composes the textile It is also important that the distribution is narrow. That is, even with similar MI, if the molecular weight distribution is wide, the performance tends to be inferior. The molecular weight distribution of the protein of the present invention is 15 or less in Mw / n, and more preferably 10 or less. Naturally, the MI of the raw material polymer used for obtaining the fiber of the present invention is equal to or less than the MI of the fiber of the present invention.
本発明の IS維を得る ための '溶解プロ セ スは、 特に制限され る こ とはな く 、, 従来公知の '溶解プコセスを用いる こ とが出来 る。 しかし好ま し く は、 ス ク リ ュ ー押出機でボ リ マーを溶融 しながら供給し、 引続く 混合管内で溶剤と混合、 溶解する方 法を用いる。 本発明の織維は、 高分子量で分子量分布の狭い 高密度ポ リ エチ レ ンから成っており 、 原料ポ リ マ'.一を短時間 で溶剤に^解し、 紡糸し,てポ リ マ一の変質を防止する こ とが 好ま しい。 又、 高圧での溶解が'溶解速度及び本発明の紡糸機 構から好適である。  The lysis process for obtaining the IS fiber of the present invention is not particularly limited, and a conventionally known lysis process can be used. However, it is preferable to use a method in which the polymer is fed while being melted by a screw extruder, and then mixed and dissolved with a solvent in a mixing tube. The textile of the present invention is made of high-density polyethylene having a high molecular weight and a narrow molecular weight distribution, and the raw material polymer is dissolved in a solvent in a short time, spun, and the polymer is dissolved. It is preferable to prevent any deterioration. Further, dissolution at a high pressure is preferable from the viewpoint of the dissolution rate and the spinning mechanism of the present invention.
又、 本発明の繊維を得るために用いる溶剤はフ ラ 'ノ シュ紡 糸に用いう る ものであれば特に制限される こ とな く 、 従来公 知の溶剤が用い られてよい。 好ま し く は、 フ ロ ン — 1 i であ り 、 塩化メ チ レ ン、 ト リ ク ロ 口 ト リ フルォ ロ ェ タ ン等のノ、 口 ゲン化炭化水素、 シク ロへキサ ン等の炭化水素又はこれ らの 混合液が用い られる。  The solvent used for obtaining the fiber of the present invention is not particularly limited as long as it can be used for fiber spinning, and a conventionally known solvent may be used. Preferably, it is Fluorone-1i, such as methylene chloride, tricyclo mouth trifluorene, etc., or hydrogenated hydrocarbons, cyclohexane, etc. A hydrocarbon or a mixture thereof is used.
本発明の繊維を得るための紡口ア セ ンブ リ ー は、 先述の紡 糸機構をと り得る ものであれば制限される こ とはない。 即ち、 均一溶液を活性化するための减圧用ォ リ フ ィ ス、 減圧室ゃノ ズル等は従来公知の形状のものが任意に用い られてよい。 次に本発明の三次元絹状鐡維を製造する方法を説明する。 The spinning assembly for obtaining the fiber of the present invention is not limited as long as it can take the above-described spinning mechanism. That is, the orifice for decompression, the decompression chamber, and the nozzle for activating the homogeneous solution may have any conventionally known shape. Next, a method for producing the three-dimensional silk-like iron fiber of the present invention will be described.
最初に前記分類 に属する溶解法溶融ポリ マ -封鎖法を用 いる製造方法を説明する。  First, a production method using the melting method melting polymer-sealing method belonging to the above classification will be described.
分類卫 Jこ属する本発明の製造方法は、 前述のよう に、 加熱 されたスク リ ュ一押出機を用いて溶融しつつポリマ—を違続 的にポ リ マ一溶解域へ供袷し、 溶解域の入口を連繞的に供給 される溶融ポリ マ—で封鎮しつつ溶融ボリ マーに溶剤を添加 し、 高圧下で両者を混合 ' 溶解してボリ マー溶液を製造し、 溶解域に用けられたノ ズルからポリ マー溶液を低圧域に違 的に吐出することを特徵とする。  As described above, the production method of the present invention, which belongs to Class II, melts using a heated screw extruder and supplies the polymer intermittently to the polymer dissolution area while melting the polymer. A solvent is added to the molten polymer while sealing the inlet of the melting zone with the continuously supplied molten polymer, and the two are mixed and dissolved under high pressure to produce a polymer solution. It specially discharges the polymer solution from the used nozzle to the low pressure region.
前記方法がポリ マー溶解域に於いて、 混合 · 溶解が少く と も押出機のスグリ ューに付設された機镜的混合の領域を用い. て行われるようにした網状繊維の連铙的 製造方法であると 好ましい。 . ; : : : 前記方法がポリマー溶解域において、 ポリ マ—と溶剤との 混合 * 溶解を多段階に行う様にした網状識維の連続的な製造 方法であるとより好ましい。  A method for continuous production of reticulated fibers, wherein the method is carried out by using a mechanical mixing region provided in the extruder screw at least in the polymer dissolving zone with little mixing and dissolving. It is preferable that :::: It is more preferable that the above method is a continuous production method of a network fiber in which the mixing and dissolution of a polymer and a solvent are performed in multiple stages in a polymer dissolution region.
前記方法がポリマー溶解域において、 溶剤の添加、 ポリ マ —と溶剤との混合 ' 溶解を多段階にて行うようにした網状織 維の連,镜的な製造方法であると好ましい。  It is preferable that the above-mentioned method is a continuous production method of a reticulated fiber in which the addition of a solvent and the mixing and dissolution of a polymer and a solvent are performed in multiple stages in a polymer dissolution region.
前記方法が溶剤の添加、 ポ リ マーと溶剤との混合 · 溶解を 多段階に行う際に、 ポリ マー溶解域において、 溶剤の添加の 都度、 ポリ マーと混合 · 溶解し、 順次ポ y マー讒度を低下さ せるようにした網状織維の連続的な製造方法であると好まし い。 · 更に好ま し く は、 前記方法がス ク リ ュ ー押出機を用いて溶 融したポ リ マ一を連続的に供袷し、 供給された溶融ポ リ マ一 にてボ リ マ一溶解域が封鎖され、 加圧下にてポ リ マー と溶剤' とを混合 · 溶解する際に、 ポ リ マ—溶解域に於いて、 ポ リ マ -に対する溶剤の多段階添加 ' 混合 ' m解の少 く と も第 1 段 階が、 ス ク リ ユ ー押出璣で連镜的に溶融 ί共.袷されるポ リ マ一 に対して、 該押出機のスク リ ュ 一に付設せられた璣械的混合 の領域で行われる様に した網状 維の連:镜的な製造方法であ その上、 更に好ま し く は、 前記方法がポ リ マー溶解域に於 ける、 ポ リ マーに対する溶剤の多段階添加 · 混合 · 溶解の少 く と も第 1 段階が、 ス.ク リ ュ ー押出機で連続的に供 される 溶融ボ リ マ一に対して、 当該押出機のスク リ ュ ーに付設せら れた璣狨的混合の領域で行われる際':に、 第 2 段階以降の溶剤 添加 . 混合 · 溶解が静的混合素子を用いて行われるよ う に し た網抆 維の連続的な製造方法である。 In the above method, when adding a solvent and mixing and dissolving a polymer and a solvent in multiple stages, each time a solvent is added, the polymer is mixed and dissolved in a polymer dissolving zone, and the polymer is sequentially dissolved. It is preferable to use a continuous method for producing a mesh fabric with a reduced degree. · More preferably, the above method uses a screw extruder to continuously supply the melted polymer, and the supplied polymer melts the polymer melt zone. When the polymer and solvent are mixed and dissolved under pressure, multi-stage addition of the solvent to the polymer in the polymer dissolution zone causes less mixing. In particular, the first stage is continuously melted by screw extruder. For the lined polymer, it is attached to the extruder screw. Reticulation of the network so as to be carried out in the area of mechanical mixing: a special production method, and even more preferably, the method comprises the step of dissolving the solvent for the polymer in the polymer dissolving zone. At least the first stage of multi-stage addition, mixing, and dissolution involves pressing the molten polymer continuously supplied by a screw extruder. When the mixing is performed in the area of the active mixing attached to the screw of the machine, the solvent is added in the second and subsequent stages. The mixing and dissolution are performed using the static mixing element. This is a continuous production method for net fiber.
本発明の最も大いなる特徴は スク リ ユ ー押出機を使甩する こ とにより 、 高温 ' 高圧の均-一なポ リ マー溶液を容易に且つ 安定して得られるよ う にしたこ とである。 この結果と して、 高圧時の溶液の漏洩を解決し、 容易に高圧に出来、 スク リ ュ 一押出機で';容融供給出来るボ リ マーなら、 たとえ高分子量で あろう と も容易に溶解し得るよ う になる。  The most significant feature of the present invention is that a high-temperature and high-pressure uniform polymer solution can be easily and stably obtained by using a screw extruder. . The consequence of this is that the solution leaks at high pressure can be resolved, the pressure can be easily increased, and a screw extruder can easily supply the polymer, even if it has a high molecular weight. It can be dissolved.
又、 押出機に付設した機狨的混合の領域を援用する こ とに よ り 、 強制攪拌下にてポ リ マーと溶剤とを大きな剪断力によ り速やかに高圧混合 * 溶解し得るよ う に した。 このため、 極 めて短時間にて溶解が起こり、 ポリ マーの劣化を著し 防止 すると云う効果も^攆できる。 In addition, by using the mechanical mixing area attached to the extruder, the polymer and the solvent can be rapidly mixed under high agitation by a large shear force under forced agitation. I made it. Therefore, the pole Dissolution occurs in a short period of time, and it also has the effect of significantly preventing polymer degradation.
このような搆成の方法を用いることにより、 フラ ッ シュ紡 糸に於いて高分子量ポリ マ ー 、 特に劣化し易い高分子量ボリ マーが、 本発明によって始めて使用可能となる。  By using such a method of synthesizing, a high molecular weight polymer, particularly a high molecular weight polymer which is easily deteriorated in flash spinning, can be used for the first time according to the present invention.
本発明の製造方法の説明に用いられている用語について簡 単に說明する。 「ポリ マー溶解域 J とは、 ボリ マーが溶融し ている状態にあり、 且つ溶剤が無い状態から所定量の溶剤を 含む状態にあ'り 溶剤とポリマーが溶解し始める犾態から溶 剤とポリ マーが溶解し終った状態まで含んでおり、 そして混 合し合っている状態にある区域を意味する。  The terms used in the description of the production method of the present invention will be briefly described. "Polymer dissolution zone J is defined as a state in which the polymer is in a molten state, and a state in which the solvent and the polymer begin to dissolve in a state in which the solvent and the polymer begin to dissolve from a state without the solvent to a state with a predetermined amount of the solvent. An area that contains the polymer in a dissolved state and is in a mixed state.
「封鎮」 と 間隙に溶融したポリ マ —が充潢し溶荊が全く 含まれておらず、 且つ溶荊が全く侵入出来ない状態を意味す  “Seal” means that the gap is filled with molten polymer and contains no flutes, and no flutes can enter.
「混合 · 溶解」 とは、 ポリ マーと溶荊とが混合しており、 且つ両者が溶解しつつある伏態を示す。 , “Mixing / dissolving” refers to a state in which the polymer and the melt are mixed and both are melting. ,
—機械的混合」 とは、 液体を強制的に攪拌する要素があり、 そしてその要素が外部からの駆動源によつて駆動されて生ず る混合を意昧する。  —Mechanical mixing ”refers to the mixing that occurs when an element is forcibly agitating the liquid and that element is driven by an external drive source.
本発明の製造方法において、 ポリ マーとしては高密度ポリ エチレンが使用され、 その連繞的供給手段としては、 織維 . フ ィ ルム · その他各種の押出成形品の製造において通常使用 されるスク リ ュ一押出機を用いることが出来る。  In the production method of the present invention, high-density polyethylene is used as the polymer, and the continuous supply means is a screen commonly used in the production of textiles and other various extruded products. An extruder can be used.
即ち、 スク リ ユ ー押岀機は、 駆勣モ一ター ' 缄速機 · ポリ マ一供給用ホッパ—及びポリ マ—を加熟溶融させるバレル部 力、らなる。 このノ レルはヒ ータ ーが装着される こ とによ って 加熟出来る構造である。 ノ レル内にはス ク リ ユ ーが内設され、 このスク リ ユ ーはス ラス ト ベア リ ング · 減速機を通して駆動 モ ータ ー に連結している。 That is, the screw press machine is composed of a driving motor, a high-speed machine, a hopper for supplying polymer, and a barrel section for ripening and melting the polymer. Power, become. This knurl has a structure that can be ripened by mounting a heater. A screw is installed inside the barrel, and this screw is connected to the drive motor through a thrust bearing and reduction gear.
こ のス ク リ ュ ーは供袷部、 E缩部、 計量部の主たる三区域 に分剳する こ とが出来、 ポ リ マ一は供袷部で予熟されながら 出口の方へ推進する。 圧縮部にて圧缩されながら溶融し計量 部に到達する。' 本発明にて用いる押出機には、 ポ リ マーが完 全に溶融する計量部に、 ';容剤注入口が設けられ、 こ ゝ に逆止 弁が接地されている。 こ の弁を介して溶剤供袷の為の高圧計 量ポンプに連結している。 ス ク リ ュ ー洪給部から来る溶融ポ リ マ — にて充された計量部に溶剤が圧入され、 この計.量部.の スク リ ューにより ボ リ マー と溶剤 は混合 · 溶解される。 ' , 溶剤注入部のス ク リ ュ ーで 、 溶剤の添加を容易にする;ため、 ス ク リ ュ ーの溝深さを前後の溝深さにより若干深く した方が 好適である。 こ う する こ とにより スク リ ユ ーの供袷例よ り も バ レル内部の圧力が低く なり 、 ス ク リ ュ ーの供袷部への溶剤 の逆流、 噴出が防止出来る。 この混合 ♦ 溶解部の圧力は押出 機の出口側のノ ズル寸法を変更する こ とによ り 自由に変える こ とが出来る。 これによつて、 ポ リ マーの種類及び分子量に 好適な圧力を得る こ とが出来る。 又この部分でのポ リ マーの 滞留時間もス ク リ ュ ーの長さを制御する こ とによ り 自由に変 える こ とが出来る。 即ち、 こ の押出機の混合 · 溶解領域での 状態を溶解させるボリ マ ー / 容剤系に最適なものにする為に、 圧力 * 温度 ··混合剪断力 · 滞留時間を自由に設定出来、 結果 として均一なポリマー溶液を容易に、 且つ安定して得ること が出来る。 The screw can be divided into three main areas: the supply section, the E 缩 section, and the measurement section.The polymer is propelled to the exit while being pre-ripened in the supply section. . It melts while being compressed in the compression section and reaches the measuring section. 'The extruder used in the present invention is provided with a container injection port at the measuring section where the polymer is completely melted, and the check valve is grounded. This valve is connected to a high-pressure metering pump for supplying the solvent. The solvent is injected into the metering section filled with the molten polymer coming from the screw pouring section, and the polymer and the solvent are mixed and dissolved by the screw in this metering section. . ', In order to facilitate the addition of the solvent in the screw at the solvent injection portion; it is preferable to slightly increase the groove depth of the screw to the front and rear groove depths. By doing so, the pressure inside the barrel becomes lower than in the case of supplying the screw, and the backflow and ejection of the solvent to the supplied portion of the screw can be prevented. This mixing ♦ The pressure in the melting section can be freely changed by changing the nozzle size on the outlet side of the extruder. As a result, a pressure suitable for the type and molecular weight of the polymer can be obtained. In addition, the residence time of the polymer in this part can be freely changed by controlling the length of the screw. In other words, in order to optimize the state of the extruder in the mixing / dissolving area, which is a polymer / solvent system that dissolves, the pressure * temperature * mixing shear force * residence time can be set freely. result As a result, a uniform polymer solution can be easily and stably obtained.
フラ ッ シュ紡糸系の溶剤 ,ポリ マ —は高圧にして始めて溶 解する。 従ってボリマ —溶液の調整には必らず高圧容器を必 要とする。 特に 350 °cまでに達する温度条件下の高圧容器を 必要とする。 更に攪拌付き高 E容器を必要とする。  Flash spinning solvents and polymers dissolve only after high pressure. Therefore, it is necessary to use a high-pressure vessel instead of adjusting the volume of the solution. In particular, it requires a high-pressure vessel under temperature conditions up to 350 ° c. In addition, a high-E container with stirring is required.
この時、 可動蝕の軸封と云う S難な課題に逢着する。 フ ラ .ン シ ュ紡糸系にて高分子量、 例えば高密度ポリ ヱチ レ ンで、 メ ル ト イ ンデッ ク ス (M l ) にて 4以下 (重量平埒分子量 10 104 以上) を用いよう とすると、 必然的に高圧にする必 要がある。 高圧としなければ、 甩いる分子量を制限'されるば かりでなく 、 比較的低い分子量でも溶解に長時間を要しボリ マーの劣化を生ずる。 - 本発明奢等は溶融ポリマーによる液封と云う手法を開発し、 ― この問題を解決した。 より具体的には押出機バレルとスク リ ュ一とからなる空間にポリ マ 一を充潢させて溶剤ガスの噴出 を防止する。 この場合大切なことは、 この空間に溶融ポリ マ —が充篛しながら、 スク リ ュ一前方に向って流れていること であり、 従つて圧力勾配が生じていることである。 At this time, he encounters a difficult task called the sealing of the movable eclipse. Use a high molecular weight in the franchiss spinning system, for example, a high-density polyethylene with a melt index (Ml) of 4 or less (weight-average molecular weight of 10 10 4 or more). If so, it is necessary to increase the pressure. If the pressure is not high, the molecular weight used is not only limited, but also a relatively low molecular weight takes a long time to dissolve, causing deterioration of the polymer. -The present invention developed a technique called liquid sealing with a molten polymer, and-solved this problem. More specifically, the space formed by the extruder barrel and the screw is filled with a polymer to prevent the ejection of the solvent gas. What is important in this case is that the space is filled with the molten polymer and flowing toward the front of the screw, and therefore a pressure gradient is created.
この間の事情を更に詳しく說明すると、 次の様になる。  The details of the situation during this period are as follows.
米国 Zeher Tadmor及び Im Rich Klein著の "Engineering Princi les or P las tica tx ng B trudor " (Van Nars trand Reinhold Company発行) の p79〜 pl07及び P359〜 P400にも詳 しく記載されている様に、 操作条件により必ず押出機内に圧 力の極大部が生ずる。 より詳しく は、 スク リ ュ一を供給部、 圧縮部、 計量化部に区分した場合、 ポ リ マーの溶融時点以降 の計量化部の始ま り地点の前後に圧力の極大部が生ずる。 こ の極大部以降徐々に圧力は下がる。 特に、 計量化部のスク リ ユ ー遘深さを、 圧縮部の最小導深さに相当する圧缩終了点よ り深 く する と多 く の場合圧力が下がり 、 その場合は、 圧縮部 終了点近傍に圧力最大部が生ずる。 この圧力を利用 して溶剤 の シ ール ¾·行つ 。 US Zeher of Tadmor and Im Rich Klein Author "Engineering Princi les or P las tica tx ng B trudor" (Van Nars trand Reinhold Company issued) of p79~ pl07 and P 359~ P400 to as more information has been properly also described, Depending on operating conditions, a maximum of pressure always occurs in the extruder. More specifically, the screw supply unit, When divided into a compression section and a measurement section, a local maximum of pressure occurs before and after the starting point of the measurement section after the polymer melts. The pressure gradually decreases after this maximum. In particular, if the depth of the screw section of the metering section is made deeper than the pressure end point corresponding to the minimum guide depth of the compression section, the pressure often drops, and in that case, the compression section ends. A pressure maximum occurs near the point. This pressure is used to seal the solvent.
従って、 用いる スク リ ュ ーの寸法形態に工夫が必要である。 即ち、 溶融'を完全にするために、 供給部の長さ はある程度長 く する。 大抵の場合、 押出璣の口径とス ク リ ユ ーネジのピ ン チが--致しており 、 以下にス ク リ ユ ーの寸法の好しい具体洌 を述べる。 供給部の長さは Ί ピッ チ以上、 好ま し く は 9 ピ ッ チ以上である。 ,  Therefore, it is necessary to devise the dimensions of the screw used. That is, the length of the supply section is increased to some extent in order to complete the melting. In most cases, the diameter of the extruder is the same as the screw screw's pinch. The length of the feed section is at least Ί pitch, preferably at least 9 pitch. ,
又、 スク リ ュ一の圧縮比は、 圧力形成に重要であり 、 ポ リ マー の供給形態がペレ ツ 卜 の場合は、 圧縮比が 3. 0 以上、 粉 末の場合は、 4. 0 以上がよい。  In addition, the compression ratio of the screw is important for pressure build-up. When the polymer supply form is a pellet, the compression ratio is 3.0 or more, and when the powder supply is powder, it is 4.0 or more. Is good.
圧縮部の長さは通常 5 ピ ッ チあれば充分であるが、 7 ピ ッ チ以上ある方が好ま しい。 又圧縮部の終了点については、 計 量化部の開始点近傍に、 いわゆる混合区域 ( ミ キ シ ングゾー ン) を設けてもよい。 こ の部分は短かく 、 且つ高剪断を与え た方がよい。  Generally, the length of the compression section is sufficient to be 5 pitches, but it is preferable that the length be 7 pitches or more. As for the end point of the compression section, a so-called mixing zone (mixing zone) may be provided near the start point of the measurement section. This part is short and should be subjected to high shear.
計量化部の形態は、 この部分に溶剤供給口を設けるので長 い方がよい。 即ち 7 ピ ッ チ以上、 好し.く は 8 ピッチ以上であ る。 溶剤供給口の設置は計量化部が始ま ってから 3 ない し 4 ピッ チ目に設ける方がよい。 勿論これ以上の長さがあっても よい。 更に溶剤の投入を容易にするために、 溶剤投入口のあ る部分のスク リ ュ一口径 小さ くする。 即ち溝深さを深く し た方がよい。 この部分の長さはスク リ ュ一径の缄少もし く 増大も含めて少なく も 2 ピッチ 上が望ましい。 The form of the metering section is preferably longer because a solvent supply port is provided in this section. That is, it is 7 pitches or more, preferably 8 pitches or more. It is better to install the solvent supply port at the third or fourth pitch after the start of the metering section. Of course, even if it is longer than this Good. Further, to facilitate the introduction of the solvent, the diameter of the screw at the portion where the solvent is introduced is reduced. In other words, it is better to increase the groove depth. It is desirable that the length of this portion be at least two pitches, including a little or an increase in the screw diameter.
更に計量化部の溝深さとしてば、 押出機口径が 3 5 ™ ø な ら 1 mmから. 3 mm禾呈度、 6 5 -なら 2 mm:か mm程度、 9 0 ma. ¾ ¾> 2. 5 カヽ ' ¾ 4. 5 程度、 120 mm φ ¾Γ ά ram刀、;^ ο am 程度、 150 Φなら 3 mmから- 6 mm程度等が好しい。  Further, the groove depth of the metering section is 1 mm if the extruder diameter is 35 ™ ø. 3 mm density, 65 mm-2 mm: about mm, 90 ma. ¾ ¾> 2 .5 ヽ ¾ 4.5, 120 mm φ ¾Γ 刀 ram sword; ^ ο am, 150 Φ 3 mm to -6 mm is preferred.
更にス ク リ ーの外径と押出機バレル径の間に生ずる間隙 に関しては通常 0. 1 〜 0. 8 mmが採用され、 口径が小さい程、 間隙を挟く した方がよい。 . 又、 揉作条件は、 ス ク リ ュ -を上記寸法にした上で、 温度、 スク リ ュー回転数-、 吐出量によって定.まる P 即ち、 押出操作 を開始し、 所定温度に-て試行錯誤法によつて溶剤がホツバ— : 口から噴出しないス'ク リ ュー回転数、 吐出量の条件を求める。 吐出温度の例として、 ポリ エチ レ ンの場合 200。cから 280 が選択される。 こ の時、 押 ¾機内の圧力最大点の圧力は少 く も 100 kgノ αί ♦ Gが好ましい。 これ] ¾下でも運転出来ない こともないが、 吐出量の変動等に.より圧力が変勖し、 溶剤が 噴出する場合がある。 Furthermore, the gap between the outer diameter of the screen and the barrel diameter of the extruder is usually 0.1 to 0.8 mm. The smaller the bore, the better the gap. . Also,揉作conditions, scan click Li Interview - a in terms of the above dimensions, temperature, disk re-menu rpm -., By discharge amount constant circle P that is, to start the extrusion operation, to a predetermined temperature - Te Solvent is determined by trial and error method. Calculate the screw rotation speed and discharge rate conditions that do not blow out from the mouth. As an example of the discharge temperature, 200 for polyethylene. 280 is selected from c. At this time, the pressure at the maximum pressure point in the pressing machine is preferably at least 100 kg. This does not mean that operation is not possible even under pressure, but the pressure may fluctuate further due to fluctuations in the discharge amount and the solvent may be ejected.
この方法はフラ ッシュ紡糸からの網状織維を得るためのも のであり、 こ の工程を经た後、  This method is for obtaining a net-like fiber from flash spinning, and after performing this step,
① 直ちに紡岀装置に供給する、  ① Immediately supply to the spinning device,
② 次の混合装置に導入した後、 紡出装置に供給する、  ② After introducing to the next mixing device, supply to the spinning device,
新たな溶剤と共に次の混合装置で混合して、 紡出装置 に供給する、 Mixing with new solvent in the next mixing device, spinning device Supply to the
等の工程が選択される。  Are selected.
① の工程は、 混合に要する滞留時間を考慮して本発明の 混合部のホ—ル ドア ッ プ体積を大き く する こ とが必要である が、 最も簡単なプロ セスとなり 、 好適なものである。  In the step (1), it is necessary to increase the hole-up volume of the mixing section of the present invention in consideration of the residence time required for mixing, but this is the simplest process and is preferable. is there.
本発明において、 ポ リ マ一と溶剤の高温 · 高圧溶液は紡出 装置でフ ラ ッ シ ュ吐出され、 網状織維が得られる。 こ の フ ラ シ ュ吐出方法は、 従来公知の技術を用いてよ く 減圧ォ リ フ イ ス、 減圧室、 及び紡糸ノ ズルよ り成る紡口アセ ンブ リ —の 使用によ る フ ラ ッ シュ吐出が好ま しい。 そ して、 これらの装 置の形状や構造は任意に選択でき る。  In the present invention, the high-temperature and high-pressure solution of the polymer and the solvent is flash-flushed by a spinning device to obtain a mesh fabric. This flash discharge method uses a well-known technique, and often uses a depressurizing orifice, a depressurizing chamber, and a spout assembly composed of a spinning nozzle. Discharge is preferred. The shape and structure of these devices can be arbitrarily selected.
本発明に用いるボ リ マ _ノ溶剤系は常温 · 常圧では溶解せ ず、 高温 ' .高圧にて始めて溶解する。 従って、 一般的特徴と しては相互に溶解しに く い系に属し、 たとえ高温 ' 高圧にし て も簡単には溶けない。 このため、 押出機のス ク リ ュ ーに付 設して機械的混合の領域を設ける こ とが好ま しい。 即ち、 ポ リ マ ー と溶剤の接触面積を拡大する こ とによ り 、 溶解面積を 広 く して、 速やかに溶解させる。 このための一つの方法は、 押出機と同一铀上に特別な機械的混合部を設ける こ とである - 「特別な」 と云う用語は、 押出機ス ク リ ュ ーの供給部、 圧縮 部及び計量部のネジ構造とは異なつた、 混合 , 攪拌効果の向 上を狙った構造体を意味する, 例えば、 ダルメ ー ジ と称され る構造体などがこれに当る。  The polymer solvent system used in the present invention does not dissolve at normal temperature and normal pressure, but dissolves only at high temperature and high pressure. Therefore, as a general feature, they belong to mutually insoluble systems, and do not easily dissolve even at high temperatures and high pressures. For this reason, it is preferable to provide a region for mechanical mixing by attaching to the screw of the extruder. That is, by increasing the contact area between the polymer and the solvent, the dissolving area is increased and the polymer is rapidly dissolved. One way to do this is to provide a special mechanical mixing section on the same floor as the extruder-the term "special" refers to the extruder screw feed, compression section It also means a structure that is different from the screw structure of the measuring section and aims to improve the mixing and stirring effects. For example, a structure called dalmage corresponds to this.
本発明では、 押出機の駆動系は一つで、 押出機のス ク リ ュ —は、 溶融供袷部と溶剤との特別な機械的混合部とを有し且 つ、 の中閭部分のバレルに溶剤注入部を有している。 この 出機ば通常の溶融成形に用いられている供給、 圧縮、 計量 各部よりなる通常のスク リ ユーの先篛に、 混合機能を有する 状に構成された搆造体を維ぎ足すか、 あるいは溶剤注入口 ついた特別な機裱的混合部を有するバレルを維ぎ足して形 成することができる。 又本発明に使用するために独自に設計 されたものであってもよい。 In the present invention, the drive system of the extruder is one, and the screw of the extruder has a melting supply section and a special mechanical mixing section with a solvent, and In addition, it has a solvent injection part in the barrel of the middle part. In this machine, a feeder, a presser, and a meterer, which are used for normal melt molding, are added to the front of the normal screw, which has a mixing function. It can be formed by adding a barrel having a special mechanical mixing section provided with a solvent injection port. Also, it may be one uniquely designed for use in the present invention.
この好ましい実施例においては、 押出機スク リ ユーの回転 によって、 溶融ボリ マーが供袷され、 引繞いてこの溶融ポ リ マ —と別途定量ポンプ等で供辁される溶剤とが特別な構造体 により機狨的に混合される。 この押出機と構造体とは駆動系 がーつであり、 その摺 Si部ば通常の押出機と同一構造でよ く 、 低粘度で'ある'溶剤は、. 溶融ポリ マーで遮ぎられた形でこの摺 勳部にば到達しない。  In this preferred embodiment, the molten polymer is supplied by the rotation of the extruder screw, and the molten polymer is surrounded by a solvent provided separately by a metering pump or the like. Is mixed mechanically. The extruder and the structure have a drive system. The sliding part of the extruder has the same structure as that of a normal extruder, and the low-viscosity 'solvent' solvent is blocked by the molten polymer. It does not reach this part in shape.
溶融ボリマーと溶剤との混合に用いる混合機能を有する搆 造体のタィ プは、 各種の搆造ゃ形状のものがあり、 これらを 本発明に用いる -ことができる。  There are various types of silica structures having a mixing function used for mixing the molten polymer and the solvent, and these have various shapes, and these can be used in the present invention.
即ち、 ダルメ ージ搆造のもの、 切欠きのある多条ネジ構造の もの、 せき止め搆造のもの、 多列ピ ン構造のもの等であり、 又これらを組合わせたものでもよい。 更にバレル側にせき止 め、 溝、 ピ ンを設けて前記構造体と組合わせてもよい。 更に は、 回転体とバレル-を多角形にし二—ダー劾果を狙つたもの でもよい。 これらは、 用いるポリ マーの種類、 溶融粘度や溶 剤の種類 ♦ 混合割合等によって選択される。 - この好ましい実施钶により 、 高分子量ポリ マーでも容易に、 短時間に且つ劣化させる こ とな く 溶剤に溶解させる こ とが出 来、 よ り好ま しい 状織維が安定して連続的に得られる。 更によ り好ま しい実施例と して、 多段階で混合する こ と、 その上好ま しい方法と して多段階にて溶剤を添加し、 混合 - 溶解させる方法がある。 That is, it may be of a dal-mage type, of a multi-threaded structure with a notch, of a dam structure, of a multi-row pin structure, or a combination thereof. Further, dams, grooves and pins may be provided on the barrel side to combine with the above-mentioned structure. Furthermore, the revolving body and the barrel may be polygonal, aiming at the second impeachment. These are selected according to the type of polymer used, melt viscosity, type of solvent, mixing ratio, and the like. -This preferred practice makes it easy to use high molecular weight polymers, It can be dissolved in a solvent in a short period of time without deterioration, and a more preferable fabric can be obtained stably and continuously. An even more preferred embodiment is a method of mixing in multiple stages, and a more preferred method is to add a solvent in multiple stages and mix and dissolve.
最も好適な実施洌と して、 第 1 段階はス ク リ ュ ーに付設し た機狨的混合の領域に溶剤の 1 部を添加し、 混合 · 溶解させ た後、 第二段階以降の混合 ' 溶解手段と して静的混合素子を 用い、 その静的混合素子毎に残り の溶剤を順次添加せしめて 混合 · 瑢解せしめる方法がある。  As the most suitable practice, the first stage involves adding one part of the solvent to the mechanical mixing area attached to the screw, mixing and dissolving it, and then mixing the second and subsequent stages. 'There is a method in which a static mixing element is used as a dissolving means, and the remaining solvent is sequentially added to each of the static mixing elements to mix and dissolve.
先述した従来公知の技術においては、 所定濃度の溶液とす る為に、 必要量のポ リ マーと溶剤を一挙に合わせて混合 · 溶 解している。 所がこ の方法では.、,混合 · 溶解なかんずく 溶解 にかなり の長時 1を要し、 なかなか均一なポ リ マ—溶液とな らない。 '  In the above-mentioned conventionally known technique, a required amount of a polymer and a solvent are mixed and dissolved at a stroke in order to obtain a solution having a predetermined concentration. In this method, however, mixing and dissolving, especially dissolving, require a considerable amount of time1, and it is not easy to obtain a uniform polymer solution. '
本発明者らは、 こ の問題点に就いて種々考慮した所、 フ ラ ソ シュ紡糸に用いるポ リ マ—ノ溶剤系はポ リ マー濃度が高い 程溶解し易いこ とを見出し、 更に高圧にすれば益々溶解し易 い こ とを見い出した。 この結果、 本発明の押出機溶解法の更 に好ま しい方法を発明する に至った。  The present inventors have considered this problem in various ways, and as a result, have found that the polymer solvent system used for flash spinning is more easily dissolved as the polymer concentration is higher. And found that it was easier to dissolve. As a result, a more preferable method of the extruder dissolution method of the present invention has been invented.
即ち、 ί列と して高密度ポ リ エ チ レ ン /フ ロ ン — 1 1 ( ト リ ク ロ 口 フルォ ロメ タ ン) 系を用いて說明すれば、 第 4図のグ ラ フ の相図に示すよ う に、 ポ リ マー濃度が 1 2 w t %よ り 1 5 w t %の方がより溶解し易いこ とが分る。 更にボ リ マ ー濃度を 増加して行けばよ り溶解し易いこ とが見い出された。 このク" ラフから高分子溶液論に云う LC ST型の柑図を持つことが示さ れ、 本発明者らの研究の結果と、 挙動が一致する (高分子学 会編、 共立出版発行、 高分子実験学、 第 1 1巻 κ高分子溶液 P 139 - 20 参照) 。 - 従って、 溶融ボリ マーに多段階にて順次溶剤を添加して、 多段階に溶解させで順次ポリ マー濃度を下げてゆけば、 本発 明の効果ば益々発揮される。 In other words, if we explain using a high-density polystyrene / fluorocarbon —11 (trichloro mouth fluorometer) system as a matrix, the phase of the graph in FIG. As shown in the figure, it can be seen that the polymer concentration is more easily dissolved at 15 wt% than at 12 wt%. Furthermore, it was found that the higher the concentration of the polymer, the easier the dissolution. This The rough shows that it has an LC ST-type citrus diagram in polymer solution theory, and the behavior is consistent with the results of the present inventors' research (Polymer Science Society, published by Kyoritsu Shuppan, Polymer Experimental Science , Vol. 11, K- Polymer Solution P139-20 ). -Therefore, the effect of the present invention will be exerted more and more if the solvent is sequentially added in multiple stages to the molten polymer, and the polymer concentration is reduced sequentially in multiple stages.
本発明では多段階でポンプ等を用いて溶剤を添加するが、 それぞれの溶剤添加後、 ポリ マ—と溶剤の混合操作を加える ことが好ましい。 この混合操作は、 いかなる技術が用いられ てもよ く 、 攪拌翼やミキ シングスク リ ュ一による機械攪拌、 静的混合素?等を用いた混合が採用されてよい。 又、 これら を組み合わせることによって極めて好ましいプロセスとする ことも可能である。 :  In the present invention, the solvent is added in multiple stages using a pump or the like, but it is preferable to add a polymer and solvent mixing operation after each addition of the solvent. This mixing operation can be performed by any technique, such as mechanical stirring using a stirring blade or a mixing screw, or static mixing. Etc. may be employed. Also, by combining these, it is possible to make a very preferable process. :
本発明でいう溶剤の多段階添加とは 2段階以上に分割され た添加を意味し、 最初にポリ マーと溶剤とが合流したところ が 1段巨であり、 2段 Κ上であれば制限はされない。  In the present invention, the multi-stage addition of a solvent means an addition divided into two or more stages, where the portion where the polymer and the solvent first merge is one step, and the limit is two steps or more. Not done.
この第 2段階目以降の溶剤添加のための手段としては、 特 に制限されるものではないが、 静的混合素子を いることが 好ましい。 即ち、 充分な混合能力を有し、 摺勣部を持たない 装置としてこれらが推箕される。 この静的混合素子のタィ プ に特に制限はな く 、 従来公知のものでも、 又はこれらの改良 型でもよい。 公知のタイ プの例としては、 ケニックス社のス タティ フ ク ミキサー、 スルザ一社のスルザ一 ミ キサー、 東レ 社のハイ ミキサー等がある。 ' • 本発明においては、 ポ リ マーは混合の初期に予め一部の溶 剤と混合されており、 その粘性が小さ く なっており 、 更に加 えられる溶剤との親和力も大き く なっているので、 静的混合 素子における圧損は小さ く 、 均一溶液が容易に得られる。 従 つて、 静的混合素子の形状や段数に対する 自由度 大き く 、 適宜に選択できる。 The means for adding the solvent after the second stage is not particularly limited, but it is preferable to use a static mixing element. In other words, these are assumed to be devices that have sufficient mixing capacity and do not have a sliding part. The type of the static mixing element is not particularly limited, and may be a conventionally known type or an improved type thereof. Examples of known types include Kenix's Static Mixer, Sulza's Mixer, and Toray's High Mixer. ' • In the present invention, the polymer is preliminarily mixed with a part of the solvent in the early stage of mixing, the viscosity is reduced, and the affinity with the added solvent is also increased. The pressure loss in the static mixing element is small, and a uniform solution can be easily obtained. Therefore, the degree of freedom with respect to the shape and the number of stages of the static mixing element is large and can be selected as appropriate.
又、 本穽明の方法では、 用いるボ リ マーに応じて、 任意の 溶剤が採用される。 即ち、 フ ラ ッ シ ュ紡糸から網状織維を得 るために用いられる公知のボ リ マ — Z溶剤の組み合わせが可 能であり 、 溶剤と しては、 塩化メ チ レ ン、 ト リ ク ロ 口 フルォ ロ メ タ ン、 ト リ ク ロ 口 ト リ フノレオ ロ ェタ ン等のノ、ロゲン化炭 化水素等が用いられる。 そしてこれらは混合物であってもよ い  Further, in the method of the present invention, an arbitrary solvent is employed depending on the polymer used. That is, a combination of a well-known polymer and a Z solvent used for obtaining a network fiber from a flash spinning can be used. Examples of the solvent include methylene chloride, and trichloride. Fluoromethane (b), Tricyclone trifrenoleuroethane, hydrogenated hydrocarbons, etc. are used. And these can be mixtures
本発明の目的はフ ラ ッ シ ュ紡糸からの網状繊維を得る こ と にあり 、 本発明におけるポ リ マーと溶剤の量比は、 こ の目的 の範囲内で任意に選択する こ とができ る。 この観点から、 網 状識維を得るための紡出溶液のボ リ マー濃度は好ま し く は 5 〜 2 0 w t %である。  An object of the present invention is to obtain a reticulated fiber from flash spinning, and the ratio of the polymer and the solvent in the present invention can be arbitrarily selected within the range of the object. You. From this viewpoint, the polymer concentration of the spinning solution for obtaining the network is preferably 5 to 20 wt%.
従って本発明に示される溶剤を多段階で添加する方法では、 連続して供給されるポ リ マーに対して、 最終的な紡出溶液の ポ リ マ ー濃度となるために必要な溶剤量を分割して注入する。 実質的に多段階で添加するため、 各段で全溶剤量のう ち 1 〜 9 9 %の範囲の溶剤量が添加される とよい。 第一段目で 1 〜 9 0 %の溶剤が添加される こ とが好ま し く 、 5〜 8 0 %がさ らに好ま しい。 そして、 必要な残り の溶剤が後段で添加され るが、 これらを更に分割して添加することも任意であり、 分 割法は任意に選択されてよい。 ' Therefore, in the method of adding a solvent in multiple stages according to the present invention, the amount of the solvent necessary for achieving the final polymer concentration of the spinning solution is determined for the continuously supplied polymer. Divide and inject. Since the addition is carried out in substantially multiple stages, it is preferable to add a solvent amount in the range of 1 to 99% of the total solvent amount in each stage. Preferably, 1 to 90% of the solvent is added in the first stage, more preferably 5 to 80%. Then, the necessary remaining solvent is added at a later stage. However, it is also optional to add these in a more divided manner, and the dividing method may be arbitrarily selected. '
高密度ポリ ヱチレンと F — 1 1 との系のフラ ッ シュ紡糸に ついて前述の条件を具体的に説明する。 メ ル トイ ンデックス ( . I . ) で表現した、 搿いられるポリ マーの分子量は、 The above-mentioned conditions will be specifically described for flash spinning of a system of high-density polyethylene and F-11. The molecular weight of the polymer, expressed in melt index (.I.), Is
I 0 (重量平均分子量約 7 x lO 4 )以下好ましく は 1 (重量平 均分子量約 15 x 10つ以下、 更に好ましく は 0. 8 (重量平均分 子量 16 X 10 4 )以下であって、 0. 05 (重量平均分子量約 40 X 104)まで用いることが出来る。 ' 特に好ましい範囲としてメ ル ト イ ンデ ッ ク ス 1. 0から 0. 1 が推奨できる。 特に好ましい範囲としてメル トイ ンデックス にて 0. 8力、ら 0. 3がよい。 . このポリマーは押出機にて 200でから 300での範面で溶融 \ される。 メ ル トイ ンデックスは小さ く なるに従って押出機の 加熟温度は高く設定する必要がある。 用いるスク リ ユー形状 は通常用いられるスク リ ユ ーネジピッチとスク リ ュ一径とが 一致した等ピッ チ構造のものでよいが、 高分子量 (M l が小 さい) のポリ マーでは、 供給部の長さを大き く する必要があ る。 又、 更に溶融を容易に、 且つ速やかに行うために圧縮部 の終り と計量化部の始まりの所に特別に剪断作用を加え、 溶 融を完了させるスク リ ユ ー ミキシングゾーンがあってもよい ボリ マーの溶融が完全に終るとポリマー溶解域に入る。 ポ リマ—溶解域には溶剤注入口があり、 こ 、から溶剤が注入さ れる。 溶剤の注入圧力はポリ マー溶解域の圧力に応じて定ま る。 このポリ マー溶解域の圧力は均一ボリ マ ー溶液の作成に 重要であり 、 従って、 ボ リ マーの分子量に応じて定ま る。 ポ リ マーの分子量に対応してボ リ マー溶解域の圧力は定ま り 、 こ れに対応して溶剤注入圧力が定ま る。 従って、 最高酎圧を 高く し (ί列えば 500 kg / cm2 · G程度) 圧力に無閬係に一定 容積を送り 出すポ ンプを用いる とよい この ί列と してプラ ン ジ ヤ ーボ ンプがある。 I 0 (weight average molecular weight of about 7 × 10 4 ) or less, preferably 1 (weight average molecular weight of about 15 × 10 or less, more preferably 0.8 (weight average molecular weight of 16 × 10 4 ) or less; It can be used up to 0.05 (weight-average molecular weight of about 40 × 10 4 ). 'A melt index of 1.0 to 0.1 can be recommended as a particularly preferred range. The polymer is melted in an extruder in the range of 200 to 300. The melt index is increased by 0.8 as the force decreases. The ripening temperature needs to be set high The screw shape used may be a pitch structure with the same screw screw pitch and screw diameter that are usually used, but the high molecular weight (Ml is small) Polymer requires a longer feed section In addition, there may be a screw mixing zone that applies a special shearing action at the end of the compression section and at the beginning of the metering section in order to make the melting easier and faster, thereby completing the melting. When the polymer has completely melted, it enters the polymer dissolution zone.The polymer dissolution zone has a solvent inlet through which solvent is injected.The solvent injection pressure depends on the pressure of the polymer dissolution zone. The pressure in this polymer dissolution zone is used to create a homogeneous polymer solution. It is important and therefore depends on the molecular weight of the polymer. The pressure in the polymer dissolution zone is determined according to the molecular weight of the polymer, and the solvent injection pressure is determined correspondingly. Therefore, it is advisable to use a pump that raises the maximum shochu pressure (approximately 500 kg / cm 2 · G in a row) and pumps out a constant volume regardless of the pressure. There is a pump.
又注入する溶剤は加熟してもよいし 加熟しな く て もよい 力 少し加熱した方が混合 · 溶解を安定して行えるので好ま しい。 えば、 溶剤の種類にもよる力 、 フ ロ ン 一 1 1 な ら 5 0 てから 200 °cの温度範囲である。  The solvent to be injected may be ripened or may not be ripened. A little heating is preferred because mixing and dissolving can be performed stably. For example, the force depending on the type of the solvent is within a temperature range of 50 ° to 200 ° C. for fluorocarbons.
:;容剤の注入口にはポ リ マーの逆流を防止する逆止弁を取り つけ 'る とよい。 こ の逆止弁は通常用い られる構造のものでよ いが、 ボ リ マ —が詰つた時に掃除し易い構造のものが好ま し い。 更 この弁を加熱する とよい。  It is advisable to install a check valve at the filler inlet to prevent polymer backflow. The check valve may be of a commonly used structure, but preferably has a structure that is easy to clean when the boiler is clogged. Further heating this valve is recommended.
次にポ リ マ ー溶解域の圧力であるが、 この領域の圧力は溶 蝨したボ リ マーで完全に充満された地点、 即ち溶剤入口の少 し前、 ス ク リ ュ ーのネ ジの ピ ッ チ数で云えば 2 〜 3 ピ ッ チ前 から始ま り 、 減圧室オ リ フ ィ スに至るまでの領域の圧力であ る。  Next, the pressure in the polymer dissolution zone, the pressure in this area is the point at which it is completely filled with the decayed vol- ume, that is, shortly before the solvent inlet, the screw in the screw of the screw. In terms of the number of pitches, it is the pressure in the area starting from two to three pitches before reaching the decompression chamber orifice.
この圧力はポ リ マーが高密度ボ リ ヱチ レ ンの場合には次の よ う になる。 即ち、 メ ノレ ト イ ンデ ノ ク ス ( M i ) 5. 0 のポ リ マ 一であるな ら 1 50 kg / crf · Gから 350 kg Z cn! · G程度、 1. 2 のポ リ マ一 な ら 1 60〜 360 kg cm2 - G程度、 0. 8 のボ リ マ -なら 1 70〜 400 kg / ci ' G 、 0. 3 のポ リ マーであれば 200〜 450 kg d - G 、 0. 3 を越えて 0 . 03位までな らば 250 〜500 kg / d · Gの加圧によって混合 ' 溶解は充分に行う こ とができる。 This pressure is as follows when the polymer is a high-density polyethylene. In other words, if it is a polymer with a mole index of 5.0 (M i), it is about 150 kg / crf · G to 350 kg Z cn! Ma in a flat et 1 60~ 360 kg cm 2 - about G, 0. 8 the volume Li Ma - if 1 70~ 400 kg / ci 'G , 450 200~ if port re-mer 0. 3 kg d - G, if it goes beyond 0.3 and reaches 0.03rd place, 250 Mixing and dissolving can be performed sufficiently by applying a pressure of ~ 500 kg / dG.
一般に高密度ポリ エチ レンに限らずポ マ一の分子量が高 く なれば、 ポリ マ—溶解域の圧力を高く する必要がある。 従 つてスク ュー抨出機を じめ、 特殊な瀵钹的混合部、 静的 混合部等各装置の耐圧は充分高く してお く必要がある - に Sf圧強度は 200〜 750 g / οέ · Gあることが好ま しい。  In general, not only high-density polyethylene, but also the higher the molecular weight of the polymer, the higher the pressure in the polymer dissolution zone. Therefore, it is necessary to ensure that the withstand pressure of each device such as a special mixer, static mixer, etc. is sufficiently high, including the screw unloader-and the Sf pressure strength is 200 to 750 g / οέ. · G is preferred.
従って、.各フラ ンジ部及び圧力 · 蕋度等の検出篛のシー ル には充分に留意する必要がある。 フ ラ ンジ部のシ―ルとして は金属中空 0 リ ング形が使い易い。 又検出 ¾のシールは金属 接触 が便利である。  Therefore, it is necessary to pay close attention to the seals of each flange and the detectors for the pressure and tinge. A hollow metal 0 ring type is easy to use as a seal for the flange. The metal seal is convenient for the seal of the detector.
又、 スグ 1; ュ 了铀方向のシ—ルは溶融したボリ マーにて流 体シール力 <行われる, 徒って、 少く とも、 ス ク リ ユーのネジ の ピ ッ チ数にて、 ピ ッ チ前の位置における圧力ば溶剤注入 部の圧力より高く なければならない。 このために、 溶剤注入 部の空間体積ば、 押出機ホ ッパー側の部分の空間体積より大 き くするとよい。 即ち、 溝深さを深く すればよい。 こ のよ う な搆成により溶剤注入口の直前はボリ マー溶解域の圧力よ 'り も高く なる。 この圧力勾配によって溶剤は完全にシールされ、 ホッパー側に逆流、 もしく は噴出することがない。 この部分 の圧力を常に最大に保つ好ましい方法としてポリ マー溶解域 のいずれかの地点にギヤ一ポンプを設置するとよい。 最も好 ましい設置点は特殊機棱混合部の後がよい。 こ のよ うな構成 によ ¾、 ボリ マー融体による流体シ—ルばより完全なものと なる。 · 溶剤注入部にてボ リ マー と溶剤は合流し、 引铙いて特殊な 機械混合部に流入する。 こ 0部分は、 好ま しい形態と して、 ス ク リ ュ ー铀と同一蝕を形成している。 従って、 回転数はス ク リ ュ ー回転数と同一となる。 然し、 この機 混合部 大坻 の場合ポ ンプ能力はな く 、 混合攪拌機能が主となる。 In addition, the sealing in the direction of the end of the screw 1 is performed with a fluid sealing force of the melted vol- mer, so that at least the number of screws of the screw of the screw is used. The pressure at the position before the touch must be higher than the pressure at the solvent injection section. For this reason, the space volume of the solvent injection section should be larger than the space volume of the extruder hopper side. That is, the groove depth may be increased. Due to such a structure, the pressure immediately before the solvent injection port is higher than the pressure in the polymer dissolution zone. Due to this pressure gradient, the solvent is completely sealed and does not flow back to the hopper or blow out. As a preferred method to keep the pressure in this area always maximum, a gear pump should be installed at any point in the polymer melting zone. The most preferred installation point is after the special equipment mixing section. With such a configuration, a fluid seal made of a polymer melter is more complete. · At the solvent injection section, the polymer and solvent merge and pull into a special mechanical mixing section. This 0 portion has the same shape as the screw as a preferable form. Therefore, the rotation speed is the same as the screw rotation speed. However, in the case of the mixing unit of this type, the pump capacity is not provided, and the mixing and stirring function is mainly used.
こ の場合、 ポ ンプ能力はス ク リ ュ ー押出機及び';'容剤ボ ンプ に負担される。 ス ク リ ュ ー押出機のボ ンプ能力 ス ク リ ユ ー の計量化部にある。 従って、 この部分の長さはポ リ マー ^解 域の圧力が高 く なるに従って、 長 く 取る必要がある。 '  In this case, the pump capacity will be borne by the screw extruder and the ';' Bump capacity of screw extruder It is in the metering section of the screw extruder. Therefore, it is necessary to increase the length of this part as the pressure in the polymer solution becomes higher. '
璣滅的混合部の温度は、 ス ク リ ュ ー押出機の温度よ り も低 く 設定する とよい。 持にフ ラ ッ シュ紡糸するポ リ マ一 Z溶剤 系は前 ΐέした様に高分子溶液論で云う L C S T型溶液なの.で、 低 ■ 温 · 高圧型の溶解挙勣を示すので、 必要以上にこの部分の温 ' 度を高める必要はない。 ポ リ マー劣化防止の袁味から も適正 , な温度が好ま しい。 高密度ボ リ ヱチ レ ンの例では、 170〜  The temperature of the destructive mixing section is preferably set lower than the temperature of the screw extruder. As described above, the solvent system used for flash spinning is a LCST-type solution as described in the polymer solution theory. There is no need to increase the temperature of this part. The appropriate temperature is also preferable from the viewpoint of preventing polymer deterioration. For high-density polyethylene, 170-
220 で であり 、 より好ま し く は 1 80〜 200 てである。 220, more preferably 180-200.
こ の特殊機械混合部の長さ、 形態は前述した様に種々 ある が、 混合能力の点からは長 く した方がよい。 又形態はダルメ ー ジ型、 も し く はニーダー型、 リ ヤー型がよいが、 この形 態を採用 し、 特にその長さを長 く する と負荷が大き く なり 、 璣據的発熱が大き く なる傾向がある。 こ の発熱を抑止するた めに、 ピ ン型混合構造に、 その一部を変えてもよい。  Although the length and form of the special mechanical mixing section are various as described above, it is preferable to increase the length in terms of mixing capacity. The form is preferably a dull-mage type, or a kneader type or a rear type, but this type is adopted. In particular, if the length is increased, the load becomes large, and a large amount of heat is generated. It tends to be. In order to suppress this heat generation, a part thereof may be changed to a pin-type mixed structure.
一般に.、 吐出量が大き く なる程、 そ してポ リ マーの分子量 が高 く なる程、 こ の部分の長さは大き く する こ とが好ま しい。 又、 多段に溶剤を添加する場合は、 この特殊機械混合部へ の溶剤添加が第 1段目となる。 この場合、 溶剤添加量の配分 を考慮する必要がある。 In general, it is preferable to increase the length of this portion as the discharge rate increases and as the molecular weight of the polymer increases. When adding a solvent in multiple stages, go to this special mechanical mixing section. Is the first stage. In this case, it is necessary to consider the distribution of the amount of solvent added.
一般にボリ マ —の分子量が大き く なる程、 第 1段巨の溶剤 添加量を増加した方がよい。 特に大きな障害が生じなければ、 - 各添加個所で使用される溶剤ポンプ形式を同一とするために、 , 等分配方式の溶剤添加がよい。  In general, the larger the molecular weight of the polymer, the better it is to increase the amount of solvent added in the first stage. If there is no major obstacle,-In order to make the solvent pump type used at each addition point the same, it is better to add a solvent of equal distribution method.
高密度ポ リ エチ レ ン フ ロ ン - i 1 の系で 、 第 1段目の 添加量を全添加量の 10〜 70 %にするとよい,  In the high-density polyethylene-i 1 system, the addition amount in the first stage should be 10 to 70% of the total addition amount.
特殊な機域的混合部の次にギヤ—ポ,ンプを設けてもよい。 こ のギヤ一ポ ンプの形態については、 通常押出成形に用いら れているものでよい。 特に注意を要するのはギヤ一ポンプの . 軸シールである。 この部分での混合ポリマー溶液の粘度は 30 〜 500 セン'チポィ ズ程度であっ 、 ー舷の流体に比較して粘 度 高い。 従って、 通常のグラ ン ドシ一ルでも使用可能であ  A gear port and a pump may be provided next to the special local mixing section. The form of the gear pump may be the one usually used for extrusion molding. Of particular note is the shaft seal of the gear pump. The viscosity of the mixed polymer solution in this part is about 30 to 500 centipoise, which is higher than that of the fluid on the port side. Therefore, it can be used with a normal ground seal.
. 更に好適なシール方法としては、 初期に溶液を少し漏洩さ せるとよい- なぜならば、 漏洩により蝕の間隙にポリ マーが 析出 · 充¾され、 このポリ マーが潤滑剤の励きをするからで め ■ ο A better sealing method is to allow a small amount of the solution to leak at the beginning-because the leak precipitates and fills the erosion gap with the polymer, which encourages the lubricant. ■ ο
更にギヤ一ポンプの設置により、 以降の領域の圧力を、 更 ノ に高めることが可能となり、 溶解の程度を自由に制御出来る。  Further, by installing a gear-pump, the pressure in the subsequent area can be further increased, and the degree of dissolution can be freely controlled.
特に特殊な機械的混合部の圧力をギヤ一ポンプの回転数によ り、 自在に制御出来る。 従って、 この部分の圧力を高めて、 より高圧での溶解を実施でき、 溶解を速めることが出来る。 これらの圧力の設定は、 ポリ マー ' 溶剤の種類、 量に依って 変化するので試行錯誤法にて最適値を設定すればよい。 In particular, the pressure of the special mechanical mixing section can be freely controlled by the rotation speed of the gear-pump. Therefore, by increasing the pressure in this part, dissolution at a higher pressure can be performed, and dissolution can be accelerated. The setting of these pressures depends on the type and amount of polymer 'solvent Since it changes, an optimum value may be set by a trial and error method.
引^いて二段目の静的混合部に入る。 この二段目の静的混 合部の前に溶剤注入ロを設けた方がより好ま しい。 但し注入 口を設けな く てもよい。  Pull into the second stage static mixing section. It is more preferable to provide a solvent injection unit in front of the second-stage static mixing unit. However, the inlet may not be provided.
この溶剤注入口の構造については、 前段からの混合ボ リ マ 一溶液と新たに添加された溶剤と力く、 配管の全断面に亘つて 均一に分布するよ う に設計する こ とが肝要である。  It is important to design the structure of this solvent injection port so that the mixed polymer solution from the previous stage and the newly added solvent are powerful and evenly distributed over the entire cross section of the piping. is there.
なぜな らば、 静的混合体は層流混合となるので、 混合する  Because the static mixture becomes laminar mixing, mix
5  Five
- 1  -1
液体の粘度比が著し く 異なる場合、 溶剤を集中添加する と混 合が不充分となり 、 溶解が不完全となり 、 好ま し く ない結果 を与える。 このため全断面に均一に分布するよう にする。 例えば、.多孔板を用いて、 前段からの混合ボ リ マー溶液を あたかも " そう麵 " の如 く に溶剤中に吐出させるか又は多数 の溶剤噴出 D.を配管断面内に設ける等の工夫をする こ とが好 ま しい。  If the viscosity ratios of the liquids are significantly different, concentrated addition of the solvent will result in inadequate mixing and incomplete dissolution, giving unfavorable results. For this reason, it should be distributed uniformly over all sections. For example, using a perforated plate, the mixed polymer solution from the previous stage may be discharged into the solvent as if it were "Sou", or a number of solvent jets D. may be provided in the piping cross section. I prefer to do it.
静的混合素子と して少く と も 4 0 段が必要であり 、 このた めに静的混合素子 1 個当り の圧損は小さ く ても、 全体と して :.まかなり の圧損となる。 従って、 各単位毎にま とめて支持し、 全段数を集積し出口側にて一括して支持する形式を避ける。 この様な対策を取らないと最終段の所で座屈が生ずる場合が ある。  At least 40 stages are required for the static mixing element. Therefore, even if the pressure loss per static mixing element is small, the total pressure loss is as follows. Therefore, it is recommended to collectively support each unit, collect all stages and collectively support at the outlet side. Unless such measures are taken, buckling may occur at the final stage.
この静的混合素子も含めて配管系の温度は、 前段よ り 低め てもよい。 この部分においてボ リ マー溶液の温度が定ま るの で、 特に障害が発生しない場合は低めた方が好ま しい。 高密 度ポ リ エチ レ ンの例では 160〜 200 て、 好ま し く は ' 170〜 180 でである。 The temperature of the piping system including this static mixing element may be lower than that of the previous stage. Since the temperature of the polymer solution is determined in this part, it is preferable to lower the temperature unless a trouble occurs. 160-200 for high density polystyrene examples, preferably '170-180 It is.
更に留意すべきは、 最終混合部を出た所のポリ マ ー溶液の 圧力である。 この部分の圧力ば直接減圧室の圧力に影響を反 ぼし、 直ちに紡糸状態を左右する。  Of further note is the pressure of the polymer solution leaving the final mixing section. The pressure in this area directly affects the pressure in the decompression chamber and immediately affects the spinning state.
この最終段混合部を出た所での圧力が著しく 変動している のは、 まだポリマ一が完全に溶荊に溶解していないことを示 す。 従って、 もし圧力変勖巾が大きい場合ば、 更に混合段数 を増すか、 溶剤添加段数を増す必要がある。  Significant fluctuations in pressure at the exit of the final mixing zone indicate that the polymer has not yet completely dissolved into the melt. Therefore, if the pressure change width is large, it is necessary to further increase the number of mixing stages or the number of solvent addition stages.
一般に、 混合最終段直後、 ¾圧室直後の圧力変勣巾 5 / cm1 ' G以下が好まし く 、 更に好ま し く は 3 kg / erf · G以下Generally, the pressure fluctuation width immediately after the final stage of mixing and immediately after the compression chamber is preferably 5 / cm 1 'G or less, more preferably 3 kg / erf · G or less.
: Jのる : J Noru
この混合最終段、 滹圧室直前にフ ィ ルタ ーを設けてもよい < このフ -ィ ルターの形式には多種あるが、 瀘過面積が大き く圧 損の少ないものがよい。 一般には、 プリ 一ッ型もし:く はディ スク型の面濾過方式のものを用いるとよい。  A filter may be provided in the final stage of mixing and immediately before the pressure chamber. <There are various types of filters, but a filter having a large filtration area and a small pressure loss is preferable. In general, a pre-type or disk-type surface filtration method may be used.
更に混合領域も含めて配眚系は可能な限り潘暂部が生じな い構造とする。 滞留を生ずる死角があると劣化ボリマーが生 じ、 この劣化物が剥落してオリ フ ィ スの孔に詰まる。 これは 非常に好ましく ない結果を生じる。  In addition, the distribution system, including the mixed area, shall have a structure in which no ban part occurs as much as possible. If there is a blind spot that causes stagnation, a degraded bolimer will occur, and this degraded material will fall off and plug the orifice hole. This has very undesirable consequences.
更に、 押出機系も含めて、 フラ ンジ部、 検出端部に狭い間 隙が生じないようにする。 この部分にボリ マ —溶液が入ると 応力腐食を発生し、 ク ラ ッ クが生じ、 そこからポリ マー溶液 が噴出する場合がある。 この腐食を防止するためにば、 す食 性の高い材質を用いればよい。  In addition, make sure that there is no narrow gap in the flange and detection end, including the extruder system. If a polymer solution enters this area, stress corrosion will occur and a crack will form, from which polymer solution may erupt. In order to prevent this corrosion, a material having high corrosion resistance may be used.
引'繞いてブラ フシュ紡糸部に至る。 この部分は減圧室オリ フ ィ ス · 減圧室及び紡口オ リ フ ィ スからなる。 こ.の部の形状 寸法等については従来公知の技術に同じである。 但し、 ォ リ フ ィ ス寸法については、 ポ リ マ ー溶解域の圧力、 减圧室の圧 力を考慮して决定する。 Pulling it to the brass spinning section. This part is Wheels · Consists of a decompression chamber and a spout orifice. The shape, dimensions, and the like of this part are the same as those of a conventionally known technique. However, the dimension of the orifice will be determined in consideration of the pressure in the polymer melting zone and the pressure in the compression chamber.
圧力及び温度が最終的に紡糸状態と得られた纖維の物性に 影響する。 減圧室フ ラ ッ シ ュ紡糸部の こ の部分の圧力及び温 度は、 高密度ポ リ エ チ レ ンの場合、 4 0 kg Ζ αι! · G 1 50 kg ノ crf · G及び 1 50 1 90 cである。 この温度 ♦ 圧力の最適値 は運転条件によ つて変化し、 特にボリ 分子量の影響を強 く 受ける。 基本的.には、 なんらかの意味で、 相分離の欠点が 生ずる こ とであり 、 従って、 .運転条件と相分離状態を考慮し て減圧室の条件を決定する。  Pressure and temperature ultimately affect the spinning state and the physical properties of the obtained fiber. The pressure and temperature of this part of the decompression chamber flash spinning section is 40 kg Ζ αι! · G 1 50 kg cr crf · G and 1 501 in the case of high-density polyethylene. 90 c. The optimum value of the temperature ♦ pressure varies depending on the operating conditions, and is particularly affected by the molecular weight of the polymer. Basically, in some sense, a disadvantage of phase separation occurs. Therefore, the conditions of the decompression chamber are determined in consideration of the operating conditions and the state of phase separation.
第 5.図か.ら第 1 0図までに本発明の網状織維を製造する方 法を実施する装置の実施例を示,す。  FIG. 5 to FIG. 10 show an embodiment of an apparatus for carrying out the method for producing a reticulated fiber of the present invention.
第 5 図は本発明の典形的な工程のフ ロ ーチ ヤ — トを示し、 第 6 図はこれに使用される ス ク リ 押出機の内部を示す。 即ち、 第 5 図に示すよ う に、 製造装置には押出機 4 レル 5 及び溶剤ポ ンプ 6 、 紡糸装置 7 が設けられてい る 。 押出機 4 にてボ リ は溶融され、 レノレ 5 内の溶融ボ リ マ一にて 封鎖されたボ リ 溶解域に送られる。 別置の溶剤ポ ンプ 6 よ り溶剤がポリ マーの逆止弁 (図示せず) を通して前記ポ リ 溶解域に送り込まれる。 レル 5 内の回転する ス ク リ —によ り溶剤とポ リ は混合 · 溶解されて均一なポ リ 溶液となり.、 紡出装置 7 に送液される。 こ の紡出装置 7 は減 圧オ リ フ ィ ス、 減圧室及び紡ロォ リ フ ィ ス、 加熱装置からな ¾、 こ おいて紡口オリ フィスを通してボリ マ ー溶液は低 圧域に紡岀され、 連繞した網状織維となる。 FIG. 5 shows a flow chart of a typical process of the present invention, and FIG. 6 shows the inside of a screw extruder used for this. That is, as shown in FIG. 5, the manufacturing apparatus is provided with an extruder 4 barrel 5, a solvent pump 6, and a spinning device 7. The melt is melted by the extruder 4 and sent to the melt zone where the melted polymer in the renole 5 is closed. Solvent is pumped from a separate solvent pump 6 through a polymer check valve (not shown) into the poly-dissolution zone. The rotating screw in the barrel 5 mixes and dissolves the solvent and the poly to form a uniform poly solution, which is sent to the spinning device 7. The spinning device 7 comprises a decompression orifice, a decompression chamber and a spinning orifice, and a heating device. At this point, the polymer solution is spun into a low-pressure region through the spout orifice, forming a continuous mesh fabric.
押出機バレル 5 は、 第 6図に示す様にバレル内にスク リ ュ — 1 i があり、 このスク リ ユーは供.袷部 1 2、 圧缩部 1 3 、 計量化部 14 , 15 , 16からなっている。'この計量化部を更に钿 かく見ると、 計量化部 1 4 は圧縮部丄 3から来た溶融ポリ マ —にて充¾されており、 溶 ばホッパー口 1 了へ逆流する こ と 出来ない。 又計量化部 1 55 4は前部 1 6及び後部 1 4よ も遘深さが大き く そのために計量化部に圧力の極小部を形成 している。 このために、 溶剤流入口 1 8 より の溶剤は容易に 抨出機バレル内に注入される。 計量化前部 1 4から来た溶融 ポリ マ —と流入口 1 8から来た溶剤ば'計量化後部 1 6 にてス ク リ ューが回転していることにより混合 * 溶解され、 ポリ マ 一溶液となつて岀ロ開口部 2 0から流出する。 計量化部 14 , 15 , 16はポリマー流量、 溶剤流量により遺宜最適化される。  The extruder barrel 5 has a screw 1i in the barrel as shown in Fig. 6, and this screw is provided with a lined section 12, a compression section 13 and a weighing section 14, 15, It consists of 16. 'Looking closer at this metering section, metering section 14 is filled with molten polymer coming from compression section 3 and cannot flow back to hopper port 1 if melted . In addition, the measuring section 1554 has a larger depth than the front section 16 and the rear section 14, so that a minimum pressure portion is formed in the measuring section. For this reason, the solvent from the solvent inlet 18 is easily injected into the extractor barrel. The molten polymer coming from the front of the metering section 14 and the solvent coming from the inlet 18 are mixed by the screw rotating at the rear section 16 of the metering. The solution flows out of the opening 20 as a solution. The metering units 14, 15, 16 are optimized by the polymer flow rate and the solvent flow rate.
第了面、 第 8図は押出機の好ましい他の実施例である。  FIG. 8 shows another preferred embodiment of the extruder.
第 7図ば、 本発明の実施に用いる押出機、 及びそのスク リ ユ -と共輪の特別な混合構造体 (混合ミキサ一) の構造を示, 士 本装置ば、 ポリ マ—の投入口 1 7からポリ マーが供給され、 躯動系 1 9 の面転によつてスク リ ュー 2 1 で溶融され、 前方 (図で右方) に押出される。 一方バレル 5 に設置された溶剤 注入口 1 8 より溶剤が添加され、 混合構造体 (ダルメ ージ形) 2 2によつて両者は混合され、 混合物の出口開口部 2 0 に到 第 8 図は、 第 7 図とは異なる形状の混合構造体 (ダルメ 一 ジ形及びピ ン形) 2 2 ' 及び 2 2 " を有する場合の構造図で め " Fig. 7 shows the structure of the extruder used to carry out the present invention and the special mixing structure (mixing mixer) of the screw and the co-wheel. The polymer is supplied from 17 and is melted by the screw 21 by the face rolling of the driving system 19 and extruded forward (to the right in the figure). On the other hand, the solvent is added from the solvent inlet 18 installed in the barrel 5, and the two are mixed by the mixing structure (dalmage type) 22 to reach the outlet opening 20 of the mixture. Fig. 8 is a structural diagram with mixed structures (Dalmage type and Pin type) 22 'and 22 "having different shapes from Fig. 7.
本発明においては、 出口開口部 2 0 から出て く る混合物を そのまま紡出装置に導いた り 、 或るいは、 こ の後溶剤を更に 添加して混合操作を加えてから紡出装置に導き、 網状繊維を 得る。 .  In the present invention, the mixture coming out of the outlet opening 20 is directly guided to the spinning device, or after that, a solvent is further added and a mixing operation is performed, and then the mixture is guided to the spinning device. To obtain a reticulated fiber. .
押出機スク リ ュ 一の径は、 製造する網状織維の生産量に応 じて選定され、 こ れと同一铀の構造体の径は、 押出機のス ク リ ュ 一径と同一であっても異なっていてもよい。 又、 構造体 の長さはそれぞれの場合において、 必要混合程度や、 滞留時 間を加味したホ ール ドア ッ プ体積から適宜任意に决定される < 第 9 図及び第 1 0 図は本発明の更に好ま しい実施態様 (装 置) を示す概略のフ ロ ー シ ー トであり 、 符号 4 は押出機 5 は バ レル、 8 はこれと同一軸上にある特殊混合部、 6 は溶剤ボ ン プ、 了 は紡出装置、 9 は静的混合素子からなる混合部を示 第 9 図は多段混合の例であり 、 即ちポ リ マーは符号 8 の特 殊混合部にて混合 · 溶解したのち、 更に静的混合部 9 にて混 合 · 溶解される。  The diameter of the screw of the extruder is selected according to the production amount of the mesh fiber to be produced, and the diameter of the same structure is the same as the diameter of the screw of the extruder. Or different. In each case, the length of the structure is arbitrarily determined depending on the required mixing degree and the volume of the hole-up in consideration of the residence time. <FIGS. 9 and 10 show the present invention. 4 is a schematic flow chart showing a further preferred embodiment (equipment) of the present invention, wherein reference numeral 4 denotes an extruder 5, a barrel 8, a special mixing section 8 coaxially with the extruder 5, and a solvent bottle 6. 9 shows a mixing section composed of a static mixing element, and FIG. 9 shows an example of multi-stage mixing, that is, the polymer was mixed and melted in a special mixing section denoted by reference numeral 8. Thereafter, the mixture is further mixed and dissolved in the static mixing section 9.
第 1 0 図は多段に溶剤を添加し、 その都度混合 * 溶解させ る プロ セ ス のフ ロ ー シー トを示す。 即ち、 第 1 段混合部 8 に 第 1 段溶剤ポ ンプ 6 より溶剤を添加混合 ' 溶解し、 更に第 2 段混合部 9 にて第 2 段ポ ンプ 6 よ り溶剤を添加混合 · 溶解し 所定のポ リ マー瀵度のポ リ マー溶液を得る。 以上説明したように、 分類^ _に属する本発明は、 ポリ マー を溶解するための攪拌機構の封鎖が確実に行えるので、 高圧Figure 10 shows the process flow sheet in which the solvent is added in multiple stages and mixed and dissolved each time. That is, the solvent is added to the first-stage mixing section 8 from the first-stage solvent pump 6, mixed and dissolved, and further added and mixed and dissolved in the second-stage mixing section 9 from the second-stage pump 6. To obtain a polymer solution of the same polymer concentration. As described above, according to the present invention belonging to the class ^ _, since the stirring mechanism for dissolving the polymer can be reliably closed,
' 条拌を作り易いことと、 混合効果が大き く 、 また溶液の熱力 , 学的特性を利用したポリ マーの溶解を行うために、 短時間で δ ポリ マ一が溶解でき、 ポリ マーの劣化が抑制されることのた めに、 高分子量の、 かつ分子量分布の狭いポリ マーが均一溶 解できるので、 また、 高圧下の紡糸により フラ ッ シュ力を極 めて高く することができるので、 4 0以下の長周期散乱強度 比を有した高密度ボリ エチレン系め三次元網状織維が生成さ0 れ、 更に、 150 A以上 200 Α以下の長周期を有する三次元網 状織維が得られ、 -更に、 3 0 nf ノ g以上の比表面積を有する 三次元網状織維が生成される。 ( i) - 次に本発明.の三次元網状織維を製造する 法で前記分類 1 : に属する高圧力差活性化法を用いる三次元絹扰鐡維の製造方5 法を説明する。 ' '' Δ polymer can be dissolved in a short time to dissolve the polymer in a short time because the mixing effect is large, and the mixing effect is large, and the polymer is dissolved using the thermal power and chemical characteristics of the solution. Since high molecular weight and narrow molecular weight distribution of the polymer can be dissolved uniformly, and the flashing force can be extremely increased by spinning under high pressure, A high-density polyethylene-based three-dimensional network fiber with a long-period scattering intensity ratio of 40 or less is generated, and a three-dimensional network fiber with a long period of 150 A or more and 200 mm or less is obtained. -In addition, a three-dimensional network fiber having a specific surface area of 30 nf ng or more is produced. (I)-Next, a method for producing a three-dimensional silk fiber using the high pressure differential activation method, which belongs to the above-mentioned classification 1: in the method for producing a three-dimensional reticulated fiber of the present invention, will be described. '
分類 に属する本発明の製造方法ば、 前述のように、 高密 度ボリ エチレン系ポリマーとフロン一 1 1 より成る高圧の均 一溶液を、 減圧ォリ フ ィ ス、 減圧室及び紡糸ノ ズルから成る 紡 ffi装置も裟て、 低圧域へフ ラ ッ シュ し、 高密度ポリ ヱチレ0 ン系ボリ マーの網状織維を得る方法において、 减圧ォリ フ ィ スの前後で、 高圧力差を発生させて、 蒗体を活性化すること を特徴.とする。  According to the production method of the present invention belonging to the category, as described above, a high-pressure uniform solution comprising a high-density polyethylene-based polymer and chlorofluorocarbon is composed of a decompression orifice, a decompression chamber, and a spinning nozzle. In the method of extending the spinning device and flashing to a low pressure range to obtain a high-density polyethylene-based polymer network weave, a high pressure difference is generated before and after the high pressure orifice. And activates the body.
さ らに分類 に属する本発明の製造方法は、 '减圧室の条件 をボリ マー液が二液相領域に属するように定めて紡出する従5 来公知の方法とは異なり、 より高圧の一液相領域からの紡出 を採用 しているため、 紡出時の減圧室の圧力をよ り高圧にで き る という 明らかな優位性を有している。 The production method of the present invention, which belongs to a further class, differs from the conventionally known method of spinning by setting the conditions of the pressure chamber so that the polymer liquid belongs to the two liquid phase region. Spinning from one liquid phase region As a result, there is a clear advantage that the pressure in the decompression chamber during spinning can be increased.
したがって本発明によれば、 従来公知の技術よ り も大きな 溶剤のフ ラ ッ シュ力を得る こ とができ、 よ り 高度に延伸 ' 配 向された高強度の 維を得る こ とができ る。 又、 減圧室の圧 力を高め られる こ とから、 ポ リ マーノ溶剤の分解が生じない 比較的低い温度での紡糸で高強度の鐡維を得る こ とが可能と フ 本発明に云う液体とは、 一液相溶液 ' 二液相溶液の両方を 意味する。  Therefore, according to the present invention, it is possible to obtain a higher solvent flashing force than conventionally known techniques, and it is possible to obtain a high-strength fiber that is stretched and oriented more highly. . Further, since the pressure in the decompression chamber can be increased, it is possible to obtain high-strength steel by spinning at a relatively low temperature at which the decomposition of the polymer solvent does not occur. Means both one-phase solution and two-phase solution.
本発明に云う高圧力差とは、 例えば減圧室の入口にォ リ フ イ スを設けて、 このオ リ フ ィ ス'によ り圧力差を発生させる際 に従来の方法では実施されていない程の高い圧力差を意味す る。 例えば少 く も 8 0 kg / oi G以上の圧力差を意味する。 The high pressure difference referred to in the present invention means that, for example, an orifice is provided at an inlet of a decompression chamber and a pressure difference is generated by this orifice ', which is not implemented by a conventional method. A high pressure difference. For example, it means a pressure difference of at least 80 kg / oi G or more.
活性化とは一液相から二液相に相分離する場合、 相分離が 容易に発生する様に、 液体に熟力学的ゆらぎを与える こ とを 意味する。 例えば、 密度などのゆらぎを生じさせる こ とを意 味する。 活性化されているか否かは、 光学窓付き圧力,容器に て光の透過を測定する こ とに依って知る こ とが出来る。 即ち、 一液相溶液に高圧力差を発生させる時透過光が全 く 透過しな く なる。 しかる後又透明な溶液となる。 この一時的なゆらぎ が液体の活性化を意味する。  Activation means that when a phase separates from one liquid phase to two liquid phases, the liquid undergoes kinetic fluctuations so that phase separation occurs easily. For example, it means that fluctuation such as density occurs. Whether it is activated or not can be determined by measuring light transmission through a pressure vessel with an optical window and a container. That is, when a high pressure difference is generated in the one liquid phase solution, the transmitted light is not transmitted at all. After a while, a clear solution is obtained. This temporary fluctuation means activation of the liquid.
本発明において、 従来推奨されていない一液相領域からの 紡出によ つて高度にフ イ ブリ ル化された高強力な網状織維が 得られる こ とは、 従来予想し得なかったこ とである。 これは、 本発明でば活性化を液体にほどこすことに依って 始めて可能となったものであり、 本発明でばこの活性化を液 体に高圧力差を発生させることに依って達成した。 In the present invention, it was not previously expected that a highly fibrous, high-strength reticulated fiber could be obtained by spinning from the one-liquid phase region, which has not been conventionally recommended. is there. In the present invention, this was made possible only by applying activation to a liquid, and in the present invention, this activation was achieved by generating a high pressure difference in the liquid. .
この圧力差 必ず液体を活性化する程度に高く なければな らず、 用いるポリ マ一や濃度等に応じて任意に選定されるが、 例えば少なく とも 3 0 kg / erf Gとすることが好ましい。 本- 明 、 滹圧ォリフ - < スにおいて急激に大きな圧力差を発生さ せるこ とによって溶液に何らかの構造変化をもたらして ^圧 室に導き、 紡糸ノ ズルより高圧で吐出する方法である。 この 丄 0 構造変化は高圧力差による熱力学的ゆらぎに依って生じてい る。 この熱力学的ゆらぎば一般的には例えば密度のゆらぎと This pressure difference must be high enough to activate the liquid, and is arbitrarily selected according to the polymer used, the concentration, and the like. For example, it is preferably at least 30 kg / erf G. In the present invention, a large pressure difference is suddenly generated in the 滹 pressure orifice, causing some structural change in the solution, leading to a ^ pressure chamber, and discharging the solution at a higher pressure than the spinning nozzle. This 丄 0 structural change is caused by thermodynamic fluctuation due to high pressure difference. This thermodynamic fluctuation generally means, for example,
* レ、われている。 * Re, it is.
" 本発明でいうポリ マーノ溶剤の一液相 · 二液相の,境界条件 h を示す相図は、 ポ リ マー溶液の相平衡を測定することによ つ "The phase diagram showing the boundary condition h of one liquid phase and two liquid phases of the polymer solvent referred to in the present invention is obtained by measuring the phase equilibrium of the polymer solution.
15 て得られ、 これらば通常の曇り点を観察する方法によって求 め -ちれる。 即ち、 光学窓を有する高温高圧容器を用い、 一液 相の場合と二液相の場合の透過光の変化を、 可視光線又ばレ 一ザ一光線で観測し、 その境异 (曇り点) 条件を求めること によって得られる。 These can be determined by the usual method of observing the cloud point. That is, using a high-temperature and high-pressure vessel having an optical window, the change in transmitted light in the case of one liquid phase and in the case of two liquid phases is observed with a visible light or a single laser beam, and the boundary (cloud point) Obtained by finding conditions.
20 これらの曇り点ば、 ボリ マーの種類 (分子量、 分子量分布 や分 ¾度) 、 溶剤の種類、 溶液 Φのポリ マー濃度、 温度、 及 び圧力が要因である。 そして通常の方法に従い、 ポ リ マーノ 溶剤の種類及び瀵度を定めた溶液を用いた場合の平衡的な曇 り点の発生を観察することによって求められる。 即ち、 溶液 20 These cloud points are due to the type of polymer (molecular weight, molecular weight distribution and molecular weight), the type of solvent, the polymer concentration of the solution Φ, the temperature, and the pressure. Then, in accordance with the usual method, it is determined by observing the occurrence of an equilibrium cloud point when a solution in which the type and the degree of the polymer solvent are determined is used. That is, the solution
25 を一定温度に保ちつつ圧力を徐 に変化させる。 又溶液を一 定圧力に保ちつつ温度を徐々 に変化させる。 あるいは場合に ' よ って温度と圧力を同時にゆつ く り と変化させる等の方法に よ って測定され、 いずれの方法が探られてもよい。 The pressure is gradually changed while keeping 25 at a constant temperature. Also remove the solution Gradually change the temperature while maintaining a constant pressure. Alternatively, depending on the case, the temperature and the pressure may be simultaneously and slowly changed, or the like, and any method may be searched for.
本発明における具体的な溶液の活性化方法は、 第 1 図の A : -→ B に示すよ う に、 大きな圧力変化を意味する。 即ち Aは 溶液の圧力であり 、 B 减圧室での圧力を示す。 そ して この よ う な大きな圧力差から得られる網状鐡維は先に示したよ う 従来にないす ぐれた織維であり 、 持に第 1 図に例示するよ う に B点を一液相に属させ ^紡糸方法は好ま しい。 The specific solution activation method in the present invention means a large pressure change, as shown in A : -→ B of FIG. That is, A is the pressure of the solution and B is the pressure in the pressure chamber. And, as described above, the mesh steel obtained from such a large pressure difference is a non-conventional weaving fiber, and as shown in Fig. 1, point B is one liquid phase. The spinning method is preferred.
本発明の製造方法において、 ボ リ マ—溶液中のポ リ マー ;:農 度は、 4〜 2 5 w t %であり 、 好ま し く は 5〜 2 0 w t %である。  In the production method of the present invention, the amount of the polymer in the polymer solution is 4 to 25 wt%, and preferably 5 to 20 wt%.
以下本発明の分類 1に属する紡糸方法を具体的に説明する。 バッ チ式では、 一般に、 攪拌機装置のあるォー ト ク レーブを 用いる。 ォ — ト ク レ ブは、 ポ リ マー溶液混合攪拌用の攪拌 機、 オ ー ト ク レープ内温度検出用測温抵抗体、 な らびにォ ー ト ク レーブ内圧力検出用ダイ ヤフ ラ ム式圧力計を備えている。 一般的操作においては、 ォー ト ク レーブ中にポ リ マーを添加 し、 褅め付けボル ト によ り ォ ー ト ク レーブの一部分をなす蓋 と胴部を接続する。 次にオー ト ク レープ内をバルブを通して 真空に し、 空気を完全に除去した後、 バルブよ り溶媒を導入 し、 密閉する。  Hereinafter, a spinning method belonging to Class 1 of the present invention will be specifically described. The batch type generally uses an autoclave equipped with a stirrer device. The autoclave is a stirrer for mixing and stirring the polymer solution, a resistance thermometer for detecting the temperature inside the autoclave, and a diaphragm type for detecting the pressure inside the autoclave. It has a pressure gauge. In general operation, a polymer is added into the autoclave, and the lid and the body, which form part of the autoclave, are connected by a mounting bolt. Next, the inside of the autoclave is evacuated through a valve to completely remove the air, and then the solvent is introduced from the valve and sealed.
ォ— ト ク レーブ内のポ リ マー と溶媒は、 攪拌機によ り攪拌 されながら、 ォ一 ト ク レーブ全面に備え られている铸込みヒ 一タ ーにより加熟される こ とによ って、 ボ リ マ一を溶媒に溶 解させる こ とができる。 このポ リ マーの溶媒への溶解過程に おいて重要なことは、 与えられたポリマー、 溶媒の組み合わ せにおいて、 ポリ マー溶液を透明で均一な相に維持すること のできる温度と圧力条件にすることである。 これば、 ォ— ト ク レーブ内条拌を栢図における一液相条件とすることに該当 する。 The polymer and the solvent in the autoclave are ripened by the built-in heater provided on the entire surface of the autoclave while being stirred by the stirrer. The polymer can be dissolved in a solvent. In the process of dissolving this polymer in a solvent, What is important is that for a given polymer and solvent combination, the temperature and pressure conditions be such that the polymer solution can be maintained in a clear, homogeneous phase. This is equivalent to setting the stirring in the autoclave to one liquid phase condition in the Kanazu diagram.
本究明の分類^ _に属する方法では、 ポリ マ—及び溶媒の熟 劣化を防ぐため、 好ましい溶液の温度ば、 ポリ マーが溶媒に 溶解する温度以上で、 かつ断熱的に起こるフ ラ ッ シュ抨 し においてす での溶媒を気化させるために必要な蒸発熱量を 僎辁するに^要な熱量を持つ温度である。 押出し温度が高す ぎる場合には、 ポリ マーの熟劣化や獰媒の熱分解によって生 成するラジカルによつてボリ マーの劣化が著る し-く {£進され、 網状織-維の強度低下や着色を生じる。  According to the method belonging to the classification ^ _ of the present invention, in order to prevent the polymer and the solvent from aging, a flash which occurs adiabatically at a temperature of a preferable solution is higher than a temperature at which the polymer dissolves in the solvent. This is the temperature at which the amount of heat required to evaporate the existing solvent is needed. If the extrusion temperature is too high, the degradation of the polymer will be marked by radicals generated by the aging of the polymer and the thermal decomposition of the fermentation medium, and the degradation of the polymer will be significant. Causes deterioration and coloring.
オー ト ク レーブ内の溶液の圧力は、 前記した環明な均一溶 : 液を維持するニ液栢境界圧力より高い圧力であ ば、 任意に 選択できる。 必要な庄力ば、 機械的ポンプや不活性ガスの加 圧等により得ることができるが、 溶液でォ一 トク レーブ内を 完全に潢たし、 溶液の熟膨張を利用して所望の圧力を得る方 法が好ましい。 溶液の圧力は、 ダイ ヤフラム式圧力計によつ て測定される。  The pressure of the solution in the autoclave can be arbitrarily selected as long as the pressure is higher than the above-mentioned boundary pressure for maintaining a clear homogeneous solution. The required pressure can be obtained by a mechanical pump or pressurization of an inert gas.However, the inside of the autoclave is completely filled with the solution, and the desired pressure is applied by utilizing the ripening of the solution. The method of obtaining is preferred. The pressure of the solution is measured by a diaphragm pressure gauge.
次に、 ίき一相から成るポリ マー溶液ば、 放出バルブを開く ことにより、 ォー トク レーブ内の圧力によって、 缄圧ォリ フ イ ス、 減圧室を通 ¾、 次いで紡糸ノ ズルを通り、 大気圧下に 急速に放出ざれ、 フラ ッ シュ紡糸が行なわれる。 オー トク レ ―ブのようなパッチ運転においては、 溶液は放出中ォー トク レーブ内圧を一定に保ち、 紡糸ノ ズルを通る溶液流量速度を 一定にするため、 窒素のよ う な不活性ガス圧又は液圧を用い て加圧する方法がと られる とよい。 Next, by opening the release valve, the polymer solution consisting of a large phase passes through the autoclave and the vacuum chamber by the pressure in the autoclave, and then through the spinning nozzle. It is rapidly released under atmospheric pressure and flash spinning is performed. In patch operation such as autoclaving, the solution is In order to keep the internal pressure of the lave constant and to keep the flow rate of the solution through the spinning nozzle constant, a method of increasing the pressure using an inert gas pressure or a liquid pressure such as nitrogen may be used.
抆出バルブよ り 押出されたポ リ マ一溶液は、 減圧オ リ フ ィ スを通る際、 圧力低下を引き起こ させ、 ダイ ヤフ ラム式圧力 計で測定される減圧室内の圧力と溶液の加圧圧力の.差を、 液 体が活性化するに充分な高圧力差にする こ とが本発明では必 要である。 例えば少 く と も 8 0 kg Z cm; G以上が好ま しい。 The polymer solution extruded from the discharge valve causes a pressure drop when passing through the decompression orifice, and the pressure in the decompression chamber measured by the diaphragm type pressure gauge and the pressure of the solution are increased. In the present invention, it is necessary that the difference between the pressure and the pressure is set to a high pressure difference sufficient to activate the liquid. For example, at least 80 kg Z cm ; G or more is preferred.
そ して、 この'减圧室の温度は、 溶液と同程度又は、 わずか に低下する程度に保たれる。  Then, the temperature of the pressure chamber is maintained at the same level as the solution or slightly lowered.
紡糸ノ ズルよ り吐出された溶液は、 溶剤のフ ラ ッ シ ュ とポ リ マーの固化によ り 、 高度にフ ィ ブ リ ル化し、 そして充分に 延伸 ' 配向された高強度の網伏織維を与える,。  The solution discharged from the spinning nozzle is highly fibrillated due to the flash of the solvent and solidification of the polymer, and is fully stretched. Give Ori,
こ れらの紡糸に用いる減圧オ リ フ ィ ス、 減圧室及び紡糸ノ ズルは、 従来公知のいかなる形状及び構造のものを用いる こ とがてき る。 即ち、 本発明に必要な条件である减圧ォ リ フ ィ スの圧力差が液体を活性化するに充分であればよい。 更にボ リ マー液が减圧室において、 相図における一液相領域に属す る よ う に、 溶液の粘度、 流量、 押出し圧力、 及び紡糸温度等 に適切に対応する減圧ォ リ フ ィ スゃ紡糸ノ ズルの径ゃ形状が 任意に選択される。 减圧室の容積は、 液体の活性化状態が保 持される滞留時間となるよ う に選定され、 通常 0. 5〜 1 O c c 程度が採用されるが特に制限されない。  The vacuum orifice, vacuum chamber and spinning nozzle used in these spinning processes may have any conventionally known shape and structure. That is, it is sufficient that the pressure difference of the low pressure orifice, which is a necessary condition for the present invention, is sufficient to activate the liquid. In addition, the depressurization orifice appropriately corresponds to the viscosity, flow rate, extrusion pressure, and spinning temperature of the solution so that the polymer liquid belongs to one liquid phase region in the phase diagram in the decompression chamber. The diameter and shape of the spinning nozzle are arbitrarily selected. The volume of the pressure chamber is selected so as to have a residence time for maintaining the activated state of the liquid, and is usually about 0.5 to 1 O c c, but is not particularly limited.
本発明の紡糸方法は、 バッチ式 · 連続式のいずれにおいて も実施する こ とができ る 。' 特に連続式において 、 スク リ ュー押 ¾機を用いて、 ポリ マ一溶解域の入口を溶融ポリ マ—で封鎮する方法をとれば、 高圧の均一溶液を作り易い 更に、 ポリ マ -溶解域に於いて. ポリ マ—に対する溶剤の多段階添加 * 混合 · 溶解の少く とも 第 1段皆が、 スク リ ュ—押出機で違铙的に溶融供袷されるボ リ マ―に対して、 該押出機のスク リ ュ 一に付設せられた . 的混合の領域で行われ、 第 2段階以降の溶剤添加 · 混合 · 溶 解が静的混合素子を用いて行われる場合は、 更に均一溶液を ί乍り易い。 The spinning method of the present invention can be carried out in either a batch system or a continuous system. ' In particular, in a continuous method, if a method is used in which the entrance of the polymer dissolving area is sealed with a molten polymer using a screw extruder, it is easy to produce a high-pressure homogeneous solution. Multi-stage addition of solvent to the polymer * At least the first stage of mixing and dissolving, for the polymer that is illegally melt-filled by the screw extruder, This is performed in the area of the target mixing provided in the screw of the extruder. When the solvent addition, mixing, and dissolution in the second and subsequent steps are performed using a static mixing element, a more uniform solution is used. It is easy.
以上説明したように、 分類' に属する本発明は、 ボリ マ ー 容液に高 力差を発生させ、 瞬間的な熱力学的ゆらぎを発生 させて、' すなわち活性化させて紡糸されること、 更にー液栢 領域内から紡糸されるこ と、 そのため、 '减圧室内での] ΐ力に 上限がなく 、 高圧条件がとれ、 フラ ッ シユカが大きいこ とか ら、 4 0以下の長周期散乱強度比、 更に 150 Α以上 200 A以 下の長周期、 更に 3 0 以上の比表面積を有する高度に フイ ブリ ル化した三次元網状織維が生成される。  As described above, the present invention, which belongs to the category, is characterized in that a high force difference is generated in a polymer solution, instantaneous thermodynamic fluctuations are generated, and the spinning is performed in an activated manner. In addition, since the fiber is spun from the liquid area, there is no upper limit to the force in the “pressure chamber”, high pressure conditions can be taken, and flash flushing is large. A highly fibrillated three-dimensional network fiber having an intensity ratio, a long period of 150 mm or more and 200 A or less, and a specific surface area of 30 or more is produced.
第 4図ば、 本発明の実施例で測定した高密度ボリ エチ レン とフロ ン— 1 i の相図を示すものであり、 ポ リ マー濃度 1 2 wt ¾、 及び 1 5 w t %を図示した。  FIG. 4 shows a phase diagram of high-density polyethylene and fluoro-1i measured in the example of the present invention, and illustrates the polymer concentrations of 12 wt% and 15 wt%. .
この相匿は、 オー トク レーブ本体の側面底部に一対の光学 窓を有し、 底部バルブに接続され增圧 · 域圧機構を有する装 置を用い、 一定組成の溶液を一定温度に保ちつつ、 液の圧力 を 1分間に^ 5 kg Z ai G以下の速度で変化させ、 光学窓から 点を観察することによつて測定した 次に三次元網状镙維から成る新規な高強力不織布 (H) に ついて説明する。 This is achieved by using a device that has a pair of optical windows at the bottom of the side surface of the autoclave body, is connected to the bottom valve, and has a low pressure / region pressure mechanism. Measured by changing the pressure of the liquid at a speed of less than ^ 5 kg Z ai G per minute and observing a point through the optical window Next, a new high-strength nonwoven fabric (H) composed of a three-dimensional network fiber will be described.
即ち、 分類 ϋに属する不織布は高密度ポ リ エ チ レ ン系の フ ブリ ル化された三次元網状 $璣維が、 ラ ンダムな方向に堆積 され、 互いに強固に熟接着された衷面層と、 表面層よ り も弱 く フ ィ ルム状線維層に熱接着された内層とからなる一体化さ れた ¾様の不 ^布であつて、 内層の比表面積が 5 rrf /' g をこ える こ とを特徵とする引張強度と引裂強度の高い連続網状镞 維不^布であり 、 更に好ま し く は、 不織布の引裂強度を X ( kg / 5 0 g ノ rrf — エ レメ ン ドルフ法) 、 引張強度を Y ( kg 3 cm 5 0 g / m ) と して、. (いずれの強度も不織布の目 ίォけを基準目付 5 0 g ノ m2に比例換算した値) 、 Χ ¾ 0. 4 で、In other words, the nonwoven fabrics belonging to the category I are composed of high-density polyethylen-based fluffy three-dimensional mesh fibers deposited in random directions and firmly and firmly bonded to each other. And an inner layer that is weaker than the surface layer and is thermally bonded to the film-like fiber layer, and has an inner layer having a specific surface area of 5 rrf / 'g. It is a continuous mesh fabric with high tensile strength and high tear strength, and more preferably, the nonwoven fabric has a tear strength of X (kg / 50 g). Method), the tensile strength is defined as Y (kg 3 cm 50 g / m), and the strength of each of the non-woven fabrics is proportional to the standard basis weight of 50 g / m 2. ¾ 0.4,
.かつ ' .And '
2 0 X 「 2 8 ≤ Υ ≤ 3 0 ; : である こ とを特徴とする。  2 0 X “28 ≤ ≤ ≤ 30;;
以下分類 _Lに属する不識布について、. 詳細に説明する。  The ignorance belonging to the classification _L will be described in detail below.
この不織布では、 前述のよ う に高密度ポ リ ヱチ レ ン系の三 次元連^網状織維がラ ンダムに配置され、 堆積されてい る 。 — 即ちフ ラ ッ シュ紡糸された実質的に末端を含まない三次元網 状識維が広げられて各繊維要素が全方向に対して、 おおむね 均一になるよ う に配置され、 堆積されて不織抆となっている。  As described above, in this nonwoven fabric, a high-density polystyrene-based three-dimensional continuous mesh fabric is randomly arranged and deposited. — That is, the flash-spun three-dimensional network substantially free of ends is spread, and the fiber elements are arranged so as to be substantially uniform in all directions, and are deposited and accumulated. Has become a texture.
そ して紙様の不織布と しての形態保持、 あるいは機械的強 度の発揮のために、 表面層において織維が熱接着されている。 こ の表面層の熟接着は強固であり 、 表面を指で強く 摩擦して も毛羽立つこ とはない。 そ して、 こ の強固に接着された層は、 表面及び裏面の両面、 又はいずれか一面を形成している。 In order to maintain the form as a paper-like nonwoven fabric or to exert mechanical strength, the textile is heat-bonded in the surface layer. This surface layer has a firm bond and does not fluff even if the surface is strongly rubbed with a finger. And this firmly bonded layer Both sides of the front and back sides, or any one side are formed.
この不織布の内層における熱接着の強度は、 表面層におけ る熱接着強度と異なる。 即ち、 内層では、 熟接着程度がその 衷面層に较ベてゆるやかであ 、_ したがって内層 織維形態 をよ 多 く残しているフ ィ ルム祅鐡維層である。 その結果、 こ D表面層と内層が一依となつて不織布構造を形成してい 。  The heat bonding strength of the inner layer of the nonwoven fabric is different from the heat bonding strength of the surface layer. That is, the inner layer is a film-iron layer in which the degree of aged adhesion is more gradual than that of the intermediate layer, and thus the inner layer fiber form is left in a large amount. As a result, the D surface layer and the inner layer are independent and form a nonwoven fabric structure.
このよ うな不織布の断面搆造自体は公知のものであり、 先 述の U S P 3 , 532. 589号報にも開示されている。  The cross section of such a nonwoven fabric itself is known, and is disclosed in the above-mentioned U.S. Pat. No. 5,532,589.
しがし、 分類 J1に属する不織布'は従来公知の.紙様の三次元 網状镞維不織布より も、 各層の比表面積が高いことを特徵と しており、 それにも拘らず、 かってない高い機械的物性を有 する。  However, non-woven fabrics belonging to Class J1 are conventionally known; they are characterized by having a higher specific surface area in each layer than a paper-like three-dimensional network fibrous non-woven fabric. It has physical properties.
本発明でいう内層のフ ィ ルム状織維層とは、 一部がフ ィ ル ム状で一部が織維'状である層をいい、 無理に他の層と剝雞さ れた層において、 剝離により露出した镞維状物の一绻部を把 持し、 镞維として剝難しょう とした時に、 1 0 〜数 1 Ο απ以 上の長さを有する独立した三次元網状鐡維の連続体として襪 維を探取できず、 途中で切断される程度の熟接着をう けた層 を目 つ。  The inner film-like fiber layer in the present invention refers to a layer that is partially film-shaped and partially fiber-shaped, and is a layer that is forcibly connected to another layer. In the above, when one part of the fiber-like material exposed by the separation is grasped and it is difficult to make the fiber, the independent three-dimensional net-shaped steel fiber having a length of 10 to several tens απ or more It is a layer that has not been able to find a fiber as a continuum and has undergone sufficient bonding to be cut in the middle.
分類 に属する不織布は、 この内層の比表面積が 5 tn2 / g をこえる ことを特徴としている。 即ち、 紙樣の三次元網伏織 維不裰布を構成する層として従来にない高い比表面積を有し、 不透明性 ' 被覆力にすぐれた不織布である。 Non-woven fabrics belonging to the category are characterized in that the specific surface area of this inner layer exceeds 5 tn 2 / g. That is, it is a non-woven fabric having a high specific surface area, which is unprecedented as a layer constituting a three-dimensional net-like nonwoven fabric such as paper, and excellent in opacity and covering power.
即ち、 三次元網状織維状物が、 大きな比表面積を有すると、 光の乱反射を生じ、 不透明性 * 被覆力や白度を増加させる。 前記内層の比表面積は、 表面層と内層を機械的に剥離し、 剝離時に層間にまたがるフ ィ ルム状物、 又は織維状物をあま り強く 引き はがさず、 カ ッ タ ー等で切断して層に分離し、 各 層の比表面を測定する こ とで求められる。 本発明ではこ の比 衷面積の測定は窒素吸着の B E T法によ って実施し、 カルロ エルバ社製ソ ープ ト マチ ッ ク 1800を用いて測定した。 That is, if the three-dimensional network fiber has a large specific surface area, irregular reflection of light occurs, and opacity * covering power and whiteness increase. The specific surface area of the inner layer is determined by mechanically peeling off the surface layer and the inner layer, and without peeling off the film-like or textile-like material straddling between the layers at the time of separation, using a cutter or the like. It can be obtained by cutting into layers and measuring the specific surface of each layer. In the present invention, the measurement of this area was carried out by the BET method of nitrogen adsorption, and was measured by using a soromatic 1800 manufactured by Carlo Elba.
この不織布において、 不裰布の内層 · 表面層を剝難する こ とな く 測定した不織布の比表面積が 5 / g以上である。  In this nonwoven fabric, the specific surface area of the nonwoven fabric measured without obstructing the inner layer / surface layer of the nonwoven fabric is 5 / g or more.
この不織布は、 前述のよ う な高い比表面積を有しているに も拘らず、 従来にない高い機械的強度を有する。 三次元網状 織維の不織布において、 比表面積が大きいこ とは織維間の接 着が不十分であり 、 機械的強度は期待できないもので.あるが、 本発明においては、 この両者が同時に達成される という驚く べき効果が得られる。 即ち、 不織布の機械的強度を代表する 引張強度と引裂強度の関係がかつてな く 良好な不織布である。 引張強度 Y ( kg 3 cm巾ノ 5 0 g nf ) とエ レメ ン ドルフ による引裂強度 X ( kg / 5 0 g / m ) の間に、 X ≥ 0. 4  This nonwoven fabric has an unprecedentedly high mechanical strength, despite having a high specific surface area as described above. In the nonwoven fabric of the three-dimensional network fabric, a large specific surface area means that the bonding between the fabrics is insufficient and mechanical strength cannot be expected, but in the present invention, both are achieved simultaneously. The surprising effect is obtained. That is, the relationship between the tensile strength and the tear strength, which represents the mechanical strength of the nonwoven fabric, has never been better. Between the tensile strength Y (kg 3 cm width 50 gnf) and the tear strength X (kg / 50 g / m) by Elmendorf, X ≥ 0.4
- 2 0 X + 2 8 ≤ Y ≤ 3 0 の閬係を有する。  -20 X + 28 ≤ Y ≤ 30
こ こにおいて、 不織布の強度は基準目付に比例換算した値 であり 、 本発明では基準目付を 5 0 g / rf と している。 即ち、 分類 ϋに属する不織布の目付は 15〜 200 g / mであってよい が、 好ま し く は 20〜 120 g / rriであり 、 中心となる 目付が 5 0 g / m'である こ とにより 、 5 0 g を基準と して強度を規 定した。  Here, the strength of the nonwoven fabric is a value converted in proportion to the standard weight, and in the present invention, the standard weight is 50 g / rf. That is, the basis weight of the non-woven fabric belonging to the category I may be 15 to 200 g / m, but is preferably 20 to 120 g / rri, and the central basis weight is 50 g / m '. The strength was determined on the basis of 50 g according to.
この引張強度と引裂強度の関係を第 1 2 図に示す。 第 1 2図に示すように分類 に属する不籙布の強度の範囲 は X = 0. 4 ゝ Y = 3 0 と Y =— 2 0 X + 2 8及び X = 0 にか こまれる領域内にある。 FIG. 12 shows the relationship between the tensile strength and the tear strength. As shown in Fig. 12, the range of the strength of the non-woven fabric belonging to the classification is X = 0.4 ゝ Y = 30 and Y =-20 X + 28, and within the area encompassed by X = 0. is there.
前記範囲に記されたプ α ッ トは後述の実施例で示すデ―タ であり、 同一譏維を用いた不織布に対しては同一のマークで フ。ロ ッ ト してめる。  The patches described in the above range are data shown in Examples described later, and the same marks are used for nonwoven fabrics using the same filament. Let's do a lot.
― 一方、 前記本発明の範画舛の点線は比較例にあげた織維を 用 たデ―タを示している。  -On the other hand, the dotted line in the scope of the present invention indicates data using the fabric described in the comparative example.
不織布は、 通常方向性があるために、 その機槭的物性を ' I 定するにおいて、 タテ方向及びョコ方向、 そして必要に応 て斜め方向が測定される。 分類 JLに属する不織布は、 先逮の 如く網扰織維の各镞維要素が全方向に対しておおむ ·ね均一に なるように配置されているため、 タテ.方向とョコ方向の物性 を測定し、 その平均を探用することができる。 そして、 この タテ/ョコの物性比は分類 _ϋに属する不織布では 1. 3 Ζ 1 〜 1ゾ 3の範囲に含まれる。  Since nonwoven fabrics usually have directionality, the vertical and horizontal directions, and, if necessary, the oblique direction are measured when determining their physical properties. Non-woven fabrics belonging to the JL category are arranged in such a way that each fiber element of the mesh fabric is arranged almost uniformly in all directions as in the previous arrest. Can be measured and the average can be found. And, the physical ratio of vertical / horizontal is included in the range of 1.3Ζ1 to 1 ゾ 3 for non-woven fabric belonging to classification ϋ.
また、 不織布中の織維の方向性については、 各方向に対す るマイ ク 口波偏波の透過率からも比較的容易に求めることが でき、 この方法を用いることにより本発明の分類 に属する 不織布の方向に対する埒ー性を確認できる。 そして、 マイ ク 口波から求められる方向性と機械的強度、 特に引張強度の方 向性はほぼ一致する。  In addition, the directionality of the fiber in the nonwoven fabric can be relatively easily obtained from the transmittance of the Mic polarization in each direction, and by using this method, it belongs to the classification of the present invention. The effect on the direction of the nonwoven fabric can be confirmed. The directionality required from the Mike mouthwave and the mechanical strength, especially the tensile strength, almost match.
このマイ クロ波による不籙布の方向性は、 例えば神琦製紙 社製 「マイ ク ロ波分子配向計」 O A— 200 U を用いて測定さ れる。 - ' 本発明において、 不織布の引張強度は J IS - し - 1068によ つて測定し、 これを基準目付 5 0 g Z rrf に比例換算した もの を Y ( kg / 3 cm巾ノ 5 0 g / m ) と した。 又、 不織布のエ レ メ ン ドルフ引裂強度は、 J I S— L — 1085によ って測定し、 同 じ く 基準目付に換算した ものを X ( kg / 5 0 g / m ) と した。 フ ラ ッ シュ紡糸 .織維シー トを熱接着する方法と しては、 各 種公知の方法が探られる。 高密度ポ リ エチ レ ンでは、 不 ϋ布 と しての強度の発現や形態保持、 そして表面毛羽止めのため 'には結晶融点に近い温度で接着する。 従って、 熟接着不織布 を得る場合、 繊維間の熟接着性が強固である と共に、 熟接着 時に収縮が生じに く いこ と、 接着温度近傍の高温で繊維の機 滅強度が高いこ と等を必要と し、 それを満足する .織維と して 本発明による.前述の三次元網状繊維を用いる。 The directionality of the nonwoven fabric due to the microwave is measured using, for example, “Microwave Molecular Orientation Meter” OA-200 U manufactured by Shinzaki Paper. -' In the present invention, the tensile strength of the nonwoven fabric is measured according to J IS- 1068 and converted to a standard basis weight of 50 g Z rrf and Y (kg / 3 cm width 50 g / m). And The elemendorf tear strength of the nonwoven fabric was measured in accordance with JIS-L-1085, and converted to the standard basis weight as X (kg / 50 g / m). Various known methods can be sought for the method of thermally bonding the flash spinning and textile sheets. High-density polyethylene adheres at a temperature close to the melting point of the crystal in order to achieve strength as a nonwoven fabric, maintain its shape, and fuzz the surface. Therefore, in order to obtain a mature bonded nonwoven fabric, it is necessary that the mature bond between the fibers is strong, that shrinkage does not easily occur during the mature bond, and that the fiber has a high strength at the high temperature near the bonding temperature. According to the present invention, the above-described three-dimensional network fiber is used as a woven fiber.
前述のよ う に、 極めて微細なフ ィ ブリ ルよ り成り、 長周期 に独特の搆造を有し、 かつ高温特性にす ぐれた本発明によ る 網状織維を用い熱接着する こ とによ つて前記 に属する不 布が得られ、 その不織布は高い機滅的強度を有する こ とを特 ί とする。  As described above, heat bonding is performed by using the net-like textile according to the present invention, which is made of extremely fine fibrils, has a unique structure for a long period, and has excellent high-temperature characteristics. Thus, a nonwoven fabric belonging to the above is obtained, and the nonwoven fabric has a high destructive strength.
三次元網状織維不織布については、 前述の USP3, 169, 899号 報、 特公昭 43-21112号報をはじめ、 多 く の研究が成され、 す でに一部は商品と して巿 IS (Du Pont社: Tyvek® ) されている。 しかし本発明に示されるよう な良好な機械的物性を有する も のは知られていない。  Numerous studies have been conducted on three-dimensional reticulated nonwoven fabrics, including the aforementioned US Pat. No. 3,169,899 and Japanese Examined Patent Publication No. 43-21112, and some of them have already been used as products. Du Pont: Tyvek®). However, those having good mechanical properties as shown in the present invention are not known.
前記分類 ϋ·に属する本発明の不織布は不透明性にす ぐれて いる こ と もその特徴である。 即ち、 従来公知の熱接着方法に よっても、 本来その網状織維が有する比表面積が大きいため に光を乱反射しやすぐすぐれた不透明性を有す」る。 さ らに璣 裱的強度が高く 、 高温特性が良好であるため、 熟接着によつ て璣維が損傷されることが少なく 、 接着程度を高く せずとも ' 5 機裱的強度が発現されることと相まって、 不透明性にすぐれ The non-woven fabric of the present invention belonging to the above-mentioned category II is also characterized by being opaque. That is, the conventional heat bonding method However, because of the large specific surface area of the reticulated fiber, it reflects light irregularly and has excellent opacity. " Furthermore, since the mechanical strength is high and the high-temperature properties are good, the fiber is not easily damaged by the mature bonding, and the mechanical strength is developed even if the bonding degree is not increased. And opacity
た不 ϋ布となっている。  It is unreserved.
この不纖布の不透明性は、 包材、 筒封、 衣料等の被覆材と The opacity of this non-fiber fabric is different from that of covering materials such as packaging materials, envelopes, and clothing.
. .して非常に重要な性質であり、 .肉眼での観察結果と合致する 方法として、 H e - N e レーザ—透過光量を測定する方法が 10 推奨される。 こ ©測定は暗室中で出力 5 ビー ム径 2. 5 This is a very important property. As a method that matches the observation results with the naked eye, a method of measuring the amount of transmitted light by a He-Ne laser is recommended. This measurement was output in a dark room.5 Beam diameter 2.5
のレーザー光を不鎩布に照射させ、 不織布を透過する光量を ' レ -ザ一パヮメ 一ターで測定じ、 この位置を連続してずらし て平均することによって求めた。 · . , . 当然不織.布の目付によって透過光量が変-化し、 目付が增加 15 すれば光量は缄少する。 本 ^明の不鐵布-においては、 目付け が 2 5 g Z mで 2 5 W以下の光量であり、 4 0 g / では The laser light was applied to a non-woven fabric, the amount of light transmitted through the non-woven fabric was measured with a laser parmeter, and this position was continuously shifted and averaged. ·,, Naturally, the amount of transmitted light varies depending on the basis weight of the non-woven cloth, and if the basis weight increases, the amount of light decreases. In the case of the non-woven cloth of the present invention, the basis weight is 25 g Z m and the light quantity is 25 W or less, and at 40 g /
2 0 , W以下、 5 Q g / m2では 1 . 8 W以下、 S 0 g Z mで は 1 6 ' W以下であり、 比較的抵ぃ目付においても従来にな い良好な被覆力を示している。 さらに、 2 5 /' で 2 2 20 μ W以下、 4 0 g / mで 1 6 β W以下、 5 0 g Z mで 1 4 20 W or less, 5 Q g / m 2 for 1.8 W or less, S 0 g Z m for 16 'W or less Is shown. In addition, 22 20 μW or less at 25 / ', 16 βW or less at 40 g / m, 14 4 at 50 g Zm
W ¾下、 6 0 g of で 1 2 :丄 W以下であることが好ま しい。 又、 分類 こ属する本発明の不雞布に対して、 上記の如き 機械的強度と不透明性を保持しつつ、 その他の有用な物性を 付与させることができる。  It is preferable that the weight is less than 12: 丄 W at 60 g of below W W. In addition, other useful physical properties can be imparted to the nonwoven fabric of the present invention to which the classification belongs, while maintaining the above-described mechanical strength and opacity.
25 冽えば、 採用する接着方法の種類によって、 これらの物性 にバラエテ ィ ーを持たせる こ とが可能である。 即ち、 本発明 の不裰布は、 その熱接着工程において、 従来公知の各種方法 も採用する こ とが出来、 通常は、 不織布の機械的強度が高い こ とをめざすため、 接着面積を多 く でき る熱接着法が採用さ れる。 それら熱接着法においては、 フ ラ ッ ト ロ ールを用いる、 1 0 00個 / cnf以上の浅いエ ンボス ロ ール、 あるいはサ ン ドブラ ス ト ロ ールを用いる 口 一ルプ レス法やロ ール力 レ ンダ一法、 そ してフ ル ト カ レ ンダ一法を採用する こ とができ る。 これ らから得られる分類 _Lに属する本発明の不織布の接着表面は 平滑な外観を有する。 25 If it is clear, these physical properties depend on the type of bonding method used. It is possible to give a variety to the people. That is, the nonwoven fabric of the present invention can employ various conventionally known methods in the heat bonding step. Usually, the nonwoven fabric has a large bonding area in order to increase the mechanical strength of the nonwoven fabric. A possible thermal bonding method is adopted. In these heat bonding methods, a flat roll method using a flat roll, a shallow emboss roll of 100 pcs / cnf or more, or a mouthless press method using a sandblast roll is used. It is possible to adopt the rule of force rendering and the method of full calendar rendering. The bonding surface of the nonwoven fabric of the present invention belonging to the category #L obtained from these has a smooth appearance.
ί寸与でき るその他の物性と して、 1 000 ira H 2 0 以上 5000腿 H 2 0 以下の耐水圧や i 〜 1 0 4 · s e c / 5 0 . £の範囲のガー レー · ヒ ル透気度があげられる 。 as a ί dimensions given can Ru other physical properties, 1 000 ira H 2 0 or more 5000 thigh H 2 0 following of water pressure and i ~ 1 0 4 · sec / 5 0. £ range of guard rail Hee Le Toru of I feel better.
耐水圧の測定は J I S L 1 092 よ り測定し、 ガー レ— · ヒル i3気度は B型ガー レ式デン ソ メ 一タ ーで測定した。  The water pressure resistance was measured according to JIS L 1092, and the Gurley-hill i3 temper was measured using a B-type Gurley-type densometer.
分類 J1に属する本発明の不織布は、 フ ラ ッ シュ钫糸された ままの三次元網状織維を広げて織維要素がラ ンダムな方向に 配置され堆積された非接着シー トを前述のよ う に熱接着した ものである。 こ の非接着シー トを得るためのプロ セスは従来 公知の任意のプロ セ スが選定されてよい。  The nonwoven fabric of the present invention belonging to the class J1 is a non-adhesive sheet in which the fiber elements are arranged in a random direction by spreading the three-dimensional netted fabric as it is, as described above. It is heat bonded. As a process for obtaining the non-adhesive sheet, any conventionally known process may be selected.
本発明の不織布を構成する繊維を得るための溶解プロ セス 、 特に制限される こ とはな 、 従来公知の溶解プロ セ スを 用いる こ とが出来る。 こ の璣維は、 高分子量で分子量分布の 狭い高密度ポ リ エチ レ ンから成っており 、 原料ポ リ マ —を短 時間で溶剤に溶解し、 紡糸してポ リ マ ーの変質を防止する こ とが必要であり、 又、 紡糸-機搆から高圧での溶解を必要とし ている。 又、 この織維を得るための紡口アセ ンブリ ー 先述 の紡糸機構をとり得るものであれば制限されることはない。 即ち、 均一溶液を活性化するための減圧用オ リ フ ィ ス、 m 室ゃノ ズル等は従来公知の形伏のものを任意に用いる。 The dissolution process for obtaining the fibers constituting the nonwoven fabric of the present invention is not particularly limited, and a conventionally known dissolution process can be used. This fiber is composed of high-density polyethylene with a high molecular weight and a narrow molecular weight distribution. The raw polymer is dissolved in a solvent in a short time and spun to prevent deterioration of the polymer. To do And melting at high pressure from the spinning machine is required. Spindle assembly for obtaining this textile is not limited as long as it can take the above-mentioned spinning mechanism. That is, the orifice for decompression, the m-chamber nozzle, and the like for activating the homogeneous solution may be arbitrarily used.
又、 この三次元網状璣維を広げて、 非接着の不織シ— 卜 と する方法としても徒来公知の ^何なる方法 · 装置が用いられ てよい。 基本的には、 紡岀される網状鐡維を広げる衝突装置- 衝突して広がった織維の進行方向を決める装置、 広がった ϋ 維に電荷を与える装置、 鐵維を受け取り堆積させる装置より 成っている。 即ち、 【63 , 899号報、 特公昭 44- 218 Π号報 や l)SP3 : 456 , 156号報、 さらにそれらの改良等多数の方法が公 知であり、 これらを-用いることが'でき、 特に制限されること Ά 、 o As a method of expanding the three-dimensional network fiber into a non-adhesive nonwoven sheet, any known method and apparatus may be used. Basically, it consists of a collision device that spreads the reticulated steel that is spun-a device that determines the direction of travel of the fiber that has spread by collision, a device that gives charge to the spread fiber, and a device that receives and deposits the fiber. ing. That is, a number of methods such as [63, 899, Special Publication No. 44-218Π, and l) SP3 : 456, 156, and improvements thereof are known, and these methods can be used. , Especially restricted Ά, o
次に三次元網扰織維から成る未融着部分を有する高強力不 織布 ( ) について説明する。  Next, a high-strength nonwoven fabric () having an unfused portion made of a three-dimensional mesh fabric will be described.
即ち分類 に属する不織布は高密度ポリ ヱチレン系のフ ィ ブ ル化された三次元網拔織維が、 ランダムな方向に配置さ れ、 S状に堆積され、 部分的に未融着の独立した網状形態の 鐡維から成る層を含む不裰布であって前記独立した網状織維 が 4 0以下の長周期散乱強度比を有することを特徴とする。 即ち分類 に属する不織布ば、 高密度ポリ エチレン系の三 次元網状連繞镞維より成っており、 これらはラ ンダムに配置 され、 堆積されている。 即ちフラ ッ シュ紡糸された実質的に 末端を含まない三次元網状織維が、 広げられて各鐡維要素が 全方向に対して、 おおむね均一になるよ う に配置され、 連^ 襪維が層を成すよ う に堆積されて不裰布状となっている。 In other words, nonwoven fabrics belonging to the classification are made of high-density polyethylene-based fibrous three-dimensional netted fibers, arranged in random directions, deposited in an S-shape, and partially unfused independent A nonwoven fabric including a layer made of mesh-shaped steel fibers, wherein the independent mesh fibers have a long-period scattering intensity ratio of 40 or less. In other words, nonwoven fabrics belonging to the class are composed of high-density polyethylene-based three-dimensional network-connected fibers, which are randomly arranged and deposited. That is, the flash-spun three-dimensional net-like fiber substantially free of ends is unrolled and each steel element is expanded. The layers are arranged so as to be substantially uniform in all directions, and the series is deposited in layers to form a non-woven fabric.
そして、 この不織布は、 これを構成する多 く の繊維層のう ち、 部分的に未融着な、 少な く と もその一部に接着程度 Oゆ るやかな層を有している。 即ち、 不織布の表面、 あるいは内 層部に前記層を有しており 、 この層から独立した網状織維を 取り 出すこ とが出来る。 こ こでいう独立した網状織維とは、 例えば、 層間を剝離した場合端面に生じる鐡維状物の束を持 ち、 入念に引っ張る こ とによ って、 他の襪維状物と分離され 連^的に引き とれる網状織維をいう 。 従ってこの層において は、 強固にフ ィ ルム状に接着されていず、 全く 接着されてい ないか、 ゆるやかに接着されている'。 したがつてこの不識布 は前記分類 iに属する不織布と異り 、 不織布内で構成する網 状織維が移動の自由度を有し、, その結果柔軟性が付与される。  The nonwoven fabric has a partially unfused, or at least part of, a loosely bonded layer in at least a part of the many fiber layers constituting the nonwoven fabric. That is, the above-mentioned layer is provided on the surface of the nonwoven fabric or on the inner layer portion, and an independent net-like fiber can be taken out from this layer. The independent net-like fabric referred to here is, for example, a bundle of steel-like materials generated on the end face when the layers are separated, and separated from other materials by careful pulling. A net-like fiber that can be pulled continuously. Therefore, in this layer, it is not firmly adhered to the film, is not adhered at all, or is loosely adhered '. Therefore, unlike this non-woven fabric belonging to the category i, the woven fabric has a freedom of movement of the reticulated fabric formed in the non-woven fabric, and as a result, flexibility is provided.
このよ う な独立する網状織維は、 織維形態を保持しており 、 2 0 «以上の連続する繊維であり、 引き揃えて、 X線小角散 乱の測定が行う こ とができ る。  Such an independent reticulated fiber retains the fiber form and is a continuous fiber of 20 以上 or more, and X-ray small-angle scattering can be measured in line.
そして、 本発明の不織布を構成する網状織維の微細構造の 特徴があらわれる。 即ち、 X線小角散乱による長周期散乱強 度が 4 0以下である こ とを特徴と している。 このこ とは、 本 ¾明の不裰布を製造するのに用い られる網状織維の特徴がそ のまま現われている こ とを示す。 そして、 他の部分の.織維が 強固に熱接着される処理をう けたと して も織維形状を残す部 分の長周期散乱強度比は、 紡糸された直後と比較して、 殆ん ど変化していないこ とを示す。 一方、 熟接着処理を受けた場合の不織布中の独立した網状 形態の譏維は、 長周期は増加傾向にあり、 150 A以上である ことが好ましい。 Then, the characteristics of the fine structure of the mesh fiber constituting the nonwoven fabric of the present invention appear. That is, it is characterized in that the long-period scattering intensity due to small-angle X-ray scattering is 40 or less. This indicates that the characteristics of the mesh fabric used to produce the nonwoven fabric of the present invention are manifested as they are. In other parts, the long-period scattering intensity ratio of the part that retains the fiber shape even when the fiber is subjected to a strong thermal bonding process is almost the same as that immediately after spinning. It does not change. On the other hand, the independent reticulated filament in the nonwoven fabric which has undergone the mature bonding treatment tends to increase in long cycle, and is preferably 150 A or more.
前記分類 に属する不織布は前記分類 ϋに属する不遴布と 同様に極めて遨 9なフ イブリ ルより成り 、 長周斯に独特の搆 造を有し、 高温特性にすぐれた網状鎪維から成る主と て熟 接着不議杏であって、 その高い機械的強度と融点近傍での高 温特性を有すると兵に、 不透明性にすぐれている。  Non-woven fabrics belonging to the above-mentioned category are made of fibrous fibers which are extremely gross, similar to non-woven fabrics which belong to the above-mentioned category. It is a mature glued apricot, and is highly opaque to soldiers because of its high mechanical strength and high temperature characteristics near the melting point.
分類 ^に属する本発明の不織布は、 独立した網状璣維形態 を取り出しう る層を含むものであり、 他の層は、 同様の層で あっても、 さらに強固にフ ィ ルム状に接着されていてもよい。 , 即ち、 シー トを熟接着するための従来公知のいかなる方法 が採られてよ く 、 ロ ール間でのプレスや力' レンダー、 ェ ンボ The nonwoven fabric of the present invention belonging to the category ^ includes a layer capable of taking out an independent reticulated fiber form, and the other layers are more firmly adhered to the film even if they are similar layers. May be. That is, any conventionally known method for deeply bonding the sheet may be employed, such as pressing between rolls, force-rendering, and embossing.
I; スロールに:よる部分熟接着、 フヱル ト力 レ ンダ一による接着 や、 オーブン中又は強制的な熱気流による接着法等が探られ てよい。 当然 両面同時に処理する、 片面のみ処理する、 片 面づっ順次処理する等の各種の方法が探られてよい。 そして、 熟接着後に揉み加工等を実施し、 搆成譏維層の層間の一部を 剝難して柔軟にする等の処置をした不镦布であつてもよい。 I; By sroll: Partially matured adhesives, adhesives with a filter of the fiber force, adhesives in an oven or by forced hot air flow, etc. may be explored. Of course, various methods such as simultaneous processing on both sides, processing on only one side, and sequential processing on one side may be sought. Then, a nonwoven fabric which has been subjected to a treatment such as a kneading process or the like after the mature bonding and a portion of the layers of the silkworm filial layer may be difficult to be softened.
一方、 シー ト状物に何ら接着に寄与する熱処理を行なわず、 全体が非接着状態、 あるいは圧力で押し固めた状態の不織布 であってもよい。 又、 ニー ドルパンチゃウ ォ ーターパンチ等 で鐵維間を交絡させた不織布、 さらに、 これらに熟接着が併 用された不織布も含まれる。  On the other hand, the nonwoven fabric may be a non-adhesive state or a state of being compacted by pressure without performing any heat treatment contributing to adhesion to the sheet-like material. In addition, nonwoven fabrics in which fibers are entangled with a needle punch or water punch or the like, and nonwoven fabrics in which mature bonding is used in combination are also included.
次に三次元網状鐵維から成る均一性に優れた不織布 ( H ) について説明する 。 Next, a non-woven fabric made of three-dimensional mesh fiber with excellent uniformity (H) It will be described.
分類且に属する本発明による不織布は、 前述のよ う に、 開 繊した三次元網状繊維がラ ンダムな方向に堆積された不裰布 であって、 不織布を構成する網状織維に存在する束状部が 4 0 デニール / «幅以下の密度を有する束状部か、 4 0 デニ ールノ mm幅以上の密度を有する束状部である場合には、 その 幅が 5 ™以下、 且つ長さが 3 0 以下の束状部である こ とを 持 ©とする。  As described above, the nonwoven fabric according to the present invention belonging to the category is a nonwoven fabric in which spread three-dimensional mesh fibers are deposited in random directions, and is a bundle present in the mesh fabric constituting the nonwoven fabric. If the shape is a bundle having a density of 40 denier or less, or a bundle having a density of 40 denier mm or more, the width is 5 ™ or less and the length is It must be a bundle of 30 or less.
本発明者等は、 不織布を.構成する開繊した三次元網状織維 が特定の開織不良部を持たない場合に不織布の外観上及び目 付け分布上極めて均一な不織布となる事を見いだし、 鋭意研 究の结果本癸明による分類丑に属する不織布を得た。  The present inventors have found that when the opened three-dimensional mesh fabric constituting the nonwoven fabric does not have a specific opening defect portion, the nonwoven fabric becomes a very uniform nonwoven fabric in terms of appearance and weight distribution, A non-woven fabric belonging to the classification ox by Kakimoto Kamoto of the keen study was obtained.
この特定の開織不良部とは、 フ ラ ッ シュ紡糸後、 開.織させ られた三次元網状織維が、; シ ー ト状化の過程で集束し、 4 0 デニ -ルノ mm幅の繊維密度以上に集束し且つ幅 5 mm以上、 長 さが 3 0 nm以上の束状部となったものをいう 。 こ の束状部は、 三次元網状繊維全体のフ ィ ブリ ルが集束した'もの及び三次元 網状璣維の一部のフ ィ プリ ルが集束してできたものを意味す る。 織維密度は、 長さ 2 on以上の連続した 維を長さ約 1 00 cm分取り 出し、 2 cm毎に開繊幅を測定し、 織度を開繊幅で除 して求めた。  This specific unwoven area is defined as a three-dimensional net-woven fiber that has been unwound after flash spinning, which has been condensed during the sheeting process and has a width of 40 denier-mm. It is a bundle that has been bundled to a fiber density or higher and has a width of 5 mm or more and a length of 30 nm or more. The bundle portion means a bundle formed by fibrils of the entire three-dimensional network fiber and a bundle formed by consolidating a part of the fibrils of the three-dimensional network fiber. The fiber density was determined by taking continuous fibers having a length of 2 on or more for about 100 cm in length, measuring the spread width every 2 cm, and dividing the weave degree by the spread width.
このよ う な特定の開繊不良部を持たない開镙した三次元網 状 ϋ維よ り成る不織布が、 不織布の巨視的な均一性を表現す る シ ー ト の幅方向の目付け変動率 ( Rノ ) が 0. 3 以下であ り 、 且つ不織布の微視的な均一性を表現する レーザース ポ ッ ト光の透過光量変勖率が 0. 5以下であるとより好ましい。 か かる条件を滴たすこ とによつて極めて均一な不識布を提供す ることができる。 前記巨付け変動率 ( Rノ ) および透過光 量変動率は下記のように定義される。 Such a nonwoven fabric made of an opened three-dimensional net-like fiber having no specific opening defect portion is a sheet width variation rate of the sheet expressing the macroscopic uniformity of the nonwoven fabric ( R) is 0.3 or less, and a laser spot expressing microscopic uniformity of the nonwoven fabric. It is more preferable that the transmission light quantity change rate of the incident light is 0.5 or less. Dropping such conditions can provide a very uniform illusion. The bulk variation rate (R) and the transmitted light quantity variation rate are defined as follows.
目付け変動率 = R Z  Weight per unit change = R Z
1 cm II X 5 cm長の試料で目付け X i を測定しその平均値、  The basis weight Xi was measured with a 1 cm II X 5 cm long sample, and the average value was obtained.
X - . ∑ X i / α ( η : 洌定数で 3 0以上とする》 、 X-. ∑ X i / α (η: 30 or more by Kiyoshi constant),
R = X ma X - X mi n を用いて算 する。 透過光量変動率 = rノ χ /' (目付け) /50 レーザ—ス ポ ッ ト光 (スポッ ド径は 2. 5 舰 ø ) の透過光量をシー トの幅 方向に測定し とし、 その平均値 = ∑ y i / n. ( n : 測定数で 以上とする) 、 r y max - y を用いて算 出する。 -/ (目付け) /50 は平均 g付けの違いに り変化 する不織布中の網状織維収束部の後知感度を補正するための 係数であり、 5 0 g m百付けを基準とした。 この捕正は、 不織布の目付け増加に対してレーザー透過光量が目せけ変化 率の平方根で変化する事による ものである。 R = X ma X - is calculated by using the X m in. Percentage change in transmitted light = r χ / '(basis weight) / 50 Measure the transmitted light of laser-spot light (spot diameter: 2.5 ø ø) in the width direction of the sheet, and average it. = ∑ yi / n. (Where n is the number of measurements or more) and ry max -y. -/ (Basis weight) / 50 is a coefficient for correcting the posterior sensitivity of the convergence portion of the reticulated fiber in the non-woven fabric, which changes depending on the difference in the average g per unit area. This correction is due to the fact that the amount of laser transmission changes with the square root of the rate of change in the weight of the nonwoven fabric as the basis weight increases.
かく して本発明による分缓 JLに属する不裰布は、 巨視的に も微視的にも均一な不織布である。  Thus, the nonwoven fabric belonging to the classification JL according to the present invention is a macroscopically and microscopically uniform nonwoven fabric.
即ち、 この不織布では、 不織布を構成する開織した網状織 維が 4 0デニールノ皿幅の織維密度に集束した 5 丽幅以上で 長さ 3 0 以上の束状部を舍まないことになり、 このよう な 均一性の高い不織布はこれまで知られておらず、 本発明の不 織布により初めて均一性を潢足するフラ フ シュ紡糸法による 次元網状織維不識布が得られる。 In other words, in this nonwoven fabric, the unwoven fabric constituting the nonwoven fabric does not form a bundle having a width of 50 mm or more and a length of 30 or more, which is focused to a fiber density of 40 denier dish width. However, such a nonwoven fabric having a high uniformity has not been known so far, and the nonwoven fabric according to the present invention employs the nonwoven fabric according to the flash spinning method, which is the first to achieve the uniformity. A three-dimensional reticulated fabric is obtained.
更に、 本発明の均一な不織布に於て、 構成される開繊され 高密度ボリ エチ レ ン系の三次元網状織維が、 4 0以下の長 周期散乱強度比および 1 50 A以上の長周期を有すれば、 既 5 詳し く 述べてきたように従来にみられない高強度、 高熱鼷核 特性、 高不透明性、 高被覆力を兼ね備えた均一性に優れた不 織布となる。  Further, in the uniform nonwoven fabric of the present invention, the opened high-density polyethylene-based three-dimensional network fiber constituted by the nonwoven fabric has a long-period scattering intensity ratio of 40 or less and a long-period of 150 A or more. As described above in detail, a nonwoven fabric with high strength, high thermal nucleus properties, high opacity, and high covering power, which has never been seen before, is excellent in uniformity.
このよ う にして得られた分類旦に属する不織布 高度の均 一性を利用してフ ィ ルタ一分野等の用途に展開する ことがで0 きる。  The nonwoven fabric belonging to the classification day obtained in this way can be applied to applications such as filter fields using the high degree of uniformity.
次に前記分類且に属する均一性に優れた不織布を製造する 方法丄を説明する。  Next, a method (2) for producing a nonwoven fabric having excellent uniformity belonging to the classification and description will be described.
' 分類 _Lに属する製造方法は、 回転可能な円盤部.と、 該円盤 部の中央より垂直方向に延び且つ円盤部より小さい直径の円5 形外表面を有する円筒部と、 前記円愨部の片方表面と前記円 筒部の円形外表面との間の空間に傾斜して配置されたスカー ト部から成り、 該ス力— ト部には前記円筒部の蝕線に実質的 に平行な方向で飛来する未開織の三次元網状鐡維を揺動させ る複数の揺勤面と、 該揺動面と交互に配置され、 前記揺動面 によって揺動される三次元網状繊維の揺動方向の急激な変化 を緩和する緩衝面とによって構成されている三次元網状鐡維 の拡散 · 揺動回転分散扳を用いる網状繊維不織布の製造方法 であって、 スカ ー ト部を構成する揺動面の中央と円盤部上表 面とのなす傾斜角度 が锾衝面の中央と円盤部上表面とのな す ί頃斜角度 ^ にほほ'等しい範 ¾であり、 緩衝面が円筒部近く の幅より円盤部近く の幅の方が広い扇型形状であることを特 徵とする三次元網犬織維の拡散 · 揺動回転分散扳を用いるこ とを特徵とする。 '' The manufacturing method belonging to the classification _L includes: a rotatable disk portion; a cylindrical portion extending vertically from the center of the disk portion and having a circular outer surface having a diameter smaller than that of the disk portion; It comprises a scart portion that is inclined and disposed in a space between one surface and the circular outer surface of the cylindrical portion, and the force seat portion has a direction substantially parallel to the eclipse line of the cylindrical portion. A plurality of oscillating surfaces for oscillating unopened three-dimensional net-like iron fibers flying in the direction, and a oscillating direction of the three-dimensional net-like fiber arranged alternately with the oscillating surface and oscillated by the oscillating surface. This is a method for manufacturing a nonwoven reticulated fiber nonwoven fabric using diffusion and oscillating rotational dispersion of three-dimensional reticulated iron constituted by a cushioning surface that alleviates a sudden change in the oscillating surface. The inclination angle between the center of the disk and the upper surface of the disk is the angle between the center of the collision surface and the upper surface of the disk. The angle of inclination is approximately equal to the angle of inclination ^ and the cushioning surface is near the cylindrical part The feature is to use the diffusion / oscillating rotation dispersion of three-dimensional mesh dog fabric, which has a fan-shaped shape whose width near the disk is wider than the width of the disk.
なお前記傾斜角度 "が傾斜角度 にほ 等しい範囲とは «r = β ± ή 。 を意味する。  The range in which the inclination angle is substantially equal to the inclination angle means rr = β ± ή.
以下、 分類丄に属する本癸明による不織布を製造する好邁 な方法の一例に基づき、 本製造方法を說明する。  Hereinafter, the present production method will be described based on an example of a strenuous method for producing a nonwoven fabric of the present invention belonging to Class I.
本来、 フ ラ ッ シュ紡糸法による三次元網状鐡維 、 紡糸し た一本一本の独立した镞維から成る通常のスパ ンボ ン ド法と 異なり網伏に連結された鐡維を開镞分散させなければならな いため均一な不議布を得ることは困難である。  Originally, three-dimensional meshed steel by the flash spinning method, unlike the normal spanbond method consisting of individual spun fibers, the steel fibers connected in a mesh pattern were opened and dispersed. It is difficult to obtain a uniform dispute because it must be done.
本発明者らは、 この不辍布中に存在する不均一性の発生原 因を解明すベく高速度撮影装 tf' (菅原研究所製ス ト ボビジ ヨ ンアナライ ザー · 1 ) を使用し開 ϋ分散部の三次元網 ϋ維の扰態を 1 Ζ30万抄の瞬間写真で追跡した。 好適な開 IS分散技術としては、 高速回転 Ο分散板に未開 $哉の三次元網 状織維を衝突させて開織分散する方法が不織ゥ ブの高速生 産に遺している事からこの方法を用いた。 The present inventors have developed a high-speed photographing device tf '(a stobovision ionizer manufactured by Sugawara Laboratories) to elucidate the cause of the non-uniformity existing in this nonwoven fabric. · Using 1), the state of the three-dimensional network of the dispersal part was tracked by a 130,000 abstract photo. The preferred open IS dispersion technology is a high-speed rotation.This method is based on the high-speed production of non-woven fabrics because the method of colliding undistributed three-dimensional mesh fibers against the dispersion plate and dispersing the open fabric is left behind. The method was used.
前記観察の結果フ ラ ッ シュ紡糸法による不織シー ト中の搆 成繊維の開镞が不均一である最大の原因が開譏した三次元網 茯镙維中に開織不良部が存在する事にあることを見い出した. フ ラ ッ シュ紡糸法による三次元諝状鐵維は、 連镜した三次元 網状構造をとるため、 一旦開襪した後でも織維に作用する僅 かな張力で容易に数ミ リ幅の束状部に集束される性質を有す る。 すなわち本発明者等の知見によれば、 ①回転分散扳に衝 突拡幅された三次元網状織維が、 回転分散板とゥ ブ浦集面 との間の空間領域を走行する場合、 周囲の空気との粘性抵抗 により織維に張力が発生する。 この張力が、 拡幅された三次 元網状鐡維幅を縮小する作用を与える。 又②回転分散板に衝 突拡蝠された三次元網状織維は、 回転分散板とウェブ捕集面 との間の空間領域を走行する場合、 三次元網状織維の揺動方 向変化点が捕集面上より上の空間領域で発生する場合に 、 浦集面に向う前進速度が低下して、 あたかも空間を浮遊する がごとき状態で落下する。 この状態での三次元網状織維は、 開镊幅が縮少しやす く 、 外的要因、 例えば周囲の気流の影響 を受けやす く 容易に集束し束状部とな る こ とが確認された。 As a result of the above observation, the largest cause of uneven opening of the synthetic fibers in the non-woven sheet by the flash spinning method is the most unusual reason. Since the three-dimensional filamentary fiber made by the flash spinning method has a continuous three-dimensional net-like structure, it can be easily opened with a slight tension acting on the textile even after it has been opened. It has the property of being focused on a bundle of several millimeters wide. In other words, according to the knowledge of the present inventors, it is clear that When the protruded and widened three-dimensional mesh fabric travels in the space region between the rotation dispersion plate and the hub area, tension is generated in the fabric due to viscous resistance with the surrounding air. This tension has the effect of reducing the width of the expanded three-dimensional braided mesh. In addition, the three-dimensional mesh fiber impinged on the rotating dispersing plate, when traveling in the spatial region between the rotating dispersing plate and the web collecting surface, changes the swing direction of the three-dimensional mesh fiber. When the water occurs in the space above the collecting surface, the forward speed toward the Ura collecting surface is reduced, and it falls as if it were floating in space. In this state, it was confirmed that the three-dimensional mesh fabric had a small opening width, was easily affected by external factors, for example, the surrounding airflow, and was easily converged into a bundle. .
こ のよ う な束状部を含むゥ ブは、 適当な熱接合により不 ^布.と した際、 镍維密度の大きな部分や繊維密度の小さな部 分が混在する不均一な外観となり、 又目付け斑が極めて大き: な もの となる。  When the tube including such a bundle portion is made non-woven by appropriate thermal bonding, it has an uneven appearance in which a portion having a high fiber density and a portion having a low fiber density are mixed, and The spots are extremely large.
前述の観点から本発明者らは、 均一性の潢足された不識布 を得るべく 鋭意研究の結果前述の構成の分類丄に属する製造 方法に到達した。  In view of the foregoing, the present inventors have conducted intensive studies in order to obtain uniformity-added ignorance, and have arrived at a manufacturing method belonging to the above-described configuration classification.
なおスカー ト部を構成する揺勣面が実質的に平面であり、 锾衝面が実質的に凸型曲面である拡散 · 揺動分散板を用いる と好ま し く 、 さ らにより好ま し く は、 回転分散板最下部と開 織した三次元網状繊維浦集面との間の距離を回転分散板最下 部と三次元網状繊維の揺動方向変化点との間の距離以下に設 定する事を組み合わせるとよい。  In addition, it is preferable to use a diffusing and oscillating dispersion plate in which the oscillating surface constituting the scart portion is substantially flat, and the collision surface is a substantially convex curved surface, and more preferably. The distance between the bottom of the rotating dispersion plate and the open surface of the opened three-dimensional mesh fiber is set to be equal to or less than the distance between the bottom of the rotating dispersion plate and the point where the swing direction of the three-dimensional mesh fiber changes. Combine things.
三次元網状.織維の揺動方向変化点とは、 回転分散板により 回転分散板の円筒部の軸線と実質的に直交する方向に往復運 動される二次元網状織維が運動方向変化により折り返される 点を言つ。 The three-dimensional net shape. It refers to the point at which a two-dimensional network fiber that is reciprocated in a direction substantially orthogonal to the axis of the cylindrical portion of the rotation dispersing plate is turned by a change in the direction of movement.
この回転分散板最下部と三次元網状譏維の捕集面との間 O 距離は、 紡糸ノ ズル 1錘あたりの溶液吐出量及び紡糸ノ ズル と回転分散板との位置関係により决められ、 回耘分散板最下 部と網状譏維の揺動変化点との間の距離以下とし、 好まし く は三次元網状織維捕集面が網伏鐡維の揺勣変化点直前にある とよい。 こ'の距難の確認は、 ^記高速度撮影装置により 1 Z 3 X 10 5 抄の瞬間写真で観察することにより行なうことがで - きる。 The O distance between the lowermost part of the rotating dispersion plate and the collecting surface of the three-dimensional net-like fiber is determined by the amount of solution discharged per spindle of the spinning nozzle and the positional relationship between the spinning nozzle and the rotating dispersion plate. It should be less than the distance between the bottom of the tillage dispersion plate and the swing change point of the net-like debris. Good. Confirmation of距難of this' is, ^ serial high-speed image capturing device by 1 Z 3 X 10 5 Extract of the moment de be done by observing with a photograph - kill.
本発明に係る回転分散板は、 充分に拡幅開織された三次元 状鐡維の形状を一定 保ちつつ浦集面上に三次元網状織維 ' を導く ようにしたものである。 ノ ズルょり噴出した高速流体 と三次元網状織維は、 スカ— ト部中の揺動部と緩衝部のどち らに衝突した場合でも同じ幅を持つ扇抆に拡幅開織され、 重 力方向の落下速度はほぼ一定で拡幅開織三次元網状鐡維を集 束させる張力を発生させることなく浦集面上に導く 。 勿論ノ ズルから噴出された流体は、 回転分散板と衝突する際一部雰 囲気中に飛散するが大部分は三次元網状織維を捕集面に導く 隱きをする。  The rotating dispersion plate according to the present invention is such that the three-dimensional net-like fiber is guided on the surface of the ura while maintaining the shape of the three-dimensional steel fiber which has been sufficiently widened and opened. The high-speed fluid and the three-dimensional mesh fiber that have been ejected from the nozzle are widened and opened by a fan having the same width regardless of whether they collide with the swinging part or the buffer part in the skirt. The falling speed in the direction is almost constant, and the widened open-woven three-dimensional reticulated steel is guided on the surface of the ura without generating tension to converge it. Of course, the fluid ejected from the nozzle scatters in the atmosphere when it collides with the rotating dispersion plate, but most of the fluid conceals leading the three-dimensional mesh fabric to the collection surface.
本発明に係る回転分散板を用いた場合はどのような分散条 件であろう とも、 不織布を構成する開織した網状織維が 4 0 デニールノ m幅の鎩維密度以上に集束した幅 5 以上で、 長 さ 3 0 mm以上の束状物を含まない不織布を得ることができる さ らに本発明に係る回転分散板と、 回転分散扳最下部と開 ¾した三次元網状織維浦集面との間の距離を回転分散扳最下 部と三次元網状織維の揺勛方向変化点との間の距離以下に設 定する事を組み合わせる事によ り得られた不織布を構成する 三次元網状镊維は上記束状都を含まない事はもちろんの事、 幅が不裰布の全域にわたつてほぼ一定であった。 In the case of using the rotating dispersion plate according to the present invention, regardless of the dispersion conditions, the width of the unwoven woven fabric constituting the nonwoven fabric converged to a fiber density of 40 denier m or more is 5 or more. To obtain a non-woven fabric having a length of 30 mm or more and containing no bundle. Further, the distance between the rotational dispersion plate according to the present invention and the rotational dispersion 扳 the bottom and the opened three-dimensional net-like weir surface is increased by the rotational dispersion 勛 the oscillation of the bottom part and the three-dimensional net-like fabric. The three-dimensional mesh fiber constituting the nonwoven fabric obtained by combining the setting with the distance not more than the distance between the direction changing point does not include the above-mentioned bundled capital, and the width is not limited. It was almost constant over the entire area of the fabric.
これらの不織布は、 幅方向の目付け変動率が 0. 3 以下であ り 、 '†i方向の レーザースポ 'ノ ト光の透過光量変動率が 0. 5 以 下という極めて均一なものであった。  These nonwoven fabrics were extremely uniform in that the basis weight variation in the width direction was 0.3 or less and the variation in the amount of transmitted laser light in the '† i direction' was 0.5 or less. .
このよ う な均一な不織布は、 製造原理上目付けの限定 な いが、 通常平均目付け重量 5 〜 500 g Z m2 (好ま し く は 1 5〜 300 g ノ ) のものが有用である。 . . このよ う な均一な不織布は特殊繊維と して優れた特長を持 つフ ラ ッ シュ紡糸網状織維の不織布と しての利用範囲を広げ る こ とが可能であり その有用性ははかり知れないものがある。 以下分類丄に属する本発明の三次元網状鐵維より成る不織 布を製造する好適な一例を添付図面を参照して詳述する。 Such a uniform nonwoven fabric is not limited in terms of basis weight in terms of the production principle, but is usually useful having an average basis weight of 5 to 500 g Zm 2 (preferably 15 to 300 g). Such a uniform non-woven fabric can be used to expand the range of use as a non-woven fabric of a flash-spun reticulated fiber which has excellent characteristics as a special fiber. Something is immeasurable. A preferred example of the production of the non-woven fabric comprising the three-dimensional mesh fiber of the present invention belonging to the category I will be described in detail with reference to the accompanying drawings.
第 1 3 、 第 1 4 ( a ) 図、 第 1 4 ( b ) 図において 3 2 は円筒 状突起部であり 、 スカ ー ト部 3 3 に衝突した三次元網状繊維 及び高速気流の上方への吹き上げを防止する役目を果す。  In FIGS. 13, 14 (a) and 14 (b), reference numeral 32 denotes a cylindrical projection, which is a part of the three-dimensional reticulated fiber colliding with the skirt part 33 and the high-speed airflow. It serves to prevent blow-up.
3 丄 は円盤部であり、 スカ ー ト 部 3 3 で偏向された三次元網 状 ί哉維の進行方向を制御する。 スカ ー ト部 3 3 は三次元網状 織維の拡幅開織及び広幅ゥ ュブ化のために拡幅開織三次元網 状織維の揺動を行う。  Reference numeral 3 denotes a disk, which controls the traveling direction of the three-dimensional net-shaped beam deflected by the skirt portion 33. The skirt portion 33 swings the widened open weave three-dimensional net-like fiber for widening and weaving the three-dimensional net-like fibre.
ス カ ー ト部 3 3 は、 揺動面 3 4 と緩衝面 3 5 が交互に配置 された連铙面として形成され、 揺動面 3 4は通常 2 〜 5個配 置される。 The swinging surface 3 4 and the cushioning surface 3 5 are alternately arranged in the scar section 33. In general, 2 to 5 rocking surfaces 34 are arranged.
揺動面 S 4 は実質的に平面形祅に作られ、 锾衝面 3 5 は実 質的に凸型曲面形状に作られていると好ましい。 揺勣面 3 4 が実質的に平面であるとは、 第 1 4 (a) 図に示すように揺動 面 3 4 と円盤表面との交線 3 7が直線に近い面形伏のものを 意味する。 三次元網状鍵維が円滑に揺動される範囲であれば、 交線 3 7'が極めて緩やかな曲率を持つ曲面、 即ち凹面又は凸 面であつてもよい。 た Vし^接する緩衝面 3 5の.形扰が円筒 部近く の幅より円盤部近く の幅の方が広い扇型形状となるよ うに、 揺勣面 3 4と緩衝面 3 5間の接镜端形状が形成されて いるのが好ましい。  It is preferable that the oscillating surface S 4 is formed substantially in a flat shape, and the collision surface 35 is formed substantially in a convex curved shape. The oscillating surface 34 is substantially flat if the intersection line 37 between the oscillating surface 34 and the disk surface is almost straight as shown in Fig. 14 (a). means. As long as the three-dimensional mesh key is smoothly swung, the intersection line 37 'may be a curved surface having an extremely gentle curvature, that is, a concave surface or a convex surface. The contact surface between the oscillating surface 34 and the cushioning surface 35 is designed so that the shape of the cushioning surface 35 that comes into contact with the disk has a fan shape whose width near the disk is wider than that near the cylinder. It is preferable that an end shape is formed.
緩衝面 3 5が実質的に凸型曲面であるとは、 第 1 4 (b) 図 で示される円筒部 3 2 との交線の高ざ Y 2 が一定である円錐 曲面のことを意味する。 た し緩:衝面と しての役割りを保持 する範囲であれば、 平面又は数倔の平面からなる多面体面で あってもよい。 A buffer surface 35 is substantially convex curved surface, the high seat Y 2 of intersection of the cylindrical portion 3 2 represented by the 1 4 (b) Fig means that the conical curved surface is constant . Slow: Polyhedral surface consisting of a flat surface or several flat surfaces may be used as long as it can maintain the role of the opposing surface.
又、 揺動面 3 4、 緩衝面 3 5共に円筒部 3 2 の側面との接 続及び円盤部 3 1 の上表面との接鐃が曲率を持ってなめらか に行われていてもよいことは当然である。  It is also possible that the connection between the rocking surface 34 and the cushioning surface 35 with the side surface of the cylindrical portion 32 and the connection with the upper surface of the disk portion 31 may be made smoothly with a curvature. Of course.
第 L 4 (b) 図で示されるスカ一 ト部 3 3 の揺動面 3 4 と円 Μ 3 1 の表面とのなす傾斜角度- は、 緩衝面 3 δ と円盩 3 1 の表面とのなす角度^の閔係は、 a = β 好ましく は、 a = βである ことが本発明の巨的を達成するために重要であ る。 この関係を満足する場合には、 锾衝面 3 5 は円筒部 3 2 の近 く の蝎より 円盤部 3 1 の近 く の幅の方が広い扇型形状に なる。 SP3, 497, 918号公報に開示されているよ う に、 锾衝面 3 5 は円盤部 3 1 の近く の幅の方が円筒部 3 2 の近 く の幅よ り 狭い く さび型形状を取る場合には、 揺動部 3 4 Θ ί頃斜角度 " と谖街部 3 5 の傾斜角度 ^ とは上記閲係をみたさず、 S衝 部 3 5 の傾斜角度 /? は、 揺勤部 3 4 の傾斜角度 に比ベ必然 的に小さな構造となる。 こ の回転分散板の三次元網状镞維へ の作用を第 i 8 図に示す。 The inclination angle between the swing surface 34 of the skirt portion 33 and the surface of the circle Μ 31 shown in FIG. L4 (b) is the angle between the cushioning surface 3 δ and the surface of the circle 盩 31. It is important that a = β, preferably a = β, to achieve the enormousness of the present invention. If this relationship is satisfied, the contact surface 3 5 The width near the disc 31 is wider than the scorpion near the fan. As disclosed in SP3, 497, 918, the contact surface 35 has a wedge shape in which the width near the disk portion 31 is narrower than the width near the cylindrical portion 32. When taking, the swing part 34 4 Θ ί Θ ί ί 斜 谖 谖 谖 谖 谖 部 部 3 5 5 5 5 5 5 5 ^ ^ ^ ^ 、 、 、 、 、 、 、 The structure is inevitably smaller than the inclination angle of 34. The effect of this rotating dispersion plate on the three-dimensional network is shown in Fig. I8.
傾斜角度 は 30° 〜 60° の範囲が好ま し 'く 、 吐出流量や所 望する ゥ ブ幅との関係によ り選択される。 傾斜角度 が大 きい場合は、 三次元網状繊維および高速流体と もに衝突によ つて損失する運動量が少 く なるため、 三次元網状.織維を捕集 面へ導 く 運動量が多 く 広幅のウ ェブとなる。  The inclination angle is preferably in the range of 30 ° to 60 °, and is selected according to the relationship between the discharge flow rate and the desired tube width. When the angle of inclination is large, the momentum lost by collision with the three-dimensional mesh fiber and the high-speed fluid is reduced, so the three-dimensional mesh is large and the momentum that guides the fiber to the collection surface is large. It will be a web.
回転分散板の揺動面 3 及び緩衝面 3 5の形状は、 第 1 4 (b) 図で示した X , , Y , , X z , Y 2 の長さ と第 1 4 (a) 図で示した揺勣面 3 4の振り分け中心角度 r及び 7? が決まれ ば自動的に决定される。 又 X ' , Y « と Χ 2 , Υ 2 との閲係 は、 傾斜角度 "と ^ の関係よ り决め られる。 The shape of the oscillating surface 3 and the buffer surface 35 of the rotary dispersion plate, X shown in the first 1 4 (b) Fig.,, Y,, X z, in the length and the 1 4 (a) FIG Y 2 If the distribution center angles r and 7? Of the indicated shaking surface 34 are determined, they are automatically determined. In addition, the relation between X ′, Y «and Χ 2 , Υ 2 is determined by the relationship between the inclination angle“ and ^.
第 i 5 図に示すよ う に、 ノ ズル 2 4 より高速流体と共に噴 出された未開繊の三次元網状繊維 2 6 は、 ノ ズル 2 4 の先端 付近に近接して設けられた回転分散板のス カ ー ト部 3 3 と衝 突して拡幅開織され、 三次元網状織維の進行方向を変換する。 上記スカ — ト部 3 3 を構成する三次元網状織維揺動面 3 4及 . び锾衝面 3 5 は、 ソ ズル軸線 2 5 に対し の傾斜を持つ て配 置されている。 また第 1 5図に示したように、 拡幅開織した三次元網状^ 維に、 回転分散板より故出された直後に回転分散板" ¾下流に 配置したコ ロナ放電装置 2 7等により電荷を付与した方が絹 状織維を均一に開镄させ、 より均一な不 ¾ウェブを得る こ と ができるので好ましい。 この場合本発明の係る装置でば、 回 転分散板から放出される三次元網状鏢維の拡幅開織程度が径 時的に均一であるために、 コ 口ナ放電装 Sで得られる静電気 による分散状態を極めて均一にすることができる。 これによ り開織された三次元網扰鐡維を安定して浦集面上 2 8上に堆 積させることができるので、 浦集面上での気流によるゥェブ の乱れを抑制し不織ゥエブの均一性を一層向上させることが 'できる。 As shown in Fig. I5, the unspread three-dimensional reticulated fiber 26 ejected from the nozzle 24 together with the high-speed fluid is a rotating dispersion plate provided near the tip of the nozzle 24. The cloth is widened and collides with the scat part 33 to change the traveling direction of the three-dimensional net-like fiber. The three-dimensional reticulated weave oscillating surface 34 and the contact surface 35 constituting the skirt portion 33 are arranged so as to be inclined with respect to the axis of the nozzle 25. Further, as shown in FIG. 15, the corona discharge device 27 and the like arranged downstream of the rotating dispersion plate immediately after being ejected from the rotating dispersion plate on the widened and opened three-dimensional mesh fiber. It is preferable to apply the tertiary layer, since the silk-like fiber can be uniformly opened and a more uniform non-woven web can be obtained. Since the degree of widening and weaving of the original reticulated fiber is temporally uniform, the state of dispersion by static electricity obtained by the corner discharge device S can be made extremely uniform. Since the three-dimensional network steel can be stably deposited on the surface of the ura collection surface, the turbulence of the web due to the air current on the ura collection surface is suppressed, and the uniformity of the nonwoven web is further improved. be able to.
第 1 6 (a) 図〜第 1 6 (d) 囫は、 高速回転を行っている本 . 発明に係る回転分散板を網状織維の揺動変化点が ft集面上に なる距離に設置した場合の三次元網状織維への作用状態を前 記した高速度撮影装置で観察した溉略図である。  Figures 16 (a) to 16 (d) 、 are the high-speed rotating books. The rotating dispersion plate according to the present invention is installed at a distance where the swing change point of the mesh fabric is on the ft collecting surface. 5 is a schematic view of the state of action on a three-dimensional reticulated fiber observed by the high-speed imaging apparatus described above.
回転分散扳は、 200 Wのサーボモータを用い第 1 5図に示 す Zを回転軸とし 10^〜3000 r p m で回転させ、 実際の三次元 絹扰織維の揺動 HI数は 300〜900ひ rpm であった。  Rotational dispersion 、 was performed at a speed of 10 to 3000 rpm using a Z axis shown in Fig. 15 as the axis of rotation using a 200 W servomotor. The actual HI number of the three-dimensional silk fiber was 300 to 900. Speed.
第 1 6 (a ) 図は、 揺動面 3 4の中央部に衝突した三次元網 伏織維が回転分散扳上で拡幅しつつほぼ垂直方向に落下して いる祆態を示す。 第 1 6 (b) 図は、 第 1 6 (a) 図より約 5 0 ' 回耘し、 回転分散板の揺動面 3 4右端部に衝突した三次元網 扰織維が回転分散扳上で拡幅しつつ面面上の左斜め方向に落 下している状態を示す。 第 1 6 (c) 図は、 第 1 6 (b) 図より さ らに約 1 0 ° 回転し、 回転分散板 3 0 の緩衝面 3 5 O中央 部に衝突した三次元網状織維が回転分散板上で拡幅しつつほ ぼ垂直方向に落下している状態を示す。 第 1 6 (d) 図は、 第 1 6 (c) 図より さ らに約 1 0 ° 回転し、 回転分散板の揺動面 3 4 の左端部に衝突した三次元網状織維が回転分散板上で拡 幅しつつ図面上の右钭め方向に落下している状態を示す。 第 1 6 (a) 図〜第 1 6 (d) 図に示すよう に、 回転分散板に衝突 た三次元網状織維は扇状に広幅開 され、 織維衝突点 3 9 より ス カ — ト部 3 3 と円盤部 3 1 の上表面との交線 (揺動面 3 4 と円盤部 3 1 の上表面との交線 3 7又は緩衝面 3 5 と円 愨部 3 1 の上表面との交線 3 8 ) に立てた垂線方向へ、 拡幅 三次元網状織維形状を保ちながら進行し浦集面 3 ·6上へ流体 とともに導かれている。 FIG. 16 (a) shows a state in which the three-dimensional netted fabric colliding with the central portion of the oscillating surface 34 is falling almost in the vertical direction while widening on the rotational dispersion. Fig. 16 (b) shows the three-dimensional network that swelled about 50 'from the figure in Fig. 16 (a) and collides with the swinging surface of the rotation dispersion plate. Indicates a state in which the width is widened and falls diagonally to the left on the surface. Fig. 16 (c) is from Fig. 16 (b). Furthermore, the three-dimensional mesh fiber that has been rotated about 10 ° and colliding with the buffer surface 35 O of the rotating dispersion plate 30 is falling almost vertically while widening on the rotating dispersion plate. Is shown. Fig. 16 (d) shows that the three-dimensional mesh fiber rotated about 10 ° more than Fig. 16 (c) and collided with the left end of the oscillating surface 34 of the rotating dispersion plate was rotated and dispersed. This shows a state in which it is expanding on the board and falling in the right-upward direction on the drawing. As shown in Fig. 16 (a) to Fig. 16 (d), the three-dimensional mesh fiber that collided with the rotating dispersion plate is widened in a fan-like shape, and the scat section starts from the fiber collision point 39. Intersection line between 3 3 and the upper surface of the disk portion 3 1 (intersection line 37 between the swinging surface 34 and the upper surface of the disk portion 31 or the cushioning surface 35 and the upper surface of the circular portion 3 1 In the direction perpendicular to the intersection line 38), the widening is maintained while maintaining the three-dimensional net-like fiber shape, and is guided along with the fluid onto the ura collection surface 3.6.
又、 回転分散板の網状織維揺動面 3 4に衝突後の三次元網 状繊維の落下状態を示す第 1 6 (a) 図、 第 1 6 (b) 図および 第 L 6 (d) 図と緩衝面 3 5 に衝突後の三次元網状鐡維の落下 状態を示す第 1 6 (c) 図とを比較すると、 三次元網状織維の 拡幅開 状態は浦集面 3 6.上に導かれるまでほぼ同一である こ とが確認される。 又開繊の不均一性や部分的な三次元網状 鐡維の集束、 空中での挫屈は見られない。 すなわち回転分散 扳の高速回転中においてさえも Ξ次元網状識維の拡幅開镞幅 は衝突点の位置により変化する こ とな く 揺勣し走行三次元網 状織維を均一に捕集面上へ導いている。  Figs. 16 (a), 16 (b) and L6 (d) show the falling state of the three-dimensional reticulated fiber after impact on the revolving surface 34 of the rotating dispersion plate. Comparing the figure with Fig. 16 (c), which shows the falling state of the three-dimensional net-like steel after the collision with the buffer surface 35, the widening open state of the three-dimensional net-like fiber is shown on the Ura converging surface 36. It is confirmed that they are almost the same until they are derived. In addition, there is no unevenness of spreading, no partial focusing of three-dimensional net-like steel fibers, and no buckling in the air. In other words, even during the high-speed rotation of the rotation dispersion, the width of the three-dimensional mesh fiber is increased without changing the position of the collision point, and the traveling three-dimensional mesh fiber is uniformly collected on the collecting surface. Leading to.
第 1 8 (a) 図〜第 1 8 (d) 図は、 USP3, 497, 918号公報の第 3 図および第 4図に開示されている緩衝面の形状がく さび型 である回転分散板の三次元網状織'維への作用を第 1 6 (a) 図 〜第 1 6 (d) 図と同じ方法で観察した概略図である。 FIGS. 18 (a) to 18 (d) show wedge-shaped cushioning surfaces disclosed in FIGS. 3 and 4 of US Pat. No. 3,497,918. 16 (a) to 16 (d) are schematic views showing the effect of the rotating dispersion plate on the three-dimensional network fiber by the same method as in FIGS. 16 (a) to 16 (d).
第 1 8 (a) 図〜第 I 8 (d) 図の回転分散板の静止状態位置 は第 1 6 (a) 図〜第 1 6 (d); {lと各 対応している。 The stationary positions of the rotational dispersion plates in FIGS. 18 (a) to I8 (d) correspond to FIGS. 16 (a) to 16 (d) ; {l, respectively.
第 1 8 (a) 図、 第 1 8 (b) 図および第 1 8 (d) 図に示す揺 動面 3 4に衝突した三次元網状篛維の拡幅開鐡幅 H 1 に比べ、 第 Γ 8 (c) 図に示す緩衝面 3 5 に衝突した三次元網状镞維の 拡幅隨織幅 H 2 は約 1. 5 〜 2 ίきの大きさとなることが確認さ ' れ、 開織性が不均一となっている。  Compared with the widened open steel width H 1 of the three-dimensional mesh fiber that collided with the rocking surface 34 shown in FIGS. 18 (a), 18 (b), and 18 (d), 8 (c) It was confirmed that the width H2 of the three-dimensional mesh fiber colliding with the buffer surface 35 shown in the figure was about 1.5 to 2 mm, and the openability was improved. It is uneven.
観察されたように三次元網状織維の拡幅開織幅が変化する ことにより、 落下走行三次元網状纖維に究生する張力は、 回 - 転分散板の回転中脈動的に変化するため第 1 8 (a) 図、 第 - 1 8 (b) 図および第 1 8 (d) 図 示すような.拡幅三次元網 抆鍵維の挫厘部 @や部分的収束部⑬を誘発することが確認さ れる。  As observed, as the width of the three-dimensional network fiber widens, the tension generated in the falling traveling three-dimensional network fiber changes pulsatingly during rotation of the rotating and dispersing plate. As shown in Fig. 8 (a), Fig.-18 (b) and Fig. 18 (d), it is confirmed that the widened three-dimensional network induces the @@ and the partial convergence of the key fiber. Is done.
第 1 7 (a) II〜第 1 7 (d) 図は、 本発明に係る回転分散板 を三次元網伏鐡維の揺勖変化点が浦集面よ · 上方になる距離 に ¾置した場合の三次元絹状鐡維への作用を第 1 6· (a) 図〜 第 1 6 (d) 厘と同じ方法で観察した概略図である。  Fig. 17 (a) II to Fig. 17 (d) show that the rotation dispersion plate according to the present invention was placed at a distance where the swaying change point of the three-dimensional Aboshi steel was above the Ura junction. Fig. 16 (a) to 16 (d) are schematic diagrams showing the effects on the three-dimensional silk-like steel in the same case as those shown in Figs. 16 (a) to 16 (d).
第 1 7'(a) 図〜第 1 7 (d) 図の回転分散板の静止状態位置 は第 I 6 (a) 図〜第 1 6 (d) 図と各々対応している。  The stationary positions of the rotational dispersion plates in FIGS. 17 (a) to 17 (d) correspond to FIGS. I6 (a) to 16 (d), respectively.
第 1 7 (a) 図〜第 1 7 (d) 図に示されるように三次元網状 鐵維の揺勣変化点 ©が捕集面により上に発生する場合、 揺動 変化点以降の落下二次元網状織維の拡幅開織幅 H 3 は、 揺動 変化点より上の三次元網状織維の開織幅 H 2 に比べ铗く なる こ とが確認された。 As shown in Fig. 17 (a) to Fig. 17 (d), when the swing change point © of the three-dimensional reticulated steel occurs above the trapping surface, the drop after the swing change point The width H 3 of the widened weave of the three-dimensional reticulated fabric is larger than the width H 2 of the three-dimensional reticulated weave above the point of oscillation This was confirmed.
又、 揺動変化点以降の落下三次元網状織維^:、 図中 ®領域 に示されるよ う な落下速度の遅い浮遊状態となっている。 こ O浮遊三次元網状襪維は、 外的要因、 例えば外界の気流の影 響を受けやす く 維密度 4 0 デニール/ / «幅よ り は小さい が若干集束した ©部を発生しやすい傾向がある。 In addition, the three-dimensional reticulated fiber falling after the swing change point is in a floating state with a slow falling speed as shown in the region in the figure. This O floating three-dimensional network襪維is, external factors, for example, outside of the influence the susceptibility rather維密degree 4 0 denier / / «Ri by width is small but produces a © part focused slight tendency of the airflow is there.
以下本発明の各種実験例によ り本発明をさ らに詳述する。 Hereinafter, the present invention will be described in more detail with reference to various experimental examples of the present invention.
11例 1 11 Example 1
第 1 Q 図に示すフ ロ ー シー トを用いて高密度ポ リ エチ レ ン の フ ラ ッ シ ュ紡糸を行った。  Flash spinning of high-density polyethylene was carried out using the flow sheet shown in Fig. 1Q.
^いた押出機及びそのス ク リ ュ 一に付設された機械的混合 装置の形状は、 第 8 図にモデル的に示す。  The shape of the extruder and the mechanical mixing device attached to the screw are schematically shown in FIG.
各部分の寸法を示すと、 ス ク リ ユ ー寸法は径 3 5 ø 、 '供 . 袷部長さ /深さ = 3 1 5 ノ 5 圧縮部長さ /深さ = 3 1 5 « / 5 -→ 1. 6 mm . 計量部長さ /深さ = 245 / 1. 6 である。 ダルメ ー ジ部の形状は多状ネジ搆造にて、 長さは 2 1 0 口 径は約 5 0 ø 、 用いたネジは 1 6 条にて、 半円形状の溝を 持ち、 溝深さ 3; 6 (最大) 、 ねじれ角右 .3 5 ° である。 更 に、 ピン混合部の形状は円筒ピンの多列配列の構造体であり 、 ピ ン配置は 8 条 1 7 列であり 、 その大きさ は長さ 285 口 径は約 5 0 ø である。 このピ ン混合部はス ク リ ュ ー と同軸 上の铀にピンを植える と同様に、 レル側にも同一形状のピ ンが同じ 8 条 i 7 列で植え られており 、 ス ク リ ュ ーが回転す る と固定ピンの間をスク リ ユ ー と同一軸上の可動ピンが勣き . ポ リ マー と溶剤を混合する。 バレルと可動ピ ン軸との間隙は 5 - 1 When the dimensions of each part are shown, the screw size is 35 ø in diameter, and the length of the lined part / depth = 3 15 no 5 Compressed part length / depth = 3 15 «/ 5-→ 1.6 mm. The length / depth of the measuring section is 245 / 1.6. The shape of the damaging part is a multi-thread screw made of steel, the length is 210 mm, the diameter is about 50 ø, the screw used is 16 threads, it has a semicircular groove, the groove depth 3 ; 6 (maximum), the twist angle is .35 ° right. Furthermore, the shape of the pin mixing section is a multi-row array of cylindrical pins, the pin arrangement is 8 × 17 rows, the size is 285, and the diameter is about 50 °. In this pin mixing section, pins of the same shape are also planted in the same row of 8 i7 rows on the barrel side, as in the case of planting the pins on the axis coaxial with the screw. When the key rotates, the movable pin on the same axis as the screw moves between the fixed pins. The polymer and solvent are mixed. The gap between the barrel and the movable pin shaft is 5-1
5  Five
86 了 である。 さ らに、 これらは第 1 0図の符号 9 に示される 静的混合部を有しており、 用いた静的混合素子 、 スルザ— 社製ミキサー S M X型 (呼び径 1 5 ™ ) で、 形態ば金属铂 片が并桁抆に溶接されそれらが 9 0 ° ずつ角度をずらせて連 §されている—。 このものを 5 0段用いた。  86. In addition, they have a static mixing section indicated by reference numeral 9 in FIG. 10. The static mixing element used is a mixer SMX type (nominal diameter 15 ™) manufactured by Sulzer. For example, metal pieces are welded in parallel, and they are connected at an angle of 90 °. This was used in 50 stages.
各混合装置部には、 溶剤注入口が設けられ、 それぞれ二連 のプラ ンジャ ーポンプに違結されている。 この押出 · 溶解装 置の先に第 1 0図の符号 7で示す紡糸装置を取り付けた。 钫 糸装置は、 ろ過用フィ ルタ—、 0. 6 - 5 Lの減圧用ォ Each mixing unit is provided with a solvent injection port, each of which is connected to a double plunger pump. A spinning device indicated by reference numeral 7 in FIG. 10 was attached to the end of the extruding / dissolving device.糸 The yarn device is equipped with a filter for filtration and a 0.6-5 L decompression filter.
10 リ フ ィ ス、 約 2 ccの '减圧室、 0 . 55 、 0 , 55 Lの孔とそれ 10 reefs, about 2 cc pressure chamber, 0.55, 0, 55 L holes and it
に镜く 3 mm 3 Lの ト ンネルフ レア—を有する钫糸ノ ズ ルの組み合せとした。 *.  It was a combination of yarn yarns with 3 mm 3 L of tunnel flares. *.
ポリ マ一 ·4して、 高密度ポリ エチレン ( Μ I = 0. 31 M„ / M a = 4. 8 、 密度 0 . 960 g / cii ) を押出機の *ッパ—より供 ;袷し、 二台の定量ポンプから同一量のフ ロ ン - 1 1を供袷す る。 ボリ マー流速 8. 8. kg / Hrにおいてポリ 濃度を 12 . 0w t %とした。 この時溶液は温度 190 圧力 350 kg / (^を示し 铵 室内では温度 19ひでで圧力 llO k Z crfであった。 従って ¾圧ォリ フ ィ ス前後の圧力差は 240 kg Z crfであり、 減圧室内 の条件ぱ 1液相領域内の条件であつた。 その结果、 紡糸ノ ズ ルより高度にスィ プリ ル化した純白の違繞した三次元網状織 維が吐出された。  The polymer was supplied and high-density polyethylene (ΜI = 0.31 M „/ Ma = 4.8, density 0.960 g / cii) was supplied from the extruder's * paper; Then, supply the same amount of Fluor--11 from the two metering pumps, and set the poly concentration to 12.0 wt% at a polymer flow rate of 8.8 kg / Hr. The pressure was 350 kg / (^, indicating that the pressure was llOK Z crf at room temperature 19 and therefore the pressure difference before and after the pressure relief was 240 kg Z crf. The conditions were in the liquid phase region, and as a result, a three-dimensional net-like fabric of pure white, which was more highly spun than the spinning nozzle, was discharged.
この鎩維は、 籙度が 112 dで、 比表面積は 4 8 ni Z gであ つ そ X線小角散乱による長周期が で長周期 による散乱強度比は 6.了であつた 燃り 回数が 4回 Z cmでの引張試験において初期モ ジ ュ ラ ス 力く 40.3 g / d、 破断強度が 9. 5 g d であ っ た。 This fiber has a density of 112 d, a specific surface area of 48 niZg, and a long period due to small-angle X-ray scattering. The scattering intensity ratio was 6. The initial modulus was 40.3 g / d and the breaking strength was 9.5 gd in the tensile test with 4 burns of Z cm.
又、 T M Aでの 130で での伸長率は 1. 5 %、 ノ、'イ ブロ ンで の動的粘弾性率が 1 O: 1 。 dynZcrf である温度は 123 °C 、 tan 5 の結晶分散開 :始温度は 127て であ った。 In addition, the elongation rate at 130 in TMA is 1.5%, and the dynamic viscoelastic modulus in 、, イ is 1 O: 1 . a dynZcrf temperature 123 ° C, the crystal fraction diverging of tan 5: starting temperature of Tsu der Te 127.
そして、 X線回折による配向角は 1 6 ° で、 波数 201了 cm - 1 での赤外吸収二色性による配向係数 F。2°は 0.50の値を示した また、 マイ ク ロ波複屈折は 0.149で.ある。 The orientation angle by X-ray diffraction is 16 °, and the orientation coefficient F by infrared absorption dichroism at a wave number of 201 cm- 1 . 2 ° showed a value of 0.50. Microwave birefringence was 0.149.
こ し 0 維は:i I = 0.35 Mw / Mn = 4. 6 であった。  In this case, iI was 0.35 Mw / Mn = 4.6.
実 例 2  Example 2
容積が約 500 ccの実験用の高圧ォ— ト ク レーブに、 高密度 ポ リ エ チ レ ン ( M ί = 0.3i M w / Μ„ = 4. 3 密度 0.960 g / cm3 ) を 77.7 g 入れ、 Φの'空気を脱気律、 フ ロ ン - 1 1 · 570 g を加えた。 攪拌しながら、 加熱 ' 加圧して溶解させ、 ポ リ マー濃度 1 2 w t %の溶液を作成する。 溶液の温度を 185 て に調整し、 攪拌を停止した後、 直ちにオー ト ク レープ内を 295 kg /cni Gに保つ背圧をかけつつ.、 紡口アセ ンブリ — とを 接^する底部バルブを開放してフ ラ ッ シ ュ防止を行った。 こ の時、 紡口アセ ンブ リ 一は、 0. 4 ø 5 ™ Lの減圧用ォ リ フ ィ ス、 約 2 ccの減圧室、 そ して 0. 5 mm ø 0. 5 L の孔と それに続 く 3 ma ø 3 mm L の ト ンネルフ レア —を有する紡糸 ノ ズルと した。 77.7 g of high-density polyethylene (Mί = 0.3i Mw / Μ „= 4.3 density 0.960 g / cm 3 ) was added to an experimental high-pressure autoclave with a volume of about 500 cc. Add 570 g of Fluorine-11, and heat under pressure while stirring to dissolve to create a solution with a polymer concentration of 12 wt%. After adjusting the temperature of the solution to 185 and stopping stirring, immediately apply back pressure to keep the inside of the autoclave at 295 kg / cni G. Open the bottom valve that connects the spout assembly. At this time, the tip assembly was equipped with a 0.4 ø5 ™ L decompression orifice, a decompression chamber of about 2 cc, and The spinning nozzle had a hole of 0.5 mm ø 0.5 L and a 3 ma 3 3 mm L of tunnel flares.
紡糸時、 減圧室内の圧力は 105kg ZCm2で温度は 185°cを保 つていた。 During spinning, the pressure in the decompression chamber was 105 kg Z Cm 2 and the temperature was 185 ° C.
紡糸ノ ズルょ り高度にフ ィ ブリ ル化した連続した三次元網 伏織維が得られた。 Highly fibrillated continuous three-dimensional net Fushiori I was obtained.
この镞維は、 镞度が 8 5 dで比表面積は 4 0 crf Z gであつ た。 そして、 X線小角散乱による長周期が 1 68 Aであり、 長 周斯による散乱強度比 7. 2であつた。 .  This fiber had an intensity of 85 d and a specific surface area of 40 crf Zg. The long period due to small-angle X-ray scattering was 168 A, and the scattering intensity ratio due to long period was 7.2. .
り回数 4回 Ζ αιιでの引張試験において、 初期モジュ ラ ス が 36 7 g i、 铍断強度が ί〕. 0 gノ dであった。  In the tensile test at αιι, the initial modulus was 367 g i and the shear strength was ί] .0 g d.
この実験において、 使用した高密度ポリヱチ レ ンとフ ロ ン - 1 1 の 1 2 w t %溶液の相図を第 1図に示すが、 オー トク レ ーブ内が点 A、 缄圧室内が点 Bで示され、 高圧力差による - 液相領域からの紡糸である。 - 比較洌 1  In this experiment, the phase diagram of the used high-density polyethylene and a 12 wt% solution of Fluorine-11 is shown in Fig. 1, where point A is inside the autoclave and point A is inside the pressure chamber. Indicated by B, due to high pressure differential-spinning from liquid phase region. -Comparison Kiyoshi 1
実験例 2 と同一の原料を用い、 同じポ"リ マ—濃度 1 2 の溶液からのフラ シュ紡糸を実施した。 この 紡ロアセ ン ブ ' J —で 減圧室、 紡寿ノ ズルは実験例 2 と同一であるが、 0. 5 mm ø 、 5 腿 Lの减圧用オリ フィ スを用いた。 又、 溶液温 度は 185でと同一であるが、 オー ト ク レープ内の圧力を 1 20 kg / anとした  Using the same raw material as in Experimental Example 2, flash spinning was performed from a solution having the same polymer concentration of 12. In this spin-assembly 'J-, a decompression chamber and a spinning nozzle were used in Experimental Example 2. The same as above, but a 0.5 mm ø, 5 thigh L pressure orifice was used, and the solution temperature was the same as 185, but the pressure inside the autoclave was 120 kg. / an
この時減圧室内の温度は - 184 °Cで、 圧力 7 0 / Gで あった。  At this time, the temperature in the decompression chamber was -184 ° C, and the pressure was 70 / G.
鐡度 7 7 d の絹状镞維が得られたが、 フ ィ ブリルが実験例 に比べて太く 、 比表面積が 2 0 nf / gであった。  Although a silk-like fiber having an iron degree of 77 d was obtained, the fibril was thicker than the experimental example, and the specific surface area was 20 nf / g.
又、 撚り回数 4回 Z cniでの引張試験で初期モジュラスが 1 8 gノ dであり、 破断伸度は 4. 3 g / dであった。  Further, the number of twists was 4 times, and the tensile modulus was 18 g nod and the elongation at break was 4.3 g / d in a tensile test with Z cni.
この例における、 オー トク レーブ內、 及び缄圧室内の相図 上の位置は、- それぞれ第 1図の点 C、 点 Dで示される点であ る。 In this example, the positions on the phase diagram in the autoclave and the pressure chamber are-the points indicated by points C and D in Fig. 1, respectively. You.
実験 ί列 3  Experiment ί Row 3
実験例 1 の溶解装置を用い、 高密度ポ リ ヱチ レ ンを -Vi ί = 0.73 , Μ„ Μ„ = 3. 0 密度 0.962 g / に 更し、 ホ' リ マ ー瀵度 12. O %のフ ロ ン - 1 1 溶液を作製して紡糸を行つ た。 但し、 こ.の時、 減圧オ リ フ ィ スは 0. 6 ra ø 、 5 ™ L 、. 紡 糸ノ ズルは 0. 5 m φ , 0. 5 職 L の孔と 4 ø , 4 m L の ト ン ネルフ レア一から成る紡口アセ ンブリ 一を用 、た。  Using the dissolving apparatus of Experimental Example 1, the high-density polystyrene was changed to -Vi ί = 0.73, Μ „Μ„ = 3.0, and the density was 0.962 g /. % Of a fluoro-11 solution was prepared and spun. However, at this time, the decompression orifice is 0.6 raø, 5 ™ L, the spinning nozzle is 0.5 mφ, and the hole of 0.5 L is 4 ø, 4 mL. A spinner assembly consisting of a Tunnel Flare was used.
ポ リ マ―流速 7. 4 kgノ Hrにおいて、 溶液圧力 270 kg / cni G から減圧室圧力 9 8 kg / cni G (温度 186'c ) に缄じ、 紡糸ノ ズルよ り吐出された識維は織度 106 d の純白の連続した三次 元網状織維であつた。 減圧室の'.条件は 1 液相領域内の条件で あつ /こ,。  At a polymer flow rate of 7.4 kg / hr, from the solution pressure of 270 kg / cni G to the decompression chamber pressure of 98 kg / cni G (temperature 186'c), the knowledge discharged from the spinning nozzle Was a pure white continuous three-dimensional reticulated weave with a weave of 106 d. The conditions in the decompression chamber are within one liquid phase region.
こ の镞維は、 比表面積が 3 8 frf ノ g で:あり 、 4 回 Z cmの燃 り での引張試験で、 初期モジュ ラ スが 3 3 g / (1 、 破断強度 力く 7. 9 g ノ d の値を示した。  This fiber has a specific surface area of 38 frf no g: and has an initial modulus of 33 g / (1, breaking strength 7.9 The values of g and d are shown.
又、 この織維の X線小角散乱から、 長周期は 175 Aで長周 期散乱強度比は 15.0である こ とが判った。  The small-angle X-ray scattering of this fiber showed that the long period was 175 A and the long period scattering intensity ratio was 15.0.
T Aの 130。cでの伸長率は 1. 5 %であ り 、 ノ、'イ ブロ ンで 動的弾性率が 1 0 1 。 dyn/ cm'になる温度は 120で 、 tan 5 の 結晶分散開始温度は 124 °C であ っ た。 TA 130. elongation at c 1. Ri 5% der, Bruno, 'Lee Bro emissions dynamic modulus 1 0 1. The temperature at which dyn / cm 'was reached was 120, and the crystal dispersion starting temperature of tan 5 was 124 ° C.
この織維の X線回折による配向角は 2 0 ° で、 赤外での配 向係数 F。2°は 0.53であり 、 高配向性を示した。 The orientation angle of this fiber by X-ray diffraction is 20 °, and the orientation coefficient F in the infrared. 2 ° was 0.53, indicating high orientation.
また、 この場合、 織維の M l = 0.93で M w / M „ = 6. 3 で あった。 ' ' 実験例 4 In this case, the Ml of the fiber was 0.93 and Mw / M „= 6.3. Experiment 4
実験例 1 と同様の装置、 同一のボリ マーと溶剤を周いて、 ポリ マ ー濃度 9, 2 w t %の均一溶液を調整し、 0.55 mm 、 δ mm Lの據圧ォ リ フ ス、 ひ.55 m Φ 、 0.55 Lの孔とそれに読く 3 ML . 3 腿 Lの ト ンネルフ レア一を有する紡糸ノ ズルから 成る钫口アセ ンブリ一を用いてフ ラ ッ シュ紡糸を実施した。  A homogeneous solution having a polymer concentration of 9.2 wt% was prepared by circling the same apparatus and the same solvent as in Experimental Example 1, and a 0.55 mm and δ mmL dependent pressure orifice was prepared. Flash spinning was carried out using a mouth assembly consisting of a spinning nozzle having a hole of 55 mΦ, 0.55 L and a 3 ML. 3 thigh L tunnel tunnel.
ポリ マー流逮 7. 5 kg /Hrにおいて、 溶液は温度 131°C . 圧 力' 325 kg ./ oi Gを示し、 滹圧室内では温度 191て、 圧力 110 ノ o4 Gに変化して、 紡糸ノズルより大気圧中に吐岀して譏 度が 101 dで純白の連镜した三次元網状織維を得た。  At 7.5 kg / Hr, the solution showed a temperature of 131 ° C and a pressure of '325 kg./oi G, and in a pressurized chamber, the temperature changed to 191 and the pressure changed to 110 ° o4 G, and then spun. The mixture was discharged from the nozzle into the atmospheric pressure to obtain a pure white continuous three-dimensional reticulated fiber with a filth of 101 d.
この識維ば、 比表面積が 4 JL m / gであった。  With this knowledge, the specific surface area was 4 JL m / g.
X線小角散乱による長周期が 162 Aで、.長局期による散乱 強度比ば 8. 4であった。 '  The long period due to small-angle X-ray scattering was 162 A, and the scattering intensity ratio due to the long-term period was 8.4. '
隳り回数が 4回 Z:cmでの引張試験におい†へ 初期モジュラ スが 38.5 g / d、 破断強度が 9. 3 g Z dであった。  Go to the tensile test with the number of repetitions of 4 at Z: cm. The initial modulus was 38.5 g / d and the breaking strength was 9.3 g Zd.
又、 T 八での 13(Tcで'の伸長率は 1, 5 %、 バイ ブロ ンで の動的弾性率が 1 0 1。 η/αίである温度は 122 'C . tan δ の結晶分散開始温度は 126でであ Further, 13 (in Tc 'extension ratio of 1, 5%, temperature dynamic elastic modulus at by Bro emissions is 1 0 1. Η / αί is 122' at T eight C. Tan [delta] of the crystal dispersion Starting temperature is 126
X線回折による配向角ば 1 3 ' で、 波数 2017 OR - での赤外 吸収二色性による配向係数 F °は 0.43の値を示 ίレ- 1  X-ray diffraction shows an orientation angle of 13 'and an orientation coefficient F ° of 0.43 due to infrared absorption dichroism at wavenumber 2017 OR-.
マイ ク ロ波複厘折は 0. 147である。 The number of microwaves is 0.147.
この織維は M I = 0.34. „ / M Λ = 4. 8 であった。 This O維was MI = 0.34. "/ M Λ = 4. 8.
実験例 5  Experimental example 5
実験例 1 と同じ溶解装置及び紡ロアセ ンブリ —を用いて、 高密度ポリエチレンを M I = 0.78. M w / n = 8. 0 、 密度 0.962 g / crf に変更し、 フ ロ ン -- 1 1 の 12.4w t %の溶液を作 製して紡糸を行った。 Using the same dissolution apparatus and spinning assembly as in Experimental Example 1, the high-density polyethylene was converted to MI = 0.78. M w / n = 8.0, The solution was changed to 0.962 g / crf, and a 12.4 wt% solution of Fluorine-11 was prepared and spun.
ボ リ マ—流速 9. 7 kg /Hrで溶液圧力 210kg/oi Gから減圧 室内圧力 3 3 kg Zen! Gに変化し (減圧室温度 190 ) 、 紡糸 ノ ズルから吐出される $ '度 i 45 d の 屯白の連 した三次元網 状 維を得た。  At a flow rate of 9.7 kg / Hr, the solution pressure is reduced from 210 kg / oi G to 210 kg / oi G. The room pressure is changed to 33 kg Zen! G (decompression room temperature 190) and discharged from the spinning nozzle. A series of three-dimensional networks of d.
この繊維は比表面積が 3 3 m / g であつた。 This fiber had a specific surface area of 33 m / g .
X線小角散乱での長周期が 173人で、 長周期による散乱強 度比が 19.2であつた。  The long period of X-ray small angle scattering was 173, and the ratio of the scattering intensity due to the long period was 19.2.
この織維は燃り 回数 4 回ノ での引張試験において、 初期 モジュ ラ スが 23.6 g / d 、 破断強度は 7, 4 g d の値を示し また、 T M A測定の 130 'cでの伸長率は 1. 7 %であり 、 ノ イ マ" c ンでの動的:弾性率が 1 0 '。 dynズ cn!になる温度は 116 で 、 tan (? の結晶分散開始温度が 124'cの高温特性を有して いる。  In the tensile test with four burns, the initial modulus was 23.6 g / d, the breaking strength was 7.4 gd, and the elongation at 130'c in the TMA measurement was 1.7%, dynamic in neutron "C: elastic modulus is 10 '. The temperature to become dyn's cn! Is 116, and the crystal dispersion starting temperature of tan (? Is as high as 124'c Has characteristics.
そ して、 X線回折による結晶配向角は 2 7 ° であり 、 波数 20 ί 7 cm - 'での赤外配向係数 F ^。は 0.51である。 また、 マイ ク ロ波複屈折は 0.133の値を示した。  The crystal orientation angle by X-ray diffraction is 27 °, and the infrared orientation coefficient F ^ at a wave number of 20ί7 cm- '. Is 0.51. Microwave birefringence showed a value of 0.133.
なお、 この紡糸した織維は、 M l = 0.94で M w / „ = 6.0 と測定された。 In addition, this spun fiber was measured as Mw / „= 6.0 at Ml = 0.94.
比較 f列 2  Compare f column 2
実験例 1 の溶解装置を用いて、 高密度ボ リ エチ レ ン ( M l = 5. 0 、 „ / M„ = 7. 0 、 密度 0.969 g / c ) の フ ロ ン — 1 1 1 0 w t %溶液を作成して紡糸した。 こ の際、 減圧オ リ フ ィ スを 7 ™ 5 mm L 糸方糸ノ ズ-ルを 0. 7 ma 0. 7 m Lの孔とそれに繞く 4 ø 4 Lの ト ンネルフ レア 一を有 する紡口アセンブリ 一を用いた。 Using the dissolving apparatus of Experimental Example 1, fluorocarbon with high density polyethylene (Ml = 5.0, „/ M„ = 7.0, density 0.969 g / c) was used. % Solution was prepared and spun. At this time, Use a 7 ™ 5 mm L thread weft nozzle with a 0.7-ma 0.7-mL hole and a 4 4 4 L sponge assembly with a 4 mm tunnel hole. Was.
ポリマ一流速 8. 8 kg ZHrにおいて、 溶液圧力 130 kg / d G が減圧室圧力 5 3 kg / G (温度 173°c) に低下し紡糸ノ ズ ルより、 織度 157 dの連続した三次元網状.織維を得た。 滹圧 室の条件は、 2液相領域内の条拌であつた。  At a polymer flow rate of 8.8 kg ZHr, the solution pressure of 130 kg / dG dropped to a decompression chamber pressure of 53 kg / G (temperature of 173 ° C) .From the spinning nozzle, a continuous three-dimensional with a weave of 157 d was obtained. Reticulated. Weave was obtained. The conditions of the pressure chamber were stirring in the two liquid phase region.
この織維は、 比表面積が 1 8 m2 / gであり、 燃り回数 4回 ' · /onの引張試験での初期モジュラスが 10.8 gノ d、 豉断強度 , は 3. 8 gノ dにすぎなかった。 . This textile has a specific surface area of 18 m 2 / g, an initial modulus of 10.8 g d in a tensile test of 4 times of burning '· / on, and a shear strength of 3.8 g d It was only. .
又、 X線小角散乱の測定では、 長周期が 133 Aで、 散乱強 度比は 52.4であつた。  In the measurement of small-angle X-ray scattering, the long period was 133 A and the scattering intensity ratio was 52.4.
T M Aによる 130ででの伸長率ば '3. 6 %であり、 バイ ズ-ロ ンでの tan δ の結晶分散開始温度ば 113 cで熱的性質が劣る ものであった。  The elongation at 130 by TMA was' 3.6%, and the crystal dispersion starting temperature of tan δ in Viselon at 113 c was inferior in thermal properties.
次に、 この鐡維を 120 Vに加熟したホ ッ トプレー ト上で 4 回 cmの撚りをかけたまま、 約 2倍に延伸した。  Next, this steel was stretched about twice while twisting 4 cm on a hot plate ripened to 120 V.
この熱延伸織維は、 引張試験では初期モジュラスが 19.2 g Z d、 破断強度 10.1 g Z d と向上したが、 糸に透明感が生じ、 比表面積は 9. 1 of / gに低下していた。  In the tensile test, this hot-stretched fiber had an initial modulus of 19.2 g Zd and a breaking strength of 10.1 g Zd, but the yarn became transparent and the specific surface area decreased to 9.1 of / g. .
また、 X線小角散乱における長周期は 235人にシフ ト し、 散乱強度比も 9 0 に増加していた。  The long-period in X-ray small-angle scattering was shifted to 235, and the scattering intensity ratio was increased to 90.
実験例 6 .  Experimental example 6.
第 5図に示すフローチャー トに従って、 第 6図に示す押岀 機スク リ ュ二を用いる方法 (以下 A 法と云う) 及び第 8図 に示す押出機ス ク リ ュ一及び特殊混合構造体を用いる法 (以 下 A 2 法と云う ) にて フ ラ ッ シ ュ紡糸を行った。 According to the flow chart shown in FIG. 5, a method using the extruder screw 2 shown in FIG. 6 (hereinafter referred to as method A) and FIG. Was A flash-spun at law using an extruder scan click Li Interview first and special mixing structure shown in (called hereinafter A 2 method).
第 5 図に示す押出機はバ レル口径 3 5 ø であり 、 法 に用い られたスク リ ュ ーは、 第 6 図の符号を用いて說明する と、 符号 1 2 の供給部の長さ 3 1 6 «™ ( 9 山) 、 溝深さ約 5 符号 1 3 の圧縮部の長さ 245 7 山) 、 符号 1 4 0前部計 量化部の長さ 1 40 ( 4 山) 、 溝深さ 1. 6 符号 1 5 の溶 剤添加部の長さ 了 0 ram ( 2 山) 、 溝深さ 3 符号 1 6 の後 部計量化部 (混合 · 溶解部) の長さ 1 40™ ( 4 山) 、 溝深さ 1. 6 の寸法を有する。 こ の押出機の先端にス ク リ ー ン '装置 を装着し、 配管を介して紡糸'装置を取り付けた。 紡糸装置の 減圧室オ リ フ ィ.ス口径、 0. 5 ø 、 減圧室の容積約 2 cc、 紡 口オ リ フ ィ ス口径、 0. 5 である。 ―  The extruder shown in FIG. 5 has a barrel diameter of 35 ø, and the screw used for the method is described using the reference numeral in FIG. 1 6 «™ (9 peaks), groove depth about 5 Compressed section length of code 1 3 245 7 peaks), code 1 40 front quantification section length 1 40 (4 peaks), groove depth 1.6 The length of the solvent addition section of symbol 15 is 0 ram (two peaks), the groove depth 3 The length of the rear measurement section (mixing / melting part) of symbol 16 is 140 ™ (four threads) ) The groove depth is 1.6. A screen 'device was attached to the tip of this extruder, and a spinning device was attached via piping. The orifice diameter of the decompression chamber of the spinning device is 0.5 ø, the volume of the decompression chamber is about 2 cc, and the diameter of the spinning orifice is 0.5. ―
又、 押出機 の溶剤の ί共給は、 二連プラ ンジ ャ ーポ ンプを 用いて、 注入口 1 8 を介して行った。  The co-feeding of the solvent in the extruder was performed through an inlet 18 using a double-junction pump.
メ ル ト イ ンデ ッ ク ス ( -Μ I ) が 5. 0 (重量平均分子量約 9 X 1 0 4 ) の高密度ポ リ エチ レ ン (旭化成社製サ ンテ ッ ク J 一 240 ) と フ ロ ン — 1 1 のポ リ マー濃度 1 1 重量%のポ リ マ ー溶 液を用いて紡糸した。 即ち押出機のバ レル温度を 230で と し て、 ス ク リ ュ ー回転数を 5 0 r p ni にて、 ポ リ マ ー流量 7 7 g Z分、 溶剤流量 623 gノ分にて運転した。 なお、 押出機先端 以降の配管及び紡糸装置の加熱温度は 1 75で と し、 且つ溶剤 の加熱温度は 1 00 °c であ っ た。 又こ の時の紡糸直前の液温は 1 75 'c、 减圧室の圧力は約 4 0 ノ · Gであった。 紡糸状 態は極めて安定しており 、 減圧室の圧力変勣巾は 4 5 kg / cm ♦ Gであつ-た 0Main: NetBackup Lee emissions de click scan (- [mu] I) is 5.0 (weight average molecular weight of about 9 X 1 0 4) dense potentiation Re ethylene les down the (manufactured by Asahi Kasei Corporation Sa integrators click J one 240) The spinning was carried out using a polymer solution having a polymer concentration of 11-11% by weight of fluorocarbon. That is, the extruder was operated at a barrel temperature of 230, a screw rotation speed of 50 rpni, a polymer flow of 77 gZ, and a solvent flow of 623 g. . The heating temperature of the piping and the spinning device after the tip of the extruder was 175, and the heating temperature of the solvent was 100 ° C. At this time, the liquid temperature immediately before spinning was 175'c, and the pressure in the compression chamber was about 40 NOG. The spinning state is extremely stable, and the pressure fluctuation in the decompression chamber is 45 kg / cm ♦ G 0
又、 押出機先端の圧力は約 200 kg /cii - Gであったが、 ど こからも溶剤漏洩ば生じなかつた。 尚、 フラ ンジ部のシ一ル は中空金属 0 リ ングを用いたが、 全く溶液の漏洩は生じなか つた。 - .  The pressure at the tip of the extruder was about 200 kg / cii-G, but no leakage occurred from anywhere. In addition, although a hollow metal 0 ring was used for the seal of the flange portion, no leakage of the solution occurred. -.
吐 量を更に上昇させて、 ポリ マー流量 llOg Z分、 溶剤 流量 890 g Z分まで持って行く と、 圧室の圧力変動巾 極 めて大き くなり、 その値も 1 (3 kg /cii · Gを越え、 事実上安 定紡糸は 1 難となった。  If the discharge volume is further increased and brought up to the polymer flow rate of llOg Z and the solvent flow rate of 890 g Z, the pressure fluctuation width of the pressure chamber becomes extremely large, and the value also becomes 1 (3 kg / cii Beyond G, practically stable spinning became difficult.
次に A z 法の紡糸を行った。 用いた特別な機械的混合部の 形状は第 8図にモデル的に示す。 ·各部分の寸法を示すと、 ス ク リ ュ ー寸法は供給部長さ /深さ = 315衄ノ 5 腿 、 圧縮部長 さ Z深さ = 315舰ノ 5→ 1. &丽 、—計量部長さ /深さ - 245 m / 1. 6 腿である。 ダルメ ージ部の形状ば多状ネジ構造にて、 長さは 210 »m、 口径ば約 5 0 腿 、 用いたネジは 1 6条にて、 半円形状の瀵を持ち、 溝深さ 3. 6 mm (最大) 、 ねじれ角右 Then went the spinning of the A z method. The shape of the special mechanical mixing section used is shown modelly in FIG. · If the dimensions of each part are shown, the screw size is as follows: feed part length / depth = 315 no 5 thigh, compression part length Z depth = 315 no 5 → 1. & 丽/ Depth-245 m / 1.6 thighs. The shape of the dal image is a multi-threaded screw structure, the length is 210 »m, the diameter is about 50 thighs, the screw used is 16 threads, it has a semicircular shape, and the groove depth is 3 6 mm (max), right torsion angle
3 5 ° である。 更に、 ピン混合部の形状は P3筒ピンの多列配 列の構造体であり、 長さ 285皿、 口径 約 5 0 龍 にて、 ピ ン配置ば 8条 1 7列である。 このピン混合部はスク リ ュ—と 同飩上の軸にピンを植えると同様に、 バ レル側にも同一形伏 のピンが同じ 8条 1 7列で植えられており、 スク リ 二―が回 転すると固定ピンの間をスク リ ューと同一蝕上の可動ピンが mきポ リ マーと溶荊を混合する。 ノ レルと可動ピ ン蝕との間 隙は ί 冊である' .0.35 degrees. Furthermore, the shape of the pin mixing section is a multi-row structure of P3 cylindrical pins, with a length of 285 plates, a diameter of about 50 dragons, and 8 pins and 17 rows if the pins are arranged. In the pin mixing section, pins of the same shape are planted on the barrel side in the same eighteen and seventeen rows, as in the case of planting the pins on the shaft on the same section as the screw. When the is rotated, the movable pin on the same surface as the screw moves between the fixed pins, and the polymer and the tether are mixed. Roh barrel and between clearance of the movable pin eclipse is a ί books'. 0.
t 法と全く同様な方法 · 条件にてフラ ッ シュ紡糸した。 ^吐出量を 1000 gノ分即ちポリ マ —流量 llO g Z分、 溶剤流 量 890 g /分、 にしても極めて安定して紡糸できた。 この時 の減圧室の圧力は 5 5 kg/crf - Gにて、 圧力の変動巾も 4 〜 5 kg cm · Gであった。 Flash spinning was performed under exactly the same method and conditions as the t method. ^ Spinning was extremely stable even when the discharge amount was 1000 g, that is, the polymer flow rate was llO g Z, and the solvent flow rate was 890 g / min. At this time, the pressure in the decompression chamber was 55 kg / crf-G, and the fluctuation range of the pressure was 4 to 5 kgcm · G.
又押出機先端の圧力は約 250 kg / crf ' G にて、 どこから も 瑢剤漏洩は生じなかった。  The pressure at the tip of the extruder was about 250 kg / crf'G, and there was no leakage of the agent from anywhere.
実験例 7  Experimental example 7
第 9図に示す方法 (以下 B法という) にてフ ラ ッ シ ュ紡糸  Flash spinning using the method shown in Fig. 9 (hereinafter referred to as method B)
9  9
5  Five
を行った。 即ち、 実験例 6 に記載した A 2 法のス ク リ ユ ー押 出機の次に配管を介して、 第 9図の符号 9 に相当する静的混 合素子からなる混合装置を設置した。 用いた静的混合素子は、 スルザ—社製ミ キサー S M X型 (呼び径 1 5 龍 ø ) で、 形態 は金属細片が井桁状に溶接され、 それらが 9 0 ' ず.つ角度を ずらせて連結されている。 こ の ものを 5 0段用いた。 Was done. That is, through the pipe to the next the A 2 Method of scan click Li Yu over press extruder described in Example 6, was placed a mixed system consisting of the static mixed-element corresponding to the code 9 of FIG. 9. The static mixing element used was a mixer SMX type manufactured by Sulzer (nominal diameter 15 dragon ø), in which the metal strips were welded in a cross-girder shape, and they were shifted 90 °. Are linked. This was used in 50 stages.
紡糸方法と しては、 メ ル ト イ ンデ ッ ク スが 1. 2 (重量平均 分子量約 14 104)の,高密度ポリ エチ レ ン (旭化成社製サンテ ッ ク B — 161)とフ ロ ン 一 1 1 からなるポリ マ一溶液を用いた。 又ス ク リ ュ ー押出機の温度は 230で 、 A 3 法の特殊混合部の 温度は 200 °c . 配管及び静的混合部の温度は 175で とし、 ポ リ マ—濃度は 1 1 重量%とした。 ボリ マ—流量 7 7 gノ分、 瑢剂流量 623 g /分、 総吐出量 700 gノ分の条件で紡糸し、 紡糸直前の液温は 175で、 減圧室の圧力は 7 0 kg / d - Gで あった。 紡糸状態は極めて安定しており、 減圧室の圧力変勛 巾 も 2 〜 3 kgノ cm2 · Gであ っ た。 実験 M 8 ― 第 1 図に示す方法 (以下 C法という) にてフラ ッ シュ紡 糸を行った。 即ち、 実験例 7 に記載した方法にて、 押出機部 先端と静的混合部 9 の間に溶剤注入口を設け、 二違ブラ ンジ ャ—ポンプに連結した。 従って、 押出機にて溶融したボリ マ 一はポリマー溶解域に至る。 この領域にプラ ンジ ャ ーボンプ より溶剤が添加され特殊混合部 8 にてボリ マーと溶剤は混合 し、 ボリ マーが溶解する。 更にこの混合溶液は押出機先端よ り静的混合域に至る。 この間途中で更に溶剤が添加される。 このポリ マ—/溶剤の混合溶液ば静的混合体に至り、 混合 - 溶解に完全に均一なポ リ マー溶液となって钫口から吐出され る。 Is a spinning method, main Le preparative Lee emissions de click scan is 1.2 (weight average molecular weight of about 14 104), high density poly ethylene les emissions (manufactured by Asahi Kasei Corporation Sante click B - 161) and off A polymer solution consisting of lon-111 was used. The temperature of the screw extruder is 230, the temperature of the special mixing section of the A3 method is 200 ° c. The temperature of the piping and static mixing section is 175, and the polymer concentration is 11 weight. %. Spinning at a flow rate of 77 g / min, a flow rate of 623 g / min, and a total discharge of 700 g / min, the liquid temperature immediately before spinning is 175, and the pressure in the decompression chamber is 70 kg / d. -G. The spinning state was extremely stable, and the pressure variation in the decompression chamber was also 2 to 3 kg / cm 2 · G. Experiment M8-Flash spinning was performed by the method shown in Fig. 1 (hereinafter referred to as Method C). That is, according to the method described in Experimental Example 7, a solvent injection port was provided between the tip of the extruder section and the static mixing section 9 and connected to a double blower pump. Therefore, the polymer melted by the extruder reaches the polymer dissolution zone. A solvent is added to this region from a pranjar pump, and the polymer and the solvent are mixed in the special mixing section 8 to dissolve the polymer. Further, the mixed solution reaches the static mixing zone from the extruder tip. During this time, a solvent is further added. This polymer / solvent mixture leads to a static mixture, which is discharged from the outlet as a completely uniform polymer solution for mixing-dissolution.
- メ ル ト イ ンデ ッ ク.スが 0 . 78 (重量平均分子量約 16 X 10 4 )の 高 ¾ "度ボリ ヱチ レ ン (旭化成社製サンテック S - 160)とフロ ン ·— 1 1 からなるポリ マー濃度 1 1重暈%のポリ マー溶液を 用いて紡糸を行った。 押出機の温度 270て、 特殊混合部の溫 度 200で、 静的混合部の温度 175で、 紡糸部の温度 5 sc と した。 又缄圧室ノ ズル 0. 5 舰 、 減圧室容積 2 cc、 紡ロノ ズル 0. 5 m ø と.した。 特殊混合部の圧力を 250 kg Z ai . G、 静的混合部の圧力 200 kff / oi · Gとして混合溶解させた。 紡 糸直前の液温は 1了 5。 (:、 缄圧室の圧力は 8 0 kg / αί * Gにて 極めて安定して紡糸出来た。 缄圧室の圧力変動巾ば 2 〜 3 / era · で った。. -High index polystyrene (Suntec S-160 manufactured by Asahi Kasei Corporation) with a melt index of 0.78 (weight average molecular weight of about 16 x 10 4 ) The spinning was carried out using a polymer solution having a polymer concentration of 1 and a solid density of 1. The spinning section was performed at an extruder temperature of 270, a special mixing section temperature of 200, and a static mixing section temperature of 175. The pressure was set to 5 s C. The pressure chamber nozzle was 0.5 mm, the decompression chamber volume was 2 cc, and the spinning nozzle was 0.5 mø. The mixture was mixed and dissolved at a static mixing unit pressure of 200 kff / oi · G. The liquid temperature immediately before spinning was 1 to 5. (: The pressure in the pressure chamber was extremely stable at 80 kg / αί * G. The pressure fluctuation in the pressure chamber was 2-3 / era ·.
この時のポリ マー流量は? 7 分にて、 溶剤流量は 623 g Z分であり、 溶剤の添加法として第 1段目の特殊混合部直 前での添加量は 7 7 g 分と し、 第 2段目の静的混合部直前 には残り の溶剤流量 546 g /分を添加した。 従って、 第 1 段 目にて 5 0 w t %のポリ マ —濃度となり、 第 2段目にて 1 1 ^ t %となる。 What is the polymer flow rate at this time? At 7 minutes, the solvent flow rate was 623 g Z minute, and the solvent was added directly to the first stage special mixing section. The addition amount in the previous step was 77 g, and the remaining solvent flow rate of 546 g / min was added immediately before the static mixing section in the second stage. Therefore, the first stage has a polymer concentration of 50 wt% and the second stage has a concentration of 11 ^ t%.
実験例 9  Experiment 9
実験例 6から実験例 8 までに記載した A A B , C 法を用いて、 それぞれ異なったメ ル ト イ ンデッ クスを持つ高 密度ポ リ エ チ レ ン と フ ロ ン F — 1 1 とを用いてフ ラ 'ン シ ュ紡 糸を行つ  Using the AAB and C methods described in Experimental Examples 6 to 8, using high-density polyethylene having different melt indexes and fluorocarbon F-11, respectively. Going green yarn
ポリ マーの溶解状態は紡糸直前の圧力変勛、 特に減圧室の 圧力変動と対応している。 '即ち、 ポ リ マーの溶解が不完全な ほど減圧室の圧力変動は大き く なり、 遂には紡糸不能となつ た。 又紡糸可能であっても、 圧力変勛巾が大きいと未溶解の ポリ マーが吐出されることになり、 織維はさ 、 く れ立ち、 強 度も低く 使用出来なかった。  The dissolved state of the polymer corresponds to the pressure change immediately before spinning, especially the pressure change in the decompression chamber. 'In other words, the more the polymer was incompletely dissolved, the greater the pressure fluctuation in the decompression chamber, and finally the spinning became impossible. Even if spinning was possible, undissolved polymer would be ejected if the pressure variation was large, and the fibers were crumpled and the strength was too low to use.
この溶解状態を表わす圧力変動巾を用いて各法を比較し、 第 1 表に示した。 ポ リ マ ーはすべて高密度ポ リ エチ レ ン (旭 化成社製) であった。 溶剤はフロ ン一 1 1 を用いた。 又ポリ マ ー濃度は 1 1重量%で、 総吐出量は 1000 g /分であった。 紡糸条件及び装置は実験例 6 〜実験例 8 の ものを用いた。 第 1 表から明らかな様に、 A , 法から A z 法、 更に B法、 C法へと行く に従って、 より好ま しい紡糸方法であるこ とが 明確に示されている。 Each method was compared using the pressure fluctuation range representing this dissolution state, and is shown in Table 1. All polymers were high-density polyethylene (made by Asahi Kasei Corporation). The solvent used was Fluorine-11. The polymer concentration was 11% by weight, and the total discharge rate was 1000 g / min. The spinning conditions and apparatus used in Experimental Examples 6 to 8 were used. As is evident from Table 1, it is clearly shown that the more preferred spinning method is from A, method to Az method, and further to B method, C method.
尚、 本実験例での試作ポリ マ — (旭化成社製、 M l = 0 . 31、 重量平均分子量約 21 X 1 0 4 )を用いて、 C法にて紡糸した例の 条件等を說明すると次の様になる。 Incidentally, prototype poly Ma in this experiment - using (. Asahi Kasei Corporation, M l = 0 31, weight average molecular weight of about 21 X 1 0 4), examples were spun by Method C The conditions are as follows.
即ち、 押出機スク リ ュー部の温度 300 :、 同敏で連結する 特殊混合部の温度 200で、 配管及び静的混合部の温度は 170 でであった。 ポリ マー淳解域の圧力としては、 特殊混合部に お t-、て 250 / d - G、 静的混合部にお 、'て 20 (Hg / crf ' G となり、 この圧力を二区分して制御するために、 特殊混合部 の先に 1面転当 ¾ の押出し容積が 3 5 のギヤ一ポンプを設  That is, the temperature of the extruder screw section was 300: the temperature of the special mixing section connected at the same speed was 200, and the temperature of the piping and the static mixing section was 170. The pressure in the polymer zone is t-, 250 / d-G in the special mixing section, and 20 (Hg / crf'G) in the static mixing section. For control, a gear pump with an extrusion volume of 35 per one-side transfer is installed at the end of the special mixing section.
Sした。 この部分ば 200 'cに加熟した。 又减圧室の圧力は  S This part matured at 200'c. The pressure in the pressure chamber is
110 g / ci ' G、 滅圧室の液温は であつた。  The liquid temperature in the decompression chamber was 110 g / ci'G.
更にいずれの紡糸例に於いても、 フラ ンジ部等から漏洩ば 全く生じなかつた。 又ギヤ—ポンプの Θ転軸からは少量のポ リ マーを潤滑のため僅かずつ積極的に漏洩させた。 第 1表 の Ε¾β巾また 方糸 t^J (早 1ii、 kg/cd · G)  Further, in any of the spinning examples, no leakage occurred from the flange portion or the like. In addition, a small amount of polymer was slowly and positively leaked from the rotating shaft of the gear pump for lubrication. Ε¾β width and weft t ^ J in Table 1 (early 1ii, kg / cdG)
ポリマ一 ポリマー^ 1 lal¾ 塞 1例 l o -Polymer one Polymer ^ 1 lal¾ 1 case lo-
- 1 0 図に示されるプロセスで、 高密度ポ リ エチ レ ンから 成る網状鐡維を得た。 -By the process shown in Fig. 10, a mesh-like steel made of high-density polyethylene was obtained.
メ ル ト イ ンデ ッ ク ス ( VI I ) が 0 . 35 (重量平均分子量、 ¾ 2 1 X 1 0つの高密度ポ リ ェチ レ ン (旭化成工業社製サ ンテ ッ ク H D : B 87 1 )のチ ッ プを押出機で連続して溶融押出を行い、 一方、 溶剤と してフ ロ ン - 1 1 を定量ポ ンプで加えて、 押出 璣と共拿由の特殊混合部にて混合した。 この時用いた押出機及 び混合部の構造は第 8 図に示されるよ う なものであり 、 ス ク0 リ ユ ー部、 ダルメ ー ジ部、 及びピン部を有するスク リ ユ ーで. それぞれの長さ は、 700 龍 、 2 1 0 mm X 250 龍 であり 、 そして 対応するノ、'レル内径は、 3 5 腿 、 5 0 丽 ø 、 5 0 ø であ つた。 そして、 'ダルメ ージ部の前のバレルに溶剤注入口が付 けられていた。 :  The melt index (VII) is 0.35 (weight-average molecular weight, about 21 x 10 high-density polystyrene (Santech HD: B87 manufactured by Asahi Kasei Corporation) The chips of 1) are continuously melt-extruded by an extruder, while Fluorine-11 is added as a solvent by a fixed-quantity pump, and the mixture is extruded and mixed in a special mixing section. The structure of the extruder and the mixing section used at this time are as shown in Fig. 8, and the screw has a screw section, a dam section, and a pin section. Each length was 700 dragons, 210 mm x 250 dragons, and the corresponding barrels were 35 thighs, 50 丽 ø, 50 ø, and 'Solvent inlet was provided in the barrel in front of the dalmage.
スク リ ュー回転数 4 6 r P m におけるポ リ マー供給量は 7 4 g Z分であり 、 ミ キサー部に注入される溶剤量は 240 g /分 であった。 Disk Po Li mer supply amount of Li-menu rotation number 4 6 r P m is 7 4 g Z min, the amount of solvent is injected into the mixer unit was 240 g / min.
この混合物を、 さ らに添加される溶剤 360 g /分と共に静 的混合部に導入し、 所定のポ リ マー濃度の溶液と した。 この0 時、 静的混合素子と して、 スルザ一社製ミ キサー S M X型  This mixture was introduced into the static mixing section together with 360 g / min of the solvent to be added to obtain a solution having a predetermined polymer concentration. At this time, as a static mixing element, a mixer S MX type manufactured by Sulza
(呼び径 1 5 nm ) を 5 0 段と したものを用いた。  (Nominal diameter 15 nm) with 50 steps was used.
この液を紡出させるに際し、 0. 5 mra ø (しノ D = 1 0 ) の 缄圧オ リ フ ィ ス、 ^ 2 ccの缄圧室、 0. 5 mm ø ( L / D = 1 ) の钫糸ノ ズルからなる紡ロアセ ンブリ 一を用いた。 吐出状態 は極めて安定していた。 実験例 1 oの条 ί牛下で、 本発明の押出しス ク リ ュ ー と同一 鉗のミキサーのみを、 従来公知の独立躯勛のス ク リ ュ ー ミキ サ一に代えた第 1 1図のプ πセスを実施した。 When spinning this liquid, a 0.5 mra ø (Shino D = 10) low pressure orifice, ^ 2 cc low pressure chamber, 0.5 mm ø (L / D = 1) The spinning assembly made of the No. 1 yarn nozzle was used. The discharge state was extremely stable. Experimental Example 1 In FIG. 11, under the cow, only the mixer of the same forceps as the extrusion screw of the present invention was replaced with a conventionally known independent screw mixer. The process of π was carried out.
3 5 の押出機を用いて溶融ポリ をスク リ ュ— ミ キ サ―に導入し、 一方溶剤を全量スク リ ュー ミキサーに導入し た。 こ のスク リ ユ ー ミキサーは注入口を二 ' ·Γ有する一鲑の混 逮用ミ キ サーで 3 5 mm ø のバレル側に突起を有しスク リ フライ 卜に切り欠きを有する ものであった。  Using the extruder of 35, the molten poly was introduced into the screw mixer, while the solvent was entirely introduced into the screw mixer. This screw mixer is a mixed arresting mixer with two inlets, with a projection on the 35 mm ø barrel side and a notch in the screw hole. Was.
実験例 1 0 と.同じ静的ミ キサー、 紡出装置を用いたが、 こ の例ではスク リ ュ ー ミキサーのダラ ン ド部からの漏れが発生 し、 紡糸が不能であつた。 '  The same static mixer and spinning device as in Experimental Example 10 were used, but in this example, leakage occurred from the round part of the screw mixer, and spinning was impossible. '
寞験例 1 1  Lonely test example 1 1
内容積が約 50Gccのォ— トク レーブに.高密度ポリ エチ レ ン (旭化成工業製サ ンテ ッ ク HD · B871 , Ml : 0.35) ?7.7 gを入 れ、 中の空気を脱気後、 フ ン - 1 1 5了 0 gを加えた (ポリ マ一濃度は 1 2 w- 1 % ) 。 なお この溶剤には 熟安定剤とし て、 2 , 6 — d i — t —ブチルパラ ク レゾ一ル-をポ リ マーに 対して 0. 2 w t %となるように、 あらかじめ溶解したものであ る。  Fill an autoclave with an internal volume of about 50 Gcc. Add 7.7 g of high-density polyethylene (Sun HD HD B871, Ml: 0.35, manufactured by Asahi Kasei Kogyo Co., Ltd.), and evacuate the air. 1 g of glycerol was added (polymer concentration was 12 w-1%). In this solvent, 2,6-di-t-butyl para-cresol- was dissolved in advance as a ripening stabilizer in a concentration of 0.2 wt% with respect to the polymer.
こ の時、 減圧室容積が ¾ 2 ccで、 减圧ォリ フ ィ スが 0.75 Φ ( L / D = 6 ) 、 そして紡糸ノ ズルが 0.75 ø (リ ー ド孔 導入角度が 6 0 ° L Z D = 1. 3 ) の円形ノ ズルである钫ロ ァセ ンブリ一を用いた。  At this time, the decompression chamber volume is ¾2 cc, the decompression pressure is 0.75 Φ (L / D = 6), and the spinning nozzle is 0.75 ø (lead hole inlet angle is 60 ° LZD = 1.3), a circular assembly of circular nozzle was used.
攪拌しながら加熱 · '加圧して溶解し、 ォ— トク レーブ内の 溶液温度が 1 6 1 °cである時に攪拌を停止した。 ただちに、 液 体増圧器にてォ— ト ク レーブ内を 300 ^ / crf Gに加圧しつつ、 底部バルブを開放してフ ラ ン シュ紡糸を行ったと こ ろ、 織度 260 d 、 強度 4. 0 g / d の高度にフ ィ ブ リ ル化した ¾白色の 诵状フ ィ ラメ ン トを得た。 Heat with stirring · Dissolve by pressurization, and in the autoclave Stirring was stopped when the solution temperature was 16 1 ° C. Immediately, the bottom valve was opened and French spinning was performed while the inside of the autoclave was pressurized to 300 ^ / crf G with a liquid intensifier. A highly white fibrous filament of 0 g / d was obtained.
こ の フ ラ ン シュ紡糸中の減圧室の圧力は、 1 1 0 kgノ cifi Gで あり 、 減圧オ リ フ ィ スでの圧損、 即ち減圧オ リ フ ィ スの前後 の圧力差は 1 90 / cn! Gであった。 —  The pressure in the decompression chamber during this fiber spinning was 110 kg / cifi G, and the pressure loss at the decompression orifice, that is, the pressure difference before and after the decompression orifice was 190. / cn! —
又、 この系の一液相 · 二液相の相図を光学窓付圧力容器で 求めたと こ ろ、 減圧室条件は明らかに一液相領域であった = 又、 活性化の状態を観測する為に、 相図を求めた装置と同 一のものを用いて、 '减圧室オ リ フ ィ ス前後で観測される圧力 差と液体の透過'光量変化を測定した。 その結果、 圧力差 190 kg Z ai Gで、 圧力差が発生した時、 一時的に液体が完全に暗 視野になる こ とを確認した。 即ち、 当該圧力差で液体が活性 化されている こ とが分った。 又、 この減圧室条件は一液相条 件である こ と も確認した。In addition, when the phase diagram of one liquid phase and two liquid phases of this system was determined using a pressure vessel with an optical window, the condition of the decompression chamber was clearly in the one liquid phase region. = Also, the state of activation was observed. For this purpose, using the same apparatus as that used to obtain the phase diagram, the change in the amount of light, that is, the pressure difference observed before and after the orifice in the pressure chamber orifice, was measured. As a result, it was confirmed that when a pressure difference was generated at a pressure difference of 190 kg Z ai G, the liquid temporarily became completely dark-field. That is, it was found that the liquid was activated by the pressure difference. It was also confirmed that these decompression chamber conditions were one liquid phase conditions.
MM 1 2  MM 1 2
実験例 1 1 と同様の装置及びボ リ マ ー / ¾剤を用いたが、 この場合、 減圧室前のオ リ フ ィ スを 0. 5 ( L / D = 1 0 ) 紡糸ノ ズルと して 0. 5 龍 ø ( リ ー ド孔角度が 6 0 ° 、 L / D = 2 ) の円形ノ ズルを用いた。 実験例 1 1 と同様の操作で (但しこの実験洌では熟安定剤を用いなかつた) オー ト ク レ —ブ内の液温が 160 ° (:、 圧力を 240 kgノ^ Gと してフ ラ ッ シ ュ紡糸を行い、 高密度ボ リ ヱチ レ ンの純白色の高度にフ ィ ブ リル化した網状フィ ラメ ン トを得た。 そして、 この時の ¾圧 室の圧力は 9 0 kgV ai Gであ 'り、 缄圧ォリ フ ィ ス前後の圧力 差は 190 kg cii Gであり、 フィ ラメ ン ト の鎪度は 202 d、 強 度は, 3. 6 g / d であつた。 又液体の活性化も実!T洌 1 1 と同 様の方法にて測定し、 活性化されていることが確認された。 そしてこの減圧室条件が一液相に属することも確認した。 The same equipment and polymer / solvent as in Experimental Example 11 were used, but in this case, the orifice in front of the decompression chamber was 0.5 (L / D = 10) spinning nozzle. 0.5 round ø (lead hole angle 60 °, L / D = 2) circular nozzle was used. In the same operation as in Experimental Example 11 (except that no mature stabilizer was used in this experimental kiln), the liquid temperature in the autoclave was 160 ° (:, the pressure was 240 kg G, and the pressure was 240 kg. Performs lash spinning to produce high-density polyethylene pure white highly fibrous A rilled reticulated filament was obtained. At this time, the pressure in the decompression chamber is 90 kgV ai G, the pressure difference before and after the depressurization orifice is 190 kg cii G, and the filament intensity is 202 d The strength was 3.6 g / d. Also activates liquid! It was measured by the same method as T-kiyoshi 11 and it was confirmed that it was activated. And it was also confirmed that these decompression chamber conditions belonged to one liquid phase.
比較 M 4  Compare M 4
実験例 1 2 と同様の装置及びポリ マーノ溶剤を用いたが、 この場合、 减圧オ リ フ ィ スを 1. 5 mm (じ/ D = 3. 3 ) とし た。 ·  The same apparatus and polymer solvent as in Experimental Example 12 were used, but in this case, the low-pressure orifice was 1.5 mm (J / D = 3.3). ·
又、 ォ 一 ト ク レーブの圧力を 150 kg / erf Gとしてフ ラ ッ シ ュ紡糸を行い、 この時の減圧室の圧力は実験例 1 2 と'同様の 9 Q kg / αί Gとなったが、 得られた糸は、 つ-ィ ブリ ル間の分 難が充分でないベタツキの見られる:、 織度 275 (1、 強度 1. 5 g / dの極めて弱い糸であつた。 吏に活性化の状態を実験例 1 2 と同一にて測定したが、 液体の活性化が発生していない ことが分った。  In addition, flash spinning was performed with the autoclave pressure set at 150 kg / erf G, and the pressure in the decompression chamber at this time was 9 Q kg / αίG similar to that in Experimental Example 12. However, the obtained yarn has a stickiness in which the difficulty between the two is not sufficient: a weaving degree of 275 (1, a very weak yarn having a strength of 1.5 g / d. The state of activation was measured in the same manner as in Experimental Example 12, but it was found that no liquid activation occurred.
実験洌 1 3  Experiment Kiyoshi 1 3
実験例 1 . 2 と同様の装置及びポリマー /溶剤を用いたが、 この場合、 0. 5 衄 (リ ー ド孔角度が 6 0 ° 、 Lノ D =' 2 ) の円^孔に繞き、 頭部が切断された形の丹逄フ レアーを一体 化した紡糸ノ ズルを用いた。  The same apparatus and polymer / solvent as in Experimental Example 1.2 were used, but in this case, it was surrounded by a 0.5 hole (lead hole angle was 60 °, L = D 2). In addition, a spinning nozzle was used in which the Danube flare with a cut head was integrated.
オー ト ク レーブ内の液温を 161で 、 圧力を 280 ¾ノ0^ 0と して、 紡糸したところ減圧室圧力が 9 0 kgノ αί Gとなり、 襪 度 130 d、 強度 5. 9 g / dの純白のフ ィ ラ メ ン トを得た。 こ のフ ィ ラ メ ン ト は糸の巾がせま く 一見フ ィ ブリ ル化が不十分 にみえる力く、 非常に細かいフ ィ ブリ ルよ り成る網状フ ィ ラ メ ン トであった。 又液体の活性化も観測され、 減圧室条件は一 液相に属する こ と も確認した。 Assuming that the liquid temperature in the autoclave is 161 and the pressure is 280¾0 ^ 0, and the spinning is performed, the pressure in the decompression chamber becomes 90 kg ノ αίG. A pure white filament of d was obtained. This The filament was a reticulated filament consisting of very fine fibrils with a narrow thread width and seemingly insufficient fibrillation. Activation of the liquid was also observed, confirming that the decompression chamber conditions belonged to one liquid phase.
実 例 ί 4  Example ί 4
実 ¾例 1 1 と同様の装置を用い、 減圧ォ リ フ ィ スを 0 . 45 ! L ,ノ D = 1 1 ) 、 紡糸ノ ズノレが 0 . 45職 ø ( リ ー ド孔角度か; 6 0 1 、 L /" D = 2 ) の円形ノ ズルを用いて実施した。 Using the same device as in Example 11, the decompression pressure was 0.45! It was performed using a circular Bruno nozzle of 6 0 1, L / "D = 2); L, Roh D = 1 1), spinning Bruno Zunore 0 45 positions ų (rie de hole angle or..
こ の場合、 異なる銘柄の高密度ポ リ エチ レ ン (旭化成工業 製サ ンテ ッ ク H D - B 1 6 1 , Ή = 1. 2 ) を用い、 ポ リ マ ー濃度 1 4 で行った。 同様の操作によ り 、 液温 180 、 圧力 250 kgノ crf Gで吐出し、 镊度 1 20 d 、 強度が 4. 6 g ノ d の高 度にフ ィ ブ リ ル化した高強力な純白のフ ィ ラ メ ン トを得た。 なおこの時の減圧室の圧力は 8 0 kg / Gであった。 又、 こ の缄圧室圧力は一液相条件であり 、 こ の条件でも活性化が発 生していた。  In this case, different brands of high-density polyethylene (Santech HD-B161, Asahi Kasei Kogyo Co., Ltd., Ή = 1.2) were used at a polymer concentration of 14. By the same operation, the liquid is discharged at a liquid temperature of 180 and a pressure of 250 kg crf G, and is a highly powerful pure white fibrillated to a temperature of 120 d and a strength of 4.6 g no d. Of this product. At this time, the pressure in the decompression chamber was 80 kg / G. In addition, the pressure in the pressure chamber was a one-liquid phase condition, and activation occurred under this condition.
寞¾例 1 5  Lonely example 1 5
実験洌 4 で得られた織維を、 じ S P .3 , 456 , 1 56号報に示される が如き、 回転偏向板、 コ ロナ放電装置を有する分散装 Sを用 いて、 移勤するネ ッ ト コ ンベア上に捕集した。 こ の時、 紡口 から吐出する三次元網状 ί哉維は、 巾が 30〜 60 mmに広がつ た状 mでネ ン ト コ ンベア上に連 的に左右に振られながら堆積さ れた。 この非接着ゥ ブを全面圧着ロ ール (温度 135で) とゴム 口 -ルの間で線圧 1 3 kgノ cmのプ レスを表裏各 1 回、 1 0 mノ分で実施した。 このようにして得られた不裰布は内層及び表面層に剝難し た時のそれぞれの比表面が 8. 6 nf / g、 6. 0 m / gであった。 又、 層を剝離することな く不裰布全 ί本として測定した比表面 積は 6. 4 rr? / gであつた。 As shown in J. SP.3, 456, 156, the textile obtained in Experimental Kiyoshi 4 was transferred to a net using a dispersing device S having a rotating deflector and a corona discharge device. Collected on a conveyor. At this time, the three-dimensional reticulated ίyawei discharged from the spinneret was deposited on the net conveyor in a width m of 30 to 60 mm while continuously oscillating from side to side. . The non-adhesive tape was pressed between the entire surface pressure roll (at a temperature of 135) and the rubber port with a linear pressure of 13 kg / cm, once for each of the front and back sides for 10 m / min. The non-woven fabric thus obtained had a specific surface of 8.6 nf / g and 6.0 m / g, respectively, when the inner layer and the surface layer had difficulty. The specific surface area measured as a whole non-woven fabric without separating the layers was 6.4 rr? / G.
: この不織布は、 目付 4 0 g / nf で引張強度がタテ Zョコが 13.3/14.2 (kffZ 3 cm幅) 、 エ レメ ン ドルフ引裂強度 1.02Z 1.02 (kg) 、 これを基準目付 5 0 gノ n こ換算した値は引張 強度がタテ /ョコが 17.3 Π.7 (kgZ 3 oii巾) 、 エレメ ン ド ルフ引裂強度が 1.28Z1.28 (kg) という高強力不織布であつ た。 This nonwoven fabric, basis weight 4 0 g / tensile strength nf the vertical Z ® co is 13.3 / 14.2 (k ff Z 3 cm width), e Leme down Dorf tear strength 1.02Z 1.02 (kg), the reference basis weight 5 this The converted value was a high-strength nonwoven fabric with a tensile strength of 17.3 to 0.7 (kgZ3 oii width) in vertical / horizontal and an elementary tear strength of 1.28Z1.28 (kg).
又、 この不識布のレーザー透過光量は 13.7. であり、 十 、分な不透明性を有していた。  In addition, the amount of laser transmission of this ignorant cloth was 13.7, indicating that it had sufficient opacity.
そして、 この不織布は、 菌水 3600m H2O 、 ガー レー.ヒ 通気度は 900,5 ec 50 miであつた。 The nonwoven fabric had a bacterial water of 3600 mH 2 O and a Gurley HI air permeability of 900,5 ec 50 mi.
また、 不織布の M I及び分子量分布は織維のそれと変わら Also, the MI and molecular weight distribution of the nonwoven fabric are different from those of the textile.
'■^ ΛΡ つ :。 '■ ^ ΛΡtsu:
実験例 16〜: L9  Experimental Example 16-: L9
実験钶 1 5 と同じ方法で得た非接着不辍ゥ ブを同じプレ ス ールを使用して各種の条件で接着を実施した。 接着は表 裏各 1回実施し、 その結果を第 2表に示す。 第 2 Non-bonded solids obtained by the same method as in Experiment No. 15 were bonded under various conditions using the same press. The bonding was performed once for each of the front and back sides, and the results are shown in Table 2. No. 2
^験例 1 6 実験例 1 7 例 1 8 例 1 9 不織布の 付 ( g /m) 3 9 G 0  ^ Experimental example 1 6 Experimental example 1 7 Example 1 8 Example 1 9 Attaching nonwoven fabric (g / m) 3 9 G 0
ロール温度 (で) 137 135 Roll temperature (in) 137 135
I'J一ル線圧 (kgZcm) 1 3 1 0  I'J linear pressure (kgZcm) 1 3 1 0
^接着速度 (m/分) 1 0 4 1 0  ^ Adhesion speed (m / min) 10 4 10
内 層 8.0 7.2 ' 8.9 7.2 比 表 面 積  Inner layer 8.0 7.2 '8.9 7.2 Relative surface area
衷 面 層 5.2 4.3 6' 1 5. 1 (m2/ g ) Eclectic layer 5.2 4.3 6 '1 5.1 (m 2 / g)
不織布全体 6.0 5.4 7.2 5.6 引張強度 タテ /ョコ (kg/ S cm) 18.4/19.5 14.0/14.2 25.4/24.5 8. 4 /7.7 換¾£ 張強!^—タ^ 7ョコ  Whole nonwoven fabric 6.0 5.4 7.2 5.6 Tensile strength Vertical / Horizontal (kg / S cm) 18.4 / 19.5 14.0 / 14.2 25.4 / 24.5 8.4 / 7.7
23.6/25.0 17.1/17.3  23.6 / 25.0 17.1 / 17.3
(kg / 3 cm/50£ /rn) 21.2/20.4 16.8/15.4 引裂強—度— /ヨョ—  (kg / 3 cm / 50 £ / rn) 21.2 / 20.4 16.8 / 15.4 Tear strength-Degree-
エレメ ンドルフ (kg) 0.35/0.44 1.00/0.83 1.06/1.07 0.61/0.54 換寛弓 Ί裂強 ——ダ 7aコ ― 0.45/0.57 1.22/1.01 0.88/0.89 1.22/1.08 ェ _K ^_Z..( kg 50.£ . JIL) . 111 4 Elmendorf (kg) 0.35 / 0.44 1.00 / 0.83 1.06 / 1.07 0.61 / 0.54 Commutative bow Crack strength ——Da 7a- — 0.45 / 0.57 1.22 / 1.01 0.88 / 0.89 1.22 / 1.08 _K ^ _Z .. . £. JIL). 111 4
レーザ—透過光 M (<" W) 19.8 11.9-62 1- 10.5 15.3 耐水圧 (皿 ii20) 4, 100 3,000 3,500 Laser-transmitted light M (<"W) 19.8 11.9-62 1- 10.5 15.3 Water pressure (dish ii 20 ) 4, 100 3,000 3,500
ガ一レーヒル通気度 (s c/50m«) 3,000 250 2,000 Garley Hill air permeability (s c / 50m «) 3,000 250 2,000
2 li 1 一一 3 5! 3 o 実験例 20〜23 2 li 1 11 1 3 5! 3 o Experimental Examples 20-23
実験例 5で得られた織維を、 実験例 1 5 と同様にして、 30 〜 65™に広げながら、 左右に振りつつ、 ネ ツ トコ ンベア上に 措集した。 実験例 15〜 19に使用した σ —ルを用いて m接着を 行った。 表 · 裏の各 1 回を処理し、 第 3 麦の結果を得た。 In the same manner as in Experimental Example 15, the textile obtained in Experimental Example 5 was collected on a net conveyer while being spread 30 to 65 ™ and swung right and left. M-bonding was performed using the σ-rules used in Experimental Examples 15 to 19. One treatment of each of the front and back was performed to obtain the results for the third wheat.
What
¾験例 2 0 ¾験例 2 1 ' 験例 < } 2 'お1 ¾.例 2 3 ィ;織 の Ώ付 ( g / in ) 4 0 4 0 4 2 G 0 . ¾ Kenrei 2 0 ¾ Kenrei 2 1 'Kenrei <} 2' Contact 1 ¾ Example 2 3 I; woven with Ώ (g / in) 4 0 4 0 4 2 G 0
135 135  135 135
—ル線圧 (kg/cm) 1 3 2 0 2 1 3 接 速度 (mZ分) 1 0 1 0 5 1 0 内 層 7.2 5.7 7. 4 比 表 面 積  —Round pressure (kg / cm) 1 3 2 0 2 1 3 Contact speed (mZ) 1 0 1 0 5 1 0 Inner layer 7.2 5.7 7.4 Ratio surface area
衷 面 層 5.3 5.0 4. G 5.0 (rrf/ g )  Eclectic layer 5.3 5.0 4.G 5.0 (rrf / g)
不織布全体 6. 1 5.2 5.3 5.8 1 ¾強度 夕テ /ョコ (kg 3 cm ) 12.3/11.8 13.8/14.2 0.81/9.0 21.4/21.8 換^引張強度— 7 コ  Whole non-woven fabric 6.1 5.2 5.3 5.8 1 ¾ Strength テ / ((kg 3 cm) 12.3 / 11.8 13.8 / 14.2 0.81 / 9.0 21.4 / 21.8 ^ Tensile strength — 7
(kg/ 3 cm/50fi /m) 15.4/14.7 17.3/17.7 9.6 ,10.7 17.8/18.2 ':! 強度1 ンョ ΓΓ  (kg / 3 cm / 50fi / m) 15.4 / 14.7 17.3 / 17.7 9.6, 10.7 17.8 / 18.2 ':! Strength 1 ΓΓ
エレメ ン ドルフ (kg) 0,55/0.66 0.50/0..52 0.77/0.80 0.68/0.66 換^引裂強 'タ^ン コ ' '一 Elemendorf (kg) 0,55 / 0.66 0.50 / 0..52 0.77 / 0.80 0.68 / 0.66 Exchange strength Tear strength
ェレーメ .. —ド丄レ 0.69/0. Ereme .. —Dore 0.69 / 0.
?— ( kg, / 50 M .m ) . 82 0.62/0.65 0.92/0.95 0.57/0.55 レーザー ϋ過光 M ( w) 15.1 18.8 13.3 11.7 ft水圧 1 0) 2,400 2,800 2,100 2,600 ガー レ一ヒル通^度 (s c/50»;i) 800 ' 950 5 8 540 ? — (Kg, / 50 M .m). 82 0.62 / 0.65 0.92 / 0.95 0.57 / 0.55 Laser light M (w) 15.1 18.8 13.3 11.7 ft Water pressure 1 0) 2,400 2,800 2,100 2,600 sc / 50 » ; i) 800'950 5 8 540
実験例 24〜 27 Experimental Examples 24-27
実験例 3 で得た鐡維を実験例 1 5 と同様にネ ッ トコ ンベア 上に非接着ゥエブとして浦集した後、 同様に口—ルで両面を 接着した。 この锆杲を第 4表に示す。  The steel obtained in Experimental Example 3 was collected as a non-adhesive web on a net conveyor in the same manner as in Experimental Example 15 and then both sides were bonded together with a mouth. The results are shown in Table 4.
荬镜例 2 8  荬 镜 Example 2 8
実験例 1 で得た三次元稱伏鐡維から実験例 1 5 と同様にし て非接着不議ゥエブを得た。 この非接着不織ゥエブをフ ニル トカ レ ンダ一で両面処理した。 136でに加熟した 'ド ラムて 3 5 m /分の高速で処理し、 表面が熟接着された紙檨の不遴 布を得た。 .  In the same manner as in Experimental Example 15, non-adhesive non-woven webs were obtained from the three-dimensional steel tube obtained in Experimental Example 1. This non-adhesive nonwoven web was treated on both sides with a vinyl toka render. The ripened drum at 136 was treated at a high speed of 35 m / min to obtain a nonwoven fabric whose surface was ripely bonded. .
この不識布の内層部の比表面積は 5. 2 rrf Z gであった。 ま た、 こ の不裰布 巨付 6 0 g Z trf でレーザ—平 ¾透過光量が 8 μ Wで、 ガーレヒル透気度ば 4 4 s ec であり、 被覆力にす ぐれた通気性のある不織市であり 封筒、 ラベル、 通気性包 装材、 その他多檨な紙的用途に利用しう る ものである, この 不籙布のタテ "ョコの物性は巨付 5 0 g / nf に換算して引張 強力が、 IT. 1 Ζ Π . 6 ( kg / 3 cm ) でヱ レメ ン ドルク引裂強力 し 0 / 1. 1 ( kg ) あった。 写真 1 9 (a) 得られた不裰布 の長手方向に切断して現われた断面の顕微鏡写真である。 写 真 1 9 (b ) は後述の比較例 5 の T y v- ek @ C の同様にして得た 断面の顕徽鐃写寘である。 本実験例不識布 、 比較例と比べ て同様の目付であるにもかかわらず、 三次元絹伏 $鼓維がより 密に詰まつている。- これは、 二次元網状織維のフ ィ ブリ ルが よ ¾細かいことを示している。 4 % The specific surface area of the inner layer portion of this ignorant cloth was 5.2 rrf Z g. In addition, this non-woven cloth has a laser transmission of 8 μW at 60 g Z trf and a Gare Hill air permeability of 44 s ec. It is a non-woven city and can be used for envelopes, labels, breathable wrapping materials, and various other paper-based uses. The physical properties of this non-woven fabric are 50 g / nf The tensile strength was reduced to IT 、 ヱ IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT. Photo 19 (b) is a photomicrograph of a cross section obtained in the same manner as in the case of T y v-ek @C in Comparative Example 5 described below. The three-dimensional silky fissures are more densely packed, despite the similar weight per unit compared to the comparative example. The fibers of the textile are fine. The shows. Four %
比較洌 4 - 比較例 2 の織維を用いて実験例 1 5 と同じように非接着ゥ エブを得て同様の熱接着を行った。 Comparative Kiyoshi 4-Non-adhesive web was obtained using the textile of Comparative Example 2 in the same manner as in Experimental Example 15 and subjected to the same thermal bonding.
表面毛羽を止め、 引張強力を保有するように接着する場合 引張強度、 引裂強度の閔係は第 1 2図の铍線に示される領域 であり、 内層の比表面積は 2, 5 〜 4. 0 m / gの値を示した。 又、 レーザ—透過光量による不透明性評 ί¾も劣ったものであ 比較例 5 ' - - 三次元網状織維不鐡布で市販されている Du Pont社の In the case where the surface fuzz is stopped and bonded so as to retain the tensile strength, the relationship between the tensile strength and the tear strength is the area indicated by the solid line in Fig. 12 and the specific surface area of the inner layer is 2.5 to 4.0. The value of m / g was shown. In addition, the opacity rating due to the amount of laser light transmitted was inferior. Comparative Example 5 '--DuPont Co., Ltd.
. Tyvek© の紙様タイ プ ( 1 0 タイ プ) について、 本発明の三 次元網状織維不織布と比較した。 The Tyvek © paper-like type (10 type) was compared with the three-dimensional net-woven nonwoven fabric of the present invention.
Tyvek© A ' Tvvek© C 'Tyvek © A 'Tvvek © C'
' 目付 ( g / rrf ) 4 4 ! 5 5 1 6 1 : 比 i 内 層 2. 6 1 2, i 1 9 Λ 1 'Weight (g / rrf) 4 4! 5 5 1 6 1: ratio i inner layer 2. 6 1 2, i 1 9 Λ 1
1  1
-お 1 °' U i -1 ° ' U i
B  B
1. 5 ' 1, 5 : 1. 7 : 1.5'1,5: 1.7:
( nf g ): 不織布全体 1. 8 1. 3 1 1. 9 ; 換寛 引 張強 度 (nf g): whole non-woven fabric 1. 8 1. 3 1 1. 9; exchange tensile strength
タ テ /ョ コ 14.1/16.1 1 .4 16. Vertical / Horizontal 14.1 / 16.1 1.4.16.
(kg / 3 cm /.50 g / rn ) \ -(kg / 3 cm / .50 g / rn) \-
! 換算 引 裂強度 ! Converted tear strength
タテノョコ ; 0.43/0.54卜 0.33/0.32 0.33/0.52 ェ レメ ン ドノレフ  Vertical; 0.43 / 0.54 0.33 / 0.32 0.33 / 0.52
ί ( kg/50 g / m ) ,  ί (kg / 50 g / m),
レーザー透過光量 1 2 2 *<  Laser transmitted light 1 2 2 * <
< 1 6  <1 6
( β W ) 1 8 .+ 1 (βW) 1 8. + 1
いずれも内層の比表面積が 5 rrf / g未潢であり 、 レーザー 透過光量で示される不透明性や引張 · 引裂強度が本発明の不 †1布に劣ったものであった。 In each case, the specific surface area of the inner layer was less than 5 rrf / g, and the opacity and tensile / tear strength indicated by the amount of transmitted laser light were inferior to those of the fabric of the present invention.
実験例 2 9  Experimental Example 2 9
実験例 4 で得られた镞維を、 し' SP 3, 456, 156 号報に示され るよ う な、 回転偏向板、 コ ロナ放電装置を有する分散装置を 用いて、 移動するネ フ ト コ ンベア上に浦集した。 この時、 紡 口から吐出する三次元網状織維は、 巾が 30〜 60 mに広がつた 状態でネ ッ ト コ ンベア上に連続的に左右に振られながら堆積 された。  The fiber obtained in Experimental Example 4 is moved using a dispersing device having a rotating deflecting plate and a corona discharge device, as shown in Shi 'SP 3,456,156. I gathered on a conveyor. At this time, the three-dimensional reticulated fiber discharged from the spinning nozzle was deposited on the net conveyor while continuously oscillating from side to side with a width of 30 to 60 m.
こ の非接着不織ゥ ヱブをエ ンボス ロ ールと ゴム ロ ールを用 いて部分的に接着した。 即ち、 ヱ ンボス ロ ールと して、 それ ぞれの突起部が 0. 7 m X 0. 7 «の正方形で巾方向及び周方向 のピッチがいずれも 1 . 25™でエンボス深さが 0. 3 usの π —ル を用いた。 This non-adhesive nonwoven fabric was partially adhered using an embossing roll and a rubber roll. In other words, each embossing roll is a square of 0.7 mx 0.7 «in the width and circumferential directions. The pitch of each was 1.25 ™ and the emboss depth was 0.3 us.
工 ンボスロールを 132 °cに加熱し、 ゴムロ ールと二ップす る こと よ って、 表 · 裏の両面処理を行い、 模様付き ©熟接 着不裰布を得た。 この不識布は表面の耐摩擦性にすぐれた不 錄布であったが、 手ざわりが少し固いため、 手によって揉み 加工を行つ.たところ極めて柔軟な不織布となつた。  The embossing roll was heated to 132 ° C, and both sides of the front and back were treated by dip- ing with a rubber roll to obtain a patterned, non-adhesive non-woven cloth. Although this cloth was excellent in the friction resistance of the surface, the texture was a little hard, so it was kneaded by hand.
この不識布に切れ目を入れ、- 無理やり引き裂いたところ、 強固に熱接着された表面層と、 網状譏維形態を保持した譏維 より成る内層部に剝難された。 内層部の網状錄'維の一端を把 持して入念に他の網状鐡維と分離することによつて、 約 30〜 100 cmの連続する網状鐡維を多数取り出した。 これらの網伏 織維を用いて X線小角散乱を測定したところ、.長周期散乱強 度比ば、 9 0 であった。 一方、 長周期は若干増加し、 18 1人 の ί直を示した。  A cut was made in this unknowing cloth, and when it was forcibly torn, it was difficult to find a strongly heat-bonded surface layer and an inner layer consisting of a crepe that retained the form of a reticulated crepe. By grasping one end of the mesh fiber in the inner layer and carefully separating it from the other mesh fibers, a large number of continuous mesh fibers of about 30 to 100 cm were taken out. When the small-angle X-ray scattering was measured using these net fibers, the long-period scattering intensity ratio was 90. On the other hand, the long cycle increased slightly, showing a response of 181 people.
この不識布は、 極めて柔軟で、 なおかつ表面の ®摩擦性に すぐれており、 指で強く表面をこすっても毛羽が出ない不裰 ¾であり、 被覆力も極めて高く 、 保護衣、 簡易衣料、 乾燥剤 - 脱設素材等の通気性包装材ゃ、 その他柔軟な包装^として適 するものであった。  This insane cloth is extremely flexible, has excellent surface friction, and has no fuzz even when strongly rubbing the surface with a finger, and has a very high covering power, protective clothing, simple clothing, Desiccant-suitable as a breathable packaging material, such as a removable material, and other flexible packaging.
この不織布は百付 5 Q g nfで、 レーザー光平均透過光量 が 1 4 Wであった。 そして、 不織布のタテ/ョコの物性 、 引張強力が 9 . 5 Z 10 . 3 ( kg / 3 cm巾) 、 シ ングルタ ンダ引裂 強力が 1. 9 ノ 2* 0 ( kg ) であり、 カ ンチレバー法による柔軟 度は 5. 2 5·. 6 ( ) であった。 実铵例 3 0 . This nonwoven fabric had a weight of 5 Qg nf and an average amount of transmitted laser light of 14 W. The nonwoven fabric's vertical / horizontal properties, tensile strength is 9.5 Z 10.3 (kg / 3 cm width), single-toner tear strength is 1.9 2 2 * 0 (kg), and the cantilever is The flexibility by the method was 5.25 · 6.6 (). Example 30.
実験例 2 9 で得た非接着不織ゥ 二ブを全面圧着口 ールと ゴ ムロ ールの間で処理した。 この場合、 表面のみの処理と し、 ロー ル温度 1 35 ロール線圧 1 0 kg Z cmで速度 1 0 m Z 分と した。 得られた不織布は一方の表面が強固に熟接着され、 他方の表面及び内層にかけては熱接着されていない不織布で あり 、 熟をかけていない面から網状形態を保持する鐡維を独 立に取り 出  The non-adhesive non-woven fabric obtained in Experimental Example 29 was treated between the entire surface of the crimping hole and the rubber roll. In this case, only the surface was treated, and the roll temperature was set to 135 and the roll linear pressure was set to 10 kg / cm. The obtained non-woven fabric is a non-woven fabric that has one surface firmly and strongly bonded to the other surface and is not heat-bonded to the other surface and the inner layer. Out
この镍維の X線小角散乱の測定において、 長周期散乱強度 比 8. 5 であり、 長周期は 1 80 Αであった。  In the measurement of small-angle X-ray scattering of this fiber, the long-period scattering intensity ratio was 8.5, and the long-period was 180 mm.
この不織布は、 両表面の差異を活用した用途に使用でき、 接着されていない面に吸着剤や脱臭剤を添加して、 吸着用フ ィ ルタ ー、 脱臭用フ イノレターにするとか、 他の面材 (フ ィ ル や織布等) を貼り合わせて、 被覆力の高く 、 かつ引裂強力 の高い複合材と して用いられる。  This non-woven fabric can be used for applications that make use of the difference between the two surfaces. For example, an adsorbent or deodorant is added to the non-adhered surface to make it a filter for adsorption or a deodorant finoletter. Materials (files, woven fabrics, etc.) are bonded together and used as a composite material with high covering power and high tear strength.
こ O不織布は、 目付 5 0 gノ において、 レーザー平均透 過光量が、 5 ' Wであり、 極めて高い被覆力を示す。 又、 不 裰布のタテ/ョコの物性は、 引張強力が 1 1 . 2 1 1 . 8 ( k / 3 cm巾) であ り 、 エ レメ ン ドルフ引裂強力は 1. 6 ノ 1. 6 ( kg ) と極めて高い値を示した。  This O nonwoven fabric has an average transmitted light amount of laser of 5'W at a basis weight of 50 g, and shows extremely high covering power. In addition, the physical properties of non-woven fabric vertical / horizontal are as follows: tensile strength is 11.2 11.8 (k / 3 cm width), and Elemendorf tear strength is 1.6-1.6. (kg) and extremely high value.
実 例 3 1  Example 3 1
実験例 2 9 で得た非接着不織ゥ ブをフ ュ ル ト カ レ ンダー で両面処理した。 1 32て に加熱した ド ラ ム と の接触を 1 秒と して高速で処理することにより、 表面層が熱接着され、 内層 ^に網状織維形態を有する不織布を得た。 o 5 The non-adhesive nonwoven fabric obtained in Experimental Example 29 was subjected to a double-sided treatment using a flute calender. The surface layer was heat-bonded by a high-speed treatment in which the contact with the drum heated for 1 second was performed for 1 second, and a non-woven fabric having a net-like weave shape in the inner layer ^ was obtained. o 5
この不織布の内層部より取り出した鐵維の X線小角散乱は、 長周期散乱強度比は 7. 0であり、 長周期は 230 Αであつ Ϋこ。 The small-angle X-ray scattering of the fiber extracted from the inner layer of this nonwoven fabric has a long-period scattering intensity ratio of 7.0 and a long-period of 230 mm.
又、 この不織布は、 目付 4 0 g / πίでレーザー平均透過光 量が 8 β Wで、 被覆力にすぐれ、 嵩高な紙様の不裰布であり、 封筒、 ラベル、 その他多様な紙的用途に使用する ことができ る  In addition, this nonwoven fabric has a basis weight of 40 g / π レ ー ザ ー and a laser average transmitted light of 8 βW, has excellent covering power, is a bulky paper-like nonwoven fabric, and is used for envelopes, labels, and other various paper uses. Can be used for
そして、 この不織布のタテ/ 'ョコの物性は、 引張張力が 10.8 12 - 0 ( kg / 3 cm巾) でエ レメ ン ドルフ引裂強力は し i  The physical properties of this non-woven fabric are as follows: tensile strength is 10.8 12-0 (kg / 3 cm width) and Elmendorf tearing strength is high.
1  1
4  Four
/ 1. 4 ( kg ) であつた。  / 1.4 (kg).
実験 3 2  Experiment 3 2
実験例 5で得られた鐵維を実験例 2 9 と同様に非接着不議 ゥ ブとして浦集した後、 全く同様にエ ンボス模様のある柔 軟な不鐡布とし  The steel obtained in Experimental Example 5 was collected as a non-adhesive non-woven fabric in the same manner as in Experimental Example 29, and then a soft non-iron cloth with an embossed pattern was formed.
同様に内層より取り岀した镞維の X線小角散乱の測定 長周期散乱強度比ば 2 0であり、 長周期は 210 Aであ , つ この不織布は百付 5 0 g / rf で、 レーザー平均透過光量が 1 5 ' Wであつた。 又、 不織布のタテ /ョコの物性は、 引張 強力が 3- 3 Z 9. 0 ( 1¾ 3 cm巾) 、 シ ングルタ ング引裂強力 は、 し 7 / 1. 8 ( kg) であり、 カ ンチ レバ—法による柔軟度0 は 5. ひ / 5. 0 ( cm ) であつた。  Similarly, measurement of small-angle X-ray scattering of fibers taken from the inner layer has a long-period scattering intensity ratio of 20 and a long-period of 210 A. This nonwoven fabric has a weight of 50 g / rf and a laser average. The amount of transmitted light was 15'W. The physical properties of the nonwoven fabric length / width are tensile strength of 3-3Z 9.0 (1¾3 cm width), single tongue tear strength of 7 / 1.8 (kg), and The degree of flexibility 0 by the lever method was 5.h / 5.0 (cm).
較例 6  Comparative Example 6
比較例 2で得られた鐡維を用いて、 実験例 2 9 と同様にし て、 非接着不綠ゥエブを作成し全く同様に柔軟性不織布を製 造した。 Using the steel obtained in Comparative Example 2, in the same manner as in Experimental Example 29, a non-adhesive nonwoven fabric was produced, and a flexible nonwoven fabric was produced in exactly the same manner.
5 同様に、 内層部から網状鐡維形態の鐡維をとり Sし、 X線 小角散乱の測定を行った。 この長周期散乱強度比は、 6 Q で、 長周期は 240 Aであつ / 5 Similarly, remove the mesh-shaped steel from the inner layer and remove Small angle scattering measurements were made. The long-period scattering intensity ratio is 6 Q and the long-period is 240 A /
又、 この不織布は、 目付 5 0 g / m2で、 レーザー平均透過 光量は 2 0 ' Wで実験例 2 9 に比べて劣つたものであった。 This nonwoven fabric had a basis weight of 50 g / m 2 and an average laser transmission light quantity of 20′W, which was inferior to that of Experimental Example 29.
そ して不識布のタ テ / ョ コ の物性は、 引張強力が 6.5Z6.4 In addition, the physical properties of inexperienced vertical / horizontal materials have a tensile strength of 6.5Z6.4.
( kg 3 cm巾) 、 シ ングルタ ンダ引裂強力は、 0. 8 / 0. 8 ( kg) .であり 、 強度的に も実験例 2 9 に比べ劣っていた。 (kg 3 cm width), and the single-toner tear strength was 0.8 / 0.8 (kg). The strength was inferior to that of Experimental Example 29.
比較 17  Compare 17
5  Five
市販の E. I.dn Pont社製の Tyvek® 1443 Rの不織布を解圻 した。  A commercially available nonwoven fabric of Tyvek® 1443 R manufactured by E. I. dn Pont was unraveled.
この不織布は、 エ ンボス模様を有する柔軟型の不璣布であ り 、 本発明に示される如く 内層に網状鐡維形態を保持してい 本発明に徒って、 独立する網状織維を X線小角散乱の測定 を行つたところ、 長周期散乱強度比は 5 0 で、 長周期は 172 Aであった。  This non-woven fabric is a flexible non-woven fabric having an embossed pattern, and as shown in the present invention, retains the form of reticulated iron wire in the inner layer. When the small-angle scattering was measured, the long-period scattering intensity ratio was 50 and the long-period was 172 A.
又、 不織布の目付は 4 4 g / mであり 、 レーザー平均透過 光量は 2 2 ' Wであり 、 斑の目立ったもので被覆力が劣つた ものである。  Further, the basis weight of the nonwoven fabric was 44 g / m, the average amount of transmitted laser light was 22'W, and the nonwoven fabric was conspicuous and had poor covering power.
そ して、 不織布のタテ /ョコの物性は、 引張強力が 7. 9 / The physical properties of the nonwoven fabric's vertical / horizontal properties are 7.9 /
9. 0 ( / 3 cm巾) で、 シングルタ ング引裂強力は、 1. 4 / 1. 6 ( kg) であり 、 カ ンチ レバ ー法による柔軟度は 6.2ノ6.3 ( cm ) であった。 At 9.0 (/ 3 cm width), the single tongue tear strength was 1.4 / 1.6 (kg), and the flexibility by the cantilever method was 6.2 to 6.3 (cm).
実験例 3 3  Experimental example 3 3
フ ロ ン 1· 1 溶剤にメ ノレ ト イ ンデッ ク ス ( M I ) 0.78の高 密度ポリ ヱチ レ ン樹脂を溶解させた濃度 1 1 の溶液を直 径 0. 8 、 長さ 5 mmの減圧用オリ フ ィ スを通し、 直径 8 舰 、 長さ 4 0 皿の缄圧室内で滹圧した後、 ノ ズル径 0.90舰 、 長さ 0.75難のノ ズルを通過させてフ: フ シ ュ紡糸 ^ Molelet index (MI) 0.71 in fluorocarbon solvent A solution with a concentration of 11 in which polyethylene resin is dissolved is passed through a 0.8 mm diameter and 5 mm long decompression orifice to form an 8 mm diameter and 40 plate long pressure chamber. After pressurizing with a nozzle, pass through a nozzle with a nozzle diameter of 0.90 mm and a length of 0.75 mm:
紡糸条件及び糸物性を第 5表^示す。  Table 5 shows the spinning conditions and yarn properties.
¾HL Ί ; id J (で ) ¾HL Ί; id J (in)
; 紡  Spinning
溶液圧力 ; 300 ( kg- / cm G )  Solution pressure; 300 (kg- / cmG)
, 杀  , 杀
缄圧室内温度 ; 191 C °C )  (Compressed room temperature; 191 C ° C)
; 水  ; water
缄圧室内圧力 8 0  Pressure chamber pressure 8 0
; 件 \  ; Case \
; ポ リ マ—流速 ; • 1 8 ( kg/H曰r)  Polymer flow rate; • 18 (kg / H)
1 牟 顿. 270 ( d )  1 mu 顿. 270 (d)
1物 引張り強度 ® ( / d ) ·  1 item Tensile strength ® (/ d)
\ ! 性 比表面積 * ② . 4 9  \! Specific surface area * ②. 4 9
*① 弓〖張り強度 * ① bow tension
把握: i 5 cm、 引張り速度 1 0 onノ分の条.件で、 4回 Z cmのねじりを与えた三次元網状織維試钭を測定。  Grasp: i 5 cm, Tensile speed 10 on min. Condition, 4 times Z cm twisted three-dimensional reticulated fabric test.
*② 比表面積  * ② Specific surface area
ア ム コ:社製 (力ルロ ェルバ、 ソ 一ブ トマチッ ク 1800 ) を用いて測定。  Amco: Measured using the company's product (Rikiroeruba, Sovitomatic 1800).
紡出された三次元網伏鐡維及びガス流は、 紡糸口金より水 平方向に 5 皿の距難を置いて紡口蝕に直角に配置した本発明 の不織布を製造するために好適な一例である回転分散板に供 給し不織ゥェ-ブを製造した。 回転分散板は、 第 14(a) 図および第 14(b) 図に例 キ,回 転分散板と同様の 3 個の揺動面を持つものを用い 回転分 散板の各寸法は下記の通り である。 円盤直径 D , 100>™、 円 筒部直径 D 2 4 0 ス カ ー ト 部を镥成する揺動面は傾斜角 度 " = 4 5 ( X , = 1 0 Y i = 1 0 揺動面は、 動面と円筒部側面とが接触する交線部の円盤回転 を中心 と した中心角 r = 106.2。 , 揺動面と円盤部上面とが接触す る交線部の円盤回転铀を中心と した中心角 ?? = 75.7 ° で規定 される平面と した。 锾衝面は、 傾斜角度 ^ = 4 5 ° ( X 2 = 1 3 « . Y z = 1 3 «) で両端が平面部と連続している凸型 曲面と し An example of the spun three-dimensional netted steel fiber and gas stream suitable for producing the nonwoven fabric of the present invention arranged perpendicular to the spinneret at a distance of 5 plates in the horizontal direction from the spinneret Was supplied to a rotary dispersion plate to produce a nonwoven web. The rotating dispersion plate has three swinging surfaces similar to those shown in Figs. 14 (a) and 14 (b). The dimensions of the rotating dispersion plate are as follows. It is right. Disk diameter D, 100> ™, rocking surface for镥成the circular cylindrical portion diameter D 2 4 0 scan mosquitoes over preparative portion the inclination angle of "= 4 5 (X, = 1 0 Y i = 1 0 Yuradomen Is the center angle r = 106.2 around the disk rotation at the intersection where the moving surface contacts the side of the cylinder, and the center is the disk rotation の at the intersection where the rocking surface contacts the top of the disk = 75.7 ° The collision surface has an inclination angle of ^ = 45 ° (X2 = 1 3 «. Yz = 1 3«) and both ends are flat. A continuous convex curved surface
こ の回転分散板は、 E転数 1000r"pm 2000rpm 3000rpm で回転させた。 · . 回転分散扳を出た三次元網状織維にはコ ロナ放電を行い電 気帯電を斤なわせしめた。 このコ ロナ放電は 1 1 mmピ ッ チ、 針本数 1 6 本の回転円盤回り 半円状に配置された電極針に ¾ 2 0 kvの負の直流高電圧をかけて行つた。  The rotating dispersion plate was rotated at an E number of revolutions of 1,000 rpm 2,000 rpm and 3000 rpm. · The corona discharge was applied to the three-dimensional reticulated fabric that had exited the rotating dispersion to cause the electric charging to increase. Corona discharge was performed by applying a negative DC high voltage of ¾20 kv to electrode needles arranged in a semicircle around a rotating disk with 11 mm pitch and 16 needles.
回転分散板最下部とネ ッ ト コ ンベア間の距難を 200™に設 定し、 回転分散板を回転させる こ とにより 、 三次元網状繊維 は回転数の 3 倍の揺動サイ ク ルで振り子運動させられながら、 ネ ッ ト コ ンべァ下部に設けた吸引ダク トの補助作用をう けネ ッ ト コ ンベア上下有効幅約 3 0 onの均一な不織ゥ ヱブを形成 した。  By setting the distance between the bottom of the rotating dispersing plate and the net conveyor to 200 ™ and rotating the rotating dispersing plate, the three-dimensional reticulated fiber can oscillate in a swing cycle three times the rotation speed. While being pendulum-moved, a uniform non-woven tube having a net conveyor vertical effective width of about 30 on was formed with the aid of a suction duct provided below the net conveyor.
開镙 維の落下状態は、 高速度撮影装置を使用し観察した 結果、 網状織維の揺動方向変化点は、 浦集面上にある こ とが 確認された。 The state of drop of the open fiber was observed using a high-speed imaging device. confirmed.
ネ ッ トコ ンペァ移動速度は、 ゥ ブの目付けを変化させる ため I S The speed of the net conveyer is different from that of the
分の範面で違転した。 この得られたウェブの 長さ 100 cmから構成する三次元網 it識維を取り 出し開鐵幅を 調べた。 平均開識幅は約 9 0 mmで、 最小開 幅 ,約 7 0 « It turned out in minutes. A three-dimensional net composed of 100 cm length of the obtained web was taken out and the opening width was examined. The average discernment width is about 90 mm, and the minimum width is about 70 «
(镞維密度 3. 8 -デニ—ル 幅) であり網状镙維中の束状部 の镄維密度 4 0デ二 ―ル 以下であつ † (Fiber density 3.8-denier width) and the fiber density of the bundle in the mesh fiber 40 denier The following †
形成された不遴ウェブば、 表面が平滑な金属ロール 度 132 ) とゴム 一ル間で熟プレスを表裏各 1 回行ない不識 布とした。  The formed non-woven web was subjected to mature pressing once between the front and back sides between a metal roll having a smooth surface 132) and rubber.
このようにして作成した不裰布の幅方向の目付け変動率  Weight change rate in the width direction of the non-woven fabric thus created
R 及びレーザ—スポッ ト透過光量変動率 r / yR and laser spot transmitted light fluctuation rate r / y
を第 6表に示す Are shown in Table 6.
* ® 幅方向百付け変動率 * ® Percentage change in width direction
幅方向 1 αιι毎に 1 cm X 5 on片の重量を測定 * ② レーザースポ ッ ト光の透過光量変動率 1 cm X 5 on each 1 αιι in width direction * ② Fluctuation rate of transmitted light of laser spot light
出力 5 m W、 ビーム径 2. 5 sm ø の H e - e レーザ一 光を熱接合された不織布に照射させ、 不織布を透過す る透過光量をレーザーパワ ーメ ータ一で検知し、 不璣 布の幅方向に連続的に測定し且つ長さ方向に 5 cmお きに 1 0箇所測定。  A laser beam with a power of 5 mW and a beam diameter of 2.5 sm H is irradiated on the non-bonded non-woven fabric by a He-e laser, and the amount of light transmitted through the non-woven fabric is detected by a laser power meter.連 続 Measure continuously in the width direction of the cloth and 10 points in 5 cm length direction.
第 6 表より不織布の巨視的な斑を表す幅方向の目付け変勛 率は、 3 0 %以内であり、 不織布の微視的な斑を衷す幅方向 の レーザ—ス ポ ン ト透過光量変動率は、 5 0 %以内であって 本発明の不織布が均一性の高い不織布であるこ とが証明され た。 また、 こ の不織布を柔軟加工した後、 内層から独立の三 次元網抆織維を採取し、 X線小角散乱状態を調べたところ、. 長周期散乱強度比は.1 1 、 長周期は 1 80 Aであった。  From Table 6, the change in the basis weight in the width direction representing macroscopic unevenness of the nonwoven fabric is within 30%, and the variation in the amount of laser-spot transmitted light in the widthwise direction that causes microscopic unevenness in the nonwoven fabric. The ratio was within 50%, and it was proved that the nonwoven fabric of the present invention was a highly uniform nonwoven fabric. After softening this nonwoven fabric, an independent three-dimensional mesh fiber was collected from the inner layer, and the small-angle X-ray scattering state was examined. The long-period scattering intensity ratio was .11 and the long-period was 1. 80 A.
実験例 3 4  Experimental example 3 4
回転分散扳最下部とネ ッ トコ ンベア—間の距離を 3 2 0龍に 替える以外は実験例 3 3 と同様の条件で実施した。 回転分散 板の回転数は、 20 0 0 Γ Ρ ΟΙ、 ネ ッ ト移動速度は 1 7 m Z分と し 形成されたゥヱブは、 有効幅 4 5 cm . 平均目付け 3 9 g / m2であ っ た。 こ のウェブの長さ 1 00 cmにおいて構成する三次 元網状織維を取り出し開鐡幅を調べた。 この結果平均開鐡幅 は約 7 5 龍で、 最小開繊幅は 2 0 m (鐡維密度は 1 3 . 5デニー ルノ龍) であり、 網状繊維が 4 0 デニー ル/ 幅以上の織維 密度に集束した束状部は全く 存在しなかった。 The rotational dispersion was performed under the same conditions as in Experimental Example 33, except that the distance between the bottom and the net conveyor was changed to 320 dragons. The rotation speed of the rotation dispersing plate is 200 Γ ΟΙ ΟΙ, the net moving speed is 17 mZ, and the formed web has an effective width of 45 cm. The average basis weight is 39 g / m 2. I did. The three-dimensional reticulated fabric composed of the web with a length of 100 cm was taken out and the width of iron opening was examined. As a result, the average opening width is about 75 dragons, the minimum opening width is 20 m (steel density is 13.5 denier Luno dragon), and the net fiber is 40 denier / width or more. There were no bundles converging to density.
形成された不繊ゥェブは、 実験例 3 3 と同様に熱プレスを 表裏各 1 回行ない不織布とした。 _ The formed nonwoven web was subjected to hot pressing in the same manner as in Experimental Example 33. This was performed once for each of the front and back sides to obtain a nonwoven fabric. _
この不織布ば、 幅方向百付け変動率 3 0 %、 レーザ—スポ ッ ト透過光量変動率 4 9 %と巨視的斑、 微視的斑共に篛足す る均一な不織布であった。  This non-woven fabric was a uniform non-woven fabric with a variation rate of 30% in the width direction and a variation rate of laser-spot transmitted light of 49%, which was sufficient for both macroscopic and microscopic spots.
比較 1 3  Compare 1 3
回転分散板を第 7表に示すスカー ト部形状のものに替える 以外は実験例 3 3 と同様の条件で実施し、 得られた不織布の 目付け均一性、 開篛性を第 7表に示す。 回転分散板の回転数 は、 3000 r p m、 ネ ッ ト移動'速度は 2 O m 分で一定とした。 形成されたゥヱブは有効幅約 3 Q cm平均百付け 4 8 g / m Table 7 shows the uniformity of the obtained nonwoven fabric and the openability of the obtained nonwoven fabric under the same conditions as in Experimental Example 33, except that the rotating dispersion plate was changed to the one having the scar shape shown in Table 7. The rotation speed of the rotation dispersion plate was 3000 rpm, and the net movement speed was constant at 2 Om minutes. The formed web has an effective width of about 3 Qcm and an average batting of 48 g / m
^ の つ 、— 。 ^ ^, —.
このゥュブの長さ 100 cmにおいて搆成する三次元網扰織維 を取り出し調べた結果、 平埒開鐡幅は、 約 7 0 ™で最小開織 幅は 5 丽 (織維密度は 5 4デニール/ 職 ) に集束した長さ 6 0 mmの束状部を多く含んでいた。  As a result of taking out and examining a three-dimensional mesh fabric formed at a length of 100 cm of the tube, the flat steel width was about 70 ™ and the minimum fabric width was 5 cm (the fabric density was 54 denier. / Job) contained many bundles of 60 mm in length.
このウェブは、 実験例 3 3 と同様に熱プレスを表裏各 1 回 行ない不織布とした。  This web was made into a nonwoven fabric by hot pressing once on each of the front and back sides as in Experimental Example 33.
第 7表より明らかな如く本発明の不織布より外れる不織布 は、 巨視的斑を表現する幅方向目付け変動率は、 3 0 %以上 であり、 微視的な斑を表現する レーザースポッ ト光の透過光 量変勳率 、 5 0 %以上である不均一な不識布であった。 As is clear from Table 7, the nonwoven fabric which deviates from the nonwoven fabric of the present invention has a variation in the basis weight in the width direction expressing macroscopic spots of 30% or more, and transmission of laser spot light expressing microscopic spots. The rate of change in light quantity was more than 50%, which was an uneven ignorance.
"* 円盤部直径 D , = 100 Μ Φ '  "* Disc diameter D, = 100 Μ Φ '
円筒部直径 C . 1 : D 2 — 5 0 随 ø、 じ -- 2 , C - 3 D 4 0 iaia Cylindrical part diameter C. 1: D 2 — 50 Any ø, g-2, C-3 D 40 iaia
実験例 3 5 Experimental example 3 5
回転分散钣を第 8表に示すスカー ト部形状のものに替える 以外ば実験例 3 3 と同様の条件で実施し得られた不織布の目 付け均一性、 開鎪性を第 8·表に示す。 回転分散板の回転数は S O O O r p m ,. ネッ ト移動速度は 2 0 m /分で一定とした。  Table 8 shows the basis weight and openability of the nonwoven fabric obtained under the same conditions as in Experimental Example 33 except that the rotational dispersion was changed to the one with the scar part shape shown in Table 8. . The rotation speed of the rotation dispersion plate was set to SOOOrpm, and the net moving speed was set to 20 m / min.
得られたゥェブを搆成する 織した三次元網状織維中の大 部分の束状部の織維密度は、 4 0 デニール Z 蝠以下であり 極く少量混入する鐡維密度 4 0デニール/ m 幅以上の束伏部 もその大きさが幅 5 以下、 長さ 3 0 以下であった。  The density of the fibers in most bundles of the three-dimensional net-woven fabric that forms the obtained web is 40 denier or less, and the density of steel mixed with a very small amount is 40 denier / m. The size of the binding part larger than the width was 5 or less in width and 30 or less in length.
このウェブば、 実験例 3 3 と同様に表裏各 1 回熱プレスし 不-哉布とした。  This web was hot-pressed once on each of the front and back sides in the same manner as in Experimental Example 33 to obtain a non-woven fabric.
第 8—表に示す如く得られた不織布は均一性を充分に滴足す る ものであった。  As shown in Table 8-Table, the obtained non-woven fabric had a sufficient degree of uniformity.
写真 2 0 ( a ) は本実験例の E - 2 の不織布の下部より光 を照射し、 上部から撮影したものである。 写真 2 0 ( b ) は 比較例 5 の Ty ve k ® B を同様にして撮影したものである。  Photo 20 (a) is a photo taken from the top of the nonwoven fabric of E-2 in this experimental example, with light being irradiated from the bottom. Photo 20 (b) is a photograph of Tyvek® B of Comparative Example 5 taken in the same manner.
実験例 3 5 の場合、 束状部が見えず、 ¾視的に均一性がよ い。 それに対して、 比較例 5 の場合ば、 束拔部が観測され、 微視的な均一性が劣ることが示される。 In the case of Experimental Example 35, the bundle was invisible and visually uniform. On the other hand, in the case of Comparative Example 5, a stripped portion was observed, indicating that the microscopic uniformity was poor.
3 6 3 6
フラ ッ シュ紡糸法により高密度ポリ エチ レ ン網状繊維から なる幅 100 cmの不織布を得るに際して、 4個の紡糸口金をゥ ェブの幅方向に間隔 280腿 、 ゥ ブの長さ方向に間隔 280∞ で並べ、 高密度ポリ エチ レ ン樹脂は、 メ ル ト イ ンデン' クス ( M Γ ) 5 のものを用いフ ロ ン — 1 1溶剤に溶解させ瀵度 上 3 wL½の溶液とした。 この溶液は直径 0· 6 0、 長さ 5 .請 の減圧用ォ リ フィ スを通り、 直径 8 雌 、 -長さ ' 4 0 醮の缄圧室 内で缄 £した後、 ノ ズル直径 0.65舰 Φ 、 長さ 0.65™のノ ズル を通過させてフラ ッ シュ紡糸した。  To obtain a 100 cm wide non-woven fabric consisting of high-density polyethylene mesh fibers by the flash spinning method, four spinnerets are spaced apart in the width direction of the web 280 thighs, spaced in the length direction of the web The high-density polyethylene resin used was Melt Indene's (MΓ) 5 and was dissolved in Fluorine-11 solvent to form a 3 wL½ solution. This solution passed through a decompression orifice with a diameter of 0.60 and a length of 5. The diameter was 8 females.-After being pressed in a pressure chamber with a length of 40 mm, the nozzle diameter was 0.65 mm. 。 Flash spinning was performed by passing through a nozzle with a Φ of 0.65 ™ in length.
紡糸条件及び糸物性を第 9表に示す- 第 9  Table 9 shows the spinning conditions and yarn properties.
* '液温度 1 181 (で)  * 'Liquid temperature 1 181 (in)
溶液圧力 1 200 ( kg- Z cm G Solution pressure 1 200 (kg- Z cm G
· ' i 牟  · 'I mut
缄圧室内温度 1 178 (r )  Pressure chamber temperature 1 178 (r)
 Article
¾圧室内圧力 1 7 0 ( kg- -/ cm Li  Pressure chamber pressure 1 7 0 (kg--/ cm Li
; 性  ; Gender
i ポリマー流速 1 2 ( kg /Η?· . 達)  i Polymer flow rate 1 2 (kg / Η?
! 1 牟ぐ 織 度 ; 160 ( d )  ! 1 mud weave; 160 (d)
; 物 引張り強度 ; 4. 7 ( gノ d }  ; Tensile strength; 4.7 (g d)
; 性 比表面積 ; 3 5 ( / g ) それぞれの紡糸口金よ り 噴出される三次元網状璣維は、 紡 糸口金よ り水平方向に 1 ™の距離を置いて配置した実験例 3 3 と同様の本発明に係る回転分散板に供給し不裰ゥ ュブを 衣 ; Specific surface area; 35 (/ g) The three-dimensional mesh fibers spouted from each spinneret are supplied to the rotary dispersion plate according to the present invention, similar to Experimental Example 33, which is arranged at a distance of 1 ™ horizontally from the spinneret. Dress up
回転分散板最下部とネ .ン ト コ ンベア間の距離は 1 5 0™に設 The distance between the bottom of the rotating dispersion plate and the net conveyor is set to 150 ™.
At.しに At.
各綞の回転分散板を 2 0 00 r p mで同期運転させる こ とによ り 三次元網状 維ば 4 0 00 c ノ分の揺動サィ クルで振り子運勛を if ないながら'ネ ッ ト コ ンベア下部に設けた吸引ダク ト の捕助 作用をう け、 移動するネ フ ト コ ンベア上に堆積し、 順次積層 された。 Rotation dispersion plate of each綞2 0 00 while rp not if the pendulum luck勛in synchronous operation is to 4 0 00 c Bruno amount of rocking Sai cycle if three-dimensional network Wei Ri by the and this in m 'nets co With the aid of the suction duct provided at the lower part of the conveyor, it was deposited on the moving conveyor and stacked sequentially.
- 得られたゥ ブを構成する開繊した三次元網状繊維中の大 部分の束状部の織維密度は 4 0 デニー ルノ龍幅以下であり 、 極 く 少量混入する繊維密度 4 0 デニー ル /™幅以上の束状部 もその大き さが幅 5 丽以下、 長さ 3 0 職以下であった。  -The fiber density of most bundles in the opened three-dimensional reticulated fiber constituting the obtained web is less than 40 denier Lunong width, and the fiber density mixed in a very small amount is 40 denier. The size of the bundles over the width of // was also less than 5 mm in width and less than 30 in length.
形成されたゥ ヱブは、 全面圧着ロ ー ル (温度 130 。c ) とゴ ム コ ー ル間で熟プ レスを表裏各 1 回行ない不裰布と した。  The formed web was subjected to a mature press between the entire surface pressing roll (temperature 130.c) and the rubber call once each on the front and back to make the fabric non-woven.
このよ う にして得た不織布は、 有効幅 1 0 0 cm目付け 4 1 Z mの幅方向の目付け変動率 1 9 %、 レーザ—ス ポ ン 卜透過 光量変動率 4 0 %の極めて均一なものであった。 産業上の利用可能性  The nonwoven fabric obtained in this manner is an extremely uniform nonwoven fabric having an effective width of 100 cm and a weight variation of 19% in the width direction of 41 Zm and a laser-spot transmission light quantity variation of 40%. Met. Industrial applicability
本発明による三次元網状織維、 三次元網状譏維よ り成る不 織布及びそれらの製造方法は前述のよ う に構成されているの でそれぞれ優れた特徴と用途を有する。 ¾下順を追って説明する。 -The three-dimensional net-like fiber, the non-woven fabric made of the three-dimensional net-like fiber, and the method for producing them according to the present invention have excellent characteristics and applications, respectively, because they are configured as described above. 説明 The explanation will be given in the following order. -
J_および ^ 本発明の新規な三次元網状镞維は、 その 性能における大きな特徴として、 J_ and ^ The novel three-dimensional network fiber of the present invention
① 極めて徽 IHなフ ィ ブリルより成つて.:いる  ① It is made up of extremely incredible IH fibrils.
② 機械的強度が非常にすぐれている ': '  ② Excellent mechanical strength ':'
③ 高温特性にすぐれている  ③ Excellent high temperature characteristics
が挙げられる。 そして、 これらをすベて満足する鐡維は従来 な く 、 これらの特徵は不織布として用いるのに適している。 又、 本発明の $哉維は紡糸したままの鐡維であるにもかかわ らず前述のような特 1:を有するので、 工業的に有利に生産し 且つ利用される。 従って、 篛維の強度が要求されて従来延伸 を必要としていた各種の産業資材織維用途への展開も又期待 される。 . ' - - 本; 明の三次元網犾镞維を用いた^糸直結型の連続織維不 璣布はきわめて有用であり、 従来にない 性能の不鎩布とす ることが岀来る。 Is mentioned. There is no conventional steel that satisfies all of these requirements, and these features are suitable for use as a nonwoven fabric. In addition, the present invention has an advantage as described above, though it is an as-spun iron fiber, so that it is industrially advantageously produced and used. Therefore, it is also expected to be applied to various industrial materials and textiles, which required the strength of fiber and required stretching in the past. '--Book; The continuous fiber nonwoven fabric of the yarn direct connection type using the three-dimensional mesh fiber of Akira is extremely useful, and it is likely that it will be a nonwoven fabric with unprecedented performance.
この镞維は、 その強度、 白度、 網状攙造及び高い比表面.積 を利して、 不織布にしたり、 繊維のまま使用することにより、 各種の用途に展開しう る。  Due to its strength, whiteness, reticulated structure and high specific surface area, this fiber can be used for various purposes by making it into a nonwoven fabric or using it as a fiber.
D_ 本発明に示された;スク リ ユー押出機を用いて、 溶融ポ リ マーで封鎖する紡糸方法及びプロセスを採用する こ とによ り、 極めて安定にフラ ソ シュ紡糸された高強力な網抆鐡維の 製造が可能になる。  D_ Shown in the present invention; using a screw extruder, employing a spinning method and a process of sealing with a molten polymer, whereby a very strong flash-spun high-strength net is obtained.抆 The production of iron and steel becomes possible.
即ち、 高分子量ボリマ ーを用いた紡糸が可能となる他、 高 Eでの溶液作成が可能になる、 装置のコ ンパク ト化、 攪拌シ ール部からの漏れによる工程 ト ラブルの解消、 紡糸系の圧力 の安定化等極めて大きな効果がもた らされる。 In other words, spinning using a high molecular weight polymer becomes possible, and solution preparation at a high E becomes possible. Extremely significant effects are achieved, such as eliminating process troubles due to leakage from the roller section and stabilizing the spinning system pressure.
E_ 本発明による高密度ポ リ エ チ レ ン と ト リ ク ロルフルォ リ メ タ ンを用いた高圧力差を利用する、 又減圧室の液体が一 相領域に属する フ ラ ッ シュ紡糸方法を用いる こ とによ り従来 よ り 高強度である高度にフ ィ プリ ル化した高密度ボ リ ヱチ レ ンの網状識維を得る こ とが出来る。 又、 よ り 高圧の吐出であ るため、 钫糸速度も増大され、 生産速度における工業的メ リ  E_ Utilizing a high pressure difference using high-density polyethylene and trichlorofluorene according to the present invention, and using a flash spinning method in which a liquid in a decompression chamber belongs to a single-phase region As a result, it is possible to obtain a highly fibrous high-density polyethylene network having higher strength than before. In addition, since the discharge is at a higher pressure, the yarn speed is increased, and the industrial speed at the production speed is reduced.
- - 1  --1
ッ ト も大きい。 さ らに従来よ り 2  The size is also large. In addition, 2
7も低温での紡糸でも高強力な ^維が得られるため、 ポ リ マ一の劣化や溶剤の分解が抑制さ れ、 製品の安定化や、 溶剤回収コ ス ト の低減にも効果を及ぼ  Also, since high-strength fibers can be obtained by spinning at a low temperature, polymer degradation and solvent decomposition are suppressed, stabilizing products and reducing solvent recovery costs.
F_ 本発.明の 様の三次元網状繊維不織布は、 それを構成 - する織維の機械特性、 熱接着特性から、 比表面積の大きな内 層と、 大きな機械的強度 (引張強度と引裂強度) を有する新 規な不織布である。 そのため、 被覆力、 均一性、 機搣的強度 Ο点で従来にない性能の展開が可能となり、 比較的低目付領 域 (25〜70 g / rrf ) に適用されるのが好ま しい。 The three-dimensional reticulated fiber non-woven fabric as in the present invention has a large specific surface area and a large mechanical strength (tensile strength and tear strength) based on the mechanical properties and thermal adhesive properties of the fabric that composes it. It is a new nonwoven fabric having This makes it possible to develop unprecedented performance in terms of covering power, uniformity, and mechanical strength, and is preferably applied to a relatively low basis weight area (25 to 70 g / rrf).
分類 に属する本発明の不鐵布の用途と して、 封筒、 ブ ッ クカバー、 壁装材、 ハウス ラ ッ プ . 屋根下材等の建材用途、 滅菌包装材、 衛生材料等の他、 ろ過性能を活かしたフ ィ ルタ ―、 フ ロ ッ ピーディ スクス リ ーブ、 通気包装材、 各種袋物、 記録紙、 無塵紙、 難型紙、 含浸紙、 各種テープ、 F R P用材 料等に使用でき ¾。  Applications of the non-ferrous cloth of the present invention that belong to the classification include envelopes, book covers, wall coverings, house wraps, building materials such as under roof materials, sterile packaging materials, sanitary materials, and filtration performance. It can be used for filters, floppy disk drives, ventilated packaging materials, various bags, recording paper, dust-free paper, difficult paper, impregnated paper, various tapes, materials for FRP, etc.
G 本発明の、 部分的に未融着の網状織維から成る層を含 12δ む不織布は、 本発明による三次元網状鐵維から成る不織布で あって、 特に機械的強度、 熟機械特性に優れた高不透明 ί生、 高被覆性を有した不鐡布である。 G Including a layer of a partially unfused reticulated fiber of the present invention. The 12δ non-woven fabric is a non-woven fabric made of the three-dimensional reticulated fiber according to the present invention, and is a non-iron fabric having high opacity and high covering property, particularly excellent in mechanical strength and ripened mechanical properties.
- この不镄布の用途として、 防護衣、 安全衣、 無菌衣、 無麈 衣 透湿防水 ·布、 s水布、 印剠布、 袋物等に使. できる。  -This non-woven cloth can be used for protective clothing, safety clothing, sterile clothing, non-dust clothing, moisture-permeable waterproof cloth, s water cloth, stamp cloth, bag, etc.
且 本発明による均一な不織布は、 有効幅の全域に渡って 巨付けの均一性が高く 、 外観上の均一性の優れたものとなる。 したがって、 この不織布ば、 不識布の最終用途より要望され る高度な ί匀ー性を持つ不織布として又低目付けでも均一性が 高い不織布とレて極めて有用で.ある。  In addition, the uniform nonwoven fabric according to the present invention has high uniformity in grooving over the entire effective width and excellent uniformity in appearance. Therefore, this non-woven fabric is extremely useful as a non-woven fabric having a high degree of strength required from the end use of unknowing cloth and a non-woven fabric having high uniformity even with a low basis weight.
部分的に未融着の独立した網状織維から成る層を含む不裰 布の均一性を高めることも可能であり、 こ 'の場合にば、 均一 性に、 高性能性が付加されるので、 極めて有用な不镄布とな 。— .  It is also possible to increase the homogeneity of the non-woven fabric, including layers of partially unfused independent mesh fibers, in which case the high performance is added to the uniformity. , And very useful waste. —.
丄 本 明による回転分散板を用いる網状 維不镞布の製 造方法は必要とするシー ト幅の全壊にわたつて目付けが均一 で、 開織性の優れたゥヱブを得る.ことができる。 したがつて 本発明による回転分散板を用いる方法により 、 不織布の最終 用途より要望される高度な均一性や 3 0 g Z «f以下の低目付 けの不織布に容易に対応することができる。  は The method of manufacturing a mesh-like nonwoven fabric using the rotating dispersion plate according to the present invention can provide a web having uniform openness and excellent openability over the complete destruction of the required sheet width. Therefore, the method using the rotational dispersion plate according to the present invention can easily cope with a high degree of uniformity required for the final use of the nonwoven fabric and a low-weight nonwoven fabric of 30 gZ <f or less.

Claims

請 求 の 範 囲 1. 4 0 以下の長周期散乱強度比を有する こ とを特徴とす る フ ィ ブ リ ル化された高密度ポ リ エチ レ ン系の三次元網状 維。  Scope of Claim 1. A fibrillated, high-density polystyrene three-dimensional network characterized by having a long-period scattering intensity ratio of 1.40 or less.
2. 三次元網状 維が 150 A以上 200 A以下の長周期を有 する こ とを特徴とする請求の範囲第 1 項記載のフ ィ プリ ル化 された高密度ボ リ ェチ レ ン系の三次元網状織維。  2. The fibrillated high-density polyethylene system according to claim 1, wherein the three-dimensional network has a long period of 150 A or more and 200 A or less. Three-dimensional reticulated fiber.
3. 三次元網状镍維が、 3 0 «f / g以上の比表面積を有す る こ とを特徴とする請求の範囲第 1 項または第 2 項記載のフ ィ ブリ ル化された高密度ポ リ ヱチ レ ン系の三次元網状镍維。 3. The fibrillated high-density fiber according to claim 1 or 2, wherein the three-dimensional network fiber has a specific surface area of 30 f / g or more. A polystyrene-based three-dimensional network fiber.
4. フ ラ ッ シュ紡糸法による網状繊維の製造法において、 加熱されたスク リ ユ ー押出機を用いて溶融しつつポ リ マ ーを 連続的にボ リ マ ー溶解域へ供給し、 溶解域の入口を連続的に 拱袷される溶融ポ リ マ一で封鎖しつつ溶融ボ リ マーに溶剤を 添加し、 高圧下で両者を混合 · 溶解してポ リ マー溶液を製造 し、 溶解域に設けられたノ ズルからポ リ マ ー溶液を低圧域に 連^的に吐出させて得られる フ ィ ブ リ ル化された高密度ポ リ ェチ レ ン系の三次元網状 IS維。  4. In the method of manufacturing reticulated fibers by the flash spinning method, the polymer is continuously supplied to the polymer melting area while being melted using a heated screw extruder, and melted. A solvent is added to the molten polymer while the inlet of the region is continuously sealed with a molten polymer that is continuously lined, and the two are mixed and dissolved under high pressure to produce a polymer solution. Is a fibrillated, high-density, polystyrene-based three-dimensional network IS fiber obtained by continuously discharging a polymer solution from a nozzle provided in a low pressure region.
5. 三次元網状繊維が 4 0 以下の長周期散乱強度比を有す る こ とを特徴とする請求の範囲第 4 項記載のフ ィ ブリ ル化さ れた高密度ポ リ エチ レ ン系の三次元網状繊維。  5. The fibrillated high-density polyethylene system according to claim 4, wherein the three-dimensional network fiber has a long-period scattering intensity ratio of 40 or less. Three-dimensional reticulated fiber.
6. 三次元網状織維が 150 A以上 200 A以下の長周期を有 する こ とを特徴とする請求の範囲第 5 項記載のフ ィ ブリ ル化 された高密度ポ リ エチ レ ン系の三次元網状織維。 了. 三次元網状織維が 3 0 rf / g以上の比表面積を有する ことを特徴とする請求の範囲第 5項または第 6項記載のフ ィ ブリル化された高密度ボリ ェチレ ン系の三次元網状織維。 . 8. 高密度ボ リ エチ レ ン系ポ リ マー と ト リ ク ロ ルフルォ ル 5 メ タ ンよ り成る高圧の均一溶液を、 減圧オ リ フ ィ ス、 ¾王室 及び紡糸ノ ズルから成る紡出装置を通して低圧域へ吐出し、 高密度ポリ エチ レ ン系ポリマーの網状織維を得る方法におい て、 減圧オリ フ ィ スの前後で高圧力差を発生させて、 液体を 活性化して得られるフィ プリ ル化された高密度ポ リ エチ レ ン0 系の三次元網状織維。 6. The fibrillated high-density polyethylene system according to claim 5, wherein the three-dimensional network fiber has a long period of 150 A or more and 200 A or less. Three-dimensional reticulated fiber. 7. The fibrillated, high-density polyethylene tertiary according to claim 5 or 6, wherein the three-dimensional network fiber has a specific surface area of 30 rf / g or more. Former reticulated fiber. 8. A high-pressure homogeneous solution consisting of high-density polyethylene polymer and trichlorofluor-5 methane is spun from a vacuum orifice, a royal family and a spinning nozzle. In a method of obtaining a high-density polyethylene-based polymer network by discharging to a low-pressure region through a discharge device, a high-pressure difference is generated before and after the decompression orifice to activate the liquid. A fibrillated, high-density, polystyrene 0-based three-dimensional reticulated fiber.
9. 高密度ポリ エチ-レン系ボリ マーと ト リ ク ロルフルォル " メ タンより成る減圧室の液体を相図にお.けるー液栢領域に属 さ て得られる請求の範囲第 8項記載の?ィ ブリ ル化された 高密度ボリ ヱチ レン系の三次元 状織維。 , 9. The method according to claim 8, wherein a liquid in a decompression chamber comprising a high-density polyethylene-based polymer and trichlorofluorene methane is obtained in a phase diagram and obtained in a liquid phase region. A three-dimensional weave of high-density polyethylene that has been brillated.
5 10 . 三次元網状織維が 4 0以下の長周期散乱強度比を有す ることを特徵とする請求の範囲第 8項または第 9項記載のフ ィ ブリ ル化された高密度ポ リ エチ レ ン系の三次元絹状繊維。 510. The fibrillated high-density poly according to claim 8 or 9, wherein the three-dimensional network fiber has a long-period scattering intensity ratio of 40 or less. Ethylene-based three-dimensional silk fiber.
11 . 三次元網状織維が 以上 200 A以下の長周期を有 することを特徵とする請求の範囲第 1 0項記載のフィ ブリ ル0 化された高密度ポリエチ レ ン系の三次元網状織維。  11. The fibrillated, high-density, polyethylene-based three-dimensional network according to claim 10, wherein the three-dimensional network has a long period of not less than 200 A. Wei.
12. 三次元網伏織維が 3 0 nfノ g以上の比表面積を有する ことを特徵とする請求の範囲第 1 0項記載のフィブリル化さ れた高密度ポリ 工チレ ン系の三次元網伏織維。  12. The fibrillated, high-density, polyethylene-based three-dimensional net according to claim 10, wherein the three-dimensional netted fabric has a specific surface area of 30 nf ng or more. Wei Fushiori.
13. 三次元網状鐡維が 3 0 rf Z g以上の比表面積を有する5 ことを特徴とする請求の範囲第 1 1項記載のフィブリル化さ れた高密度ポ リ エ チ レ ン系の三次元網状鐡維。 13. The fibrillated fiber according to claim 11, wherein the three-dimensional mesh steel has a specific surface area of 30 rf Z g or more. 5. High-density polyethylene-based three-dimensional meshed steel.
1 4 . 加熟されたス ク リ ユ ー押出機を用いて溶融しつつボ リ マ -を連铙的にボ リ マー溶解域へ供給し、 溶解域の入口を連 ^的に供給される溶融ボ リ マーで封鎖しつつ溶融ポ リ マーに δ ;容剤を添加し、 高圧下で両者を混合 ' 溶解してポ リ マーの均 一溶液が製造される こ とを特^とする請求の範囲第 8 項、 第 9 項、 第 1 1 項、 第 1 2 項または第 1 3 項記載のフ イ ブリ ル 化された高密度ポ リ エチ レ ン系の三次元網状織維。  1 4. While using a ripened screw extruder, the polymer is continuously fed to the polymer melting zone while being melted, and the inlet of the melting zone is fed continuously. Claim: The method is characterized in that δ; a solvent is added to the molten polymer while closing with the molten polymer, and the two are mixed and dissolved under high pressure to produce a uniform polymer solution. 3. The fibrillated, high-density, polystyrene-based three-dimensional reticulated fabric according to paragraph 8, paragraph 9, paragraph 9, paragraph 11, paragraph 12, or paragraph 13.
1 5 . 加熱されたス ク リ ュ —押 3出機を用いて溶融しつつポ リ  1 5. Heated screw — extruder
- !  -!
マーを遑铙的にボ リ マー溶解域へ供給し、 溶解域の入口を連" 的に洪給される瑢融ポ リ マ—で封鎖しつつ溶融ポ リ マーに 溶剤を添加し、 高圧下で両者を混合 - 溶解してポ リ マ—の均 一溶液が製造される こ とを特徴とする請求の範囲第 i 0 項記 載のフ ィ ブリ ル化された高密度ボ リ エチ レン系の三次元網状 τ¾維  Solvent is added to the molten polymer while the inlet of the melting zone is continuously closed by the molten polymer that is continuously flooded, and the solvent is added under high pressure. The fibrillated high-density polyethylene system according to claim i0, wherein the two are mixed and dissolved to produce a uniform polymer solution. Three-dimensional mesh
1 6 . フ ラ ッ シュ紡糸法による網状織維の製造法において、 加熟されたスク リ ュ —押出機を用いて溶融しつつポ リ マーを 連続的にポ リ マー溶解域へ供給し、 溶解域の入口を連繞的に 供給される溶融ポ リ マ—で封鎖しつつ溶融ボ リ マーに溶剤を 添加し、 高圧下で両者を混合 · 溶解してポ リ マー溶液を製造 し、 溶解域に設けられたノ ズルからポ リ マ—溶液を低圧域に 連続的に吐出する こ とを特徴とする高密度ポ リ エ チ レ ン系三 次元網状織維の連続的な製造方法。  16 6. In the method of manufacturing a netted fiber by the flash spinning method, a ripened screw is continuously fed to a polymer melting zone while being melted using an extruder. A solvent is added to the molten polymer while closing the inlet of the melting zone with a continuously supplied molten polymer, and the two are mixed and dissolved under high pressure to produce a polymer solution. A continuous method for producing a high-density polyethylene-based three-dimensional net-like fabric, characterized in that a polymer solution is continuously discharged from a nozzle provided in a region to a low-pressure region.
1 7 . ボ リ マー溶解域に於いて、 混合 · 溶解が少く とも押出 機のス ク リ 立.一に付設された機械的混合の領域を いて行わ れことを特徵とする請求の範囲第 1 6項記載の網状織維の連 铙的な製造方法。 17 7. In the polymer dissolution zone, at least mixing and dissolution of the extruder must be performed at least in the mechanical mixing area attached to the extruder. 17. The method for continuously producing a reticulated fiber according to claim 16, wherein the method is characterized in that:
18 . ポリマー溶解域に於いて、 ボリマーと溶剤との混合 ' 溶解を多段階に う ことを特徵とする請求の範囲第 1 6項記 18. Claim 16 characterized in that in the polymer dissolution zone, mixing and dissolution of the polymer and the solvent are performed in multiple stages.
5 載の網祅織維の連镜的な製造方法。 5. A continuous manufacturing method for the mesh fabrics described in 5.
19 . ポリ マ—溶解域に於いて、 ポリ マーと溶剤との混合 ' . 溶解を多段階に行う ことを特徵とする請求の範囲第 1 7項記 載の镉找鐡維の連続的な製造方法。  19. In the polymer dissolution zone, mixing the polymer with the solvent '. Continuously producing the steel found in claim 17 characterized in that the dissolution is performed in multiple stages. Method.
20 . ポ リ マー溶解域に於いて、 溶剤の添加、 ポリ マーと溶0 荊との混合 · 溶解を多段階に行う ことを特徵とする請求の範  20. Claims characterized in that, in the polymer dissolution zone, the addition of a solvent, and the mixing and dissolution of a polymer and a solution are performed in multiple stages.
囲第 1 8項記載の網伏鐵維の違続的な製造方法。  Item 18. The intermittent method for producing Abishi iron wire according to Item 18.
― , 21 . ポリ マ—溶解域に於いて、 溶剤の添加、 ポリ マ—と溶 ―, 21. In the polymer dissolution zone, add solvent and dissolve the polymer.
剤'との混合 - 溶解を多段階に行う ことを特 '徵とする請求の範 ;; 圏第 1 9項 載の網状織維の連続的な製造方法。 Claims characterized in that mixing and dissolving with the agent are carried out in multiple stages; the method for continuous production of a reticulated fiber according to claim 19;
5 22 . ボリ マ—溶解域に於いて、 溶剤の添加の都度、 ボリ マ5 22. In the melting zone, every time the solvent is added,
―と混合 · 溶解し、 順次ボリマー缰度を 下させることを特 徵とする請求の範囲第 2 0項記載の網状襪維の連読的な製造 方法。 20. The method for continuously reading a net according to claim 20, wherein the method is characterized by mixing and dissolving with-and successively lowering the viscosity of the polymer.
23 . ボリ マ—溶解域に於いて、 溶剤の添加の都度、 ポリ マ0 一と混合 ' 溶解し、 順次ポリマー濃度を低下させることを特  23. In the polymer dissolution zone, each time a solvent is added, it is mixed with the polymer and dissolved to reduce the polymer concentration sequentially.
徵とする請求の範囲第 2 1項記載の網状譏維の違繞的な製造 方法。  21. The method for producing a net-like filament according to claim 21.
24. ボリ マ—溶解域に於いて、 ポリマーに対する溶剤の多 段階添加 · 混合 · 溶解の少く とも第 1 段階が、 スク リ ュー押5 出機で連続的に溶融供給されるポリ マーに対して、 該押出機 のス ク リ ユーに付設せられた機械的混合の領域で行われる こ とを特徴とする請求の範囲第 2 1 項または第 2 3 項記載の網 状.織維の連続的な製造方法。 24. In the polymer dissolution zone, at least the first stage of multi-stage addition, mixing, and dissolution of the solvent to the polymer is performed for the polymer that is continuously melt-fed by a screw extruder. The extruder 24. The method for continuously producing a net-like fabric according to claim 21 or 23, wherein the method is performed in a region of mechanical mixing attached to the screw of the present invention.
25 . ボ リ マ —溶解域に於いて、. 第 2 段階以降の溶剤添加 - 混合 · 溶解が静的混合素子を用いて行われる こ とを特徴とす る請求の範囲第 2 4 項記載の網状鐡維の連続的な製造方法。  25. The method according to claim 24, wherein in the polymer-dissolution zone, the solvent addition, mixing, and dissolution after the second stage are performed by using a static mixing element. A continuous method of manufacturing meshed steel.
26 . 高密度ポ リ エ チ レ ン系ポ リ マ ー と ト リ ク ロ ルフルォル メ タ ンよ り成る高圧の均一溶液を、 減圧用オ リ フ ィ ス、 減圧 室及び紡糸ノ ズルから成る紡出装'置を経て低圧域へ吐出し、 高密度ボ リ エチ レ ン系ボ リ マーの網状繊維を得る方法におい て、 減圧オ リ フ スの前後で高圧力差を発生させて、 液体を 活性化する こ とを特徴とする高密度ボ リ ヱチ レ ン系三次元網 * 状織維の製造方法。 .  26. A high-pressure homogeneous solution consisting of a high-density polyethylene polymer and trichlorofluoromethane is spun from a decompression orifice, a decompression chamber and a spinning nozzle. In the method of discharging to the low pressure area through the dispensing device and obtaining a high-density polyethylene-based polymer reticulated fiber, a high pressure difference is generated before and after the decompression orifice, and the liquid is generated. A method for producing a high-density polyethylene-based three-dimensional net * -shaped fiber characterized by being activated. .
27. 高密度ボ リ エチ レ ン;系ポ リ マ ー と ト リ ク ロルフルオル メ タ ンょ り成る減圧室の液体を相図における一液相領域に属 させる こ とを特徴とする請求の範囲第 2 6 項記載の高密度ポ リ エ チ レン系三次元網状繊維の製造方法。 '  27. A high-density polyethylene, wherein the liquid in the decompression chamber comprising the system polymer and trichlorofluoromethane belongs to one liquid phase region in the phase diagram. 26. The method for producing a high-density polyethylene-based three-dimensional network fiber according to item 26. '
28. 加熱されたスク リ ュ 一押出機を用いて溶融しつつボ リ マ ーを連 的にポ リ マー溶解域へ供給し、 溶解域の入口を連 続的に供給される溶融ポ リ マーで封鎖しつつ溶融ポ リ マ—に 溶剤を添加し、 高圧下で両者を混合 · 溶解してポ リ マーの均 一溶液が製造される こ とを特徴とする請求の範囲第 2 6 項ま たは第 2 7 項記載の高密度ポ リ エ チ レ ン系三次元網状織維の 製造方法。  28. Using a heated screw extruder, the polymer is continuously supplied to the polymer melting zone while being melted, and the melting polymer is continuously fed through the melting zone inlet. 26. The method according to claim 26, wherein a solvent is added to the molten polymer while sealing the mixture, and the two are mixed and dissolved under high pressure to produce a uniform polymer solution. Or a method for producing a high-density polystyrene-based three-dimensional reticulated fiber according to Item 27.
29 . ポ リ マ—溶解域に於いて、 ポ リ マーに対する溶剤の多 , 段階添加 ' 混合 ' 溶解の少く とも第 1段階が、 ス ク リ ュ ー抨 出機で連続的に溶融供給されるボリ マーに対して、 該押出機 のス ク リ ユーに付設せられた機械的混合の領域で行われ、 第 2段階以降の溶剤添加 · 混合 · 溶解が静的混合素子を用いて 5 行われるこ とを特徵とする請求の範涯第 2 8項記載の翕密度 ポリ エチ レン系三次元網状織維の製造方法。 29. In the polymer dissolution zone, too much solvent for the polymer At least the first stage of the 'mixing' dissolution was added to the screw of the extruder for the volumer continuously melted and supplied by the screw dispenser Claim 25. Claim 28 wherein the addition, mixing, and dissolution of the solvent after the second stage are performed in the area of mechanical mixing using a static mixing element. A method for producing an ethylene-based three-dimensional reticulated fiber.
30 . 高密度ボリ エチ レ ン系のフィブ リ ル化された連続三次 ':元網状镞維が、 ランダムな方向に堆積され、 互いに強固に熟 接着された衷面層と、;表面層より も弱く フィルム伏.織維層に 10 熟接着された内層とからなる一体化された紙様の不織布にお いて、 内層の比表面積が 5 nf / gをこえることを特^とする 引張強度と引裂強度の高い三次元網状繊維不織布。 , 30. High-density polyethylene-based fibrilized continuous tertiary ': original mesh fibers deposited in random directions and firmly and firmly bonded to each other; Tensile strength and tearing, characterized in that the specific surface area of the inner layer is more than 5 nf / g in the integrated paper-like non-woven fabric consisting of the inner layer which has been weakly bonded to the textile layer and the inner layer 10 High strength three-dimensional reticulated fiber non-woven fabric. ,
31 . 不鐡 の引裂強度を X ( kg / 5 0 g Z —ヱ レメ ン ド ルフ法) 、 引張強度を Y ( kg 3 cm 5 0 g / ) として、31. Let X (kg / 50 g Z — ヱ Remendolf method) be the tear strength of Yt, and Y (kg 3 cm 50 g /) be the tensile strength.
15 (いずれの強度も不織布の目付けを基準目付 5 0 g / に比 例換算した値) 、 X ≥ 0. 4で、 かつ 15 (Each strength is a value obtained by proportionally converting the basis weight of the nonwoven fabric to the standard basis weight of 50 g /), X ≥ 0.4, and
- 2 0 X 2 8 ≤ Y≤ 3 0  -2 0 X 2 8 ≤ Y≤ 3 0
である請求の範囲第 3 0項記載の連镜網扰鐡維不織布。  31. The continuous mesh nonwoven fabric according to claim 30, wherein the nonwoven fabric is a nonwoven fabric.
32. 高密度ポ リ エチ レ ン系のフ ィ ブ リ ル化された三次元網 20 状鍵維が、 ラ ンダムな方向に配置され、 層状に堆積され、 部 分的に未融着の独立した網状形態の織維から成る層を含む不 織布において、 該独立した網 ¾織維が 4 0以下の長周期散乱 強度比を有することを特徵とする三次元網状織維から成る不  32. High-density polystyrene fibrilized three-dimensional network 20-shaped keys are arranged in random directions, deposited in layers, and partially unfused independent A nonwoven fabric comprising a layer made of a reticulated woven fiber, wherein the independent woven fiber has a long-period scattering intensity ratio of 40 or less.
25 33 . 独立した網伏織維が 0 A以上の長周期を有すること を特徴とする請求の範囲第 3 2 項記載の高密度ボ リ エチ レ ン 系三次元網状鐡維不織布。 25 33. The independent Amibushi weave has a long period of 0 A or more The high-density polyethylene-based three-dimensional reticulated steel nonwoven fabric according to claim 32, characterized in that:
3 4 . 開織した高密度ポ リ ヱチ レ ン系三次元網状繊維がラ ン ダムな方向に堆積された不織布において、 不織布を清成する 3 4. Clean up the non-woven fabric in which the opened high-density polystyrene-based three-dimensional network fibers are randomly deposited.
5 連^網状镍維に存在する束状部が '4 0 デニール /舰幅以下の 密度を有する束状部か、 4 0 デニー ル /' mm幅以上の密度耷有 する束状部である場合には、 そ の幅が 5 rara以下、 且つ長さが 3 0 舰以下の束状部である こ とを特 ¾とする均一な不織布。 When the bundle existing in the 5-unit network is a bundle having a density of '40 denier / 舰 width or less, or a bundle having a density of 40 denier / 'mm or more. A uniform non-woven fabric characterized in that it is a bundle having a width of 5 rara or less and a length of 30 mm or less.
35 . 開繊した高密度ポ リ ヱチ レン系三次元網状織維が 4 0 以下の長周期散乱強度比を有する こ とを特徴とする請求 ο範 画第 3 4項記載の均一な不織布。  35. The uniform nonwoven fabric according to claim 34, wherein the opened high-density polystyrene-based three-dimensional network fiber has a long-period scattering intensity ratio of 40 or less.
, 3 6 . 開繊した高密度ポ リ ヱチ レ ン系三次元網状繊維が 1 5 0 ' A以上の長周期を有する こ とを特徵とする請求の範囲第 3 5 項記載の均一な不織布。 36. The uniform nonwoven fabric according to claim 35, wherein the opened high-density polystyrene-based three-dimensional network fiber has a long period of 150'A or more. .
3 7 . 回転可能な円盤部と、 該円盤部の中央より垂直方向に 延び且つ円盤部より小さい直径の円形外表面を有する円筒部 と、 前記円盤部の片方表面と前記円筒部の円形外表面との間 の空間に傾斜して配置されたスカ ー ト 部から成り 、 該ス力 — ト部には前記円筒部の軸線に実質的に平行な方向で飛来する 未開織の三次元網状繊維を揺動させる複数の揺動面と、 該揺 動面と交互に配置され、 前記揺動面によ って揺勛される三次 元網状繊維の揺勣方向の急激な変化を锾和する锾衝面とによ つて構成されている三次元網状織維の拡散 · 揺動回転分散板 を用いる網状織維不織布の製造方法において、  37. A rotatable disk portion, a cylindrical portion extending vertically from the center of the disk portion and having a circular outer surface with a diameter smaller than the disk portion, one surface of the disk portion and a circular outer surface of the cylindrical portion And a non-open weave three-dimensional reticulated fiber flying in a direction substantially parallel to the axis of the cylindrical portion. A plurality of oscillating surfaces to be oscillated, and a bump arranged alternately with the oscillating surfaces to relieve a sudden change in the oscillating direction of the three-dimensional reticulated fiber oscillated by the oscillating surfaces The method for producing a nonwoven fabric nonwoven fabric using a rotating and dispersing plate of a three-dimensional network fabric composed of
スカ ー ト部を構成する揺動面の中央と円盤部上表面とのな す傾斜角度 が緩衝面の中央と円盤部上表面とのなす傾斜角 度^にほぼ等しい範囲であり、 緩衝面が円筒部近く の幅より 円盤部近く の幅の方が広い扇型形状である三次元網状織維の 拡散 · 揺勖回転分散扳を用いることを特徵とする均一な不.操 布 0製造方法。 The center of the rocking surface that constitutes the skirt and the upper surface of the disk The angle of inclination is approximately equal to the angle of inclination ^ between the center of the cushioning surface and the upper surface of the disk, and the cushioning surface is fan-shaped, with the width near the disk being wider than the width near the cylinder. A uniform non-manufacturing method characterized by using diffusion and oscillating rotational dispersion of a three-dimensional network fiber.
•38. スカー ト部を搆成する揺動面が実質的に平面であり、 锾衝面が実質的に凸型曲面である拡散 _ · 揺勛分散扳を用いる ことを特徵とする請求の範囲第 3 7項記載の均一な不議布の 製造方法。  • 38. Claims characterized in that the swing surface forming the scart portion is substantially flat and the collision surface is substantially convex curved surface using diffusion _ · swing dispersion. A method for producing a uniform cloth as described in paragraph 37.
39. 回転分散板最下部と開鐡した三次元網状镞維の捕集面 との間の距離を回転分散板最下部と三次元網伏 ϋ維の揺動方 向変化点との間の距離以下に設定することを特徴とする請求 の範囲第 3 7項または第 3 8項参 載の均一な不織布の製造方 法。  39. The distance between the bottom of the rotating dispersion plate and the collecting surface of the opened three-dimensional mesh fiber is defined as the distance between the bottom of the rotating dispersion plate and the changing point of the swing direction of the three-dimensional mesh wire. The method for producing a uniform nonwoven fabric according to claim 37 or claim 38, wherein the method is set as follows.
PCT/JP1987/000765 1986-10-13 1987-10-13 High-density polyethylene net-like fiber, nonwoven fabric made of the fiber and production of them WO1988002795A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP87906606A EP0285670B1 (en) 1986-10-13 1987-10-13 High-density polyethylene net-like fiber, nonwoven fabric made of the fiber and production of them
DE3751793T DE3751793T2 (en) 1986-10-13 1987-10-13 NETWORKED HIGH DENSITY POLYETHYLENE FIBER AND WOVEN FABRIC THEREOF AND THEIR PRODUCTION THEREOF
KR1019880700670A KR910005573B1 (en) 1986-10-13 1987-10-13 High-density polyethylene net-like fiber nonwoven fabric made of the fiber and production of them
US08/233,947 US5607636A (en) 1986-10-13 1994-04-28 Process of making plexifilamentary fiber

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP61/241450 1986-10-13
JP61241450A JPH0772388B2 (en) 1986-10-13 1986-10-13 Rotating dispersion plate for non-woven web
JP9523187A JPS6350512A (en) 1986-04-22 1987-04-20 Production of flush-spun net fiber
JP62/95231 1987-04-20
JP16968287 1987-07-09
JP62/169682 1987-07-09
JP17207387 1987-07-11
JP62/172073 1987-07-11
JP62/172960 1987-07-13
JP62172960A JPS6420366A (en) 1987-07-13 1987-07-13 Uniform nonwoven sheet
JP62/181189 1987-07-22
JP18118987 1987-07-22
JP62/211422 1987-08-27
JP21142287 1987-08-27

Publications (1)

Publication Number Publication Date
WO1988002795A1 true WO1988002795A1 (en) 1988-04-21

Family

ID=27565558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000765 WO1988002795A1 (en) 1986-10-13 1987-10-13 High-density polyethylene net-like fiber, nonwoven fabric made of the fiber and production of them

Country Status (3)

Country Link
EP (1) EP0285670B1 (en)
DE (1) DE3751793T2 (en)
WO (1) WO1988002795A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972147A (en) * 1996-04-23 1999-10-26 E. I. Du Pont De Nemours And Company Method of making fibrous, bonded polyolefin sheet
CN114657701A (en) * 2022-03-28 2022-06-24 厦门当盛新材料有限公司 Microwave heat-seal flash spinning non-woven fabric process method, microwave heat-seal device and non-woven fabric preparation equipment
CN114687069A (en) * 2020-12-30 2022-07-01 浙江青昀新材料科技有限公司 Multifunctional polymer non-woven fabric and fabric thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584060B1 (en) * 1991-05-10 1996-09-04 E.I. Du Pont De Nemours And Company Apparatus for forming a nonwoven fibrous sheet
US5286422A (en) * 1991-08-03 1994-02-15 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing three-dimensional fiber using a halogen group solvent
EP1151787B1 (en) * 1996-11-01 2006-07-19 E.I. Du Pont De Nemours And Company Forming a solution of fluids having low miscibility and large-scale differences in viscosity
US6179458B1 (en) 1996-11-01 2001-01-30 E. I. Du Pont De Nemours And Company Forming a solution of fluids having low miscibility and large-scale differences in viscosity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537733A (en) * 1983-10-31 1985-08-27 E. I. Du Pont De Nemours And Company Nonwoven fiber-sheet process
JPS62184170A (en) * 1985-12-30 1987-08-12 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Apparatus for producing nonwoven sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537733A (en) * 1983-10-31 1985-08-27 E. I. Du Pont De Nemours And Company Nonwoven fiber-sheet process
JPS62184170A (en) * 1985-12-30 1987-08-12 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Apparatus for producing nonwoven sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972147A (en) * 1996-04-23 1999-10-26 E. I. Du Pont De Nemours And Company Method of making fibrous, bonded polyolefin sheet
CN114687069A (en) * 2020-12-30 2022-07-01 浙江青昀新材料科技有限公司 Multifunctional polymer non-woven fabric and fabric thereof
CN114657701A (en) * 2022-03-28 2022-06-24 厦门当盛新材料有限公司 Microwave heat-seal flash spinning non-woven fabric process method, microwave heat-seal device and non-woven fabric preparation equipment

Also Published As

Publication number Publication date
EP0285670B1 (en) 1996-05-01
EP0285670A4 (en) 1990-01-08
EP0285670A1 (en) 1988-10-12
DE3751793T2 (en) 1997-01-09
DE3751793D1 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US11214901B2 (en) Dispersible non-woven fabric and method for producing the same
CA2930245C (en) Apparatus for separating particles and methods for using same
US8277711B2 (en) Production of nanofibers by melt spinning
EP2111490B1 (en) Fiber for wetlaid non-woven fabric
WO1988010330A1 (en) Reticulate polypropylene fibers, process for their production, and reticulate fiber nonwoven fabric
CN101506419B (en) Fiber bundle and web
BR122017001948B1 (en) method of making fibrous material
Raghvendra et al. Fabrication techniques of micro/nano fibres based nonwoven composites: a review
CN105926079B (en) Polypropylene film-fibre and preparation method and air filting material prepared therefrom
US11866852B2 (en) Article of manufacture making system
WO1988002795A1 (en) High-density polyethylene net-like fiber, nonwoven fabric made of the fiber and production of them
US5840234A (en) High-density polyethylene plexifilamentary fiber nonwoven fabric composed of fiber thereof, and manufacturing methods thereof
Chen et al. Fabrication and evaluation of regenerated cellulose/nanoparticle fibers from lignocellulosic biomass
Zhu et al. Evidence for bicomponent fibers: A review
Fedorova Investigation of the utility of islands-in-the-sea bicomponent fiber technology in the spunbond process
JP2617957B2 (en) High-density polyethylene-based three-dimensional reticulated fiber and method for producing the same
JP2588551B2 (en) Continuous reticulated fiber nonwoven fabric with high tensile strength and tear strength
JP2705793B2 (en) Non-woven fabric consisting of three-dimensional network fibers
Basson Free volume of electrospun organic-inorganic copolymers
KR19990035971A (en) Method for Controlling Porosity in Fabricated Sheets by Flash Spinning Olefin Polymers
JPH08127993A (en) Wet nonwoven fabric and its production
O'Haire The production of ultrafine fibres using variations of the centrifugal spinning technique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987906606

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987906606

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987906606

Country of ref document: EP