WO1987007261A2 - Transition metal complex catalyzed hydroformulation - Google Patents
Transition metal complex catalyzed hydroformulation Download PDFInfo
- Publication number
- WO1987007261A2 WO1987007261A2 PCT/US1987/001124 US8701124W WO8707261A2 WO 1987007261 A2 WO1987007261 A2 WO 1987007261A2 US 8701124 W US8701124 W US 8701124W WO 8707261 A2 WO8707261 A2 WO 8707261A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rhodium
- organic polymer
- hydroformylation
- aldehyde
- phosphite
- Prior art date
Links
- 0 *C(C=CC(C1)=*)=*1O Chemical compound *C(C=CC(C1)=*)=*1O 0.000 description 3
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/81—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C45/82—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- This invention relates to solubilized rhodium-phosphite complex catalyzed liquid recycle hydroformylation process.
- aldehydes may be readily produced by reacting an olefinically unsaturated compound with carbon monoxide and hydrogen in the presence of a solubilized rhodium-phosphite ligand complex catalyst and that a preferred type of such processes involves continuous hydroformylation and recycling of the catalyst, such as disclosed e.g. in U.S. Patent 4,599,206.
- the rhodium of some rhodium-phosphite complex catalysts may precipitate from solution during such hydroformylation, as rhodium metal or in the form of clusters of rhodium.
- rhodium loss phenomenon during a liquid recycle process may be caused by heating the complex catalyst when it is in the absence of combined CO and H 2 gas (syn gas) or in contact with lower syn gas concentrations than are normally in contact with the catalyst during the hydroformylation.
- a generic aspect of this invention can be described as a method for minimizing or preventing the precipitation of the rhodium of a rhodium-phosphite complex catalyst from solution as rhodium metal or rhodium clusters that may occur during a solubilized rhodium-phosphite complex catalyzed, liquid recycle hydroformylation process for producing aldehyde by reacting an olefinic unsaturated compound with carbon monoxide and hydrogen and which involves the recovery of the aldehyde product by distillation from a reaction product solution containing the solubilized rhodium-phosphite complex catalyst and aldehyde product, said method comprising carrying out said distillation of the aldehyde product from a reaction product solution containing the solubilized rhodium-phosphite complex catalyst, aldehyde product, and in addition an organic polymer containing polar functional groups wherein said groups are selected from the class consisting of amide
- the subject invention encompasses improving the rhodium stability of any solubilized rhodium-phosphite catalyzed, liquid recycle hydroformylation process which may experience such rhodium precipitation from solution, by carrying out the distillative recovery of the aldehyde product from a reaction product solution containing the complex catalyst and aldehyde product in the added presence of an organic polymer containing polar functional groups as defined herein.
- Illustrative solubilized rhodium-phosphite complex catalyzed, liquid recycle hydroformylation process in which such rhodium precipitation may occur include such processes as described e.g. in U.S. Patents 4,482,749 and 4,599,206 as well as U.S. applications. Serial Nos. 772,859 and 772,891, both filed September 5, 1985 and Serial No. 012,329 filed February 9, 1987, the entire disclosures of which are incorporated herein by reference thereto.
- hydroformylation reactions involve the production of aldehydes by reacting an olefinic unsaturated compound with carbon monoxide and hydrogen in the presence of a solubilized rhodium-phosphite complex catalyst in a liquid medium that also contains a solvent for the catalyst, and free phosphite ligand, i.e. ligand that is not complexed with the rhodium metal in the active complex catalyst.
- the recycle procedure generally involves withdrawing a portion of the liquid reaction medium containing the catalyst and aldehyde product from the hydroformylation reaction zone, either continuously or intermittently, and distilling the aldehyde product therefrom in one or more stages under normal, reduced or elevated pressure, as appropriate, in a separate distillation zone in order to recover the aldehyde product and other volatile materials in vaporous form, the non-volatilized rhodium catalyst containing residue being recycled to the reaction zone. Condensation of the volatilized materials, and separation and recovery thereof, e.g. by distillation, can be carried out in any conventional manner, the aldehyde product being passed on for further purification if desired and any recovered reactants e.g.
- the processing techniques of this invention may correspond to any of the known processing techniques heretofore employed in conventional liquid catalyst recycle hydroformylation reactions.
- Illustrative rhodium-phosphite complex catalysts employable in such hydroformylation reactions encompassed by this invention may include those disclosed in the above mentioned patents and applications. In general such catalysts may be preformed or formed in situ as described in such references and consist essentially of rhodium in complex combination with an organophosphite ligand. It is believed that carbon monoxide is also present and complexed with the rhodium in the active species. The active catalyst species may also contain hydrogen directly bonded to the rhodium.
- Illustrative organophosphite ligands that may be employed as the phosphite ligand complexed to the rhodium catalyst and/or free phosphite ligand in such hydroformylation reactions encompassed by this invention may include a variety of tertiary organophosphites, such as preferably diorganophosphites of the formula
- R 1 represents a divalent organic radical and W represents a substituted or unsubstituted monovalent hydrocarbon radical.
- divalent radicals represented by R 1 in Formula I above include those wherein R 1 may be a divalent acyclic radical or a divalent aromatic radical.
- Illustrative divalent acyclic radicals are e.g. alkylene, alkylene-oxy-alkylene, alkylene-NX-alkylene wherein X is hydrogen or a monovalent hydrocarbon radical, alkylene-S-alkylene, and cycloalkylene radicals; and the like, such as disclosed more fully e.g. in U.S. Patents 3,415,906 and 4,567,306, and the like, the entire disclosures of which are incorporated herein by reference thereto.
- Illustrative divalent aromatic radicals are e.g.
- arylene bi-arylene, arylene-alkylene, arylene-alkylene-arylene, arylene-oxy-arylene, arylene-oxy-alkylene, arylene-NX-arylene and arylene-NX-alkylene wherein X is hydrogen or a monovalent hydrocarbon radical.
- tertiary diorganophosphites are diorganophosphites of the formula
- W is a substituted or unsubstituted monovalent hydrocarbon radical
- Ar is a substituted or unsubstituted aryl radical, each Ar being the same or different, each y individually has a value of 0 or 1
- Q is a divalent bridging group selected from the group consisting of -CR 3 R 4 -, -O-, -S-,
- R 4 is independently selected from the group consisting of hydrogen, alkyl radicals having 1 to 12 carbon atoms, phenyl, tolyl and anisyl, wherein each R 5 , R 6 and R 7 are independently hydrogen or a methyl radical, and n has a value of 0 or 1.
- Formula II type diorganophosphites are described in greater detail, e.g., in U.S. Patent No. 4,599,206 and U.S. Application Serial No. 865,061 filed May 20, 1986, the entire disclosures of which are incorporated herein by reference thereto.
- the more preferred diorganophosphites are those of the formula
- Q is -CR 1 R 2 and each R 1 and R 2 radical individually represents a radical selected from the group consisting of hydrogen and alkyl; wherein each y individually has a value of 0 or 1, and n has a value of 0 to 1; wherein W represents in unsubstituted or substituted monovalent hydrocarbon radical selected from the group consisting of alkyl radicals having from 1 to 18 carbon atoms, (such as primary, secondary and tertiary alkyl radicals e.g.
- aryl radicals such as alpha-naphthyl, beta-naphthyl, and aryl radicals of the formula
- each X 1 , X 2 , Y 1 , Y 2 , Z 2 Z 3 , and Z 4 group individually re esents a radical selected from the group consisting of hydrogen, an alkyl radical having from 1 to 8 carbon atoms, substituted or unsubstituted aryl, alkaryl, aralkyl and alicyclic radicals (e.g. phenyl, benzyl, cyclohexyl, 1-methylcyclohexyl, and the like), hydroxy (-OH), and an ether (i.e oxy) radical such as -OR 8 wherein R 8 is an alkyl radical of 1 to
- diorganophosphites those of Formula III above as described in the claims of U.S. Patent 4,599,206 and disclosed in U.S. patent application, S.N. 685,061, filed May 20, 1986.
- Illustrative diorganophosphites include e.g. those of the following formulas wherein t-Bu is a tertiary butyl radical; and Me is a methyl radical .
- tertiary organophosphites that may be employed in such hydroformylation reactions encompassed by this invention are tertiary organopolyphosphites.
- Such phosphites may contain two or more of such tertiary (trivalent) phosphorus atoms such as those of the formula
- W represents a substituted or unsubstituted m-valent hydrocarbon radical, wherein R 1 is the same as defined in Formula I above, wherein each R is independently a substituted or unsubstituted monovalent hydrocarbon radical, wherein a and b can each have a value of 0 to 6 with the proviso that the sum of a + b is 2 to 6 and m equals a + b.
- Illustrative tertiary organopolyphosphites may include bisphosphites such as those of the formulas
- R 1 is a divalent organic radical as defined in Formula I above and wherein W is a substituted or unsubstituted divalent hydrocarbon radical; and w Formula VI
- each R is independently a substituted or unsubstituted monovalent hydrocarbon radical, and wherein W is a substituted or unsubstituted divalent hydrocarbon radical;
- R 1 is a divalent organic radical as defined in Formula I above, wherein each R is independently a substituted or unsubstituted monovalent hydrocarbon radical, and wherein W is a substituted or unsubstituted divalent hydrocarbon radical.
- each Ar group represents an identical or different, substituted or unsubstituted aryl radical; wherein W represents a divalent radical selected from the group consisting of alkylene, alkylene-oxy-alkylene, arylene and arylene ⁇
- each arylene radical is the same as Ar defined above; wherein each Q individually represents a divalent bridging group selected from the class consisting of
- each R 3 and R 4 radical individually represents a radical selected from the group consisting of hydrogen and alkyl, wherein each R 5 , R 6 , and R 7 radical individually represents
- each Ar group represents an identical or different, substituted or unsubstituted aryl radical; wherein W represents a divalent radical selected from the group consisting of alkylene, arylene and -arylene -(CH 2 )y-(Q)n-(CH 2 )y-arylene-, wherein each arylene radical is the same as Ar defined above; wherein each Q individually represents a divalent bridging group selected from the class consisting of -CR 3 R 4 -, -O-, -S-,
- each R 3 and R 4 radical individually represents a radical selected from the group consisting of hydrogen, and alkyl, wherein each R 5 , R 6 , and R 7 radical individually represents -H or -CH 3 ; wherein each y and n individually has a value of 0 or 1; and wherein each R group individually represents a radical selected from the group consisting of substituted or unsubstituted monovalent hydrocarbon radicals such as alkyl, aryl, alkaryl, aralkyl and alicyclic radicals.
- Formula IX type bisphosphites are described in greater detail e.g., in U.S. Patent Application, Serial No. 772,891 filed Sept. 5, 1985, the entire disclosure of which is incorporated herein by reference thereto.
- tertiary organophosphites that may be employed in such hydroformylation reactions encompassed by this invention are tertiary mono-organophosphites of the formula
- tertiary organophosphites that may be employed in such hydroformylation reactions encompassed by this invention include triorganophosphites, such as tris(ortho-phenyl)phenyl phosphite, tris(ortho-methyl)phenyl phosphite, tris(ortho-t-butyl)phenyl phosphite, and the like.
- the phosphite ligand employable in the hydroformylation reactions encompassed by this invention as the phosphite ligand of the rhodium-phosphite complex catalyst and/or as the free phosphite ligand present in the hydroformylation reaction medium and liquid solutions throughout the hydroformylation process may be a tertiary organic phosphite ligand selected from the group consisting of mono-organophosphites, diorganophosphites, triorganophosphites, and organopolyphosphites, such as described above.
- the hydroformylation process encompassed by this invention may be carried out in any excess amount of free phosphite ligand desired, e.g. at least one mole of free phosphite ligand per mole rhodium present in the reaction medium on up to 100 moles of free phosphite ligand or higher if desired.
- amounts of organophosphite ligand of from about 4 to about 50 moles per mole rhodium present in the reaction medium should be suitable for most purposes, said amounts being the sum of both the amount of phosphite that is bound (complexed) to the rhodium present and the amount of free (non-complexed) phosphite ligand present.
- make-up phosphite ligand can be supplied to the reaction medium of the hydroformylation process, at any time and in any suitable manner, to maintain a predetermined level of free ligand in the reaction medium.
- phosphite ligand of the rhodium-phosphite complex catalyst and excess free phosphite ligand in a given process are both normally the same, different phosphite ligands, as well as, mixtures of two or more different phosphite ligands may be employed for each purpose in any given process, if desired.
- the amount of rhodium-phosphite complex catalyst present in the reaction medium of a given hydroformylation process encompassed by this invention need only be that minimum amount necessary to provide the given rhodium concentration desired to be employed and which will furnish the basis for at least that catalytic amount of rhodium necessary to catalyze the particular hydroformylation process involved such as disclosed e.g. in the above-mentioned patents and applications.
- rhodium concentrations in the range of from about 10 ppm to about 1000 ppm, calculated as free rhodium, in the hydroformylation reaction medium should be sufficient for most processes, while it is generally preferred to employ from about 10 to 500 ppm of rhodium and more preferably from 25 to 350 ppm to rhodium.
- the olefinic starting material reactants that may be employed in the hydroformylation reactions encompassed by of this invention can be terminally or internally unsaturated and be of straight-chain, branched-chain or cyclic structure, such as disclosed e.g. in the above-mentioned patents and applications.
- Such olefins can contain from 2 to 20 carbon atoms and may contain one or more ethylenic unsaturated groups. Moreover, such olefins may contain groups or substituents which do not essentially adversely interfere with the hydroformylation process such as carbonyl, carbonyloxy, oxy, hydroxy, oxycarbonyl, halogen, alkoxy, aryl, alkyl, haloalkyl, and the like.
- Illustrative olefinic unsaturated compounds include alpha olefins, internal olefins, alkyl alkenoates, alkenyl alkanoates, alkenyl alkyl ethers, alkenols, and the like, e.g.
- ethylene propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1,-dodecene, 1-octadecene, 2-butene, isobutylene, 2-methylbutene, 2-hexene, 3-hexene, 2-heptene, cyclohexene, propylene dimers, propylene trimers, propylene tetramers, 2-ethyl-1-hexene, styrene, 3-phenyl-1-propene, 1,4-hexadiene, 1,7-octadiene, 3-cyclohexyl-1-butene, allyl alcohol, hex-1-en-4-ol, oct-1-en-4-ol, vinyl acetate, allyl acetate, 3-butenyl acetate, vinyl propionate, allyl propionate, allyl butyrate, methyl methacrylate, 3-
- the olefinic unsaturated starting materials are alpha olefins containing from 2 to 20 carbon atoms, and internal olefins containing from 4 to 20 carbon atoms as well as starting material mixtures of such alpha olefins and internal olefins.
- hydroformylation reactions encompassed by this invention are also conducted in the presence of an organic solvent for the rhodium-phosphite complex catalyst.
- an organic solvent for the rhodium-phosphite complex catalyst Any suitable solvent which does not unduly adversely interfere with the intended hydroformylation process can be employed.
- suitable solvents for rhodium catalyzed hydroformylation processes include those disclosed e.g. in the above-mentioned patents and applications. Of course mixtures of one or more different solvents may be employed if desired. Most preferably the solvent will be one in which the olefinic starting material, hydroformylation catalyst and organic polymer additive employed herein are all substantially soluble.
- aldehyde compounds corresponding to the aldehyde products desired to be produced and/or higher boiling aldehyde liquid condensation by-products as the primary solvent such as the higher boiling aldehyde liquid condensation by-products that are produced in situ during the hydroformylation process.
- the primary solvent will normally eventually comprise both aldehyde products and higher boiling aldehyde liquid condensation by-products due to the nature of such continuous processes.
- Such aldehyde condensation by-products can also be preformed if desired and used accordingly.
- the amount of solvent employed is not critical to the subject invention and need only be that amount sufficient to provide the reaction medium with the particular rhodium concentration desired for a given process.
- the amount of solvent when employed may range from about 5 percent by weight up to about 95 percent by weight or more based on the total weight of the reaction medium.
- Thy hydroformylation reaction conditions that may be employed in the hydroformylation processes encompassed by this invention may include any suitable continuous liquid catalyst recycle hydroformylation conditions heretofore disclosed in the above-mentioned patents and applications.
- the total gas pressure of hydrogen, carbon monoxide and olefinic unsaturated starting compound of the hydroformylation process may range from about 1 to about 10,000 psia. In general, however, it is preferred that the process be operated at a total gas pressure of hydrogen, carbon monoxide and olefinic unsaturated starting compound of less than about 1500 psia. and more preferably less than about 500 psia.
- the minimum total pressure being limited predominately by the amount of reactants necessary to obtain a desired rate of reaction.
- the carbon monoxide partial pressure of the hydroformylation process of this invention is preferably from about 1 to about 120 psia. and more preferably from about 3 to about 90 psia, while the hydrogen partial pressure is preferably about 15 to about 160 psia and more preferably from about 30 to about 100 psia.
- H 2 :CO molar ratio of gaseous hydrogen to carbon monoxide may range from about 1:10 to 100:1 or higher, the more preferred hydrogen to carbon monoxide molar ratio being from about 1:1 to about 10:1.
- the hydroformylation process may be conducted at a reaction temperature from about 45°C to about 150°C. In general, hydroformylations at reaction temperatures of about 50°C. to about 120°C.
- the solubilized rhodium-phosphite complex catalyzed continuous hydrofromylation process employable in this invention involves a liquid catalyst recycle procedure.
- Such types of liquid catalyst recycle procedures are known as seen disclosed e.g. in the above-mentioned patents and applications, and thus need not be particularly detailed herein, since any such conventional catalyst recycle procedures may be employed by this invention.
- a distillation zone e.g. a vaporizer/separator
- the vaporized or distilled desired aldehyde product so separated may then be condensed and recovered in any conventional manner as discussed above.
- the remaining non-volatilized liquid residue which contains rhodium- phosphite complex catalyst, solvent, free phosphite ligand and usually some undistilled aldehyde product is then recycled back, with or without further treatment as desired, along with whatever by-product and non-volatilized gaseous reactants that might still also be dissolved in said recycled liquid residue, in any conventional manner desired, to the hydroformylation reactor, such as disclosed e.g. in the above-mentioned patents and applications.
- the reactant gases so removed by such distillation from the vaporizer may also be recycled back to the reactor if desired.
- the distillation and separation of the desired aldehyde product from the rhodium-phosphite complex catalyst containing product solution may take place at any suitable temperature desired. In general it is recommended that such distillation take place at low temperatures, such as below 150°C,preferably below 140°C, and more preferably at a temperature in the range of from about 50°C to about 130°C. It is also generally recommended that such aldehyde distillation take place under reduced pressure, e.g. a total gas pressure that is substantially lower than the total gas pressure employed during hydroformylation when low boiling aldehydes (e.g. C 4 to C 6 ) are involved or under vacuum when high boiling aldehydes (e.g. C 7 or greater) are involved.
- reduced pressure e.g. a total gas pressure that is substantially lower than the total gas pressure employed during hydroformylation when low boiling aldehydes (e.g. C 4 to C 6 ) are involved or under vacuum when high boiling aldehydes (e.g. C 7 or
- a common practice is to subject the liquid reaction product medium removed from the hydroformylation reactor to a pressure reduction so as to volatilize a substantial portion of the unreacted gases dissolved in the liquid medium and then pass said volatilized gases and liquid medium which now contains a much lower syn gas concentration than was present in the hydroformylation reaction medium to the distillation zone e.g. vaporizer/separator, wherein the desired aldehyde product is distilled.
- distillation zone e.g. vaporizer/separator
- the subject invention resides in the discovery that the possibility of rhodium precipitation as discussed herein can be minimized or prevented by carrying out such distillation of the desired aldehyde product from such rhodium-phosphite catalyst containing product solutions in the added presence of an organic polymer containing polar functional groups wherein said functional groups are selected from the class
- carbamates i.e. N-C-O O or O-C-N groups regardless of further substitution
- O urea i.e. any N-C-N group regardless of further substitution
- carbonate i.e. O-C-O group regardless of further substitution
- organic polymer additives which are employable herein and are added to the rhodium catalyst containing product solution from which the desired aldehyde product is distilled are well known compounds as are methods for their preparation and in general are readily commercially available. Any organic polymer, including homopolymers, copolymers, terpolymers and oligomers containing such polar functional groups may be employed herein. Moreover, it is to be understood that such polar functional groups may be present in the organic polymers as radical substituents stemming off the backbone of the polymer and/or as radicals that are incorporated in and form part of the backbone of the polymer. Further, said polar functional groups may be of a non-cyclic nature or part of a cyclic radical.
- organic polymers may contain only one type of such polar functional groups or two or more different types of such polar functional groups.
- Illustrative organic polymers containing such polar functional groups that are employable in this invention include e.g. polyvinylpyrollidone, vinylpyrrolidone-vinyl acetate copolymers, polyacrylamides, copolymers of vinylpyrrolidone and beta-dimethylaminoethyl methacrylate, carbamic acid, N-[polymethylene(polyphenyl)] methylester, N-[polymethylene (polyphenyl)] N'-diisopropyl urea, copolymers of vinyl pyrrolidone and long chain alpha olefins, copolymers of vinyl pyrrolidone and styrene, polyacrylic acid hydrazide, poly-N-vinyl-5-methoxazolidone, polypeptides, e
- poly-L-pyroline and poly-L-phenylalanine, and the like The average molecular weight of such organic polymers does not appear to be narrowly critical and may range from about 400 up to 10,000,000 or higher, nor does the amount of such polar functional groups on the polymer appear narrowly critical.
- the preferred organic polymers employable as additives in this invention are those containing at least three such polar functional groups, especially functional amide groups, and more preferably vinylpyrrolidone polymers and copolymers. Vinylpyrrolidone-vinyl acetate copolymers because of their general superior solubility in the rhodium-phosphite containing hydroformylation solutions are most preferred.
- the amount of such organic polymer additives employable in any given process of this invention need only be that minimum amount necessary to furnish the basis for at least some minimization of such rhodium loss that might be found to occur as a result of carrying out an identical rhodium catalyzed liquid recycle hydroformylation process under identical conditions, save for carrying out said identical process in the absence of the identical organic polymer employed in said given process.
- Amounts of such organic polymer additives ranging from about 0.01 up to about 10 weight percent, or higher if desired, based on the total weight of the hydroformylation reaction product solution to be distilled should be sufficient for most purposes.
- the concentration of the non-volatilized components therein, e.g. catalyst and organic polymer additive, will increase accordingly.
- the upper amount of organic polymer additive employable herein is governed primarily only by the solubility limit of the organic polymer in the non-volatilized liquid rhodium catalyst containing residue obtained after distillation removal of as much of the aldehyde product desired.
- Such amounts of organic polymer additive employable herein will of course depend in part on the particular rhodium catalyst employed and the desired distillation temperature for recovering the aldehyde product as well as the particular organic polymer additive itself.
- organic polymer additives in general it is preferred to employ amounts of such organic polymer additives in the range of about 0.1 to about 5.0 and more preferably from about 0.3 to about 3.0 weight percent based on the total weight of the hydroformylation reaction product to be distilled.
- the ability to employ such low amounts of the organic polymer additive useful herein to minimize or prevent such rhodium precipitation from solution is another important beneficial aspect of this invention in that such small amounts of additives are far less likely to unduly adversely affect the composition of the rhodium catalyst and/or hydroformylation process as might occur with large amounts of additives.
- the addition of the organic polymer additives employable in this invention to the reaction product solution from which the aldehyde product is to be distilled may be carried out in any suitable manner desired.
- the organic polymer additive may be added to the reaction product solution that has been removed from the reactor and at any time prior to or during the distillation of the aldehyde product therefrom, and may also be removed if desired from the non-volatilized liquid rhodium catalyst containing residue obtained after distillation of as much of the aldehyde product desired, e.g., prior to or during the recycling of said non-volatilized liquid rhodium catalyst containing residue so as to maintain the hydroformylation reaction medium present in the hydroformylation reactor free of such organic polymer additives.
- organic polymer additives will normally have any substantial detrimental affect on the hydroformylation reaction per se
- testing procedure for demonstrating the potential effectiveness of organic polymer additives for minimizing or preventing such rhodium loss due to the precipitation of rhodium from solution as discussed herein that may occur during a continuous liquid recycle hydrofromylation involving the use of a rhodium-phosphite complex catalyst and distillative recovery of the desired aldehyde product.
- Said testing procedure is outlined in some of the following Examples and comprises subjecting a solubilized activated rhodium-phosphite complex catalyst solution to much harsher conditions than would be experienced during the distillative recovery of aldehyde product during continuous liquid recycle hydroformylation, in order to obtain meaningful results in a much shorter and manageable period of time.
- rhodium loss may take days to define quantitatively under normal aldehyde distillative recovery procedures because such rhodium loss rates are normally no more than a few percent per day, whereas applicants accelerated rhodium loss test can be completed within hours by continously maintaining the catalyst solution at aldehyde recovery type distillation temperatures for a prolonged period of time in the absence of the combined presence of carbon monoxide and hydrogen (syn gas). Further it is to be understood that those test experiments conducted at higher temperatures and/or those which employed rhodium black (which has been observed to promote rhodium precipitation) are considered to be the even harsher tests than the other experiments.
- Ligand A An organophosphite of the formula:
- Ligand B An organophosphite of the formula:
- Ligand C An organophosphite of the formula:
- Ligand D An organophosphite of the formula:
- Ligand E An organophosphite of the formula:
- Ligand F An organophosphite of the formula:
- Ligand G An organophosphite of the formula:
- Ligand H An organophosphite of the formula:
- Ligand K- An organophosphite of the formula:
- Ligand L- An organophosphite of the formula:
- % Rhodum Lost Amount of rhodium found in the filtered solution divided by the amount of rhodium in the starting solution times 100.
- the bottle was placed in an oil bath at the indicated temperature and stirred for one hour to activate the catalyst, whereupon the CO/H 2 was vented and the flask charged to 10 psig. with hydrogen or 60 psig. nitrogen gas, as indicated and vented five times. After a final charge of 10 psig. H 2 or 60 psig. nitrogen gas, as indicated, the flask was stirred for about 20 hours at the indicated temperature, whereupon a sample was withdrawn by pressure syringe and filtered through a Millipore ® five micron type LS filter (Waters Corp.) and analyzed for rhodium content by atomic absorption spectroscopy. The results are shown in the following table.
- PMVK polymethylvinyl ketone
- PVP polyvinylpyrrolidone
- PVPVA vinylpyrrolidone-vinyl acetate copolymer (Run No. 7, E-335; Run No. 8, 1-535, Run No. 9, S-630, Run No. 10, E-735, all sold by GAF Corp.)
- PAA polyacrylamide (sold by Aldrich
- GAFQUAT ® 755 copolymer of vinyl pyrrolidone and beta-dimethylaminoethyl methacrylate (GAF Corp.)
- NCHP N-cyclohexyl pyrrolidone monomer
- GAFQUAT ® 734 copolymer of vinylpyrrolidone and beta-dimethylaminoethyl methacrylate, 20% in H 2 O (sold by GAF Corp.)
- GANEX ® V220 copolymer of vinylpyrrolidone and long chain alpha olefin (sold by
- GANEX ® V216 copolymer of vinylpyrrolidone and long chain alpha olefin (sold by
- Polectron ® 430 copolymer of vinylpyrrolidone and styrene (sold by GAF Corp.; dried before use.)
- PLPA poly-L-phenylalanine
- a metal complex catalyst precursor solution containing a phosphite ligand as indicated (about 10 mole equivalents of ligand per mole of rhodium) and 250 ppm rhodium as Rh 4 (CO) 12 dissolved in Texanol ® solvent was charged under nitrogen to a nitrogen-flushed three ounce glass aerosol bottle equipped with a magnetic stirring bar.
- Rhodium black if employed, and either (PVP) polyvinylpyrrolidone (avg. mol. wt. 10,000 PVP K-15, GAF Corp.) or (PVPVA) vinylpyrrolidone-vinylacetate copolymer (60% vinylpyrrolidone, S-630, GAF Corp.) as indicated were then added.
- a nitrogen-flushed gas manifold was attached to the bottle and the system charged to 60 psig with syn gas (CO/H 2 , 1:1 mole ratio) and vented five times before a final charging with 60 psig. CO/H 2 .
- the bottle was placed in an oil bath at the indicated temperature and stirred for one hour to activate the catalyst, whereupon the CO/H 2 was vented and the flask charged to 10 psig. with hydrogen or 60 psig. nitrogen as indicated and vented five times. After a final charge of 10 psig. H 2 or 60 psig.
- PMMA polymethylmethacrylate (so Id by
- PVA polyvinylalcohol (sold by Aldrich
- PAN polyacrylonitrile (sold by Aldrich
- PS polystyrene (sold by Aldrich Chem.
- ES-225 monoethylester of methylvinylether maleic anhydride copolymer (sold by GAF Corp.)
- Gantrez ® ES-335 monoisopropjyl ester of methylvinylether-maleic anhydride copolymer (sold by GAF Corp.)
- Gantrez ® AN-8194 octadecylvinylether/maleic anhydride copolymer (sold by GAF
- PVPY polyvinylpyridine (sold by Aldrich
- the flask was stirred for about 20 hours at 120°C, whereupon a sample was withdrawn by pressure syringe and filtered through a Millipore ® five micron type LS filter (Waters Corp.) and analyzed for rhodium content by atomic absorption spectroscopy. The results are shown in the following table.
- EXAMPLE 7 In each experiment, about 20 ml. of a metal complex catalyst precursor solution containing about 1.3 weight percent of the phosphite ligand referred to herein as Ligand A and different amounts as indicated of rhodium as Rh 4 (CO) 12 dissolved in Texanol ® solvent was charged under nitrogen to a nitrogen-flushed three ounce glass aerosol bottle equipped with a magnetic stirring bar. The indicated amounts of either (PVP) polyvinylpyrrolidone (avg. mol. wt. 10,000, PVP K-15, GAF Corp.) or (PVPVA) vinylpyrrolidonevinylacetate copolymer (60% vinylpyrrolidone, S-630 GAF Corp.) were then added.
- PVP polyvinylpyrrolidone
- PVPVA vinylpyrrolidonevinylacetate copolymer
- a nitrogen-flushed gas manifold was attached to the bottle and the system charged to 60 psig with syn gas (CO/H 2 , 1:1 mole ratio) and vented five times before a final charging with 60 psig.
- CO/H 2 syn gas
- the bottle was placed in an oil bath at the indicated temperature and stirred for one hour to activate the catalyst, whereupon the CO/H 2 was vented and the flask charged to 10 psig. with hydrogen and vented five times. After a final charge of 10 psig.
- EXAMPLE 8 A continuous hydroformylation of a mixture of butene-1 and butene-2 was carried out for 23 days in the amnner described in Example 10 of USP 4,599,206 using a solubilized rhodium-diorganophosphite complex catalyst wherein the diorganophosphite ligand was Ligand E and the vaporizer temperature was 110°C and some rhodium loss was observed. On day 24 about 0.25 weight percent of polyvinylpyrrolidone (avg. mol. wt.
- Example 10 of USP 4,599,206 A similar continuous hydroformylation experiment as set forth in Example 10 of USP 4,599,206 was carried out using a mixed olefin feed of butene-1 and butene-2 (cis and trans), and 2-t-butyl-4-methoxyphenyl(3,3'-di-t-butyl-5,5'- dimethoxy-1,1'- biphenyl-2,2'diyl]phosphite as the ligand promoter.
- the start-up and general operating procedures set forth in Example 10 of USP 4,599,206 were employed.
- the hydroformylation reaction was conducted by charging about 1.03 liters of a catalyst precursor solution of rhodium dicarbonyl acetylacetonate (about 155 ppm rhodium), about 3.4 wt. % 2-t-butyl-4-methoxyphenyl(3,3'-di-t-butyl- 5,5'-dimethoxy-1,1'-biphenyl-2,2'diyl]phosphite ligand (about 39.9 mole equivalents of ligand per mole of rhodium), about 1% vinyl pyrrolidone-vinyl acetate copolymer (S-630, 60 percent vinylpyrolidone, sold by GAF Corp.), and about 95.6 wt.
- rhodium dicarbonyl acetylacetonate about 155 ppm rhodium
- the hydroformylation reaction conditions as well as the rate of C 5 aldehydes produced in gram moles per liter per hour and linear n-valeraldehyde to branched 2-methylbutyraldehyde product ratio over 31 days of continuous hydroformylation is set forth in Table 8 below.
- the aldehyde was separated from the liquid reaction solution at about 106 to 110°C. and 18-21 psi and no rhodium loss was observed over said 31 days of continuous hydroformylation.
- EXAMPLE 10 A similar continuous hydroformylation experiment as set forth in Example 9 above was carried out using an olefin feed of butene-1, and 2-t-butyl-4-methoxyphenyl(3,3'-di-t-butyl-5,5'- dimethoxy-1,1'- biphenyl-2,2'diyl]phosphite (referred to herein as Ligand A) as the ligand promoter.
- Ligand A 2-t-butyl-4-methoxyphenyl(3,3'-di-t-butyl-5,5'- dimethoxy-1,1'- biphenyl-2,2'diyl]phosphite
- the hydroformylation reaction was conducted by charging about 658.5 grams of a catalyst precursor solution of rhodium dicarbonyl acetylacetonate (about 200 ppm rhodium), about 3.7 wt . % 2-t-butyl-4-methoxyphenyl(3,3'-di-t-butyl- 5,5'-dimethoxy-1,1'-biphenyl-2,2'diyl]phosphite ligand (about 33.7 mole equivalents of ligand per mole of rhodium), about 1% vinyl pyrrolidone-vinyl acetate copolymer (E-735, 70 percent vinylpyrrolidone, sold by GAF Corp.), and about 89.25 wt. % of C 5 aldehyde and about 5.0 wt. % of Texanol ® ) as solvent to reactor 1. About 752.5 grams of the same catalyst precursor solution was charged to reactor 2.
- the average hydroformylation reaction conditions as well as the average rate of C 5 aldehydes produced in gram moles per liter per hour and average linear n-valeraldehyde to branched 2-methylbutyraldehyde product ratio over 15 days of continuous hydroformylation is set forth in Table 9 below.
- the aldehyde was separated from the liquid reaction solution at about 113oC. and 19 psia for days 1-5 and no rhodium loss was observed over said 5 days of continuous hydroformylation.
- On day 6 the temperature at which the aldehyde was separated from the liquid reaction solution was raised to about 134°C. and maintained there at 29 psia for the remaining 9 days of continuous hydroformylation. No rhodium loss was observed over said 9 additional days of continuous hydroformylation.
- EXAMPLE 11 The continuous hydroformylation experiment of Example 10 above was repeated using the same hydroformylation precursor solution and processing conditions, save for charging about 638.5 grams of the precursor solution to reactor 1 and about 725 grams of the same precursor solution to reactor 2.
- the continuous hydroformylation was carried out for 39 days and the aldehyde product distilled and recovered as indicated below.
- the average hydroformylation reaction conditions as well as the average rate of C 5 aldehydes produced in gram moles per liter per hour and average linear n-valeraldehyde to branched 2-methylbutyraldehyde product ratio over 34 days of continuous hydroformylation is set forth in Table 10 below.
- the aldehyde was separated from the liquid reaction solution at about 112 to 114°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019880700055A KR910007047B1 (en) | 1986-05-20 | 1987-05-19 | Transition metal complex catalyzed reactions |
DE8787903774T DE3773890D1 (en) | 1986-05-20 | 1987-05-19 | HYDROFORMYLATION CATALYZED BY TRANSITION METAL COMPLEX. |
ES8701486A ES2004935A6 (en) | 1986-05-20 | 1987-05-20 | Transition metal complex catalyzed hydroformylation. |
IN373/MAS/87A IN169727B (en) | 1986-05-20 | 1987-05-20 | |
NO880207A NO166583C (en) | 1986-05-20 | 1988-01-19 | TRANSITION METAL COMPLEX-CATALYZED HYDROFORMATION. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US865,061 | 1986-05-20 | ||
US06/865,061 US4717775A (en) | 1984-12-28 | 1986-05-20 | Transition metal complex catalyzed reactions |
US046,821 | 1987-05-11 | ||
US07/046,821 US4774361A (en) | 1986-05-20 | 1987-05-11 | Transition metal complex catalyzed reactions |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1987007261A2 true WO1987007261A2 (en) | 1987-12-03 |
WO1987007261A3 WO1987007261A3 (en) | 1988-04-07 |
Family
ID=26724327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1987/001124 WO1987007261A2 (en) | 1986-05-20 | 1987-05-19 | Transition metal complex catalyzed hydroformulation |
Country Status (12)
Country | Link |
---|---|
US (1) | US4774361A (en) |
EP (1) | EP0276231B1 (en) |
JP (1) | JPS63503385A (en) |
CN (1) | CN1010011B (en) |
AU (1) | AU613312B2 (en) |
CA (1) | CA1312094C (en) |
DE (1) | DE3773890D1 (en) |
ES (1) | ES2004935A6 (en) |
IN (1) | IN169727B (en) |
MX (1) | MX166107B (en) |
NO (1) | NO166583C (en) |
WO (1) | WO1987007261A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5672766A (en) * | 1994-12-12 | 1997-09-30 | Mitsubishi Chemical Corporation | Method for producing aldehydes |
EP1008581A1 (en) * | 1998-12-10 | 2000-06-14 | Mitsubishi Chemical Corporation | Process for producing aldehyde |
WO2004024661A1 (en) * | 2002-08-31 | 2004-03-25 | Oxeno Olefinchemie Gmbh | Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters |
EP1204476B2 (en) † | 1999-08-04 | 2010-03-17 | Lucite International UK Limited | Improvements relating to palladium metal compound catalysed processes |
CN114072231A (en) * | 2019-06-27 | 2022-02-18 | 陶氏技术投资有限责任公司 | Process for preparing a solution from a hydroformylation process for noble metal recovery |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4835299A (en) * | 1987-03-31 | 1989-05-30 | Union Carbide Corporation | Process for purifying tertiary organophosphites |
IT1237530B (en) * | 1989-12-12 | 1993-06-08 | Eniricerche Spa | PROCEDURE FOR THE DIRECT SYNTHESIS OF ALCOHOLS FROM OLEFINS, CARBON OXIDES AND HYDROGEN, PROMOTED BY A SUPPORTED RHODIUM CATALYST |
US5210318A (en) * | 1990-05-04 | 1993-05-11 | Union Carbide Chemicals & Plastics Technology Corporation | Catalysts and processes useful in producing 1,3-diols and/or 3-hydroxyldehydes |
US5087763A (en) * | 1990-11-09 | 1992-02-11 | Union Carbide Chemicals & Plastics Technology Corporation | Hydroformylation process |
JP2946790B2 (en) * | 1991-03-14 | 1999-09-06 | 三菱化学株式会社 | Production method of aldehydes |
US5360938A (en) * | 1991-08-21 | 1994-11-01 | Union Carbide Chemicals & Plastics Technology Corporation | Asymmetric syntheses |
GB9119955D0 (en) * | 1991-09-18 | 1991-10-30 | Imperial College | Treatment of aqueous supplies containing organic material |
US5169981A (en) * | 1991-12-06 | 1992-12-08 | Union Carbide Chemicals & Plastics Technology Corporation | Synthesis of alpha-substituted alkadienes |
US5243099A (en) * | 1991-12-06 | 1993-09-07 | Union Carbide Chemicals & Plastics Technology Corporation | Synthesis of alpha-substituted alkadienes |
US5756855A (en) | 1994-08-19 | 1998-05-26 | Union Carbide Chemicals & Plastics Technology Corporation | Stabilization of phosphite ligands in hydroformylation process |
KR970703805A (en) * | 1995-05-01 | 1997-08-09 | 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크놀러지 코포레이션 | Membrane Separation |
US5739352A (en) * | 1995-10-19 | 1998-04-14 | United Carbide Chemicals & Plastics Technology Corporation | Process for preparing carboxylic acids |
DE19605435A1 (en) * | 1996-02-14 | 1997-08-21 | Basf Ag | Process for the preparation of aldehydes by hydroformylation with a rhodium catalyst and recovery of the rhodium catalyst by extraction |
US6090987A (en) * | 1998-07-06 | 2000-07-18 | Union Carbide Chemicals & Plastics Technology Corporation | Metal-ligand complex catalyzed processes |
JP3921853B2 (en) * | 1998-12-10 | 2007-05-30 | 三菱化学株式会社 | Method for producing aldehydes and alcohols |
DE19954510A1 (en) | 1999-11-12 | 2001-05-17 | Oxeno Olefinchemie Gmbh | Process for the catalytic production of aldehydes from olefins using ligand mixtures |
EP1168111A3 (en) | 2000-06-27 | 2009-06-03 | Dai Nippon Printing Co., Ltd. | Multilayer volume hologram, and label for multilayer volume hologram fabrication |
EP1249441A1 (en) | 2001-04-13 | 2002-10-16 | Dsm N.V. | Continuous hydroformylation process |
DE10220801A1 (en) * | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Process for the rhodium-catalyzed hydroformylation of olefins while reducing the rhodium loss |
EP1532094A1 (en) * | 2002-08-31 | 2005-05-25 | Oxeno Olefinchemie GmbH | Method for the hydroformylation of olefinically unsaturated compounds, especially olefins, in the presence of cyclic carbonic acid esters |
EP1595984B1 (en) * | 2003-01-16 | 2010-06-09 | Teijin Fibers Limited | Differential-shrinkage polyester combined filament yarn |
EP2308817B1 (en) | 2003-07-03 | 2016-10-05 | Dow Technology Investments LLC | Minimization of ligand degradation products, or reversion of same to useful phosphine ligands |
DE10349343A1 (en) * | 2003-10-23 | 2005-06-02 | Basf Ag | Stabilization of hydroformylation catalysts based on phosphoramidite ligands |
KR101287661B1 (en) | 2004-08-02 | 2013-07-24 | 다우 테크놀로지 인베스트먼츠 엘엘씨. | Stabilization of a hydroformylation process |
CN101657407B (en) * | 2007-03-20 | 2014-02-12 | 陶氏技术投资有限公司 | Hydroformylation process with improved control over product isomers |
JP5298119B2 (en) * | 2007-04-09 | 2013-09-25 | エルジー・ケム・リミテッド | Catalyst composition containing phosphite ligand and hydroformylation method using the same |
JP5587877B2 (en) | 2008-07-03 | 2014-09-10 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | Control process of heavy material in circulating catalyst stream |
WO2010057099A1 (en) | 2008-11-14 | 2010-05-20 | University Of Kansas | Polymer-supported transition metal catalyst complexes and methods of use |
EP2414314B1 (en) | 2009-03-31 | 2017-09-13 | Dow Technology Investments LLC | Hydroformylation process with triphenylphosphine and a doubly open-ended bisphosphite ligand |
US7928267B1 (en) * | 2009-06-22 | 2011-04-19 | Eastman Chemical Company | Phosphite containing catalysts for hydroformylation processes |
WO2011046781A1 (en) | 2009-10-16 | 2011-04-21 | Dow Technology Investments Llc | Gas phase hydroformylation process |
CN102741210B (en) | 2009-12-22 | 2016-02-24 | 陶氏技术投资有限责任公司 | Control the positive structure in mixed ligand hydroformylation process: isomery aldehyde ratio |
CA2784943C (en) | 2009-12-22 | 2016-09-06 | Dow Technology Investments Llc | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the syngas partial pressure |
CN102741209B (en) | 2009-12-22 | 2014-12-03 | 陶氏技术投资有限责任公司 | Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure |
CN103153462B (en) | 2010-10-05 | 2016-06-01 | 陶氏技术投资有限责任公司 | Hydroformylation process |
PL2637994T3 (en) | 2010-11-12 | 2019-11-29 | Dow Technology Investments Llc | Mitigation of fouling in hydroformylation processes by water addition |
SA112330271B1 (en) | 2011-04-18 | 2015-02-09 | داو تكنولوجى انفستمنتس ال ال سى | Mitigation Of Fouling In Hydroformylation Processes By Water Addition |
JP2015513553A (en) | 2012-03-07 | 2015-05-14 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Process for heat integration in hydrogenation and distillation of C3-C20 aldehydes |
US8889917B2 (en) | 2012-04-12 | 2014-11-18 | Basf Se | Method of supplementing the catalyst in continuous hydroformylation |
MY172695A (en) | 2012-04-12 | 2019-12-10 | Basf Se | Method for replenishing the catalyst in continuous hydroformylation |
WO2013184350A1 (en) | 2012-06-04 | 2013-12-12 | Dow Technology Investments Llc | Hydroformylation process |
US9539566B2 (en) | 2012-08-29 | 2017-01-10 | Dow Technology Investments Llc | Catalyst preparation process |
MX2015003905A (en) | 2012-09-25 | 2015-07-17 | Dow Technology Investments Llc | Process for stabilizing a phosphite ligand against degradation. |
EP2740535A1 (en) | 2012-12-04 | 2014-06-11 | Dow Technology Investments LLC | Bidentate ligands for hydroformylation of ethylene |
CN104837800B (en) | 2012-12-06 | 2017-08-29 | 陶氏技术投资有限责任公司 | Hydroformylation process |
CN104045532B (en) | 2013-03-15 | 2018-05-25 | 陶氏技术投资有限责任公司 | Hydroformylation process |
JP2016540780A (en) | 2013-12-19 | 2016-12-28 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | Hydroformylation process |
CN104725170B (en) | 2013-12-19 | 2019-08-23 | 陶氏技术投资有限责任公司 | Hydroformylation process |
PL3126319T3 (en) | 2014-03-31 | 2020-01-31 | Dow Technology Investments Llc | Hydroformylation process |
WO2015175158A1 (en) | 2014-05-14 | 2015-11-19 | Dow Technology Investments Llc | Stabilized organophosphorous compounds |
MY184826A (en) * | 2014-12-04 | 2021-04-24 | Dow Technology Investments Llc | Hydroformylation process |
TWI709568B (en) | 2015-09-30 | 2020-11-11 | 美商陶氏科技投資公司 | Processes for producing organophosphorous compounds |
TWI709566B (en) | 2015-09-30 | 2020-11-11 | 美商陶氏科技投資公司 | Processes for producing organophosphorous compounds |
MY189779A (en) | 2015-11-10 | 2022-03-07 | Dow Technology Investments Llc | Process for producing aldehydes |
BR112018016320B1 (en) | 2016-02-11 | 2022-07-12 | Dow Technology Investments Llc | PROCESS TO CONVERT OLEFINS INTO ALCOHOLS, ETHERS OR COMBINATIONS THEREOF |
RU2724349C2 (en) | 2016-03-18 | 2020-06-23 | Дау Текнолоджи Инвестментс Ллк | Hydroformylation method |
TW201840362A (en) | 2016-11-08 | 2018-11-16 | 美商陶氏科技投資有限公司 | Methods to rejuvenate a deactivated hydroformylation catalyst solution |
TWI758353B (en) | 2016-11-08 | 2022-03-21 | 美商陶氏科技投資有限公司 | Methods to rejuvenate a deactivated hydroformylation catalyst solution |
TW201840363A (en) | 2016-11-08 | 2018-11-16 | 美商陶氏科技投資有限公司 | Methods of treating a hydroformylation catalyst solution |
US10981851B2 (en) | 2017-10-25 | 2021-04-20 | Dow Technology Investments Llc | Hydroformylation process |
RU2020117417A (en) | 2017-11-13 | 2021-11-29 | Дау Текнолоджи Инвестментс Ллк | METHODS FOR RHODIUM EXTRACTION FROM HYDROFORMYLATION PROCESS |
TWI793216B (en) * | 2017-12-07 | 2023-02-21 | 美商陶氏科技投資公司 | Hydroformylation process |
JP2021525165A (en) | 2018-05-30 | 2021-09-24 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | A method for delaying catalytic inactivation in the hydroformylation process and / or a method for delaying the use of a tetraphosphine ligand. |
WO2019231611A1 (en) | 2018-05-30 | 2019-12-05 | Dow Technology Investments Llc | Methods of controlling hydroformylation processes |
JP2021525166A (en) | 2018-05-30 | 2021-09-24 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | Catalytic compositions containing a combination of monophosphine and tetraphosphine ligands, and hydroformylation processes using them |
EP3887348B1 (en) | 2018-11-29 | 2022-11-02 | Dow Technology Investments LLC | Hydroformylation process |
TW202126385A (en) | 2019-11-05 | 2021-07-16 | 美商陶氏科技投資有限公司 | Processes for recovery of rhodium from a hydroformylation process |
US11976017B2 (en) | 2019-12-19 | 2024-05-07 | Dow Technology Investments Llc | Processes for preparing isoprene and mono-olefins comprising at least six carbon atoms |
CN114478214B (en) * | 2020-10-23 | 2024-05-17 | 中国石油化工股份有限公司 | Hydroformylation method and separation method of hydroformylation product |
CN116635362A (en) | 2020-12-14 | 2023-08-22 | 陶氏技术投资有限责任公司 | Method for improving the metering of catalytic metals in hydroformylation processes |
MX2024005136A (en) | 2021-11-11 | 2024-05-16 | Dow Technology Investments Llc | Processes for recovering rhodium from hydroformylation processes. |
CN118317834A (en) | 2021-12-16 | 2024-07-09 | 陶氏技术投资有限责任公司 | Compound, transition metal complex hydroformylation catalyst precursor composition comprising such compound, and hydroformylation process |
WO2023114578A1 (en) | 2021-12-16 | 2023-06-22 | Dow Technology Investments Llc | Transition metal complex hydroformylation catalyst precuror compositions comprising such compounds, and hydroformylation processes |
WO2024129290A1 (en) | 2022-12-13 | 2024-06-20 | Dow Technology Investments Llc | Process to minimize polyphosphine usage by making use of degradation products |
GB202404300D0 (en) | 2024-03-26 | 2024-05-08 | Johnson Matthey Davy Technologies Ltd | Process for the production of 2-alkylalkanol |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE156528C (en) * | ||||
US4482748A (en) * | 1967-05-29 | 1984-11-13 | Celanese Corporation | Hydrocarbonylation |
DE2145532C3 (en) * | 1971-09-11 | 1975-02-20 | Basf Ag, 6700 Ludwigshafen | Process for working up hydroformylation mixtures |
DE2326489A1 (en) * | 1973-05-24 | 1974-12-12 | Ernst Prof Dr Bayer | Metal cpds. of synthetic polymers as catalysts - in homogeneous soln., of acid- or base- catalysed reactions |
JPS5638576B2 (en) * | 1974-07-25 | 1981-09-08 | ||
US4148830A (en) * | 1975-03-07 | 1979-04-10 | Union Carbide Corporation | Hydroformylation of olefins |
JPS6022688B2 (en) * | 1976-12-29 | 1985-06-03 | 和光純薬工業株式会社 | Distillation method for aldehyde compounds |
EP0008407B1 (en) * | 1978-08-17 | 1983-10-26 | Heyl Chemisch-pharmazeutische Fabrik GmbH & Co. KG | Polymeric hydrogenation catalysts, process for preparing these catalysts and their use for catalytic hydrogenations |
US4235744A (en) * | 1978-10-30 | 1980-11-25 | Standard Oil Company (Ohio) | Carbonylation of olefinically unsaturated compounds |
US4504684A (en) * | 1982-01-06 | 1985-03-12 | The Standard Oil Company | Metal coordination polymers as hydroformylation and hydrogenation catalysts |
ATE28183T1 (en) * | 1982-06-11 | 1987-07-15 | Davy Mckee London | HYDROFORMYLATION PROCESS. |
US4528403A (en) * | 1982-10-21 | 1985-07-09 | Mitsubishi Chemical Industries Ltd. | Hydroformylation process for preparation of aldehydes and alcohols |
US4528404A (en) * | 1983-03-16 | 1985-07-09 | Exxon Research And Engineering Co. | High temperature hydroformylation in the presence of triarylphosphine rhodium carbonyl hydride complex catalyst systems |
GB8334359D0 (en) * | 1983-12-23 | 1984-02-01 | Davy Mckee Ltd | Process |
US4599206A (en) * | 1984-02-17 | 1986-07-08 | Union Carbide Corporation | Transition metal complex catalyzed reactions |
US4599456A (en) * | 1984-12-20 | 1986-07-08 | Phillips Petroleum Company | Novel aldehyde-phosphine compositions and uses therefor |
US4668651A (en) * | 1985-09-05 | 1987-05-26 | Union Carbide Corporation | Transition metal complex catalyzed processes |
US4613701A (en) * | 1985-09-19 | 1986-09-23 | Celanese Corporation | Recovery of rhodium from hydroformylation reaction product |
-
1987
- 1987-05-11 US US07/046,821 patent/US4774361A/en not_active Expired - Lifetime
- 1987-05-19 WO PCT/US1987/001124 patent/WO1987007261A2/en active IP Right Grant
- 1987-05-19 JP JP62503400A patent/JPS63503385A/en active Granted
- 1987-05-19 DE DE8787903774T patent/DE3773890D1/en not_active Expired - Lifetime
- 1987-05-19 AU AU74898/87A patent/AU613312B2/en not_active Ceased
- 1987-05-19 EP EP87903774A patent/EP0276231B1/en not_active Expired - Lifetime
- 1987-05-20 CA CA000537549A patent/CA1312094C/en not_active Expired - Lifetime
- 1987-05-20 ES ES8701486A patent/ES2004935A6/en not_active Expired
- 1987-05-20 MX MX006566A patent/MX166107B/en unknown
- 1987-05-20 CN CN87104311A patent/CN1010011B/en not_active Expired
- 1987-05-20 IN IN373/MAS/87A patent/IN169727B/en unknown
-
1988
- 1988-01-19 NO NO880207A patent/NO166583C/en unknown
Non-Patent Citations (1)
Title |
---|
Angewandte Chemie, Volume 87, No. 13, 1975, E. BAYER et al.: "Losliche Metall-Komplexe von Polymeren zur Katalyse", pages 484-485, see page 484, column 2, lines 14-16; page 484, table 1; page 485, example * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5672766A (en) * | 1994-12-12 | 1997-09-30 | Mitsubishi Chemical Corporation | Method for producing aldehydes |
EP1008581A1 (en) * | 1998-12-10 | 2000-06-14 | Mitsubishi Chemical Corporation | Process for producing aldehyde |
US6291717B1 (en) | 1998-12-10 | 2001-09-18 | Mitsubishi Chemical Corporation | Process for producing aldehyde |
EP1312598A1 (en) * | 1998-12-10 | 2003-05-21 | Mitsubishi Chemical Corporation | Process for producing aldehyde |
US6583324B2 (en) | 1998-12-10 | 2003-06-24 | Mitsubishi Chemical Corporation | Process for producing aldehyde |
EP1204476B2 (en) † | 1999-08-04 | 2010-03-17 | Lucite International UK Limited | Improvements relating to palladium metal compound catalysed processes |
WO2004024661A1 (en) * | 2002-08-31 | 2004-03-25 | Oxeno Olefinchemie Gmbh | Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters |
US7193116B2 (en) | 2002-08-31 | 2007-03-20 | Oxeno Olefinchemie Gmbh | Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalyzed by unmodified metal complexes in the presence of cyclic carbonic acid esters |
CN114072231A (en) * | 2019-06-27 | 2022-02-18 | 陶氏技术投资有限责任公司 | Process for preparing a solution from a hydroformylation process for noble metal recovery |
Also Published As
Publication number | Publication date |
---|---|
CA1312094C (en) | 1992-12-29 |
AU7489887A (en) | 1987-12-22 |
NO166583C (en) | 1991-08-14 |
DE3773890D1 (en) | 1991-11-21 |
US4774361A (en) | 1988-09-27 |
MX166107B (en) | 1992-12-21 |
CN1010011B (en) | 1990-10-17 |
WO1987007261A3 (en) | 1988-04-07 |
JPH0548215B2 (en) | 1993-07-20 |
EP0276231B1 (en) | 1991-10-16 |
CN87104311A (en) | 1988-06-08 |
JPS63503385A (en) | 1988-12-08 |
ES2004935A6 (en) | 1989-02-16 |
IN169727B (en) | 1991-12-14 |
AU613312B2 (en) | 1991-08-01 |
NO166583B (en) | 1991-05-06 |
NO880207D0 (en) | 1988-01-19 |
EP0276231A1 (en) | 1988-08-03 |
NO880207L (en) | 1988-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU613312B2 (en) | Rodium pprecipitation minimization in catalyzed hydroformylation | |
EP0697391B1 (en) | Stabilization of phosphite ligands in hydroformylation process | |
KR920010519B1 (en) | Transition metal complex catalyzed reactions | |
EP1144114B1 (en) | Improved metal-ligand complex catalyzed processes | |
CA2230561C (en) | Improved metal-ligand complex catalyzed processes | |
EP1019352B1 (en) | Improved metal-ligand complex catalyzed processes | |
CN111344274B (en) | Hydroformylation process | |
EP0874796B1 (en) | Improved metal-ligand complex catalyzed processes | |
US7087797B2 (en) | Continuous hydroformylation process | |
KR910007047B1 (en) | Transition metal complex catalyzed reactions | |
KR100891235B1 (en) | Continuous hydroformylation process for producing an aldehyde | |
JP3291421B2 (en) | Stabilization of phosphite ligands in hydroformylation process | |
PL149758B1 (en) | Method of obtaining aldehydes by olefinic hydroformylation of non-satureted compounds | |
KR920003119B1 (en) | Transition metal complex catalyzed reactions | |
MXPA01000031A (en) | Improved metal-ligand complex catalyzed processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU JP KR NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BE DE FR GB IT NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1987903774 Country of ref document: EP |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU JP KR NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): BE DE FR GB IT NL SE |
|
WWP | Wipo information: published in national office |
Ref document number: 1987903774 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1987903774 Country of ref document: EP |