WO1986000401A1 - Device for detecting absolute position - Google Patents

Device for detecting absolute position Download PDF

Info

Publication number
WO1986000401A1
WO1986000401A1 PCT/JP1985/000361 JP8500361W WO8600401A1 WO 1986000401 A1 WO1986000401 A1 WO 1986000401A1 JP 8500361 W JP8500361 W JP 8500361W WO 8600401 A1 WO8600401 A1 WO 8600401A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolver
absolute position
interpolation error
position detecting
value
Prior art date
Application number
PCT/JP1985/000361
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Toyoda
Tetsuro Sakano
Shinsuke Sakakibara
Yoshitaka Takekoshi
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1986000401A1 publication Critical patent/WO1986000401A1/en
Priority to DE8686109799T priority Critical patent/DE3660992D1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24409Interpolation using memories

Definitions

  • the present invention relates to an absolute position detecting device, and more particularly, to an absolute position detecting device capable of obtaining an accurate absolute position by minimizing an interpolation error of a resolver.
  • a resolver for example, a two-phase excitation type resolver is composed of a pair of stator windings SA and SB and a rotor winding RA as shown in FIG. Is connected to the rotation ⁇ ⁇ of the servomotor, and the rotor winding-RA is configured to be rotated in synchronization with the rotation of the servomotor. Then, a sine wave (sinot) is applied from the resolver excitation circuit 1 to one of the stator windings SA, and a cosine wave (c0s ⁇ 0t) is applied to the other stator winding SB.
  • a sine wave si II ( ⁇ 0t + ⁇ ) delayed by the mechanical angle ⁇ of the rotor RA is output from the rotor winding RA.
  • the phase difference ⁇ between this sine wave output and the sine wave si ⁇ ⁇ ⁇ t applied to the stator winding SA is detected by the position detection circuit 2, and the pulse of the phase difference is counted. Then, it is output as position signal 0.
  • a pair of stator windings SA and SB shown in FIG. 6 are required for the number of poles, a large number of stator windings are provided on the rotor winding RA of the resolver. It is necessary to arrange the data winding, and high accuracy of the arrangement is required.
  • the resolver itself is generally miniaturized, and the stator windings are arranged with high accuracy. However, it is inevitable that an arrangement error, that is, an interpolation error is generated, and the phase of the output wave is shifted by the error. Due to the presence of such a resolver interpolation error, the conventional position detection system has the drawback that it is difficult to accurately detect the position of a controlled object. .
  • the invention measures the resolver's characteristic curve to minimize the effect of the resolver's interpolation error, and can obtain an accurate absolute position based on this measurement result.
  • the purpose of the present invention is to provide an absolute position detecting device capable of detecting an absolute position.
  • the present invention has position detecting means composed of a resolver connected to a movable part, and can be operated by a signal from the position detecting means.
  • measurement means for obtaining a characteristic curve data of the interpolation error of the resolver by rotating the resolver, and a description of data for storing the data on the characteristic curve in the bubble memory.
  • the value r read from the resolver when setting the reference point for absolute position detection.
  • Resorno interpolation error obtained from the measurement means.
  • Absolute position detection reference value corrected based on and When obtaining the absolute position at an arbitrary point, the value 0 'read by the resolver at that time and the interpolation of the resolver obtained from the above-mentioned tilting means.
  • a corrected value r of an arbitrary point obtained based on the error e ′, and the reference value r.
  • the present invention it is possible to reliably correct the interpolation error despite the presence of the interpolation error inherent in the resolver, and to further improve the robot and machine tool.
  • the circuit configuration for such a purpose is only required to add a simple circuit to a part of the conventional NC device, and the increase in cost for expanding functions is small.
  • FIG. 1 is an overall block diagram of a servo control system to which an absolute position detection device according to the present invention is applied
  • FIG. 2 is an embodiment of an absolute position detection signal input port in FIG.
  • the circuit configuration diagram Fig. 3 is a characteristic curve diagram for explaining the interpolation error of the resolver
  • Fig. 4 is the waveform diagram of each embodiment of Fig. 2
  • Fig. 5 (a) is the articulated ⁇ -bo the reference point position setting state of Bok 'side view illustrating
  • FIG. 5 (b) is similar articulated b Bo, the y bets' side view showing an operating state at any point
  • Figure 6 is a conventional Multipolar resolver of It is a principle explanation .. It is a figure. '
  • FIG. 1 is an overall block diagram of a servo control system to which the absolute position detecting device according to the present invention is applied.
  • 1 0 1 is
  • NC This is a paper tape on which the finger data is perforated, which stores finger positioning data such as positioning information for processing and M, S, and T function information.
  • 1002 is 1 ⁇ (when the machine reads the NC data from the paper tape 101 using the tape reader puncher 102e described later from the paper tape 101. At the same time, it reads out the read NC data, and if it is an M, S, T function command, for example, sends the command to the machine side via a power board (not shown). If it is, the output is sent to the pulse distributor in the subsequent stage.
  • the NC unit 102 is provided with a processor 102a that executes arithmetic processing in accordance with the control program and a predetermined number.
  • Tape-danopancher 10 2 e, teaching operation panel 10-2 f, input / output port 10 2 g-, bubble memory 10 2 h, current position Counter 1 0 2 i, It consists of a position detection signal input port 102 j, a display device 102 k, and an address database 102 il .. 103 is a pulse S ⁇ Performs a known pulse distribution calculation based on the movement command Zc to distribute the frequency according to the command speed. It generates a noise P.
  • Numeral 104 is a distribution pulse train: a pulse train that accelerates the servomotor 105 linearly when Ps occurs and decelerates linearly at the end of the pulse train.
  • a known acceleration / deceleration circuit for generating P i, 105 is a servomotor for driving the operation, for example, a movable part of an industrial robot is provided as a load .
  • 106 is a resolver as position detecting means. Note that a speed reduction mechanism may be provided between the servomotor 105 and the resolver 106.
  • Reference numeral 107 denotes an error display unit, which is composed of, for example, a reversible counter, and includes the number of input pulses P i generated from the acceleration / deceleration circuit 104 and the number of fields. The error E r from the pulse FPI obtained by debugging is recorded.
  • the error calculation memory section 107 may be composed of a memory circuit 107a shown in the figure and an error register 107b for storing the error Er.
  • Reference numeral 108 denotes a digital analog (DA) converter for generating an analog voltage proportional to the contents of the error register 107 b, and 109 denotes a speed control circuit. .
  • the error operation storage unit 107 and the DA converter 108 constitute a motor's position control circuit.
  • the resolver 106 is rotated to obtain the characteristic curve of the interpolation error of the resolver 106 as shown in FIG. 3, and the data relating to the characteristic curve is obtained.
  • the interpolation error e ′ with respect to the rotation angle of the resolver 106 is stored in the bubble memory 1.02h, and when setting the grave reference point for absolute position detection, ie, When setting the resin value, The reference value for absolute position detection in which the interpolation error of the resolver 106 has been corrected from the value r 0 ′ (see FIG. 3) read from the buffer 106 and the data obtained by the measurement. Let's get r 0.
  • the value r ′ read by the resolver at the arbitrary point and the resolver obtained from the measurement data are interpolated.
  • a corrected absolute position at an arbitrary point is obtained from a corrected value r of an arbitrary point obtained using the error s' and the reference value r0.
  • the operation of the operation panel is used to set the interpolation error translation mode of the resolver, and the resolver 106 is rotated to determine the interpolation error. That is, by the rotation of the resolver 106, the output wave sin ( ⁇ 0t + ⁇ + ⁇ ') of the rotor winding RA shown in FIG. 6 (where 0' is the interpolation error ), The sine wave sincoot applied to the stator winding SA is input to the position detection signal input port 102j shown in Fig. 1.
  • FIG. 2 is a circuit diagram of an embodiment of such a position detection signal input port.
  • reference numerals 20 and 21 denote zero slice circuits, each of which is composed of a comparator.
  • Each of the output waves of the line RA is si it ⁇ ( ⁇ 0 t + ⁇ + ⁇ '), the sine wave si ⁇ ⁇ ⁇ ot applied to the data winding S' A is zero-volt sliced and converted into a ⁇ shape wave, T 2 (see Fig. 4).
  • You 2 2, 2 3 The ⁇ Li in the rising re-detection circuit, each rectangular wave, to detect the rising Li of T 2, Ri Oh the rising Pulse T s, also you output of T 4 of Roh Tsu door gate 2a, a pair of shift registers 22b and 22c, and an AND gate 22d.
  • the output signal from the counter 26 is written in the address memory 102h via the address and the data bus 102A. .
  • phase difference of the resolver '106 and the interpolation error e that is, the correction value 0'
  • the relationship between the phase difference of the resolver '106 and that of the resolver 106 is as follows.
  • the error of the sampled phase difference is measured and stored in the memory 1h.
  • FIG. 5 (a) is a diagram showing an origin value setting state of such an articulated robot.
  • 1 is a W-axis unit
  • 2 is a W arm
  • 2a is a bearing
  • 3a is a bearing
  • 4 is a wrist mechanism.
  • the origin setting of this articulated robot can be performed by driving the servomotor 105 to the W arm 2 so that it is vertical.
  • the resolver 106 was read when setting this origin. Assume that the read value at this time is r 0-(see Fig. 3). On the other hand, the interpolation error e0 of the resolver stored in the above bubble memory corresponding to the time of setting the origin is calculated from the bubble memory 102h by the address memory. Data path
  • Fig. 1 although only one type of servo control is described, it can be said that it can be applied to multiple type control. Not surprising. Although the servomotors 1 and 5 show the movable parts of the bots as loads, the movable parts of various machines with NC devices such as machine tools can be connected.
  • the absolute position detection device is applicable not only to the absolute position detection of a servo system including a numerical control device but also to any position detection device using a resolver.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Position Or Direction (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Numerical Control (AREA)

Abstract

A device for detecting absolute position employs a resolver (106) as position detector means. An interpolated error corresponding to the rotational angle of the rotary shaft of the resolver (106) is stored in advance in a data memory which consists of a bubble memory (102h) in a numerically controlled apparatus (102). When an absolute position is to be detected, the interpolated error of the resolver (106) is read out from the memory, and an absolute position signal detected by the resolver (106) is corrected by the interpolated error thereby to detect a correct absolute position.

Description

明 細  Details
絶対位置検出装置  Absolute position detector
技 術 分 野  Technical field
本発明は絶対位置検出装置に係り 、 特 に レ ゾルバの内 挿誤差 を最小 に し て 、 正確な絶対位置を 得る こ と がで き る絶対位置検出装置 に関する。  The present invention relates to an absolute position detecting device, and more particularly, to an absolute position detecting device capable of obtaining an accurate absolute position by minimizing an interpolation error of a resolver.
背 景 技 術  Background technology
レ ゾルバ、 た と え ば 2 相励磁型 レ ゾルバ は 、 第 6 図 に 示す よ う に一対の ス テー タ巻線 S A , S B と ロ ー タ 巻線 R A で構成 され、 ロ ー タ巻線 R A を サー ボ モ ー タ の回転 轴に連結 し 、 ロ ー タ 巻線- R Aがサー ボモ ー タ の 回転に 同 期 し て 回転 され る よ う に構成 し でお く 。 そ し て 、 レ ゾル バ励磁回路 1 か ら一方の ステー タ巻線 S A に正弦波 ( s i n o t ) を 、 他方の ステ一 タ巻線 S B に余弦波 ( c 0 s ω 0 t ) を印加す る と 、' ロ ー タ巻線 R A か ら は ロ ー タ R A の機械 角 ø だ け遅れた正弦波 s i II ( ω 0 t + θ ) が出力 さ れ る 。 こ の正弦波出力は位置検出 回路 2 に よ り 、 ステ 一 タ 巻線 S A に印加 された正弦波 s i η ω ο t と の間の位相差 ø が検出 され、 位相差分のパル ス を計 数 し て位置信号 0 と し て出力 される。 係 る レ ゾルバ に お い'ては 、 第 6 図 に示す一対の ステー タ巻線 S A , S B を 極数分必要 と す る の で、 レ ゾルバの ロ ー タ 巻線 R A 上 に 多数の ス テ ー タ 巻線 を配置する 要があ り 、 そ の配置の 位置精度が高い も の 要求される。 レ ゾルバ 自 体は一般 に小型化 され てお リ 、 ステー タ 巻線を高い精度 で配置す る こ と は困難であ る ため、 その配置誤差、 即ち 内挿誤差 を生 じ る こ .と が避け られず、 これに よ リ 出力波の位相が 誤差分だけずれる こ と に なる。 この よ う な レ ゾルバの内 挿誤差が存在する こ と か ら、 従来の位置検出系 は被制铟 物 の 正 確 な 位 置検 出 が 困 難 で あ る と い う 欠点 が あ つ た。 A resolver, for example, a two-phase excitation type resolver is composed of a pair of stator windings SA and SB and a rotor winding RA as shown in FIG. Is connected to the rotation 回 転 of the servomotor, and the rotor winding-RA is configured to be rotated in synchronization with the rotation of the servomotor. Then, a sine wave (sinot) is applied from the resolver excitation circuit 1 to one of the stator windings SA, and a cosine wave (c0sω0t) is applied to the other stator winding SB. Then, a sine wave si II (ω0t + θ) delayed by the mechanical angle ø of the rotor RA is output from the rotor winding RA. The phase difference ø between this sine wave output and the sine wave si η ω ο t applied to the stator winding SA is detected by the position detection circuit 2, and the pulse of the phase difference is counted. Then, it is output as position signal 0. In the related resolver, since a pair of stator windings SA and SB shown in FIG. 6 are required for the number of poles, a large number of stator windings are provided on the rotor winding RA of the resolver. It is necessary to arrange the data winding, and high accuracy of the arrangement is required. The resolver itself is generally miniaturized, and the stator windings are arranged with high accuracy. However, it is inevitable that an arrangement error, that is, an interpolation error is generated, and the phase of the output wave is shifted by the error. Due to the presence of such a resolver interpolation error, the conventional position detection system has the drawback that it is difficult to accurately detect the position of a controlled object. .
*発明は、 レ ゾル バの内挿誤差に よ る 影響 を 最小に す る ため に 、 レ ゾルバ の特性曲線を測定 し 、 こ の'測定結果 に基づいて正確な絶対位置を得る こ と がで き る 絶対位置 検出装置を提供する こ と を 目 的 とする。  * The invention measures the resolver's characteristic curve to minimize the effect of the resolver's interpolation error, and can obtain an accurate absolute position based on this measurement result. The purpose of the present invention is to provide an absolute position detecting device capable of detecting an absolute position.
発 明 の 開 示  Disclosure of the invention
本発明は、 可動部 に連結 した レ ゾルバか ら な る位置検 出手段 を有 し 、 該位置検出手段からの信号に よ り 可.動部 の絶対位置 ^検出す る絶対位置検出装置 ^ お い て 、 レ ゾ ルバの 回転位置に対応する レ ゾルバの内挿誤差 を記憶す る 手段 と 、 レ ゾルバ に よ り 可動部の絶対位置 を 検出す る 際、 レ ゾルバ の出力信号を前記記億手段 に記憶 された内 挿誤差 に て補正す る 手段 と を'含む絶対位置検出装置を提 供す る も の で あ る 。  The present invention has position detecting means composed of a resolver connected to a movable part, and can be operated by a signal from the position detecting means. Means for storing an interpolation error of the resolver corresponding to the rotational position of the resolver, and an output signal of the resolver when the absolute position of the movable portion is detected by the resolver. And a means for compensating for the interpolation error stored in the means.
- さ ら に レ ゾルバを 回転 させて レ ゾルバの内挿誤差の特 性曲線デー タ を求め る測定手段 と 、 該特性曲線 に関す る デー タ を バ ブル メ モ リ に記憶するデー タ の記億手段 と 、 絶対位置検出 の基準点設定時に レ ゾルバか ら 読込 まれ る 値 r 。 と 前記測定手段か ら得 られる レ ゾルノ 内挿誤 差 € 。 と に基づいて補正 された絶対位置検出 の基準値 Γ 0 を得 る手段 と 、 任意の点での絶対位置 を求め る場合、 そ の時の レ ゾルバ に よ っ て読込まれる値 Γ ' と 前記湎定 手段か ら得 られ る レ ゾルバの内挿誤差 e ' に基づいて得 られる 任意の点の補正 された値 r と 、 前記基準値 r 。 と か ら任意の点での補正 された絶対位置を求め る 手段 と を 設けて 、 正確なサー ボ制铒系の絶対位置 を得 る よ う に す る絶対位置検出装置 を提供する ものであ る 。 -In addition, measurement means for obtaining a characteristic curve data of the interpolation error of the resolver by rotating the resolver, and a description of data for storing the data on the characteristic curve in the bubble memory. And the value r read from the resolver when setting the reference point for absolute position detection. And Resorno interpolation error obtained from the measurement means. Absolute position detection reference value corrected based on and When obtaining the absolute position at an arbitrary point, the value 0 'read by the resolver at that time and the interpolation of the resolver obtained from the above-mentioned tilting means. A corrected value r of an arbitrary point obtained based on the error e ′, and the reference value r. And means for obtaining a corrected absolute position at an arbitrary point from the above, thereby providing an absolute position detecting device for obtaining an accurate absolute position of the servo control system. .
^発明 に よれば、 レ ゾルバに内在する 内挿誤差が存在 す る に も かかわ ら ず、 こ の内挿誤差を確実に補正する こ と がで き 、 さ ら に ロ ボ ツ ト 、 工作機械な どの位置検出 を 的確に行な う こ と ができ 、 ひいては位置の制街を精確 に 行な う こ と がで き る 。 従っ て、 ロボ ッ ト 、 工作機械な ど の制御上の信頼性の 向上を図る こ とがで き る 。 また、 そ のた'め の回路構成 も 従来の N C装置の一部 に簏単な回路 を付加する だけで足 り 、 機能拡大に対す る コ ス 卜 の増加 は小 さ い。  According to the present invention, it is possible to reliably correct the interpolation error despite the presence of the interpolation error inherent in the resolver, and to further improve the robot and machine tool. Thus, it is possible to accurately detect the position of the vehicle, etc., and thus to accurately perform the control of the position. Therefore, control reliability of robots, machine tools, etc. can be improved. In addition, the circuit configuration for such a purpose is only required to add a simple circuit to a part of the conventional NC device, and the increase in cost for expanding functions is small.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明 に係 る絶対位置検出装置が適用 され る サー ボ制御系 の全体 ブ ロ ッ ク 図、 第 2 図 は第 1 囟 に おけ る絶対位置検出信号入力ボー ト の一実施例回路構成図 、 第 3 図は レ ゾルバの内挿誤差を説明する 特性曲線図、 第 4 図は第 2 図実施例.構成の各部波形図、 第 5 図 ( a ) は 多関節型 π ボ ッ 卜 の基準点位置設定状態 を'示す側面図、 第 5 図 ( b ) は同様の多関節型ロ ボ 、 y ト の'任意の点での 動作状態を示す側面図、 第 6 図は従来の多極 レ ゾルバ の 原理説明..図であ る 。' FIG. 1 is an overall block diagram of a servo control system to which an absolute position detection device according to the present invention is applied, and FIG. 2 is an embodiment of an absolute position detection signal input port in FIG. The circuit configuration diagram, Fig. 3 is a characteristic curve diagram for explaining the interpolation error of the resolver, Fig. 4 is the waveform diagram of each embodiment of Fig. 2, Fig. 5 (a) is the articulated π-bo the reference point position setting state of Bok 'side view illustrating, FIG. 5 (b) is similar articulated b Bo, the y bets' side view showing an operating state at any point, Figure 6 is a conventional Multipolar resolver of It is a principle explanation .. It is a figure. '
発明 を実施するため の最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 太発明の実施例について図面を参照 し なが ら詳 細に説明す る 。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1 図は术発明 に係 る絶対位置検出装置が適用 され る サー ボ制御系の全体 ブ D ッ ク 図であ る。 図中、 1 0 1 は FIG. 1 is an overall block diagram of a servo control system to which the absolute position detecting device according to the present invention is applied. In the figure, 1 0 1 is
N C 指今デー タ が穿孔 されてい る紙テー プであ り 、 加工 のため の位置決め情報や M , S , T機能情報等の 指 今デー タ を蓄積 し た も のであ る 。 1 0 2 は 1^ ( 装置で ぁ リ 、 紙テ ー プ 1 0 1 か ら 後述 す る テ ー プ リ ー ダ パ ン チ ヤ 1 0 2 e を し て N C デー タ を読取 ら せ る と と も に 、 読取 られた N C デー タ を解読 し、 例えば M , S , T機能 命令等であれば図示 し ない強電盤を介 し て機械側へ命令 を送出 し 、 ま た、 移動指令 Z c で.あれば後段の パ ル ス 分 配器 に 出 力 す る 。 N C 装置 1 0 2 は制御 プ ロ グ ラ ム に 従 っ て演算処理を実行する プロ セ ッ サ 1 0 2 a と 、 所定 に制御 プ ロ グ ラ ム を 記憶する プ ロ グ ラ ム メ モ リ 1 0 2 b と , デー タ を 記憶す る デー タ メ モ リ 1 0 2 c と 、 操作の ための操作盤 1 0 2 d と 、 テ一 プ リ 一 ダノパ ン チ ヤ 1 0 2 e と 、 教示操作盤 1 0 -2 f 、 入出力ポー ト 1 0 2 g -、 バ ブ ル メ モ リ 1 0 2 h 、 現在位置カ ウ ン タ 1 0 2 i 、 位 置検出信号入力ポー ト 1 0 2 j 、 表示装置 1 0 2 k 、 ァ ド レ ス · デー タ バ ス 1 0 2 il と で構成 され る 。 .1 0 3 は パ ル ス分 S蓥でぁ リ 、 移動指令 Z c に基づい て公知のパ ル ス 分配演算 を実行 し て指令速度に応 じ た周波数の分配 ノ ル ス P を 発生す る も のであ る。 1 0 4 は分配パル ス 列 : P s の発生時,に 、 サーボモー タ 1 0 5 を直線的に加速 し 、 ま た該バル ス列 の終了時に直線的に減速す る よ う な バル ス列 P i を発生する公知の加滅速回路、 1 0 5 は動 作轴を駆動す る サ 一 ボモー タ であ り 、 例 えば、 負荷 と し て産業用 ロ ボ ッ ト の可動部が設け られる 。 1 0 6 は位置 検出手段 と し ての レ ゾルバであ る。 なお、 サー ボモー タ 1 0 5 と レ ゾルバ 1 0 6 と の間に減速機構が配設 され る こ と も あ る 。 1 0 7 は誤差演箕記億部で あ り 、 例えば可 逆カ ウ ン タ に よ り 構成 され、 加減速回路 1 0 4 か ら発生 し た入 力パル ス P i の数 と フ ィ ー ドバ ッ ク し て得 られた パル ス F P I と の誤差 E r を記億する 。 尚、 こ の誤差演 算記億部 1 0 7 は図示の演箕回路 1 0 7 a と 誤差 E r を. 記憶す る誤差 レ ジ ス タ 1 0 7 b と で構成 し て 'も よ い。 1 0 8 は誤差 レ ジ ス タ 1 0 7 b の内容に比例 した ア ナ ロ グ 電圧を癸生す る デ ジ タ ルアナ ロ グ ( D A ) 変換器、 1 0 9 は速度制御 回 路 で あ る 。 な お 、 誤差演算記憶部 1 0 7 、 D A変換器 1 0 8 でモー タ の'位置制御回路 を構成す る 。 NC This is a paper tape on which the finger data is perforated, which stores finger positioning data such as positioning information for processing and M, S, and T function information. 1002 is 1 ^ (when the machine reads the NC data from the paper tape 101 using the tape reader puncher 102e described later from the paper tape 101. At the same time, it reads out the read NC data, and if it is an M, S, T function command, for example, sends the command to the machine side via a power board (not shown). If it is, the output is sent to the pulse distributor in the subsequent stage.The NC unit 102 is provided with a processor 102a that executes arithmetic processing in accordance with the control program and a predetermined number. A program memory 102 b for storing the control program, a data memory 102 c for storing the data, and an operation panel 102 d for operation. , Tape-danopancher 10 2 e, teaching operation panel 10-2 f, input / output port 10 2 g-, bubble memory 10 2 h, current position Counter 1 0 2 i, It consists of a position detection signal input port 102 j, a display device 102 k, and an address database 102 il .. 103 is a pulse S 蓥Performs a known pulse distribution calculation based on the movement command Zc to distribute the frequency according to the command speed. It generates a noise P. Numeral 104 is a distribution pulse train: a pulse train that accelerates the servomotor 105 linearly when Ps occurs and decelerates linearly at the end of the pulse train. A known acceleration / deceleration circuit for generating P i, 105 is a servomotor for driving the operation, for example, a movable part of an industrial robot is provided as a load . 106 is a resolver as position detecting means. Note that a speed reduction mechanism may be provided between the servomotor 105 and the resolver 106. Reference numeral 107 denotes an error display unit, which is composed of, for example, a reversible counter, and includes the number of input pulses P i generated from the acceleration / deceleration circuit 104 and the number of fields. The error E r from the pulse FPI obtained by debugging is recorded. Note that the error calculation memory section 107 may be composed of a memory circuit 107a shown in the figure and an error register 107b for storing the error Er. . Reference numeral 108 denotes a digital analog (DA) converter for generating an analog voltage proportional to the contents of the error register 107 b, and 109 denotes a speed control circuit. . Note that the error operation storage unit 107 and the DA converter 108 constitute a motor's position control circuit.
特 に 、 本発明 に おいては、 レ ゾルバ 1 0 6 を 回転 さ せ て、 第 3 図 に示す如 く 、 レゾルバ 1 0 6 の内挿誤差の特 性曲線 を求め 、 そ の特性曲線に関する デー タ を 、 た と え ば レ ゾルバ 1 0 6 の 回転角度に対する内挿誤差 e ' を バ ブル メ モ リ 1.0 2 h に記憶させ、 絶対位置検出 の墓準点 の設定の際、 すなわ ち オ リ ジ ン値の設定時に は 、 レ ゾ ル バ 1 0 6 か ら 読込 まれる値 r 0 ' (第 3 図参照) と 前記 測定に よ っ て得 られたデータ と から レ ゾルバ 1 0 6 の内 挿誤差 を補正 した絶対位置検出の基準値 r 0 を 得る ょ ラ にする 。 In particular, in the present invention, the resolver 106 is rotated to obtain the characteristic curve of the interpolation error of the resolver 106 as shown in FIG. 3, and the data relating to the characteristic curve is obtained. For example, the interpolation error e ′ with respect to the rotation angle of the resolver 106 is stored in the bubble memory 1.02h, and when setting the grave reference point for absolute position detection, ie, When setting the resin value, The reference value for absolute position detection in which the interpolation error of the resolver 106 has been corrected from the value r 0 ′ (see FIG. 3) read from the buffer 106 and the data obtained by the measurement. Let's get r 0.
更に 、 任意の点での絶対位置を求め る 場合に は、 そ の 任意の点に おけ る レ ゾルバに よ っ て読込 まれる 値 r ' と 前記測定デー タ か ら得 られる レ ゾルバの内挿誤差 s ' を 用いて得 られ る任意の点の補正された値 r と 刖記基準値 r 0 と か ら任意の点での補正された絶対位置を求め る も の であ る 。  Further, when obtaining the absolute position at an arbitrary point, the value r ′ read by the resolver at the arbitrary point and the resolver obtained from the measurement data are interpolated. A corrected absolute position at an arbitrary point is obtained from a corrected value r of an arbitrary point obtained using the error s' and the reference value r0.
こ の点について、 更に詳細に説明する 。  This will be described in more detail.
ま ず 、 操作盤の操作 に よ リ レ ゾルバ の内挿誤差翻定 モー ド に し て、 レ ゾルバ 1 0 6 を回転 し て内挿誤差の濺 定を行 な う 。 即ち 、 レ ゾルバ 1 0 6 の回転に よ っ て、 第 6 図に 示 され る ロ ー タ 巻線 R A の出力波 s i n ( ω 0 t + Θ + Θ ' ) (但 し 0 ' は内挿誤差) 、 ス テ一 タ 巻線 S A に印加 され る 正弦波 s i n co o t を第 1 図に 示 され る 位置検出信号入力ポー ト 1 0 2 j へ入力す る  First, the operation of the operation panel is used to set the interpolation error translation mode of the resolver, and the resolver 106 is rotated to determine the interpolation error. That is, by the rotation of the resolver 106, the output wave sin (ω0t + Θ + Θ ') of the rotor winding RA shown in FIG. 6 (where 0' is the interpolation error ), The sine wave sincoot applied to the stator winding SA is input to the position detection signal input port 102j shown in Fig. 1.
第 2 図は、 係る位置検出信号入力ボー ト の一実施例 回 路構成図であ る 。  FIG. 2 is a circuit diagram of an embodiment of such a position detection signal input port.
図中 、 2 0 、 2 1 はゼロ ス ラ イ ス回路であ リ 、 各 々 コ ンパ レ ー タ で構成 さ れ、 各 々 口 一 タ眷線 R A の 出力波 s i it · ( ω 0 t + θ + θ ' ) 、 スデー タ 巻線 S ' A に印加 さ れ る 正弦波 s i · η ω o t をゼロ ボル ト ス ラ イ ス し て、 ^ 形波 , T 2 (第 4 図参照) に変換す る 。 2 2 , 2 3 は立上 リ 検出 回路で ぁ リ 、 各 々矩形波 , T 2 の立上 リ を検出 し 、 立上 り パ ル ス T s , T 4 を 出力す る も の で あ り 、 ノ ッ ト ゲー ト 2 2 a 、 一対のシ フ ト レ ジ ス タ 2 2 b , 2 2 c 、 ア ン ド ゲ ー ト 2 2 d で構成 され る 。 2 4 は フ リ ッ プ · フ ロ ッ プ で あ り 、 立上 リ ノ、 *ル ス T s で リ セ ッ ト 、 立上 り パ ル ス T 4 でセ ッ 卜 され、 位相差に 対応す る ゲ ー ト 信号丁 5 を 出 力する。 2 5 はゲー ト 回路 であ り 、 ゲ ー ト 信号 Τ 5 の出 力期間に ク ロ ッ ク バル ス C L K を 出 力す る 。 2 6 は カ ウ ン タ で あ り 、 ゲー ト 回路 2 5 か ら の ク ロ ッ ク ノ ル ス C L K を 計数 し 、 立上 り ノ、' ル ス T 4 に よ っ て リ セ ッ 卜 され る 。 カ ウ ン タ 2 6 か ら の出 力はア ド レ ス · デ ー タ バ ス 1 0 (第 1 図参照) へ出力 され る 。 ま た、 立上 り パ ル ス T s も同様にア ド レ ス , デー タ バ ス へ出力 される。 In the figure, reference numerals 20 and 21 denote zero slice circuits, each of which is composed of a comparator. Each of the output waves of the line RA is si it · (ω 0 t + θ + θ '), the sine wave si · η ω ot applied to the data winding S' A is zero-volt sliced and converted into a ^ shape wave, T 2 (see Fig. 4). You 2 2, 2 3 The § Li in the rising re-detection circuit, each rectangular wave, to detect the rising Li of T 2, Ri Oh the rising Pulse T s, also you output of T 4 of Roh Tsu door gate 2a, a pair of shift registers 22b and 22c, and an AND gate 22d. 2 4 Ri Oh in a non-Clip and non-Russia-up, start-up Li Roh, * ls e T s in the Li cell Tsu door, rising Pulse T 4 Dese Tsu is Bok, corresponding to the phase difference The gate signal 5 is output. 2 5 Ri gate circuit der, it forces out of the click lock Bal scan CLK to the output period of the Gate signal Τ 5. Numeral 26 denotes a counter which counts the clock pulse CLK from the gate circuit 25 and rises, and is reset by the pulse T4. . The output from the counter 26 is output to the address data bus 10 (see Fig. 1). Also, rising Pulse T s is likewise A de Re vinegar, is output to the data bus.
そ こ で 、 カ ウ ン タ 2 6 か ら の 出 力信号 は ア ド レ ス , デー タ バ ス 1 0 2 A を介 してノく ブノレ メ モ リ 1 0 2 h に記 x& i" o .  Therefore, the output signal from the counter 26 is written in the address memory 102h via the address and the data bus 102A. .
次に 、 レ ゾルバ 1 0 6 から出力される 内挿誤差 0 ' の 補正に つい て説明 す る 。  Next, correction of the interpolation error 0 'output from the resolver 106 will be described.
レ ゾルバ' 1 0 6 の位相差 と.内挿誤差 e 、 すな わ ち補正 値 0 ' と の閬係は第 3 図に示すよ う な関係でぁ リ 、 レ ゾ ル バ 1 0 6 の サ ン プ リ ン グされた位相差の誤差 を測定 し て ノくブル メ モ リ 1 ひ 2 h に記億 されてい る 。  The relationship between the phase difference of the resolver '106 and the interpolation error e, that is, the correction value 0', is as shown in Fig. 3, and the relationship between the phase difference of the resolver '106 and that of the resolver 106 is as follows. The error of the sampled phase difference is measured and stored in the memory 1h.
次に 、 サ ー ボ モ ー タ 1 0 5 に連結 されてい る 例えば多' 関節型 ロ ボ ッ ト の絶対位置検出の基準点、 つ ま り オ リ ジ ン設定を、 操作盤か ら行な う。 第 5 図 ( a ) は 、 係る 多 関節型 ロ ボ ッ ト の オ リ ジ ン値設定状態を示す図であ る 。 図中、 1 は W軸ュニ ッ ト 、 2 は W轴腕、 2 a は軸受、 3 a は軸受、 4 は手首機構でめ る。 Next, a reference point for detecting the absolute position of, for example, an articulated robot connected to the servomotor 105, ie, an origin. Configure the settings from the operation panel. FIG. 5 (a) is a diagram showing an origin value setting state of such an articulated robot. In the figure, 1 is a W-axis unit, 2 is a W arm, 2a is a bearing, 3a is a bearing, and 4 is a wrist mechanism.
こ の多関節型 ロ ボ ッ 卜 の オ リ ジ ン設定は W铀腕 2 が垂 直に な る よ ラ に サー ボモー タ 1 0 5 を駆勖する こ と に よ り 行な ラ o  The origin setting of this articulated robot can be performed by driving the servomotor 105 to the W arm 2 so that it is vertical.
そ こ で、 こ の オ リ ジ ン設定時の レ ゾル バ 1 0 6 の読込 み を行 な ラ 。 こ の時の読込み値が r 0 - (第 3 図参照) であ る と する 。 一方、 前記 したバブルメ モ リ に記憶 さ れ て い る 、 ォ リ ジ ン設定時に対応 した レ ゾル バ の内挿誤差 e 0 を バ ブル メ モ リ 1 0 2 h よ り ァ ド レ ス · デ ー タ パ ス Therefore, the resolver 106 was read when setting this origin. Assume that the read value at this time is r 0-(see Fig. 3). On the other hand, the interpolation error e0 of the resolver stored in the above bubble memory corresponding to the time of setting the origin is calculated from the bubble memory 102h by the address memory. Data path
1 0 2 A 上 に 出力 し 、 刖 記 ¾C込値 Γ 0 か ら内挿誤差 s 0 を C P U 1 0 2 a に て引算 し てオ リ ジ ン設定位置の補 正 された絶対位置検出の基準値 r 。 を求め る 。 Output on the A 102 A, and subtract the interpolation error s 0 from the 刖 C embedded value Γ 0 by the CPU 102 a to detect the corrected absolute position detection of the origin setting position. Reference value r. Ask for.
次 に 、 第 5 図 ( b ) に 示 さ れ る よ う に、 多関節型 σ ホ 、 y 卜 の腕が任意の点で の絶対位置を求め る に は、 そ の 任意の点で の レ ゾルバ 1 0 6 か らの読込み値 r ' か ら バ プ レ メ モ リ 1 0 2 h に記憶されてい る そ の任意の点に対 l した レ ゾ、ル バ 1 0 6 の内挿誤差 e ' を 引算 し て補 2 さ れた値 r を求め る。 そ こ で、 こ の求め られた補正値 r と 刖 記 し た基準値 r 0 と か ら任意の点におけ る 正確な絶対 位置を 求め る よ う に する。  Next, as shown in Fig. 5 (b), to determine the absolute position of the arm of the articulated σ e, y at a given point, it is necessary to determine the absolute position at that point. From the read value r 'from the solver 106, the resolution to the arbitrary point stored in the pre-memory 102h, and the interpolation error e of the rubber 106 from the read memory 102h 'Is subtracted to find the complemented value r. Thus, an accurate absolute position at an arbitrary point is obtained from the obtained correction value r and the reference value r0 described above.
なお第 1 図 に お い ては.、 1 轴のみのサ ー ボ制御の説明 がな され て い る が、 複数轴制御に も適用 で き る こ と は言 う ま で も ない。 ま た 、 サーボモー タ 1 ひ 5 に は負荷 と し て ボ ッ ト の可動部 を示 したが工作機械な ど種 々 の N C 装置付機械の可動部 を接統させる こ と がで き る 。 In Fig. 1, although only one type of servo control is described, it can be said that it can be applied to multiple type control. Not surprising. Although the servomotors 1 and 5 show the movable parts of the bots as loads, the movable parts of various machines with NC devices such as machine tools can be connected.
産業上の利用可能性  Industrial applicability
*絶対位置検出装置は数値制裤装置を含むサ ー ボ系 の 絶対位置検出 に適用 されるだけでな く 、 レ ゾ ル バを使用 する位置検出装置全般に適用でき る も の であ る 。  * The absolute position detection device is applicable not only to the absolute position detection of a servo system including a numerical control device but also to any position detection device using a resolver.

Claims

0 ― 請 求 の 範 囲 0-Scope of claim
( 1 ) 可動部に連結 した レゾルバか ら な る位置検出手段 を有 し 、 該位置検出手段からの信号に よ り 可動部の絶対 位置を検出す る絶対位置検出装置は次を含む :  (1) An absolute position detecting device having position detecting means composed of a resolver connected to a movable part and detecting an absolute position of the movable part by a signal from the position detecting means includes the following:
a , レ ゾル バ の回転位置に対応する レ ゾ ル バ の内挿誤差 を記憶する 手段 ;  a, means for storing the interpolation error of the resolver corresponding to the rotational position of the resolver;
b , レ ゾ ル バ に よ り 可動部の絶対位置を検出す る 際、 レ ゾル バ の出力信号 を 前記記憶手段に記憶 された内挿誤差 に て補正する 手段。  b, means for correcting the output signal of the resolver based on the interpolation error stored in the storage means when the absolute position of the movable part is detected by the resolver.
( 2 ) 可動都 に連結 した レ ゾルバか ら な る位置検出手段 を有 し 、 該位置検出手段からの信号に よ り 可動部の絶対 位置を検出す る絶対位置検出装置は次を 含む : (2) An absolute position detecting device which has a position detecting means composed of a resolver connected to a movable city and detects an absolute position of the movable part by a signal from the position detecting means includes the following:
a , レ ゾル バ を 回転 させて レ ゾルバ の内挿誤差 を翻定す る 内挿誤差測定手段 ; a, interpolation error measuring means for rotating the resolver and translating the interpolation error of the resolver;
b , 該測定手段に よ っ て得られたデー タ を記憶す る デー タ の記憶手段 ;  b, data storage means for storing data obtained by the measurement means;
c , 絶対位置検出の基準点設定時に レゾルバか ら読込 ま れ る値 !: 。 ' と 前記'澳定手段か ら得 られ る レ ゾ ル バ の内 挿誤差 S 。 と に基づい て補正された絶対位置検出 の基準 値 Γ Q を得 る 手段 ; c, The value read from the resolver when setting the reference point for absolute position detection! : 'And the interpolation error S of the resolver obtained from the above-mentioned means. Means for obtaining a reference value Γ Q for absolute position detection corrected based on and
d , 任意の点での絶対位置を求める に あ た り 、 そ の時の レ ゾ ル バ に よ っ て読込まれる値 Γ ' と前記瀾定手段か ら 得 られ る レ ゾルバの内挿誤差 € ' に基づいて得 られる 任 意の点の補正 された値 Γ と 、 前記基準値 Γ 。 と か ら任意 1 一 の点での補正 された絶対位置を求める手段。 d, when calculating the absolute position at an arbitrary point, the value Γ 'read by the resolver at that time and the resolver interpolation error obtained from the above-mentioned means. A corrected value の of any point obtained based on € 'and the reference value Γ. And any from 1 Means for finding the corrected absolute position at one point.
( 3 ) 前記記憶装置は バブル メ モ リ であ る こ と を特徴 と する特許請求の範囲第 ( 1 ) 項または第 ( 2 ) 項記載の 絶対位置検出装置。 (3) The absolute position detecting device according to the above (1) or (2), wherein the storage device is a bubble memory.
PCT/JP1985/000361 1984-06-26 1985-06-26 Device for detecting absolute position WO1986000401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8686109799T DE3660992D1 (en) 1985-06-26 1986-07-17 Heating and/or air conditioning device for a motor vehicle interior compartment, particularly for a passenger vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13174684A JPS6110715A (en) 1984-06-26 1984-06-26 Absolute-position detecting system
JP59/131746 1984-06-26

Publications (1)

Publication Number Publication Date
WO1986000401A1 true WO1986000401A1 (en) 1986-01-16

Family

ID=15065217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000361 WO1986000401A1 (en) 1984-06-26 1985-06-26 Device for detecting absolute position

Country Status (2)

Country Link
JP (1) JPS6110715A (en)
WO (1) WO1986000401A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004461A1 (en) * 1987-11-04 1989-05-18 Doduco Gmbh + Co. Dr. Eugen Dürrwächter Process for determining the angle of rotation of an electric winding
US5053433A (en) * 1987-06-30 1991-10-01 Societe Anonyme Dite: L'oreal Cosmetic composition with anticellulitic and slimming action, in which the active principle is a 1-hydroxyalkylxanthine
US5409935A (en) * 1991-07-11 1995-04-25 Hoechst Aktiengesellschaft Xanthine derivatives for the treatment of secondary nerve cell damage and functional disorders after cranio-cerebral traumas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390315B1 (en) * 2000-12-30 2003-07-07 삼성탈레스 주식회사 Apparatus for measuring absolute angle and method thereof
JP2007267449A (en) * 2006-03-27 2007-10-11 Nsk Ltd Circuit and method for motor drive control
JP2009232551A (en) 2008-03-21 2009-10-08 Aisin Aw Co Ltd Drive and its manufacturing method
JP5282960B2 (en) 2009-03-31 2013-09-04 アイシン・エィ・ダブリュ株式会社 Drive device information management system and drive device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879661A (en) * 1972-01-26 1973-10-25
JPS4897561A (en) * 1972-03-27 1973-12-12
JPS5258554A (en) * 1975-11-10 1977-05-14 Mitsubishi Heavy Ind Ltd Thermocouple emf-temperature signal converter
JPS5614908A (en) * 1979-07-18 1981-02-13 Nippon Kogaku Kk <Nikon> Error corrected encoder
JPS5714717A (en) * 1980-06-30 1982-01-26 Heidenhain Gmbh Dr Johannes Interpolation
JPS58137709A (en) * 1982-02-10 1983-08-16 Tokyo Seimitsu Co Ltd Reading method of scale

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE406643B (en) * 1977-02-16 1979-02-19 Aga Ab ELECTRONIC CORRECTION DEVICE FOR A LENGTH OR ANGLE METER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879661A (en) * 1972-01-26 1973-10-25
JPS4897561A (en) * 1972-03-27 1973-12-12
JPS5258554A (en) * 1975-11-10 1977-05-14 Mitsubishi Heavy Ind Ltd Thermocouple emf-temperature signal converter
JPS5614908A (en) * 1979-07-18 1981-02-13 Nippon Kogaku Kk <Nikon> Error corrected encoder
JPS5714717A (en) * 1980-06-30 1982-01-26 Heidenhain Gmbh Dr Johannes Interpolation
JPS58137709A (en) * 1982-02-10 1983-08-16 Tokyo Seimitsu Co Ltd Reading method of scale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NITTA MATSUO, OMOTE RYOICHI (authors), "Denshi Kogaku Series", "Solid State Memory System no Sekkei", 5 June 1984 (05.06.84), Kosaido Sanpo Shuppan Kabushiki Kaisha, pages 82 to 113. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053433A (en) * 1987-06-30 1991-10-01 Societe Anonyme Dite: L'oreal Cosmetic composition with anticellulitic and slimming action, in which the active principle is a 1-hydroxyalkylxanthine
WO1989004461A1 (en) * 1987-11-04 1989-05-18 Doduco Gmbh + Co. Dr. Eugen Dürrwächter Process for determining the angle of rotation of an electric winding
US5409935A (en) * 1991-07-11 1995-04-25 Hoechst Aktiengesellschaft Xanthine derivatives for the treatment of secondary nerve cell damage and functional disorders after cranio-cerebral traumas

Also Published As

Publication number Publication date
JPS6110715A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
US4795954A (en) Resolver controlling method and apparatus
WO1986000401A1 (en) Device for detecting absolute position
JPH0772842B2 (en) Numerical control unit with tracking error detection function
JP2001336951A (en) Rotational position detecting apparatus and method
JPH0565827B2 (en)
JPS6073316A (en) Error correcting circuit of resolver
JPH0662322U (en) Absolute encoder device
CN113131818A (en) Hall sensor installation error identification method and device and motor control system
JPH04346069A (en) Speed signal generating circuit
US20240167804A1 (en) Angle detection method and angle detection device
JP3349575B2 (en) Displacement speed detection method and device
WO1986000430A1 (en) Apparatus for detecting absolute position of servo control system
KR930007778B1 (en) Zero point setting device of robot
JPH04285815A (en) Position counter circuit of rotary encoder
JPH07182046A (en) Position control system
JP3329142B2 (en) Position detection circuit
KR100219078B1 (en) Wire bonder servo-motor control device and method
JPH0469079A (en) Apparatus for sensing motor speed
JP2000227437A (en) Rotational speed detector
JPH04254709A (en) Rotary encoder with reference position output
JP2606337B2 (en) Digital control method for synchronous motor
JPS63111408A (en) Digital position detector
JPH0588751A (en) Positioning device
JPH0719849A (en) Apparatus and method for reading position
JP2006125853A (en) Position detection system

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB