WO1984003063A1 - Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement - Google Patents

Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement Download PDF

Info

Publication number
WO1984003063A1
WO1984003063A1 PCT/JP1984/000032 JP8400032W WO8403063A1 WO 1984003063 A1 WO1984003063 A1 WO 1984003063A1 JP 8400032 W JP8400032 W JP 8400032W WO 8403063 A1 WO8403063 A1 WO 8403063A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
hydraulic inorganic
raw material
porous substance
material containing
Prior art date
Application number
PCT/JP1984/000032
Other languages
French (fr)
Japanese (ja)
Inventor
Kohji Mitsuo
Norio Ohtsubo
Mitsuko Mitsuo
Yasuko Hinoue
Original Assignee
Mitsuo Sohgoh Kenkyusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuo Sohgoh Kenkyusho Kk filed Critical Mitsuo Sohgoh Kenkyusho Kk
Priority to AU24916/84A priority Critical patent/AU2491684A/en
Publication of WO1984003063A1 publication Critical patent/WO1984003063A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/46Arrangements for applying super- or sub-atmospheric pressure during mixing; Arrangements for cooling or heating during mixing, e.g. by introducing vapour
    • B28C5/462Mixing at sub- or super-atmospheric pressure
    • B28C5/464Mixing at sub- or super-atmospheric pressure at sub-atmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/29Mixing by periodically deforming flexible tubular members through which the material is flowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/55Mixers with shaking, oscillating, or vibrating mechanisms the materials to be mixed being contained in a flexible bag submitted to periodical deformation

Definitions

  • This invention is a method for producing a hydraulic inorganic composite, in which a hydraulic inorganic curing material is pressed into the pores of a fibrous, granular, flaky, lumpy, or other porous substance, and an apparatus for producing the same.
  • a hydraulic inorganic curing material containing a porous substance under reduced pressure, subsequently, restoring the pressure to substantially normal pressure, continuously kneading, and then removing and curing.
  • the present invention relates to a method and an apparatus for manufacturing a hydraulic inorganic composite.
  • hydroaulic inorganic composite refers to cement-based, slag-based, and silica-ash-based hydraulic inorganic-based curing raw materials.
  • the conventionally used concrete or motor is simply a mixture of cement, water and aggregate, and then cured.
  • a method of kneading a concrete raw material under reduced pressure in an effort to obtain a concrete excellent in compressive strength and suitable for processing is known. That is, the concrete
  • Fig. 1 is a side view of one example of a manufacturing apparatus for hydraulic inorganic composites
  • Fig. 2 is a view seen from above
  • Fig. 3 is a sectional view of the opening / closing part
  • Figs. 4 to 11 are composites. Schematic diagram showing eight examples of body manufacturing equipment
  • RNA 1 Figures 12 and 13 are schematic diagrams showing one example of the method for producing hydraulic inorganic composites, and Figures 14 and 15 also show one example of the method for producing hydraulic inorganic composites.
  • Schematic diagram, Figure 16 is a schematic diagram showing another example of the method for producing hydraulic inorganic composites
  • Figures 17 and 18 are schematic side views of two examples of hydraulic inorganic composite production equipment.
  • Fig. 19 is a schematic side view of one example of a manufacturing apparatus for hydraulic inorganic composites
  • Fig. 20 is a schematic front view of the same
  • Fig. 21 is a schematic view of a manufacturing apparatus for hydraulic inorganic composites.
  • Schematic front view Figure 22 shows a part of the container shown in Figure 18, Figure 23 shows a schematic view of one example of a hydraulic inorganic composite manufacturing apparatus,
  • Figures 24 and 25 show two examples of the discharging device
  • Figures 26 to 30 show the operation sequence of one example of the discharging device
  • figures 31 to 34 also show the discharging device. Diagram showing the operating sequence of one example
  • Figure 35 and Figure 36 are schematic diagrams showing two examples of hydraulic inorganic composite manufacturing equipment
  • Figure 37 is a figure for explaining one example of a fluid pump
  • Figure 38 is ⁇
  • Fig. 42 is a diagram for explaining 5 examples of the method for producing a hydraulic inorganic composite
  • Figs. 43 and 4 are an explanation for 2 examples of the method for producing a foamed hydraulic inorganic composite
  • Fig. 45 and Fig. 45 are diagrams for explaining one example of the method for producing a hydraulic inorganic composite.
  • Figures 1 and 2 show one example of a composite manufacturing device, where 1 is a mainframe and the mainframe 1 is connected by a cylinder 2.
  • a mixer frame 3 is rotatably provided.
  • the mixer shaft 5 protruding from the mixing drum 4 is supported by a bearing (not shown) of the mixer frame 3 and fixed to the mixing drum 4.
  • the pinion 8 mounted on the rotary shaft (not shown) of the motor is engaged, and the mixing drum 4 is rotated by the rotation of the prime mover 7.
  • the base arm 9 is fixed to one side of the mixer frame 3, and the end arm 1 is attached to the tip of the base arm 9 by the cylinder 10. 1 is rotatably pivoted, and is attached to the end of the end arm 1 1 through a swivel 12 force swivel bracket 13.
  • the sino-belt 1 2 has a baling 15 fitted inside the s- ive-lens 14 as shown in Fig. 3.
  • the hollow shaft 16 is rotatably mounted through the hollow shaft 16 and the hollow shaft 16 is closed on one side by the plug 17 and the other shaft L is integrated with the hollow shaft 16. It penetrates through the closed lid 18 and communicates with the inside of the mixing drum 4.
  • a hole is provided in the middle of the hollow shaft 16 so that it communicates with the suction port 19 provided on the svelcase 14 and between the svenor case 14 and the hollow shaft 16.
  • Rule 20 is provided.
  • the lid 1 8 is attached to the cylinder 1 0. It is detachably attached to the opening of the mixing drum 4 via the locking 21 and the bearing cover 2 2 and the retaining ring 23 are bearings. In addition to fixing 1 5, it also prevents the dropouts of the super case 1 4 and hollow shaft 1 6.
  • the above example is a composite using a rotating drum mixer.
  • the other concrete mixers are made of raw concrete using blast furnace slag as aggregate.
  • Into the mixing drum 4 of the manufacturing equipment A rotate the mixing drum 4 and vacuum-suck while kneading, repressurize, and then continue kneading. It is not so good that it can be taken out and cured.
  • the recompression pressure may be during the rotation of the mixing drum, at the same time as the rotation is stopped, or after the rotation is stopped. It is preferable to degas the blast furnace slag evenly by vacuum suction.
  • blast furnace slag was used as the porous material and cement and water were used as the curing raw materials.However, various materials were used for the porous material and the curing raw material, as described below.
  • the curing raw material is not only one agent but also multiple agents in many cases. Therefore, the blast furnace slag and the like are simply porous materials, the cement and water are curing materials, and the materials that constitute the curing material, such as cement.
  • a curing raw material containing a porous substance is a composite raw material, and the cured material is abbreviated as a composite.
  • Figures 4 to 11 show eight examples of composite manufacturing equipment consisting of an upper container 25 and a lower container 26 via a gate 24 that can be opened and closed.
  • the decompression pipe is provided in communication with the upper container 25, the decompression pipe 28 is provided in communication with the lower container 26, and both decompression pipes 2 7 and 2 8 are shown.
  • 2 9 is lower Diffusion plate provided at the bottom of the gate 2 4 of the vessel 26, 30 is an agitator provided in the upper container 25, 31 is an agitator provided in the lower container 26, 3 2 is A motor for driving and rotating the stirrers 3 0 and 3 1, 3 3 3 is a composite raw material, 3 4 is an introduction hole provided in the upper container 25, 3 5 is an outlet of the lower container 26, and O 0
  • FIGS. 4 to 6 A method of manufacturing a composite using the composite manufacturing apparatus B shown in FIGS. 4 to 6 will be described.
  • the gate 2 4 and the outlet 35 are closed, the vacuum suction device is activated, and the lower container 26 is evacuated through the pressure reducing tube 28. Reduce the pressure by pressing, open the lid of the upper container 25, put the composite raw material 33 in the upper container 25 to fill it, and close the lid tightly.
  • the composite raw material 33 drops into the lower container 26 due to the pressure difference and its own weight.
  • the composite raw material contained in the composite raw material 3 3 is pressed into the pores of the degassed porous substance existing in the curing raw material. ..
  • the discharge port 35 is opened here, the composite raw material 33 is taken out, and after kneading this with an appropriate mixer, it is placed in a mold and cured to obtain a composite.
  • the composite raw material is kneaded under reduced pressure to degas the porous material evenly, and the composite raw material 3 3 in the upper container 2 5 is depressurized in the lower container. While the porous material is allowed to fall into the inside of the chamber 26, the porous substance is degassed evenly, and the volume of the lower container 26 is larger than that of the upper container 25, and the volume of the lower container 26 is smaller.
  • the height of container 2 6 is large
  • the composite raw material 33 was not filled in the upper container 25, but was left in a space and dropped into the lower container 26. Good too. At this time, the pressure difference between the upper container 25 and the lower container 26 becomes large, and the composite raw material 3 3 falls vigorously into the lower container 2 6 and the composite raw material 3 3 easily disperses when falling. It is easy to uniformly degas porous materials, but since the degree of vacuum is low, it is necessary to make the lower container 26 larger than the upper container or to lower it.
  • the vacuum degree of 26 be higher than that of the upper container.
  • Producing apparatus B of the complex is shown in Figure 4 ⁇ Figure 6 is Ni would Yo manufacturing apparatus B t of the complex shown in FIG. 7, the lid of the upper container 2 5 and fixed, taken An introduction hole 34 and a pressure reducing pipe 27 for putting the composite raw material may be provided in.
  • this device B the composite raw material 3 3 is put into the upper container 25 from the introduction hole 3 4 to shut off and seal it, and the upper container 25 and the lower container are connected via the pressure reducing pipes 27 and 28.
  • the vacuum degree in the lower container 26 is set higher than that in the upper container 25, the composite raw material 33 drops due to the pressure difference and its own weight, and when the vacuum degree is the same. Is a composite raw material
  • Fig. 8 shows the umbrella-shaped diffuser plate 29 without a handle, which is located below the gate 2 4 in the lower container 26 of the composite manufacturing apparatus B described in Figs. 4 to 6.
  • a composite manufacturing apparatus B 2 is shown, and a composite is manufactured in the same manner as described above, but when the gate 2 4 is opened and the composite raw material in the upper container 25 is dropped, the composite raw material is a diffusion plate 2 It is easy for the porous material to be degassed while being dispersed by the 9 while falling into the lower container 26.When the composite material falls When the diffuser plate 29 is rotated by an appropriate means Dispersion fall of is more effective. It should be noted that a diffuser such as a grating may be used instead of the diffuser plate 29.
  • Figure 9 is shows a manufacturing device B 2 of the complex in which a stirring odor 3 1 to the lower container 2 in 6 of the manufacturing apparatus B complexes described in Figure 4- Figure 6, the mixing tool 3 1 Since it is provided, the bottom of the lower container 26 is formed horizontally.
  • the manufacturing method of the composite is the same as the manufacturing equipment of the composite shown in Figs. 4 to 6 and Fig. 8, and the gate 2 4 and the outlet 35 are closed, and the inside of the lower container 26 is reduced.
  • the composite raw material that dropped into the lower container 26 was stirred with a stirrer 31 to restore the pressure, and then kneaded, and then the discharge port 35 was opened and the composite raw material was opened. It goes out and cures this.
  • the recompression pressure may be during stirring, at the same time as stopping stirring, or at any time after stopping stirring.
  • This device When using, close the outlet 35 and the gate 24, put the composite raw materials or materials (for example, cement water, blast furnace slag, etc.) in the upper container 25, and Open to drop the composite raw material or material into the lower container 26, close the gate 2 4 to seal the lower container 26, operate the motor 3 2 and rotate the stirrer 31.
  • the composite raw material or the material is stirred and kneaded, and the inside of the lower container 26 is depressurized through the pressure reducing pipe 28, the pressure is restored, and the kneading is continued. It may be taken out and cured.
  • the upper container was used as a meter or hopper.
  • FIG. 10 shows a composite structure in which an openable / closable gate 2 4 is provided between an upper container 25 equipped with a stirrer 30 and a pressure reducing pipe 27, and a lower container 2 6 equipped with a pressure reducing pipe 28.
  • Body manufacturing device B 4 is shown, and when using this device to assemble the composite, the composite raw material is put into the upper container 2 5 through the introduction hole (not shown), and the upper container 2 5'is hermetically sealed and the pressure reducing pipe 2 7 via the upper container
  • the lower container 25 may be dropped, the composite raw material may be taken out by recompressing the lower container 25, kneaded with an appropriate mixer, and then cured. It is also possible to put the material in the upper container 25 instead of the composite raw material, stir and knead it with the stirrer 30 to obtain the composite raw material, and perform the above steps to take out the composite raw material and cure it.
  • the upper container may or may not be closed when kneading the ingredients. Ie upper container
  • stirrer 30 If a stirrer 30 is installed in 25, it is possible to put materials such as cement, water, and blast furnace slag into the upper container 25 and stir and knead to combine the composite raw materials. If it is possible to hermetically decompress the inside of 2 5 and stir the mixed raw material, then re-pressurize it and drop it into the lower container 26, the stirrer 30 is used only for the production of the mixed raw material. It is also possible to decompress the lower container 26 and then drop the composite raw material into it to restore the pressure. At this time, the introduction hole may be blocked or opened 0
  • Figure 11 shows the open / close gate 2 4 between the decompression pipe 27 and the upper container 25 equipped with the stirrer 30 and the lower container 2 6 equipped with the decompression pipe 28 and the stirrer 3 1.
  • FIGS. 12 and 13 show a deformable rubber valley 3 ⁇ 4 ⁇ 3 ⁇ having a pressure reducing pipe 38 connected to a vacuum suction device (not shown) and a linear pressing tool for reciprocating movement.
  • An example of an apparatus for producing a composite body formed by 3 9 is shown.
  • When connecting a composite body by this equipment first put the material in the container 3 6 and put the lid on. And then seal it, and reciprocally move the pressing tool 39.
  • Valley I? The material inside was kneaded by kneading through 3 6 and the material 4 1 became a composite material, that is, after the material 4 1 was kneaded well, the inside of the container 3 6 was put through the decompression pipe 3 8.
  • the pressure in the container 36 was restored, and the kneading and kneading were continued.
  • the reciprocating motion of the pressing tool 39 was stopped and the lid was opened to open the internal composite Then, the composite is taken out and cured to form a composite.
  • Fig. 12 and Fig. 13 it is more effective for the horizontal pressing tool and the vertical pressing tool to perform the kneading effectively. It can be carried out.
  • the pressing device 42 is moved circularly about the base 4 3.
  • the material 41 may be kneaded through the container 36 by the circular motion of the pressing tool 42 or the composite raw material under reduced pressure may be stirred.
  • Figures 14 and 15 show a manufacturing apparatus for a composite in which a bag 40 is provided on the side wall and the bottom of a container 37 having a decompression pipe 38 connected to a vacuum suction device (not shown). C, is shown, and by alternately expanding and constricting the side wall bag 40 and the bottom bag 40, the material 41, which is placed in the container 37 and sealed, is kneaded. Depressurize the inside of the container 37 when 4 1 is kneaded, re-pressurize when the porous material is thoroughly degassed, and continue kneading, then stop the expansion and constriction operation of the bag 40. The composite raw material in container 37 is taken out and cured.
  • the expansion and constriction operation of the bag 40 is performed by using a hydraulic cylinder or a pneumatic cylinder to move water and air in and out.
  • a deformable container 36 as shown in Fig. 12 put a deformable container 36 as shown in Fig. 12 in the container 37, insert a bag 40 between the container 36 and the container 37, and insert the bag 40 into the container 40.
  • the material 41 may be kneaded through the container 36 by the expansion and constriction operation, or the composite raw material under reduced pressure may be agitated.
  • FIG. 17 shows a complex manufacturing apparatus D composed of pedestals 4 4 on both sides and a container 4 6 reciprocally mounted between them.
  • a decompression pipe 4 7 connected to a vacuum suction device (not shown) is provided, and the reciprocating shafts 4 8 fixed on both sides are inserted into the oblique holes 4 5 of the frame 4 4 and
  • the container 4 6 is configured to reciprocate by sliding on it.
  • the linear reciprocating motion of the container 46 may be horizontal reciprocating motion or vertical reciprocating motion.
  • the reciprocating motion may be an oscillating reciprocating motion as in the composite manufacturing apparatus shown in Fig. 18 and the composite device shown in Fig. 19 and Fig. 20 may be used. It may be a circular reciprocating motion like the manufacturing device D 2 of.
  • OMPI At one time, only one pressure reducing pipe 52 is required. Further, as shown in Fig. 22 2, if a baffle plate 5 3 is provided in the container 49, the swing of the container 49 can be increased. 5 4 is a lid provided on the introduction hole, 5 5 is a lid provided on the outlet, 4 1 is a material, and 5 2 is a pressure reducing pipe.
  • the composite manufacturing apparatus D 2 shown in Figs. 19 and 20 was constructed such that the container 5 7 was circularly reciprocated between the pedestals 5 6 and 5 6 on both sides. Therefore, the rotating shaft 5 9 is rotatably supported on the frame 5 6, and the projecting sled 5 8 of the container 5 7 is rotatably supported on the rotating plate 6 0 fixed to the rotating shaft 5 9.
  • the motor (not shown) is operated to rotate the rotary shaft 59, the rotary plate 60 rotates, and the container 57 rotates in a circular motion. It is being touched. That is, the material is placed in a container 5 7 and sealed, and the container 5 7 is circularly reciprocated to knead, and after the composite raw materials are connected, a vacuum suction device (not shown) is operated to reduce the pressure. Depressurize the inside of the container 57 via 1 and re-pressurize it when the porous material is degassed evenly, and continue to knead, then stop the circular reciprocating motion of the container 57 to stop the composite raw material. Then, the composite is taken out and cured to form a composite.
  • Fig. 21 shows the case where a container 6 3 is installed between the pedestals 6 2 and 6 2 on both sides so that it can be reciprocated by changing its mounting-shafts 6 4 and 6 4, and Fig. 17 It can be applied to composite manufacturing equipment.
  • Fig. 23 shows one example of a composite manufacturing device in which a discontinuous mixer 65 and an ejector 6 6 are combined, and 6 7 is a continuous mixer.
  • a prime mover driving 6 5, 6 8 is a vacuum suction device for reducing the pressure in the continuous mixer 65, 6 9 is a vacuum tank for reducing the fluctuation of atmospheric pressure, 7 0 is a gauge, and 7 1 is 7 1.
  • Hon, which contains the porous material. 1 and 7 2 are connected to the hopper 7 3 of the rotary feeder 1 7 4 provided on the continuous mixer 6 5 and the One is a pellet feeder that conveys the porous material inside one, one is a speed controller that controls the speed of the pellet feeder 7 2, and 7 6 is a belt feeder.
  • Belt scale provided on 7 2
  • 7 7 is a curing raw material storage tank equipped with an agitator 7 8 and 7 9 is a continuous mixer 6 through which the curing raw material in the storage tank 7 7 is fed through the base of the rotary feeder 1 7 4.
  • 5 is a variable-capacity pump installed on the transfer pipe 80
  • 8 1 is a variable-capacity pump on the transfer pipe 80.
  • Flow meter installed between 9 and continuous mixer 65, 8 2 is a ratio controller connected to flow meter 8 1 and belt scale 7 6, 8 3 is a discharge device 6
  • Three sets of valves installed in series with 6 and 8 4 are hoppers for storing the composite raw materials discharged from the discharge device 6 6.
  • the multi-purpose cart in the hopper 71 is the belt feeder 1 7 2 and the rotor feeder 1 7 4 is the hopper that is the docking point. It is transported to 7 3, but at this time, the speed of the belt feeder 7 2 can be adjusted by the speed controller 7 5 and an arbitrary amount can be supplied. .. Mat porous material
  • the ratio of the curing raw material to the quality is set in advance in the ratio controller 82, it will be detected by the belt scale 7 6 provided in the pelt feeder 1 7 2.
  • the variable capacity pump 7 9 is controlled so that the amount of the curing raw material detected by the flow meter 81 becomes a preset ratio with respect to the amount of the porous material.
  • the ratio of the curing raw material (cement paste in the example) and the porous material (blast furnace slag in the example) is set in the ratio controller 82, and the rate controller 75 is used to set the percentage of the pellet.
  • the speed of the loader 7 2 is controlled, and the curing raw material, which is bound by a mixer (not shown), is put into the storage tank 7 7 and stirred by the stirrer 7 8 while the variable capacity type pouring is performed.
  • the pump 7 9, belt feeder 7 2, rotary feeder 1 7 4, continuous mixer 6 5 and vacuum suction device 6 8 are activated, a prescribed amount of curing is achieved.
  • the raw material and the porous material are continuously supplied into the continuous mixer 65, and are kneaded in the continuous mixer 65 under reduced pressure to be a composite raw material, and then from the upper outlet.
  • a negative pressure is applied to the pile, and it falls into the discharge device 6 6 due to its own weight, and is discharged to the hopper 1 8 4 by the operation of the three sets of valves 8 3 and is recompressed.
  • the discharge device 6 6 is composed of a pressure receiving plate 6 6 a and three sets of valves 8 3 and the valve 8 3 is composed of a bag 8 3 a and a cylinder 8 3 b. It is configured and each bag 8 3 a is in communication. If only the piston rod of the upper cylinder is retracted as shown in the figure above, the composite raw material connected by the continuous mixer 65 will fill the upper bag. Next, retract the intermediate cylinder's steel rod and
  • FIGs 26 to 30 show the operating sequence of the ejector cylinders consisting of the pressure plate 6 6a, one flexible tube 8 3'a and 3 cylinders. , 8 3 c is the cylinder's best rod. That is, three sets of valves are formed by the pressure receiving plate, the flexible pipe, and the three cylinders.
  • One flexible tube was used in place of the three bags of the discharge device in Fig. 23, and since the discharge principle is the same, the cylinder of this discharge device is The operating sequence is used for the ejector of Figure 23 and the operating sequence of the cylinder of Figure 23 is used for the ejector.
  • the discharge device described above uses three sets of valves, but as shown in Figs. 31 to 34, the discharge device using two sets of valves is a continuous mixer. It is possible to discharge complex material without hindering the depressurized state inside the mixer 65. Since this ejector is merely the one with the middle cylinder of the ejector shown in Fig. 26 to Fig. 30 removed, the detailed structure is omitted.
  • Tongue 8 3 c is advanced, lower piston rod 8 3 c is retracted as shown in Figure 34, and then as shown in Figure 31. Then, the lower booth rod 8 3 c is moved forward, and this operation is repeated in sequence to intermittently discharge the composite raw material squeezed in the continuous mixer 65.
  • vibration can be applied to the pressure plate or flexible pipe.
  • Fig. 24 shows another ejector, which is a continuous mixer 65.
  • An upper container 8 5 and a lower container 8 6 communicating with the upper container 8 5 are provided at the discharge port.
  • the lower container 8 6 is connected to a vacuum suction device 68 via a vacuum valve 8 8 and is connected to the upper and lower parts.
  • the composite raw material accumulates in the upper valley 3 ⁇ 4 ⁇ 8 5 when the mixer 65 is operated.
  • the inside of the bottom container 8 6 is also at the same atmospheric pressure as the inside of the continuous mixer 6 5, so the top volume F 8
  • opening the upper valve 8 7 moves the composite material in the upper container 8 5 into the lower container 8 6.
  • the composite raw material is discharged from the lower container 8 6 and the composite raw material is collected in the upper container 8 5. .. This operation is repeated to intermittently discharge the composite raw material.
  • the figure shows an example of another discharge device, which shows a continuous mixer.
  • a downward pipe 8 9 provided in communication with the discharge port of 6 5 has a level detector (not shown) or a weight measuring device (not shown) and an openable gate 90 at the lower end. It has been done.
  • F is the force to push up the composite raw material in the downward pipe 8 9 and P is the atmospheric pressure.
  • P is the atmospheric pressure.
  • the formula F ( P.Pt ) A holds, and the composite in the downward pipe 89 is Raw material height h, weight
  • the continuous production apparatus for composites has been described above, but the composite material discharged from the discharge device to the hopper 84 is kneaded again, taken out, and cured to obtain a composite.
  • the carrier pipe 80 is connected to a water source or a curing raw material tank (not shown) (instead of the storage tank 77). ) And a belt feeder 1 7 2 provided with a hopper 7 1 and a belt scale 7 6 are provided, and a plurality of materials for the porous material are rotatably fed. It may be supplied to the hopper 7 3 of the feeder 7 4. Immediately, water may be supplied to the continuous mixer 65 through the discharge pipe 80, and porous material, cement, or sand may be supplied from a plurality of belt feeders. In addition, a rotary feeder may be used instead of the discharge device 66, and a rotary feeder may be used instead of the rotary feeder.
  • the composite raw material may be supplied to the continuous mixer 65 to prevent degassing of the porous material, and then discharged from the discharge device to restore the pressure.
  • a diaphragm or a pinch valve is suitable for the par 8 3 and 8 7.
  • Figure 35 shows one example of continuous production equipment for composites, and 91 is
  • OMPI 2 is a supply pipe
  • 9 3 is a diffusion plate
  • 9 4 is a discharge pipe
  • 9 5 is a decompression pipe connected to a vacuum suction device (not shown)
  • 9 6 is a pressure pipe connected to a compressor (not shown), 9 7 is provided in the container 9 1.
  • the agitator 9 6 is a motor for rotating the agitator 9 7.
  • the supply pipe 9 2, the discharge pipe 9 4, and the pressurizing pipe 9 6 are closed, the vacuum suction device is operated to reduce the pressure of the container 9 1 via the decompressing pipe 9 5, and then the supply pipe 9 2
  • the composite raw material is dispersed by the diffusion plate 9 3 provided at the lower part of the supply pipe 9 2 and drops into the container 9 1.
  • the supply pipe 9 2 and the decompression pipe 9 5 are closed, and the discharge pipe 9 4 and the pressurization pipe 9 6 are opened.
  • the composite raw material in the container 9 1 is discharged from the discharge pipe 9 4.
  • stop the operation of the compressor close the pressure pipe 9 6 and the discharge pipe 9 4, and open the decompression pipe 9 5 to activate the vacuum suction device, so that the pressure inside the container 9 1 is reduced.
  • the composite raw material is intermittently discharged from the discharge pipe 94, and it is cured to connect the composite. It may be replaced with another disperser. May this and not even among cormorants Yes you are stirring in the stirring device 9 7 the complex raw materials of under reduced pressure.
  • the supply pipe 92 may be provided with a mouth tally feeder, the above-mentioned discharge device, etc., and may be automatically controlled to supply the composite raw material quantitatively.
  • Fig. 36 shows an example of a discontinuous manufacturing device for composites
  • 9 9 indicates The cylinder
  • 1 0 0 is the cylinder 9 9 piston
  • 1 0 1 is the cylinder wall
  • the bottom of the cylinder wall 1 0 1 is below it.
  • a hole 10 2 communicating with the integrally formed container 10 3 is provided, and the hole 10 2 is provided with a filter.
  • the container 103 is provided with a supply pipe 1104, a discharge pipe 105, a pressure reducing pipe 106, and a pressurizing pipe 107. That is, a cylinder 999 was added to the continuous production system for composites shown in Fig. 35, and the method for producing composites is the same as that explained in Fig. 35.
  • Figure 37 shows a fluid pump ⁇ which can also be used in place of the other rotary feeders 74 that can be used in the discharge device.
  • 1 0 8 connects both ends of the semicircular type.
  • a substantially semicircular casing with a cross-sectional shape extending in the line direction, 109 is a flexible tube arranged in a U shape along its inner surface, and 110 is a casing. It is an arm that rotates concentrically with the semi-circular portion of the casing 1 0 '8, and a lower arm of the same contour is provided below the arm 1 10 and the drive shaft 1 1 3 are inserted into the central bearing of the arm 1 10 and the central bearing of the lower arm, and the driven shafts 1 1 4 and 1 1 4'are the end bearings of the arm 1 1 0, respectively. It is fitted to the end bearing of the lower arm.
  • the drive shaft 1 1 3 has drive shaft sprockets 1 15 attached to the upper and lower parts, respectively, and the upper drive shaft sprockets 1 1 5 and the driven shaft 1 1 5
  • a chain 1 1 6 is wound between a driven shaft sprocket 1 1 1 fixed to the upper part of 4 and a lower drive shaft sp ⁇ 1 1 5 and driven shaft 114 lower part.
  • a chain 1 1 6 ′ is wound between the driven shaft sprocket 1 1 1 ′ fixed to the drive shaft 113, and when the drive shaft 113 is rotated in the direction of the arrow by the power, the driven shaft 1 1 1 1 ′ is rotated.
  • the continuous mixer 65 shown in Fig. 23 can be installed and used in place of the discharge device 66, and the material supplied to the continuous mixer 65 is a composite raw material. In the case of a liquid such as the above, it can be used in place of the mouthpiece feeder 1 74.
  • a fluid pump that conveys fluid in a flexible tube while L is also known, and the fluid pump including the fluid pump E described above is collectively referred to as F.
  • F the fluid pump including the fluid pump E described above is collectively referred to as F.
  • 1 1 7 is a storage tank for temporarily storing the composite raw material 1 3 0, which is connected by the continuous mixer 1 1 8 etc.
  • 1 1 9 is a supply pipe for supplying composite raw material from a storage tank 1 17 to a container 1 2 0 or a continuous mixer 1 2
  • 1 2 2 is a container 1 2 0 or a continuous mixer.
  • Vacuum suction device installed in 1 2 1 via decompression pipe 1 2 3
  • 1 2 4 is gas-liquid separator installed in decompression pipe 1 2
  • 1 2 5 is container 1 2 0 or continuous
  • the discharge pipe for discharging the composite raw material from the mixer 1 2 1, F is installed in the supply pipe 1 1 9 and the discharge pipe 1 2 5.
  • O PI _ It is a pump for fluids, and flexible pipes on both sides of the pump are attached to the flood picture tube 1 19 and the discharge tube 1 2 5.
  • 126 is a rotary diffuser plate provided in the container 120 shown in Fig. 39-1 2 7 is an agitator provided in the container 120 shown in 40-1 2 8 is a rotary type A diffuser 1 2 6, a stirrer 1 2 7 and a prime mover for driving the warped continuous mixers 1 1 8 and 1 2 1 respectively
  • 1 2 9 is a supply pipe 13 inside the continuous mixer 1 1 8 in Fig. 42.
  • the material supplied through 1 and 1 3 2 are discharge pipes for discharging the composite raw material 1 3 0 mixed and kneaded by the continuous mixer 1 1 8 to the storage tank 11 1 ⁇ .
  • all of the composite manufacturing devices shown in Figs. 38 to 42 store the composite raw material 130 made by kneading a plurality of materials with a continuous mixer 118 or the like.
  • the fluid pump of the supply pipe 1 1 9 is temporarily stored in 1 1 7 and is stored in a container 1 2 0 or a continuous mixer 1 2 1 whose pressure is reduced by a vacuum suction device 1 2 2. While it is continuously supplied via F, it is discharged via the fluid pump F of the discharge pipe 1 2 5 and is recompressed and discharged to a hopper or the like not shown.
  • the recompressed composite raw material is kneaded with an appropriate mixer, taken out, and cured to obtain a composite.
  • the height of the container 120 is increased so that the composite raw material is uniformly depressurized when dropped. Therefore, in the device shown in Fig. 39, the depressurizing effect due to the dispersion of the composite raw materials is taken into consideration by using the rotary diffuser plate 1 2 6 (either a fixed diffuser plate or a disperser may be used). ..
  • the composite raw material of Fig. 41 and Fig. 42 is stirred by a stirrer and the uniform decompression of the composite raw material is considered by utilizing the expansion of continuous mixer .1 21 under reduced pressure. It is being touched.
  • the mixer for supplying the composite raw material to the storage tank 1 17 by the above-mentioned manufacturing apparatus is not limited to the continuous mixer 1 18 shown in Fig. 42, but the storage tank 1 1 7 As long as the composite raw material is stored in the inside of the mixer, it may be a mixer that connects the composite raw material for each lot.
  • Figures 43 and 44 show two examples of production equipment for producing a foam-containing composite material by further entrapping the composite material 1300 produced as described above into a foam-containing composite material.
  • F is the fluid pump provided in the discharge pipe 1 2
  • 1 3 3 is a foaming machine
  • 1 3 4 is A foam supply pipe for supplying the foam made by the foaming machine 1 3 3 into the mixer 1 3
  • 1 3 6 is discharged from the discharge pipe 1 2 5 into the mixer 1 3 5.
  • 1 3 8 is a prime mover driving the stirring tool 1 3 6
  • 1 3 9 Is a discharge pipe that discharges the foam composite material that has been packed in the mixer 1 3 5;
  • 1 4 0 is a storage tank that temporarily stores the foam composite material 141 that is discharged from the discharge pipe 1 3 9;
  • 4 2 is a discharge pipe for discharging the foam composite material 1 41 in the Lizhong Kwa 1 4 0,
  • F is a fluid pump provided in the discharge pipe 1 4 2
  • 1 4 3 is a continuous mixer.
  • a foam composite material that is kneaded and mixed with foam, 1 4 7 is a foam composite material that is connected by a continuous mixer 1 4 1 It is a discharge pipe that discharges 45 o
  • a mixer for kneading the composite raw material after decompression is provided in the middle of the discharge pipe 1 25.
  • the mixer 1 3 3 mixes the composite raw material discharged from the discharge pipe 1 2 5 with the discharge pipe 1 3 9 closed and the foam created by the foaming machine 1 3 3. Mix the mixture in 5 to fill the foam composite raw material, open the discharge pipe 1 3 9 and discharge it to the storage tank 1 4 0.Continue from the discharge pipe 4 2 by operating the pump F for fluid.
  • the composite foam raw material is connected to each wire, so the supply of the composite raw material to the mill ⁇ 1135 is shown in Figs. 38 to 42. Instead of supplying from the device in the figure, it may be supplied from the device as described in FIGS. 1 to 36.
  • the device shown in Fig. 44 continuously feeds the composite raw materials continuously supplied from the discharge pipe 1 2 5 and the foam continuously supplied from the foaming machine 1 3 3 to the continuous mixer 1 4 4.
  • the mixture is kneaded to form a composite foam, and this is continuously discharged from the discharge pipe 1447.
  • the discharge amount of the pump F for fluid and the flow rate of bubbles detected at h m.st 1 4 3 are controlled by a controller (not shown) to connect the sapphire composite raw material with an arbitrary mixing ratio.
  • (1) 4 6 is a motor, it is a prime mover driving a continuous mixer-1 4 4 ⁇ 5>.
  • the material or composite raw material may be stirred under reduced pressure.
  • the composite raw material under reduced pressure may be recompressed while being stirred.
  • Porous materials include pearlite, glass foam granules, blast furnace slag, meteorites, man-made bean aggregate (mesalite, celite, etc.), porous slag, and carbon.
  • Silicon carbide, glass, alkalous glass, metal, silicon nitride, synthetic resin, etc. can be used, and 1 or 2 or more of the above porous materials can be used for composite materials. can do.
  • Fibers, pieces, grains, lumps, and other shapes can be used as the porous material, and one or more of the above porous materials can be used as the composite raw material. can do.
  • a hydraulic inorganic type (cement type, dregs type, and silica ash type) curing raw material can be used.
  • Drying, heating, steam curing, autoclave curing, etc. can be used to cure the composite raw material.
  • the internal pressure of the interior of the mixing chamber 4 is restored to the atmosphere, the rotation of the mixing chamber 4 is stopped, the lid '18 is opened, and the mixing chamber 4 is tilted to produce the composite raw material. It was taken out, cast into a mold, molded, and cured by steam curing, and then released from the mold to obtain a composite steel (concrete).
  • the composite raw material (uncured concrete) has a slump of 7.5 cra, the compressive strength of 7 scoops is 407.6 kg / cnf, and the compressive strength after scooping is 5 4 8 It was found that the strength was kg / cnf, which was slightly higher than that of what was cured without being depressurized.
  • various compounding ratios and particle diameters of the materials were tested, but in the case of a composition intended for high strength, the maximum compressive strength of 960 kg / cni could be obtained.
  • a compressive strength of 600 to 900 kg / erf can be obtained relatively easily, and bending strength and tensile strength also increase with this, and a uniform mouth with little variation is obtained.
  • the following table shows the slump value and the test value of the compressive strength of the composite obtained in Example 1, Reference Example 1 and the conventional conventional technique.
  • the decompressed one has a higher strength than the non-decompressed one and the blast furnace slugger has a higher strength than the one using gravel. What is more, the blast furnace sludge was decompressed, decompressed, and kneaded for 30 minutes and then taken out. Only when the lamp was large, there was no bridging, and it was not possible to believe that the strength was even stronger.
  • the difference between the test ⁇ 3 ,: 4 and the test Not 5, 6 and 7 is that the blast furnace slag used in the test NOL 3 and 4 has a large drainage rate. This is due to the low water content of the blast furnace slag used for tests ⁇ 5, 6, and 7.
  • the pressure-time cement mill is rapidly injected into the furnace slag, which causes the residual air in the blast furnace slag to be compressed and become higher than normal pressure. It is considered that only the water in the lag is gradually released to the outside of the blast furnace oa; i> ⁇ There is a lot of bridging that was taken out immediately after the pressure was restored. Therefore, it is considered that the water released from the blast furnace slugged well and did not knead.
  • a foaming agent consisting of a stabilizer, a surfactant, and water are used to generate foam. That is, the composite raw material (uncured concrete) prepared in Example 1 was mixed with the above-mentioned foam in a volume ratio of 3: 1 to form the combined foamed composite raw material into a mold. It was cast into a frame and cured to obtain a lightweight high-strength composite (lightweight high-strength cellular concrete).
  • blast furnace slag powder such as crushed blast furnace slag, cement and water were used to set the blast furnace slag with a water content ratio of about 55% by the method of Example 1.
  • a slurry (composite raw material) in which a hot substance has been pressed may be obtained, and then a foam may be mixed and cured to form an air bubble concrete (composite).
  • foams to form a foam-containing composite material if the water mixture of the foaming agent used for foaming and water is used as the water during the production of the composite material, It is easy to adjust the bulk specific gravity of.
  • a water reducing agent such as a cellulosic type
  • a composite material having a low water cement ratio can be obtained to obtain a composite having high strength. 3
  • the manufacturing apparatus described in the figure is used, the present invention can be carried out by using other manufacturing apparatuses disclosed in this specification and the drawings and by using other porous materials. .. In these cases as well, the effect of the same tendency as that of the above-described embodiment was obtained, and therefore the details are omitted.
  • the present invention can have the following embodiments.
  • Manganese and / or manganese ore fine powder, or slate, penite, zeolite, or a mixture of one or more of them is suitable. It is possible to add the composite raw material ⁇ A, add the composite raw material under a reduced pressure, re-pressurize it, and then continue to knead and take it out, and cure it to obtain a salt-acid resistant composite.
  • IT can be an acidic complex
  • Blast furnace cement rapid hardening cement, heat hardening cement, etc. can be used for cementing.
  • a hydraulic inorganic composite such as a cement system or a water slag system in which a blast furnace slag is used as the porous material or is further foamed.
  • a blast furnace slag is used as the porous material or is further foamed.
  • silica-based composite using blast furnace slag as the porous material.
  • the silica ash-based composite material under reduced pressure is decompressed and then kneaded, and a foaming agent such as aluminum powder is mixed with this to foam and then autoclave cured to cure.
  • a foaming agent such as aluminum powder
  • Porous fibers, carbon fibers, silicon carbide, silicon nitride ', or metal porous fibers or porous particles (either single or lump) may be used as the porous material.
  • the gist when the product or method used in one embodiment can be applied or used in another embodiment, the gist is not changed. Can be used in other embodiments or can be used.
  • the curing raw material is pressed into the porous substance to improve the strength of the porous substance, the multiple substance and the cured product are integrated, and the composite is compressed.
  • the strength is high, the tensile strength and bending strength are both increased, cracks are less likely to occur, and the tenacity is strong. It is easy to perform surface molding with little brittleness.
  • both the manufacturing method and manufacturing equipment are simple, and it is possible to reduce the amount of cement used.
  • non-porous metal-based or carbon-based Silicon carbide-based, silicon nitride-based, or'synthetic resin-based fiber is used as a raw material for curing a porous material by connecting the composite raw material, repressurizing the composite raw material under reduced pressure, and then kneading and curing. Not only the press-fitting, but also the adhesion strength between the fiber and the cured raw material is improved, and a composite having higher bending strength and tensile strength can be obtained.
  • the composite material that has been kneaded and kneaded can be mixed with foamed polystyrene 13 — glue, pellets, etc., and the mixture can be cured to form a complex composite. It has various methods and uses, and its uses are extremely wide.
  • the hydraulic inorganic composite obtained according to the present invention has high ridge strength, tenacity, few cracks, and excellent surface formability. As a result, various types of reinforced concrete construction work and concrete vessels, various types of prestressed concrete, and concrete piles are manufactured. It is a technology that can be widely used as a concrete material for manufacturing.

Abstract

Method and apparatus for manufacturing a hydraulic inorganic composite formed by forcing a hydraulic inorganic hardening material into voids in a fibrous, granular, laminar, or massive porous substance. More particularly, the invention pertains to a method and apparatus for manufacturing a hydraulic inorganic composite wherein a hydraulic inorganic hardening material in which is mixed the porous substance is placed in a vacuum, the pressure is returned to substantially normal pressure, and subsequently the material is kneaded together before being removed to harden. The term "hydraulic inorganic hardening material" includes a cement, slag or wollastonite hydraulic inorganic hardening material. The hydraulic inorganic composite obtained by the invention has a high compressive strength and viscosity, and hardly cracks, and also has an excellent surface formability so has a wide applicability in various industrial fields including architecture and civil engineering.

Description

明 細 多孔物質を骨材ない し捕材とする水硬性  Hydraulic property that uses fine porous material as a capture material without an aggregate
無機質系複合体の製造法及び製造装置  Inorganic composite manufacturing method and manufacturing apparatus
( 技術分野 ) ( Technical field )
こ の発明は、 繊維状、 粒状、 片状、 塊状等の多孔物質 の気孔に、 水硬性無機質系硬化原料を圧入 してな る水硬 性無機質系複合体の製造法と、 その製造装置と に関する 特に、 上記の多孔物質が内在する水硬性無機質系硬化原 料を減圧下にお き、 続いて実質的に常圧下に復圧 し、 引 続き 混練 した後取出 して硬化 させる こ と を特徵とする水 硬性無機質系複合体の製造法およ び製造装置に関する。  This invention is a method for producing a hydraulic inorganic composite, in which a hydraulic inorganic curing material is pressed into the pores of a fibrous, granular, flaky, lumpy, or other porous substance, and an apparatus for producing the same. In particular, regarding the above-mentioned hydraulic inorganic curing material containing a porous substance under reduced pressure, subsequently, restoring the pressure to substantially normal pressure, continuously kneading, and then removing and curing. The present invention relates to a method and an apparatus for manufacturing a hydraulic inorganic composite.
こ 、 に水硬性無機質系複合体と は、 セ メ ン ト 系、 水滓系 およ び珪灰系の水硬性無機質系硬化原料をい う 。  Here, the term "hydraulic inorganic composite" refers to cement-based, slag-based, and silica-ash-based hydraulic inorganic-based curing raw materials.
( 背景技術 )  (Background technology)
従来一般に使用 さ れてい る コ ン ク リ 一 ト ゃモ ル タ ルは 単にセ メ ン ト と水及び骨材を混練 して硬化させた も のが 多 く 、 こ の場合セ メ ン ト と骨材の付着効果が少 く 、 骨材 が多孔質の場合は気孔中の空気が付着を阻害 し、 骨材そ の ものの強度を良好に利用する こ と ができ ない欠点があ つ'プ^■ 0  In many cases, the conventionally used concrete or motor is simply a mixture of cement, water and aggregate, and then cured. In this case, the cement and When the aggregate is porous, the air in the pores hinders the adhesion, and the strength of the aggregate itself cannot be utilized well, which is a drawback. ■ 0
圧縮強度において秀れ、 又加工に適 した コ ン ク リ 一 ト を得る ための努力 と して、 コ ン ク リ 一 ト 原料を減圧下に 混練する方法は、 公知であ る。 すなわち、 コ ン ク リ ー ト  A method of kneading a concrete raw material under reduced pressure in an effort to obtain a concrete excellent in compressive strength and suitable for processing is known. That is, the concrete
" σΜίΐ一"σΜίΐichi
— ...ΤΤΐ Τ— ... ΤΤΐ Τ
、 舰 ノ 原料を ミ キサー内で混練 しなが ら減圧 し、 復圧 した後取 出 して硬化させる技術が知 られてい る ( 日本国特開昭 5 2 — 2 8 1 3 7 号、 曰本国特開昭 5 3 - 1 9 6 4 4 号) 上記技術は水セ メ ン ト 比を大き く して混練を良好な ら し め、 減圧によ り 余剰水分と空気を除去 し、 復圧によ り セ メ ン ト ペー ス ト を骨材に圧着 して良好な コ ン ク リ ー ト を 得よ う とする も のであ るが、 実験の結果では後記する よ う に さ した る強度増加等の改質の效果が見 られない。 ま た ミ キサー 内で多孔質骨材を減圧 しておき、 セ メ ン ト ぺ ー ス ト を加えて混練 し後復圧 して取出 し硬化させる方法 と ( 曰本国特開昭 5 5 - 3 0 9 6 2 号、 日本国特開昭 5 5 - 3 0 9 8 3 号 ) 、 多孔質骨材を使用 して復圧 した後 取出 して硬化させる方法 ( '曰本国特開昭 5 5 - 1 0 5 5 1 4 号 ) も知 られてい る。 これ ら は多孔質骨材の組織中 に セ メ ン ト ミ ル ク を圧入 してセ メ ン ト と骨材の付着強度 を大な ら しめよ う とする も のであ る と こ ろ、 実験の結果 では後記する よ う にい く らかの強度増加がみ られる も の の、 ブ リ ー ジ ングが大でコ ン ク リ ー ト の表面仕上げを行 いに く い欠点があ っ た。 , 舰 ノ A technique is known in which the raw materials are kneaded in a mixer, depressurized, decompressed, and then taken out and cured (Japanese Patent Laid-Open No. 5 2 — 2 8 1 3 7; The above technique increases the water cement ratio to improve kneading, removes excess water and air by reducing the pressure, and restores pressure. Although it is attempted to crimp the cement paste onto the aggregate to obtain a good concrete, the experimental results show that the strength increase, etc. The effect of reforming is not seen. In addition, a method of depressurizing the porous aggregate in a mixer, adding a cement paste, kneading, and then re-pressurizing to remove and harden it (Kohokuni, JP 5-5-3). No. 0 9 6 2, Japanese Patent Laid-Open No. 5 5-3 0 9 8 3), a method in which a porous aggregate is used for decompressing, then taken out and hardened ('Shonhon Kokusho 5 5- 1 0 5 5 1 4) is also known. These are intended to increase the bond strength between the cement and the aggregate by press-fitting the cement mirco into the structure of the porous aggregate. Although the results show some increase in strength as will be described later, there was a drawback in that the bleeding was large and it was difficult to finish the surface of the concrete.
( 図面の簡単な説明 ) (Brief description of drawings)
添付図面は こ の発明の実施例を示す も のであ っ て、 第 The attached drawings show an embodiment of the invention.
1 図は水硬性無機質系複合体の製造装置 1 例の側面図、 第 2 図は同上か ら見た図、 第 3 図は同開閉部の断面図、 第 4 図〜第 1 1 図は複合体の製造装置 8 例を示す概略図 Fig. 1 is a side view of one example of a manufacturing apparatus for hydraulic inorganic composites, Fig. 2 is a view seen from above, Fig. 3 is a sectional view of the opening / closing part, and Figs. 4 to 11 are composites. Schematic diagram showing eight examples of body manufacturing equipment
RNAて 1 第 1 2 図及び第 1 3 図は水硬性無機質系複合体の製造法 1 例を示す概略図、 第 1 4 図及び第 1 5 図も 水硬性無機 質系複合体の製造法 1 例を示す概略図、 第 1 6 図は水硬 性無機質系複合体の製造法他例を示す概略図、 第 1 7 図 及び第 1 8 図は水硬性無機質系複合体の製造装置 2 例の 概略側面図、 第 1 9 図は水硬性無機質系複合体の製造装 置 1 例の概略側面図、 第 2 0 図は同概略正面図、 第 2 1 図は水硬性無機質系複合体の製造装置 1 例の概略正面図 第 2 2 図は第 1 8 図の容器の一部を示す図、 第 2 3 図は 水硬性無機質系複合体の製造装置 1 例を示す概略図、 第RNA 1 Figures 12 and 13 are schematic diagrams showing one example of the method for producing hydraulic inorganic composites, and Figures 14 and 15 also show one example of the method for producing hydraulic inorganic composites. Schematic diagram, Figure 16 is a schematic diagram showing another example of the method for producing hydraulic inorganic composites, and Figures 17 and 18 are schematic side views of two examples of hydraulic inorganic composite production equipment. , Fig. 19 is a schematic side view of one example of a manufacturing apparatus for hydraulic inorganic composites, Fig. 20 is a schematic front view of the same, and Fig. 21 is a schematic view of a manufacturing apparatus for hydraulic inorganic composites. Schematic front view Figure 22 shows a part of the container shown in Figure 18, Figure 23 shows a schematic view of one example of a hydraulic inorganic composite manufacturing apparatus,
2 4 図及び第 2 5 図は排出装置 2 例を示す図、 第 2 6 図 〜第 3 0 図は排出装置 1 例の作動順序を示す図、 第 3 1 図〜第 3 4 図 も 排出装置 1 例の作動順序を示す図、 第Figures 24 and 25 show two examples of the discharging device, Figures 26 to 30 show the operation sequence of one example of the discharging device, and figures 31 to 34 also show the discharging device. Diagram showing the operating sequence of one example,
3 5 図及び第 3 6 図は水硬性無機質系複合体の製造装置 2 例を示す概略図、 第 3 7 図は流動体用 ポ ン プ 1 例を説 明する ための図、 第 3 8 図〜第 4 2 図は水硬性無機質系 複合体の製造法 5 例を説明する ための図、 第 4 3 図及び 第 4 4 図は舍泡 した水硬性無機質系複合体の製造法 2 例 を説明する ための図、 第 4 5 図は水硬性無機質系複合体 の製造法 1 例を説明する ための図であ る。 Figure 35 and Figure 36 are schematic diagrams showing two examples of hydraulic inorganic composite manufacturing equipment, Figure 37 is a figure for explaining one example of a fluid pump, and Figure 38. ~ Fig. 42 is a diagram for explaining 5 examples of the method for producing a hydraulic inorganic composite, and Figs. 43 and 4 are an explanation for 2 examples of the method for producing a foamed hydraulic inorganic composite. Fig. 45 and Fig. 45 are diagrams for explaining one example of the method for producing a hydraulic inorganic composite.
( 発明を実施する ための最良の形態 ) (Best Mode for Carrying Out the Invention)
以下こ の発明を、 多孔物質と して高炉滓を使用 し、 水 硬性無機質系硬化原料にセ メ ン ト と水を使用 して、 添付 図面を参照 しなが ら詳細に説明する。 なお、 本明細書お よび請求の範囲において、 水硬性無機質系複合体を、 便 宜上単に複合体と略称する。 The present invention will be described in detail below by using a blast furnace slag as the porous material and using cement and water as the hydraulic inorganic hardening material, with reference to the accompanying drawings. In addition, this specification In the claims and claims, the hydraulic inorganic composite is simply referred to as a composite for convenience.
第 1 図及び第 2 図は複合体の製造装置 1 例を示 し、 1 はメ イ ン フ レ ー ムであ り 、 該メ イ ン フ レ ー ム 1 にはシ リ ンダ 2 によ り ミ キサ一 フ レ ー ム 3 が回転自在に設け られ てい る。 ミ キ シ ング ド ラ ム 4 か ら突出 した ミ キ サー軸 5 は ミ キサ 一 フ レ ー ム 3 の軸受 ( 図示せず ) に支承さ れ、 ミ キ シ ング ド ラ ム 4 に固着さ れたギヤ 一 6 と、 ミ キ サー フ レ ー ム 3 に取付けられた原動機 ? の回転軸 ( 図示せず) に取付け られた ピニオ ン 8 が嚙合 し、 原動機 7 の回転に よ り ミ キ シ ング ド ラ ム 4 が回転する よ う に構成さ れてい ο  Figures 1 and 2 show one example of a composite manufacturing device, where 1 is a mainframe and the mainframe 1 is connected by a cylinder 2. A mixer frame 3 is rotatably provided. The mixer shaft 5 protruding from the mixing drum 4 is supported by a bearing (not shown) of the mixer frame 3 and fixed to the mixing drum 4. The gear 6 and the prime mover attached to the mixer frame 3? The pinion 8 mounted on the rotary shaft (not shown) of the motor is engaged, and the mixing drum 4 is rotated by the rotation of the prime mover 7.
一方 ミ キ サー フ レ ー ム 3 の一側には基部アー ム 9 が固 着さ れてお り 、 基部ァーム 9 の先端には シ リ ン ダ 1 0 に よ っ て端部ア ー ム 1 1 が回転自在に枢着さ れ、 端部ァー ム 1 1 の先端にはス ィ べル 1 2 力 ス ィ ぺ レブラ ンケ ッ 卜 1 3 を介 して取付け られてい る。 ス ィ べ ノレ 1 2 は第 3 図 に示さ れる よ う に、 ス ィ ベノレゲ ー ス 1 4 内に、 該ス ィ べ レケ ー ス 1 4 に内嵌さ れたベァ リ ン グ 1 5 を介 して中空 軸 1 6 が回転自在に装着さ れた も のであ り 、 中ー 空軸 1 6 はその一側がプ ラ グ 1 7 で閉塞さ れ、 他傳 Lは中空軸 1 6 と一体的につ く られた蓋 1 8 を貫通 して ミ キ シ ング ド ラ ム 4 内に連通 してい る。 尚中空軸 1 6 の中間には孔が設 け られていてス ィ ぺ ルケ - ス 1 4 に設けた吸引口 1 9 に 連通し、 ス ィ ベ ノレケ ー ス 1 4 と中空軸 1 6 の間には シ一 ル 2 0 が設け られてい る。 ま た蓋 1 8 は シ リ ン ダ 1 0 に よ り ノ、。 ッ キ ン グ 2 1 を介 して ミ キ シ ン グ ド ラ ム 4 の開口 部に着脱自在と さ れてお り 、 ベア リ ン グカ バー 2 2 及び 止め輪 2 3 がベア リ ン グ 1 5 を固定する と共にス ィ ペル ケ ース 1 4 と 中空軸 1 6 の脱落を防止 してい る。 On the other hand, the base arm 9 is fixed to one side of the mixer frame 3, and the end arm 1 is attached to the tip of the base arm 9 by the cylinder 10. 1 is rotatably pivoted, and is attached to the end of the end arm 1 1 through a swivel 12 force swivel bracket 13. As shown in Fig. 3, the sino-belt 1 2 has a baling 15 fitted inside the s- ive-lens 14 as shown in Fig. 3. The hollow shaft 16 is rotatably mounted through the hollow shaft 16 and the hollow shaft 16 is closed on one side by the plug 17 and the other shaft L is integrated with the hollow shaft 16. It penetrates through the closed lid 18 and communicates with the inside of the mixing drum 4. A hole is provided in the middle of the hollow shaft 16 so that it communicates with the suction port 19 provided on the svelcase 14 and between the svenor case 14 and the hollow shaft 16. There is one Rule 20 is provided. The lid 1 8 is attached to the cylinder 1 0. It is detachably attached to the opening of the mixing drum 4 via the locking 21 and the bearing cover 2 2 and the retaining ring 23 are bearings. In addition to fixing 1 5, it also prevents the dropouts of the super case 1 4 and hollow shaft 1 6.
次に以上述べた複合体の製造装置 A を利用 した コ ン ク リ ー ト ( 複合体 ) の製造法に就て説明する。 先づ図示の 状態か ら シ リ ン ダ 1 0 を作動さ せて蓋 1 8 を開き、 ミ キ シ ン グ ド ラ ム 4 内にその開口部か ら所要量の高炉滓 ( 多 孔物質 ) と セ メ ン ト 及び水 ( 硬化原料 ) と を入れ、 再び シ リ ン ダ 1 0 を作動さ せて蓋 1 8 で ミ キ シ ング ド ラ ム 4 の開口部を閉 じ、 原動機 7 を作動 さ せ ミ キ シ ン グ ド ラ ム  Next, a method for manufacturing a concrete (composite) using the above-described composite manufacturing apparatus A will be described. First, from the state shown in the figure, operate the cylinder 10 to open the lid 18 and open the required amount of blast furnace slag (multi-pore material) from the opening in the mixing drum 4. And cement and water (hardening raw material), operate the cylinder 10 again, close the opening of the mixing drum 4 with the lid 18 and operate the prime mover 7. Sasase mixing drum
4 を回転 さ せて混練する。 次に混練 しなが ら図示 さ れて いない真空吸引装置を作動さ せて こ れに連通する 吸引口  Rotate 4 and knead. Next, while kneading, activate a vacuum suction device (not shown) to communicate with this.
1 9 を介 し ミ キ シ ン グ ド ラ ム 4 内を真空吸弓 I し、 高炉滓 の気孔中の空気を充分に脱気 した所で復圧 し 、 引続混練 を続けた後原動機 7 の作動を停止 して ミ キ シ ン グ ド ラ ム  Vacuum suction bow I inside the mixing drum 4 via 19 and re-pressurize the air in the pores of the blast furnace slag where it has been sufficiently degassed. Stop operation and start mixing drum
4 の回転を止め、 シ リ ン ダ 1 0 を作動 さ せて蓋 1 8 を開 き、 シ リ ン ダ 2 の作動によ り ミ キ シ ン グ ド ラ ム 4 を傾斜 さ せて開口部を下に向け、 ミ キ シ ン グ ド ラ ム 内の生コ ン ク リ ー ト ( 多孔物質が内在する硬化原料 ) を外部に出 し、 こ れを型枠に打ち込んで形成 し硬化 さ せる と、 高炉滓の 気孔に コ ン ク リ 一 ト 成分が圧入さ れた強度の高い コ ン ク リ ー ト ( 複合体 ) を得る。  Stop rotation of 4 and operate cylinder 10 to open lid 18 and operate cylinder 2 to tilt mixing drum 4 and open the opening. Facing downwards, the raw concrete in the mixing drum (curing raw material containing the porous substance) is exposed to the outside, and this is driven into the mold to form and cure. As a result, a high-strength concrete (composite) in which a concrete component is injected into the pores of the blast furnace slag is obtained.
上記実施例は回転 ド ラ ム型 ミ キ サ ーを利用 した複合体  The above example is a composite using a rotating drum mixer.
OMPI OMPI
U 。 .^ の製造装置 A と、 これを利用 した複合体の製造法 1 例を 示すが、 他の ミ キ サ一で高炉滓を骨材に使っ た生コ ンク リ ー ト をつ く っ ておき、 これを製造装置 A の ミ キ シ ング ド ラ ム 4 内に入れ、 ミ キ シ ン グ ド ラ ム 4 を回転させて混 繍 しなが ら真空吸引 し、 復圧 した後引続き混練 し、 これ を取出 して硬化さ せてよい こ と はい う ま で も ない。 ま た 復圧は ミ キ シ ング ド ラ ムの回転中であ っ て も よ く 、 回転 中止と 同時であ っても よ く 、 回転中止後であ っ ても よい 混繍 しなが ら真空吸引する こ と等によ り む らな く 高炉滓 の脱気を行う こ とが好ま しい。 U. . ^ The following is an example of the manufacturing equipment A and a method of manufacturing a composite using this equipment.The other concrete mixers are made of raw concrete using blast furnace slag as aggregate. Into the mixing drum 4 of the manufacturing equipment A, rotate the mixing drum 4 and vacuum-suck while kneading, repressurize, and then continue kneading. It is not so good that it can be taken out and cured. In addition, the recompression pressure may be during the rotation of the mixing drum, at the same time as the rotation is stopped, or after the rotation is stopped. It is preferable to degas the blast furnace slag evenly by vacuum suction.
以上多孔物質に高炉滓を使用 し、 硬化原料にセ メ ン ト と水を使用 した実施例につき説明 したが、 多孔物質及び 硬化原料には後記する よ う に多々 の も のを使用する こ と ができ、 しかも硬化原料は 1 剤のみな らず複数剤の場合 も 多いので、 高炉滓等を単に多孔物質、 セ メ ン ト と水等 を硬化原料、 硬化原料を構成する材料例えばセ メ ン ト ゃ '水等を材料、 多孔物質が内在する硬化原料を複合原料、 その硬化 した ものを複合体と略称 し、 他の実施例につき 説明する。  Above, we have described an example in which blast furnace slag was used as the porous material and cement and water were used as the curing raw materials.However, various materials were used for the porous material and the curing raw material, as described below. In addition, the curing raw material is not only one agent but also multiple agents in many cases. Therefore, the blast furnace slag and the like are simply porous materials, the cement and water are curing materials, and the materials that constitute the curing material, such as cement. Other examples will be described with reference to water and the like, a curing raw material containing a porous substance is a composite raw material, and the cured material is abbreviated as a composite.
第 4 図〜第 1 1 図は開閉自在なゲー ト 2 4 を介 した上 部容器 2 5 と下部容器 2 6 によ っ て構成さ れる複合体の 製造装置 8 例を示 し、 2 7 は上部容器 2 5 に連通 して設 け られた減圧管、 2 8 は下部容器 2 6 に連通 して設け ら れた減圧管であ り 、 減圧管 2 7 及び 2 8 は何れも図示さ れていない真空吸引装置に繋がれてい る。 2 9 は下部容 器 2 6 のゲー ト 2 4 下部に設け られた拡散板、 3 0 は上 部容器 2 5 内に設け られた攪拌具、 3 1 は下部容器 2 6 内に設け られた攪拌具、 3 2 は攪拌具 3 0 , 3 1 を駆動 回転さ せる モ ー タ 、 3 3 は複合原料、 3 4 は上部容器 2 5 に設け られた導入孔、 3 5 は下部容器 2 6 の排出口 、あ O 0 Figures 4 to 11 show eight examples of composite manufacturing equipment consisting of an upper container 25 and a lower container 26 via a gate 24 that can be opened and closed. The decompression pipe is provided in communication with the upper container 25, the decompression pipe 28 is provided in communication with the lower container 26, and both decompression pipes 2 7 and 2 8 are shown. Not connected to a vacuum suction device. 2 9 is lower Diffusion plate provided at the bottom of the gate 2 4 of the vessel 26, 30 is an agitator provided in the upper container 25, 31 is an agitator provided in the lower container 26, 3 2 is A motor for driving and rotating the stirrers 3 0 and 3 1, 3 3 is a composite raw material, 3 4 is an introduction hole provided in the upper container 25, 3 5 is an outlet of the lower container 26, and O 0
第 4 図〜第 6 図に示さ れる複合体の製造装置 Β を利用 した複合体の製造法につき説明する。 先づ第 4 図に示 さ れる よ う にゲー ト 2 4 と 排出口 3 5 を閉 じ、 真空吸引装 置を作動 さ せ減圧管 2 8 を介 して下部容器 2 6 内を真空 吸引 して減圧 し、 上部容器 2 5 の蓋を開け複合原料 3 3 を上部容器 2 5 内に入れてこ れを充満 し、 蓋を閉 じて密 閉する。 次に第 5 図に示さ る よ う にゲー ト 2 4 を開 く と複合原料 3 3 は圧力差と 自重によ り 下部容器 2 6 内に 落下する。 暫時真空吸引を続けた後下部容器 2 6 内を復 圧する と 、 複合原料 3 3 に含ま れる硬化原料は、 硬化原 料内に 内在する脱気 さ れた多孔物質の気孔中に圧入 さ れ る。 こ こ で排出口 3 5 を開き複合原料 3 3 を取出 し、 こ れを適切な ミ キ サ ーで混練 した後、 型枠内に打設 し硬化 させる と 複合体を得る。 こ の製造法は複合原料を減圧下 で混練 して多孔物質の脱気をむ ら な く 行 う 前記実施例に 比 し、 上部容器 2 5 内の複合原料 3 3 を減圧 さ れた下部 容器 2 6 内に落下 さ せなが ら 多孔物質の脱気をむ ら な く 行わんと する も のであ り 、 下部容器 2 6 の容積が上部容 器 2 5 の容積よ り 大であ り 、 下部容器 2 6 の高さ が大で  A method of manufacturing a composite using the composite manufacturing apparatus B shown in FIGS. 4 to 6 will be described. As shown in Fig. 4, the gate 2 4 and the outlet 35 are closed, the vacuum suction device is activated, and the lower container 26 is evacuated through the pressure reducing tube 28. Reduce the pressure by pressing, open the lid of the upper container 25, put the composite raw material 33 in the upper container 25 to fill it, and close the lid tightly. Next, as shown in Fig. 5, when the gate 24 is opened, the composite raw material 33 drops into the lower container 26 due to the pressure difference and its own weight. When the lower container 26 is decompressed after continuing vacuum suction for a while, the curing raw material contained in the composite raw material 3 3 is pressed into the pores of the degassed porous substance existing in the curing raw material. .. The discharge port 35 is opened here, the composite raw material 33 is taken out, and after kneading this with an appropriate mixer, it is placed in a mold and cured to obtain a composite. In this manufacturing method, the composite raw material is kneaded under reduced pressure to degas the porous material evenly, and the composite raw material 3 3 in the upper container 2 5 is depressurized in the lower container. While the porous material is allowed to fall into the inside of the chamber 26, the porous substance is degassed evenly, and the volume of the lower container 26 is larger than that of the upper container 25, and the volume of the lower container 26 is smaller. The height of container 2 6 is large
Ο ΡΙ あ る程効果が大であ る。 尚 この実施例では第 6 図に示さ れる よ う に、 複合原料 3 3 を上部容器 2 5 内に充満させ る こ と な く 、 空間を残 して入れ下部容器 2 6 内に落下さ せて も よい。 この時は上部容器 2 5 と下部容器 2 6 の圧 力差が大と な り 、 複合原料 3 3 は下部容器 2 6 内に勢よ く 落下 して落下時複合原料 3 3 が分散 しやす く 多孔物質 の脱気をむ らな く 行いやすいが、 真空度が低 く な る ので 下部容器 2 6 を上部容器に比 し大に してお く か下部容器Ο ΡΙ The more effective it is. In this example, as shown in FIG. 6, the composite raw material 33 was not filled in the upper container 25, but was left in a space and dropped into the lower container 26. Good too. At this time, the pressure difference between the upper container 25 and the lower container 26 becomes large, and the composite raw material 3 3 falls vigorously into the lower container 2 6 and the composite raw material 3 3 easily disperses when falling. It is easy to uniformly degas porous materials, but since the degree of vacuum is low, it is necessary to make the lower container 26 larger than the upper container or to lower it.
2 6 の真空度を上部容器の真空度よ り 高めてお く こ と が 望ま しい。 It is desirable that the vacuum degree of 26 be higher than that of the upper container.
第 4 図〜第 6 図に示さ れる複合体の製造装置 B は、 第 7 図に示さ れる複合体の製造装置 B t のよ う に、 上部容 器 2 5 の蓋を固定式と し、 とれに複合原料を入れる導入 孔 3 4 と減圧管 2 7 を設けて も よい。 この装置 B , を使 用する 時は導入孔 3 4 か ら複合原料 3 3 を上部容器 2 5 内に入れて遮断密閉 し、 減圧管 2 7 , 2 8 を介 し上部容 器 2 5 及び下部容器 2 6 内を共に真空吸引 して減圧 した 後、 ゲー ト 2 4 を開き複合原料 3 3 を下部容器 2 6 内に 落下させる。 この時下部容器 2 6 内の真空度を上部容器 2 5 の真空度よ り 大に しておけば複合原料 3 3 は圧力差 と 自重に'よ り 落下 し、 真空度が同一であ る時は複合原料Producing apparatus B of the complex is shown in Figure 4 ~ Figure 6 is Ni would Yo manufacturing apparatus B t of the complex shown in FIG. 7, the lid of the upper container 2 5 and fixed, taken An introduction hole 34 and a pressure reducing pipe 27 for putting the composite raw material may be provided in. When this device B is used, the composite raw material 3 3 is put into the upper container 25 from the introduction hole 3 4 to shut off and seal it, and the upper container 25 and the lower container are connected via the pressure reducing pipes 27 and 28. After vacuuming the inside of container 26 to reduce the pressure, open gate 24 and drop composite raw material 33 into lower container 26. At this time, if the vacuum degree in the lower container 26 is set higher than that in the upper container 25, the composite raw material 33 drops due to the pressure difference and its own weight, and when the vacuum degree is the same. Is a composite raw material
3 3 は 自重によ り 落下する。 次に復圧 して複合原料 3 3 - を取出 し これを適切な ミ キ サ一で混練 した後硬化させて 複合体とする こ と は第 4 図〜第 6 図で説明 した と 同様で あ る。 第 8 図は第 4 図〜第 6 図で説明 した複合体の製造装置 B の下部容器 2 6 内に、 ゲー ト 2 4 の下部に位置 して柄 のない傘形の拡散板 2 9 を設けた複合体の製造装置 B 2 を示 し、 前記同様に して複合体を製造するが、 ゲー ト 2 4 を開いて上部容器 2 5 内の複合原料を落下さ せる時 複合原料は拡散板 2 9 によ っ て分散 しなが ら下部容器 2 6 内に落下 し、 多孔物質の脱気をむ ら な く 行いやすい 複合原料の落下時拡散板 2 9 を適当な手段で回転 させる と複合原料の分散落下は更に効果的と な る。 尚拡散板 2 9 に代えて例えば格子等の分散具を使用 してよい こ と はい う ま で も ない。 3 3 falls due to its own weight. Next, the composite raw material 33-is recompressed and taken out, kneaded with an appropriate mixer and then cured to form a composite, which is the same as explained in Figs. 4 to 6. It Fig. 8 shows the umbrella-shaped diffuser plate 29 without a handle, which is located below the gate 2 4 in the lower container 26 of the composite manufacturing apparatus B described in Figs. 4 to 6. A composite manufacturing apparatus B 2 is shown, and a composite is manufactured in the same manner as described above, but when the gate 2 4 is opened and the composite raw material in the upper container 25 is dropped, the composite raw material is a diffusion plate 2 It is easy for the porous material to be degassed while being dispersed by the 9 while falling into the lower container 26.When the composite material falls When the diffuser plate 29 is rotated by an appropriate means Dispersion fall of is more effective. It should be noted that a diffuser such as a grating may be used instead of the diffuser plate 29.
第 9 図は第 4 図〜第 6 図で説明 した複合体の製造装置 B の下部容器 2 6 内に攪拌臭 3 1 を設けた複合体の製造 装置 B 2 を示 し、 攪拌具 3 1 を設けたため下部容器 2 6 の底部が水平に形成さ れいて る。 複合体の製造法は第 4 図〜第 6 図反び第 8 図の複合体の製造装置同様に、 ゲー ト 2 4 と 排出口 3 5 を閉 じてお き、 下部容器 2 6 内を減 圧する と共に上部容器 2 5 内に複合原料を入れて密閉 し - 次にゲー ト 2 4 を開いて上部容器 2 5 内の複合原料を下 部容器 2 6 内に落下 さ せる が、 更に多孔物質の脱気をむ ら な く 行 う ため、 下部容器 2 6 内に落下 した複合原料を 攪拌具 3 1 で攪拌 し復圧 した後引続いて混練 し、 しかる 後排出口 3 5 を開いて複合原料を外に出 し こ れを硬化 さ せる ものであ る。 尚復圧は攪拌中、 攪拌停止と 同時ま た は攪拌停止後の何れの時に行 っ て も よい。 ま た この装置 を使用する時は、 排出口 3 5 とゲー ト 2 4 を閉 じておき 上部容器 2 5 内に複合原料または材料 (例えばセ メ ン ト 水、 及び高炉滓等 ) を入れ、 ゲー ト 2 4 を開いて複合原 料または材料を下部容器 2 6 内に落下きせ、 ゲー ト 2 4 を閉 じて下部容器 2 6 を密閉 し、 モータ 3 2 を作動させ て攪拌具 3 1 を回耘させ、 複合原料ま たは材料を攪拌混 練する と共に、 減圧管 2 8 を介 して下部容器 2 6 内を減 圧 し、 復圧 した後更に混練を続け、 排出口 3 5 を開き、 複合原料を外に取出 し これを硬化させても よい。 即ち上 部容器を定量器またはホ ッ パー と して利用 した ものであ る o Figure 9 is shows a manufacturing device B 2 of the complex in which a stirring odor 3 1 to the lower container 2 in 6 of the manufacturing apparatus B complexes described in Figure 4-Figure 6, the mixing tool 3 1 Since it is provided, the bottom of the lower container 26 is formed horizontally. The manufacturing method of the composite is the same as the manufacturing equipment of the composite shown in Figs. 4 to 6 and Fig. 8, and the gate 2 4 and the outlet 35 are closed, and the inside of the lower container 26 is reduced. Pressurize and put the composite material in the upper container 25 and seal it-then open the gate 2 4 and let the composite material in the upper container 25 fall into the lower container 26, but further In order to perform even deaeration, the composite raw material that dropped into the lower container 26 was stirred with a stirrer 31 to restore the pressure, and then kneaded, and then the discharge port 35 was opened and the composite raw material was opened. It goes out and cures this. The recompression pressure may be during stirring, at the same time as stopping stirring, or at any time after stopping stirring. This device When using, close the outlet 35 and the gate 24, put the composite raw materials or materials (for example, cement water, blast furnace slag, etc.) in the upper container 25, and Open to drop the composite raw material or material into the lower container 26, close the gate 2 4 to seal the lower container 26, operate the motor 3 2 and rotate the stirrer 31. The composite raw material or the material is stirred and kneaded, and the inside of the lower container 26 is depressurized through the pressure reducing pipe 28, the pressure is restored, and the kneading is continued. It may be taken out and cured. In other words, the upper container was used as a meter or hopper.
第 1 0 図は、 攪拌具 3 0 及び減圧管 2 7 を設けた上部 容器 2 5 と、 減圧管 2 8 を設けた下部容器 2 6 との間に 開閉自在なゲー ト 2 4 を設けた複合体の製造装置 B 4 を 示 し、 こ の装置を使用 して複合体をつ く る時は、 図示 さ れていない導入孔か ら複合原料を上部容器 2 5 内に入 れ、 上部容器 2 5 を'密閉 し減圧管 2 7 を介して上部容器FIG. 10 shows a composite structure in which an openable / closable gate 2 4 is provided between an upper container 25 equipped with a stirrer 30 and a pressure reducing pipe 27, and a lower container 2 6 equipped with a pressure reducing pipe 28. Body manufacturing device B 4 is shown, and when using this device to assemble the composite, the composite raw material is put into the upper container 2 5 through the introduction hole (not shown), and the upper container 2 5'is hermetically sealed and the pressure reducing pipe 2 7 via the upper container
2 5 内を減圧 しなが らモ ー タ 3 2 の作動によ り 攪拌具While depressurizing the inside of 25, the stirring tool is operated by operating the motor 32.
3 0 で複合原料を攪拌 し、 復圧 した後更に混練を続け、 しかる後ゲー ト 2 4 を開いて複合原料を下部容器内に落 下させ、 排出口 3 5 を開き複合原料を外に取出 して硬化 させる。 尚上部容器 2 5 と 下部容器 2 S を減圧 しておき 上部容器 2 5 内の複合原料を攪拌 した後ゲー ト 2 4 を開 いて下部容器 2 6 内に落下させ、 こ こで復圧 して複合原 料を取出 し適切な ミ キサーで再度混練 し、 これを硬化さ せて も よ く 、 上部容器 2 5 を減圧 しておいて こ の中で複 合原料を攪拌 し、 復圧 した後ゲー ト 2 4 を開いて減圧下 の下部容器 2 6 内に複合原料を落下させ、 下部容器 2 5 を復圧 して複合原料を取出 し これを適切な ミ キサ 一で混 練 した後硬化 させて も よい。 ま た上部容器 2 5 には複合 原料に代えて材料を入れ、 攪拌具 3 0 で攪拌混練 して複 合原料と し、 上記工程を行っ て複合原料を取出 し硬化さ せて も よい。 材料を混練する時は上部容器は密閉 してお いて も よ く 密閉 しないでおいて も よ い。 即ち上部容器 Stir the composite material at 30 and re-pressurize it, and then continue kneading, then open gate 24 to drop the composite material into the lower container, open discharge port 35 and take out the composite material to the outside. And cure. The upper container 25 and the lower container 2S were decompressed and the composite raw material in the upper container 25 was stirred, then the gate 24 was opened and dropped into the lower container 26, and the pressure was restored here. Take out the composite raw material, knead it again with an appropriate mixer, and cure it. Even if the upper container 25 is depressurized, the composite raw materials are stirred in this, and after the pressure is restored, the gate 24 is opened and the composite raw material is placed in the lower container 26 under reduced pressure. Alternatively, the lower container 25 may be dropped, the composite raw material may be taken out by recompressing the lower container 25, kneaded with an appropriate mixer, and then cured. It is also possible to put the material in the upper container 25 instead of the composite raw material, stir and knead it with the stirrer 30 to obtain the composite raw material, and perform the above steps to take out the composite raw material and cure it. The upper container may or may not be closed when kneading the ingredients. Ie upper container
2 5 に攪拌具 3 0 を設ければ、 上部容器 2 5 内にセ メ ン ト 、 水、 高炉滓等の材料を入れて攪拌混練 し、 複合原料 をつ く る こ と ができ、 上部容器 2 5 内を密閉減圧 して複 合原料を攪拌 した後復圧 し 下部容器 2 6 内に落下さ せ る こ と も でき れば、 攪拌具 3 0 は単に複合原料の製造の みに利用 し、 下部容器 2 6 を減圧 しておいて こ の中に複 合原料を落下 さ せ、 復圧する こ と も でき る訳であ る。 尚 こ の時導入孔は遮断 しておいて も よ く 開けておいて も よ い 0  If a stirrer 30 is installed in 25, it is possible to put materials such as cement, water, and blast furnace slag into the upper container 25 and stir and knead to combine the composite raw materials. If it is possible to hermetically decompress the inside of 2 5 and stir the mixed raw material, then re-pressurize it and drop it into the lower container 26, the stirrer 30 is used only for the production of the mixed raw material. It is also possible to decompress the lower container 26 and then drop the composite raw material into it to restore the pressure. At this time, the introduction hole may be blocked or opened 0
第 1 1 図は減圧管 2 7 と攪拌具 3 0 を設けた上部容器 2 5 と 、 減圧管 2 8 と 攪拌具 3 1 を設けた下部容器 2 6 の間に、 開閉 自在なゲー ト 2 4 を設けた複合体の製造装 置 B 5 を示 し、 第 9 図及び第 1 0 図の複合体の製造装置 における製造法のみな らず、 こ れを複合 した多々 の製造 法を有 し、 復圧後の混練を攪拌具 3 1 で行 う こ と ができ る。 Figure 11 shows the open / close gate 2 4 between the decompression pipe 27 and the upper container 25 equipped with the stirrer 30 and the lower container 2 6 equipped with the decompression pipe 28 and the stirrer 3 1. the shows the production equipment B 5 complex provided, have a Figure 9 and many of the production process was complex all Raz manufacturing method, the Re this in complex production apparatus of the first 0 Figure, The kneading after recompression can be performed with the stirrer 31.
O PI 以上複合体の製造装置 B i , B 2 , 。 3 , 3 4 j B 5 について説明 したが、 何れも複合体の製造装置 B を利用 した も のである。 即ち複合体の製造装置 B には、 上部容 器 2 5 と下部容器 2 6 の 1 ま たは 2 に減圧管を設けてよ く 、 攪拌具を設けて も よい。 また下部容器に拡散板かま たは分散具を設けて も よい こ と はい う ま で も ない。 そ し て以上述ベた複合体の製造法をそのま ま で或いは組合わ せて行う こ と ができ る O PI These are the composite manufacturing equipment B i, B 2 ,. Although 3 and 3 4 j B 5 were explained, both of them used the manufacturing apparatus B for composites. That is, in the complex manufacturing apparatus B, a pressure reducing pipe may be provided in one or two of the upper container 25 and the lower container 26, and a stirrer may be provided. In addition, the lower container may or may not be provided with a diffusion plate or a dispersion tool. Then, the above-described method for producing a composite can be performed as it is or in combination.
第 1 2 図及び第 1 3 図は図示されていない真空吸引装 置に繋がれた減圧管 3 8 を有する変形可能なゴム製等の 谷 ¾^ 3 □ と、 直線形往復動を行う 押圧具 3 9 によ つ こ 1» 成される複合体の製造装置 1 例を示 し、 この装置によ つ て複合体をつ く る時は、 先づ_容器 3 6 内に材料を入れ蓋 を して密閉 し、 押圧具 3 9 を往復動させ谷 I? 3 6 を介し て内部の材料を押圧混練 し、 材料 4 1 が複合原料と な つ た所で、 即ち材料 4 1 がよ く 混練さ れた後減圧管 3 8 を 介 して容器 3 6 内を減圧 し、 多孔物質をむ ら な く 脱気 し た で容器 3 6 内を復圧 し、 引続き押圧混練を続けた後 押圧具 3 9 の往復動を停止 し蓋を開いて内部の複合原料 を取出 し、 これを硬化させて複合体をつ く る。 尚第 1 2 図および第 1 3 図に示さ れる よ う に、 水平方向の押圧具 によ る押圧と垂直方向の押圧具によ る押圧は これ 父互 に行っ た方が混練を効果的に行う こ とができ る。 また押 圧具 3 9 の直線型往復動に代え、 第 1 6 図に示さ れる よ う に、 押圧具 4 2 を基部 4 3 を中心に して円運動させ、 押圧具 4 2 の円運動によ り 容器 3 6 を介 し材料 4 1 を混 練 し或いは減圧下の複合原料を攪拌 して も よ い。 FIGS. 12 and 13 show a deformable rubber valley ¾ ^ 3 □ having a pressure reducing pipe 38 connected to a vacuum suction device (not shown) and a linear pressing tool for reciprocating movement. An example of an apparatus for producing a composite body formed by 3 9 is shown. When connecting a composite body by this equipment, first put the material in the container 3 6 and put the lid on. And then seal it, and reciprocally move the pressing tool 39. Valley I? The material inside was kneaded by kneading through 3 6 and the material 4 1 became a composite material, that is, after the material 4 1 was kneaded well, the inside of the container 3 6 was put through the decompression pipe 3 8. After depressurizing and degassing the porous material evenly, the pressure in the container 36 was restored, and the kneading and kneading were continued.After that, the reciprocating motion of the pressing tool 39 was stopped and the lid was opened to open the internal composite Then, the composite is taken out and cured to form a composite. As shown in Fig. 12 and Fig. 13, it is more effective for the horizontal pressing tool and the vertical pressing tool to perform the kneading effectively. It can be carried out. Further, instead of the linear reciprocating motion of the pressing device 39, as shown in FIG. 16 the pressing device 42 is moved circularly about the base 4 3. The material 41 may be kneaded through the container 36 by the circular motion of the pressing tool 42 or the composite raw material under reduced pressure may be stirred.
第 1 4 図及び第 1 5 図は、 図示さ れていない真空吸引 装置に繋がれた減圧管 3 8 を有する容器 3 7 の側壁部及 び底部に袋 4 0 を設けた複合体の製造装置 C , を示 し、 側壁部の袋 4 0 と底部の袋 4 0 を交互に膨張狭窄さ せる こ と によ り 、 容器 3 7 に入れ られて密閉 さ れた材料 4 1 を混練 し、 材料 4 1 が混練さ れた所で容器 3 7 内を減圧 し、 多孔物質がむ ら な く 脱気さ れた所で復圧 し、 引続き 混練 した後袋 4 0 の膨張狭窄作動を停止 し、 容器 3 7 内 の複合原料を取出 し硬化さ せる も のであ る。 尚袋 4 0 の 膨張狭窄作動は水圧 シ リ ン ダゃ空圧 シ リ ン ダ等を利用 し 水や空気を出 し入れする こ ί によ っ て行われる。 ま た容 器 3 7 内に、 第 1 2 図に示さ れる よ う な変形可能な容器 3 6 を入れ、 容器 3 6 と容器 3 7 の間に袋 4 0 を介在さ せ、 袋 4 0 の膨張狭窄作動によ り 容器 3 6 を介 して材料 4 1 を混練 し、 或い は減圧下の複合原料を攪拌 してよ い こ と はい う ま で も ない。  Figures 14 and 15 show a manufacturing apparatus for a composite in which a bag 40 is provided on the side wall and the bottom of a container 37 having a decompression pipe 38 connected to a vacuum suction device (not shown). C, is shown, and by alternately expanding and constricting the side wall bag 40 and the bottom bag 40, the material 41, which is placed in the container 37 and sealed, is kneaded. Depressurize the inside of the container 37 when 4 1 is kneaded, re-pressurize when the porous material is thoroughly degassed, and continue kneading, then stop the expansion and constriction operation of the bag 40. The composite raw material in container 37 is taken out and cured. The expansion and constriction operation of the bag 40 is performed by using a hydraulic cylinder or a pneumatic cylinder to move water and air in and out. In addition, put a deformable container 36 as shown in Fig. 12 in the container 37, insert a bag 40 between the container 36 and the container 37, and insert the bag 40 into the container 40. The material 41 may be kneaded through the container 36 by the expansion and constriction operation, or the composite raw material under reduced pressure may be agitated.
次に容器の往復動を利用 した複合体の製造装置と複合 体の製造法について説明する。  Next, a composite manufacturing apparatus and a composite manufacturing method using the reciprocating motion of the container will be described.
第 1 7 図は両側の架台 4 4 と 、 こ の間に往復動 自在に 架設 さ れた容器 4 6 によ っ て構成さ れる複合体の製造装 置 D を示 し、 容器 4 6 に は図示さ れていない真空吸引装 置に繋がれた減圧管 4 7 が設け られてお り 、 両側に固着 さ れた往復軸 4 8 が架合 4 4 の斜孔 4 5 に挿入さ れ、 こ れに摺動 して容器 4 6 が往復動する よ う に構成さ れてい FIG. 17 shows a complex manufacturing apparatus D composed of pedestals 4 4 on both sides and a container 4 6 reciprocally mounted between them. A decompression pipe 4 7 connected to a vacuum suction device (not shown) is provided, and the reciprocating shafts 4 8 fixed on both sides are inserted into the oblique holes 4 5 of the frame 4 4 and The container 4 6 is configured to reciprocate by sliding on it.
O  O
先づ図示されていない蓋を開けて容器 4 6 内に材料を 入れ、 図示されていないモータ を作動させて容器 4 6 を 往復動させ、 材料を混練 して複合原料をつ く る。 次に真 空吸引装置を作動させ減圧管 4 7 を介 して容器 4 6 内を 減圧 し、 多孔物質がむ ら な く 脱気された所で復圧 し、 引 続き混練 した後容器 4 6 の往復動を停止 し図示さ れてい ない排出口を開き複合原料を排出 し、 これを硬化させて 複合体をつ く る。 尚容器 4 6 の直線型往復動は水平往復 動 も よ く 垂直往復動で も よい。 ま た第 1 8 図に示さ れ る複合体の製造装置 のよ う に往復動が揺動型往復動 であ って も よ く 、 第 1 9 図皮び第 2 0 図に示さ れる複合 体の製造装置 D 2 のよ う に円型往復動であ つ て も よい。 First, open a lid (not shown), put the material in the container 46, and operate a motor (not shown) to reciprocate the container 46 to knead the material and tie the composite raw material. Next, the vacuum suction device was activated to reduce the pressure inside the container 4 6 via the pressure reducing pipe 47, and when the porous material was degassed evenly, the pressure was restored and the kneading was continued. The reciprocating motion of the is stopped, the discharge port (not shown) is opened, the composite raw material is discharged, and this is hardened to connect the composite. The linear reciprocating motion of the container 46 may be horizontal reciprocating motion or vertical reciprocating motion. Moreover, the reciprocating motion may be an oscillating reciprocating motion as in the composite manufacturing apparatus shown in Fig. 18 and the composite device shown in Fig. 19 and Fig. 20 may be used. It may be a circular reciprocating motion like the manufacturing device D 2 of.
第 1 8 図示の複合体の製造装置 D ! は谷 ¾|= 4 9 , 4 9 を連結 した 2 個の容器が両側の架台 5 0 間に揺動自在に 架設さ れた も のであ り 、 5 1 は両側の容器 4 9 , 4 9 の 連結部に突設さ れ、 架合 5 0 に回転自 在に支承された揺 動軸、 5 2 は図示さ れていない真空吸 に繋がれ容 器 4 9 に設け られた減圧管であ り 、 容器 4 9 , 4 9 に材 料を入れて密閉 し、 容器 4 9 , 4 9 を揺動させて複合原 料をつ く り 、 次に減圧管 5 2 , 5 2 を介 して容器 4 9  No. 18 Complex manufacturing equipment D! Is the container that connects the valleys ¾ | = 4 9 and 4 9 and is oscillatably mounted between the pedestals 50 on both sides. 5 1 is the container 4 9 and 4 9 on both sides. The rocking shaft that is projected on the connecting part and is rotatably supported by the frame 50 and 52 is a pressure reducing pipe connected to a vacuum suction (not shown) and provided on the container 49. , Containers 4 9 and 4 9 are filled with the material and sealed, and the containers 4 9 and 4 9 are rocked to form the composite material, and then the containers 4 and 5 are connected via the pressure reducing pipes 5 2 and 5 2. 9
4 9 内を減圧 し、 多孔物質がむらな く 脱気さ れた所で復 圧 し、 引続き混練 した後排出口を開いて複合原料を取出 し硬化させる。 尚 2 個の容器 4 9 , 4 9 が違通してい る  4 9 After decompressing the inside, decompressing the porous material evenly, decompress it, continue kneading, and then open the discharge port to take out the composite material and cure it. Two containers 4 9 and 4 9 are not connected
OMPI 時は、 減圧管 5 2 は 1 本でよい。 ま た第 2 2 図に示さ れ る よ う に、 容器 4 9 内に邪魔板 5 3 を設ければ容器 4 9 の揺動を大き く する こ と ができ る。 5 4 は導入孔に設け られた蓋、 5 5 は排出口 に設け られた蓋、 4 1 は材料、 5 2 は減圧管であ る。 第 1 9 図及び第 2 0 図に示さ れ る複合体の製造装置 D 2 は両側の架台 5 6 , 5 6 間に容 器 5 7 が円型往復動を行 う よ う に架設さ れた も のであ り 架合 5 6 に回転軸 5 9 が回転 自在に支承 さ れ、 回転軸 5 9 に固着さ れた回転板 6 0 に容器 5 7 の突出橫扦 5 8 が回転自在に支承さ れていて、 図示 されていないモ ー タ を作動さ せて回転軸 5 9 を回耘さ せる と 回転板 6 0 が回 転 し、 容器 5 7 が円型往復動を行 う よ う に構成さ れてい る。 即ち容器 5 7 内に材料 ^入れて密閉 し、 容器 5 7 を 円型往復動さ せて混練 し、 複合原料をつ く つ た後図示さ れていない真空吸引装置を作動さ せ減圧管 6 1 を介 して 容器 5 7 内を減圧 し、 多孔物質がむ ら な く 脱気さ れた所 で復圧 し、 引続き混練 した後容器 5 7 の円型往復動を停 止 して複合原料を取出 し、 これを硬化 さ せて複合体をつ く る。 OMPI At one time, only one pressure reducing pipe 52 is required. Further, as shown in Fig. 22 2, if a baffle plate 5 3 is provided in the container 49, the swing of the container 49 can be increased. 5 4 is a lid provided on the introduction hole, 5 5 is a lid provided on the outlet, 4 1 is a material, and 5 2 is a pressure reducing pipe. The composite manufacturing apparatus D 2 shown in Figs. 19 and 20 was constructed such that the container 5 7 was circularly reciprocated between the pedestals 5 6 and 5 6 on both sides. Therefore, the rotating shaft 5 9 is rotatably supported on the frame 5 6, and the projecting sled 5 8 of the container 5 7 is rotatably supported on the rotating plate 6 0 fixed to the rotating shaft 5 9. When the motor (not shown) is operated to rotate the rotary shaft 59, the rotary plate 60 rotates, and the container 57 rotates in a circular motion. It is being touched. That is, the material is placed in a container 5 7 and sealed, and the container 5 7 is circularly reciprocated to knead, and after the composite raw materials are connected, a vacuum suction device (not shown) is operated to reduce the pressure. Depressurize the inside of the container 57 via 1 and re-pressurize it when the porous material is degassed evenly, and continue to knead, then stop the circular reciprocating motion of the container 57 to stop the composite raw material. Then, the composite is taken out and cured to form a composite.
第 2 1 図は両側の架台 6 2 , 6 2 間に容器 6 3 を、 そ の取付-軸 6 4 , 6 4 を変心させて往復動可能に架設 した 場合を示 し、 第 1 7 図の複合体の製造装置に応用する こ と ができ る。  Fig. 21 shows the case where a container 6 3 is installed between the pedestals 6 2 and 6 2 on both sides so that it can be reciprocated by changing its mounting-shafts 6 4 and 6 4, and Fig. 17 It can be applied to composite manufacturing equipment.
以上ワ ン ロ ッ ト 毎の複合体の製造装置と複合体の製造 法に就て説明 したが、 以下複合体の連続製造装置と連続 製造法について説明する。 The complex manufacturing device and the composite manufacturing method for each of the buns have been described above. The manufacturing method will be described.
! 第 2 3 図は違続 ミ キ サー 6 5 と排出装置 6 6 を組合わ ' せた複合体の製造装置 1 例を示 し、 6 7 は連続'ミ キサー ! Fig. 23 shows one example of a composite manufacturing device in which a discontinuous mixer 65 and an ejector 6 6 are combined, and 6 7 is a continuous mixer.
6 5 を駆動する原動機、 6 8 は連続 ミ キサー 6 5 内を減 圧する真空吸引装置、 6 9 は気圧の変動を少な ぐする た めの真空タ ン ク 、 7 0 はゲー ジ、 7 1 は多孔物質を入れ る ホ ッ ノ、。一、 7 2 は連続 ミ キサー 6 5 に設け られた ロ ー タ リ ー フ ィ ーダ一 7 4 のホ ッ パー 7 3 に、 ホ ッ ノ、。一 7 1 内の多孔物質を搬送する ペ ル ト フ ィ ーダ一、 7 5 はペ ル ト フ ィ ー ダー 7 2 の速度を制御する速度制御装置、 7 6 は ベ ル ト フ ィ ー ダー 7 2 に設け られたベ ル ト ス ケ ー ル、A prime mover driving 6 5, 6 8 is a vacuum suction device for reducing the pressure in the continuous mixer 65, 6 9 is a vacuum tank for reducing the fluctuation of atmospheric pressure, 7 0 is a gauge, and 7 1 is 7 1. Hon, which contains the porous material. 1 and 7 2 are connected to the hopper 7 3 of the rotary feeder 1 7 4 provided on the continuous mixer 6 5 and the One is a pellet feeder that conveys the porous material inside one, one is a speed controller that controls the speed of the pellet feeder 7 2, and 7 6 is a belt feeder. Belt scale provided on 7 2,
7 7 は攪拌機 7 8 を備えた硬化原料貯蔵糟、 7 9 は貯蔵 糟 7 7 内の硬化原料をロ ー 'タ リ ー フ ィ ー ダ一 7 4 の基部 を介 して連続 ミ キ サー 6 5 内に搬送する搬送管 8 0 に設 け られた可変容量型ポ ン プ、 8 1 は搬送管 8 0 の可変容 量型ポ ンプ ? 9 と連続 ミ キ サー 6 5 の間に設け られた流 - 量計、 8 2 は流量計 8 1 及びベ ル ト ス ケ ー ル 7 6 に繋が れた比率制御装置、 8 3 は排出装置 6 6 に直列に設け ら れた 3 組のバ ル ブ、 8 4 は排出装置 6 6 か ら排出 される 複合原料を貯え る ホ ッ パーであ る。 7 7 is a curing raw material storage tank equipped with an agitator 7 8 and 7 9 is a continuous mixer 6 through which the curing raw material in the storage tank 7 7 is fed through the base of the rotary feeder 1 7 4. 5 is a variable-capacity pump installed on the transfer pipe 80, and 8 1 is a variable-capacity pump on the transfer pipe 80. Flow meter installed between 9 and continuous mixer 65, 8 2 is a ratio controller connected to flow meter 8 1 and belt scale 7 6, 8 3 is a discharge device 6 Three sets of valves installed in series with 6 and 8 4 are hoppers for storing the composite raw materials discharged from the discharge device 6 6.
上記装置では、 ホ ッ パ ー 7 1 の中の多扎物賈はベル ト フ ィ ー ダ一 7 2 で ロ ータ リ ー フ ィ ー ダ一 7 4 の供袷口で あ る ホ ッ パー 7 3 へ搬送さ れるが、 こ の時ペ ル ト フ ィ ー ダー 7 2 の速度を速度制御装置 7 5 によ っ て調整する こ と によ り 任意の量を供給する こ とができ る。 ま た多孔物  In the above-mentioned device, the multi-purpose cart in the hopper 71 is the belt feeder 1 7 2 and the rotor feeder 1 7 4 is the hopper that is the docking point. It is transported to 7 3, but at this time, the speed of the belt feeder 7 2 can be adjusted by the speed controller 7 5 and an arbitrary amount can be supplied. .. Mat porous material
O PI O PI
T . 質に対する硬化原料の割合を予 じめ比率制御装置 8 2 に 設定 しておけば、 ペル ト フ ィ ー ダ一 7 2 に設け られたべ ル ト ス ケ ー ル 7 6 によ っ て検出 さ れた多孔物質の量に対 し、 流量計 8 1 によ っ て検出 さ れた硬化原料の量が予め 設定 した割合にな る よ う に可変容量型ポ ンプ 7 9 を制御 する。 T. If the ratio of the curing raw material to the quality is set in advance in the ratio controller 82, it will be detected by the belt scale 7 6 provided in the pelt feeder 1 7 2. The variable capacity pump 7 9 is controlled so that the amount of the curing raw material detected by the flow meter 81 becomes a preset ratio with respect to the amount of the porous material.
即ち、 比率制御装置 8 2 に硬化原料 ( 実施例ではセ メ ン ト ペ ース ト ) と 多孔物質 ( 実施例では高炉滓 ) の割合 を設定する と共に速度制御装置 7 5 でペル ト フ ィ ー ダ一 7 2 の速度を制御 しておき、 図示さ れていない ミ キ サ ー でつ く られた硬化原料を貯蔵糟 7 7 に入れ、 攪拌器 7 8 で攪拌 しなが ら可変容量型ポ ン プ 7 9 、 ベル ト フ ィ ー ダ — 7 2 、 ロ ー タ リ ー フ ィ ー ダ一 7 4 、 連続 ミ キ サ ー 6 5 及び真空吸引装置 6 8 を作動 させる と、 所定量の硬化原 料と 多孔物質が連続 して連続 ミ キ サ ー 6 5 内に供給さ れ、 減圧下の連続 ミ キ サ ー 6 5 内で混練 さ れて複合原料と な り 、 上部の排出口か ら負圧に杭 し 自重によ り 排出装置 6 6 内に落下 し、 3 組のバルブ 8 3 の作動によ り ホ ッ パ 一 8 4 へ排出 さ れ復圧さ れる。 尚排出装置 6 6 は受圧板 6 6 a と 3 組のバルブ 8 3 によ っ て構成 さ れてお り 、 バ ルブ 8 3 は袋 8 3 a と シ リ ン ダ 8 3 b に よ っ て構成さ れ、 各袋 8 3 a は連通 してい る。 先づ図示のよ う に上部 シ リ ン ダの ビス ト ン ロ ッ ドのみを後退さ せてお く と連続 ミ キ サ ー 6 5 でつ く られた複合原料は上部袋内 に充満する。 次に中間 シ リ ン ダの ビス ト ン ロ ッ ドを後退 させ上部 シ リ  That is, the ratio of the curing raw material (cement paste in the example) and the porous material (blast furnace slag in the example) is set in the ratio controller 82, and the rate controller 75 is used to set the percentage of the pellet. The speed of the loader 7 2 is controlled, and the curing raw material, which is bound by a mixer (not shown), is put into the storage tank 7 7 and stirred by the stirrer 7 8 while the variable capacity type pouring is performed. When the pump 7 9, belt feeder 7 2, rotary feeder 1 7 4, continuous mixer 6 5 and vacuum suction device 6 8 are activated, a prescribed amount of curing is achieved. The raw material and the porous material are continuously supplied into the continuous mixer 65, and are kneaded in the continuous mixer 65 under reduced pressure to be a composite raw material, and then from the upper outlet. A negative pressure is applied to the pile, and it falls into the discharge device 6 6 due to its own weight, and is discharged to the hopper 1 8 4 by the operation of the three sets of valves 8 3 and is recompressed. The discharge device 6 6 is composed of a pressure receiving plate 6 6 a and three sets of valves 8 3 and the valve 8 3 is composed of a bag 8 3 a and a cylinder 8 3 b. It is configured and each bag 8 3 a is in communication. If only the piston rod of the upper cylinder is retracted as shown in the figure above, the composite raw material connected by the continuous mixer 65 will fill the upper bag. Next, retract the intermediate cylinder's steel rod and
" V/IPO一 ン ダの ビス ト ン ロ ッ ドを前進させる と上部袋内の複合原 料は中 P 袋内に移動する。 次に下部 シ リ ン ダの ビス ト ン ロ ッ ドを後退させる と共に中間 シ リ ンダの ビス ト ン ロ ッ ドを前進させる と中間袋内の複合原料は下部袋内に移動 し、 上部 シ リ ンダの ピ ス ト ン ロ ッ ドを後退させる と上部 袋内に複合原料が充満する。 次に下部 シ リ ンダの ピス ト ン ロ ッ ドを前進させる と下部袋内の複合原料は落下 して ホ ッ ノ、。一 8 4 内に落下 し、 中間シ リ ン ダの ビ ス ト ン ロ ッ ドを後退さ せ上部 シ リ ン ダの ビス ト ン ロ ッ ド を前進さ せ る と上部袋内の複合原料は中間袋内に移動する。 こ の作 動を繰返 して連続 ミ キサー 6 5 内の減圧状態を阻害する する こ と な く 複合原料を間欠的に排出する こ とができ る 上記排出 さ れた複合原料 適切な ミ キサ一で混練 し、 こ れを硬化させて複合体を得るが、 復圧後の ミ キサーに は連続 ミ キ サーを使用 して も よい。 "V / IPO When the solder rod of the undercarriage is advanced, the composite raw material in the upper bag moves into the middle P bag. Next, when the screw rod of the lower cylinder is retracted and the screw rod of the intermediate cylinder is moved forward, the composite raw material in the intermediate bag moves into the lower bag and the upper cylinder moves. When the piston rod of the binder is retracted, the composite material fills the upper bag. Next, when the piston rod of the lower cylinder is advanced, the composite raw material in the lower bag falls and becomes a hook. If the composite raw material in the upper bag is dropped by dropping the inner cylinder into the upper bag and retracting the intermediate cylinder's piston rod and advancing the upper cylinder's piston rod. Move to the middle bag. By repeating this operation, it is possible to intermittently discharge the composite raw material without hindering the depressurized state in the continuous mixer 65. The mixture is kneaded in one step and cured to obtain a composite, but a continuous mixer may be used as the mixer after recompression.
尚バルブの作動順序は上記順序に限定さ れない。 第 2 6 図〜第 3 0 図は受圧板 6 6 a と 1 本の可撓性管 8 3 ' a と 3 個の シ リ ンダよ り な る排出装置の シ リ ンダ の作動順序を示 し、 8 3 c は シ リ ンダの ビ ス ト ン ロ ッ ド であ る。 即ち受圧板と可撓性管と 3 個の シ リ ンダによ り 3 組のバルブが形成 さ れてい る こ と にな る。 第 2 3 図の 排出装置の 3 個の袋に代えて 1 本の可撓性管を使用 した も のであ り 、 排出原理は同一であ る か ら、 こ の排出装置 の シ リ ン ダの作動順序が第 2 3 図の排出装置に利用 され 第 2 3 図の シ リ ン ダの作動順序が こ の排出装置に利用 じ  The operating order of the valves is not limited to the above order. Figures 26 to 30 show the operating sequence of the ejector cylinders consisting of the pressure plate 6 6a, one flexible tube 8 3'a and 3 cylinders. , 8 3 c is the cylinder's best rod. That is, three sets of valves are formed by the pressure receiving plate, the flexible pipe, and the three cylinders. One flexible tube was used in place of the three bags of the discharge device in Fig. 23, and since the discharge principle is the same, the cylinder of this discharge device is The operating sequence is used for the ejector of Figure 23 and the operating sequence of the cylinder of Figure 23 is used for the ejector.
ΟΜΡΙ- き る こ と はい う ま で も ない。 即ち第 2 6 図の状態か ら第 2 7 図に示される よ う に中間 ピ ス .ト ン ロ ッ ドを後退さ せ、 第 2 8 図に示さ れる よ う に上部 ビ ス ト ン ロ ッ ドを前進さ せ、 第 2 9 図に示さ れる よ う に下部 ビ ス ト ン ロ ッ ドを後 退させる と共に中間 ピ ス ト ン ロ ッ ドを前進さ せ、 第 3 0 図に示さ れる よ う に下部 ビ ス ト ン ロ ッ ドを前進さ せ、 次 に第 2 6 図に示さ れる よ う に上部 ビス ト ン ロ ッ ドを後退 さ せ、 こ の作動を繰返 し行 っ て連続 ミ キ サ ー 6 5 内でつ く られた複合原料を間欠的に排出する。 ΟΜΡΙ- Kiruko and yes That is, from the state shown in Fig. 26, the intermediate piston rod is retracted as shown in Fig. 27, and the upper piston rod is shown as shown in Fig. 28. Forward the lower piston rod as shown in Figure 29 and the intermediate piston rod forward as shown in Figure 29, as shown in Figure 30. Lower cushion rod as shown in Fig. 26 and then retract the upper cushion rod as shown in Fig. 26, and repeat this operation. Intermittently discharge the composite raw materials that have been mixed in the mixer 65.
以上述べた排出装置は 3 組のバ ル ブを利用 した も ので あ る が、 第 3 1 図〜第 3 4 図に示さ れる よ う に 2 組のノ ルブを使用 した排出装置で も連続 ミ キ サー 6 5 内の減圧 状態を阻害する こ と な く 複 ^原料を排出する こ と ができ る。 こ の排出装置は第 2 6 図〜第 3 0 図の排出装置の中 間 シ リ ン ダを除去 した ものに過ぎないので構造の詳細を 省略する。 即 ち第 3 1 図の状態か ら第 3 2 図に示さ れる よ う に上部 ピ ス ト ン ロ ッ ド 8 3 c を後退 さ せ、 第 3 3 図 に示 さ れる よ う に上部 ビ ス ト ン ロ ッ ド 8 3 c を前進さ せ、 第 3 4 図に示さ れる よ う に下部 ピ ス ト ン ロ ッ ド 8 3 c を 後退させ、 次に第 3 1 図に示 さ れる よ う に下部 ビ ス ト ン ロ ッ ド 8 3 c を前進さ せ、 こ の作動を順次繰返 して連続 ミ キ サ ー 6 5 内でつ く られた複合原料を間欠的に排出す る。 尚排出がス ム ー ス に行われない時は受圧板ま た は可 撓性管に振動を加え る こ と ができ る。  The discharge device described above uses three sets of valves, but as shown in Figs. 31 to 34, the discharge device using two sets of valves is a continuous mixer. It is possible to discharge complex material without hindering the depressurized state inside the mixer 65. Since this ejector is merely the one with the middle cylinder of the ejector shown in Fig. 26 to Fig. 30 removed, the detailed structure is omitted. Immediately from the state shown in Fig. 31, retract the upper piston rod 8 3 c as shown in Fig. 32 and move the upper screw as shown in Fig. 33. Tongue 8 3 c is advanced, lower piston rod 8 3 c is retracted as shown in Figure 34, and then as shown in Figure 31. Then, the lower booth rod 8 3 c is moved forward, and this operation is repeated in sequence to intermittently discharge the composite raw material squeezed in the continuous mixer 65. When the discharge is not smooth, vibration can be applied to the pressure plate or flexible pipe.
第 2 4 図は他の排出装置を示 し、 連続 ミ キ サ ー 6 5 の 排出口に上部容器 8 5 と これに連通する下部容器 8 6 が 設け られてお り 、 下部容器 8 6 は真空バルブ 8 8 を介 し て真空吸引装置 6 8 に繋がれ、 上下にはパ' ルブ 8 . 7 , Fig. 24 shows another ejector, which is a continuous mixer 65. An upper container 8 5 and a lower container 8 6 communicating with the upper container 8 5 are provided at the discharge port.The lower container 8 6 is connected to a vacuum suction device 68 via a vacuum valve 8 8 and is connected to the upper and lower parts. Lube 8 .7,
8 7 が設け られいて る。 即ち上部バ ルブ 8 7 を閉 じて連 8 7 are provided. That is, by closing the upper valve 87,
キ サ ー 6 5 を運転すれば上部谷 ¾^ 8 5 に複合原料が 溜る。 同時に下部ノ ノレづ 8 7 を閉 じて真空バルブ 8 8 を 開 く と、 下部容器 8 6 内 も連続 ミ キ サ— 6 5 内と 同一気 圧にな っ てい る か ら、 上部容 ¾F 8 5 が複合原料で一杯に な つ た ら上部バルブ 8 7 を開 く と上部容器 8 5 内の複合 原料は下部容器 8 6 内に移動する。 次に上部バルブ 8 7 を閉 じカヽっ真空バルブを閉 じて下 ¾バル ブ 8 7 を開 く と 複合原料は下部容器 8 6 か ら排出 さ れ、 上部容器 8 5 に は複合原料が溜る。 この動作を繰返 して間欠的に複合原 料を排出する。  The composite raw material accumulates in the upper valley ¾ ^ 8 5 when the mixer 65 is operated. At the same time, when closing the bottom nozzle 8 7 and opening the vacuum valve 8 8, the inside of the bottom container 8 6 is also at the same atmospheric pressure as the inside of the continuous mixer 6 5, so the top volume F 8 When 5 is filled with the composite material, opening the upper valve 8 7 moves the composite material in the upper container 8 5 into the lower container 8 6. Next, when the upper valve 8 7 is closed and the vacuum valve is closed and the lower valve 8 7 is opened, the composite raw material is discharged from the lower container 8 6 and the composite raw material is collected in the upper container 8 5. .. This operation is repeated to intermittently discharge the composite raw material.
2 5 図は他の排出装置 1 例を示 し、 連続 ミ キサ ー  2 5 The figure shows an example of another discharge device, which shows a continuous mixer.
6 5 の排出口に連通 して設け られた下向き管 8 9 に図示 さ れていない レぺル検出器ま たは重量測定器が設けられ てい る と共に下端に開閉自在なゲー ト 9 0 が設け られて い る 。 下向き管 8 9 内の複合原料を押 し上げる力を F 、 大気圧を P 。 、 連続 ミ キ サ - 6 5 内の気圧を P , 、 下向 き管の断面積を A とすれば、 F = ( P 。 P t ) A の式 が成り 立ち、 下向き管 8 9 内の複合原料の高さ を h 、 重 A downward pipe 8 9 provided in communication with the discharge port of 6 5 has a level detector (not shown) or a weight measuring device (not shown) and an openable gate 90 at the lower end. It has been done. F is the force to push up the composite raw material in the downward pipe 8 9 and P is the atmospheric pressure. , If the atmospheric pressure in the continuous mixer -65 is P, and the cross-sectional area of the downward pipe is A, then the formula F = ( P.Pt ) A holds, and the composite in the downward pipe 89 is Raw material height h, weight
W 、 比重を d とすれば W = A h d の式が成り 立つ。  If W and specific gravity are d, then the formula W = A h d holds.
で W 〉 F であれば連続 ミ キ サ一 6 5 内は低圧に保た れるから、 上記範囲内でいつ も複合原料が一定の重量を - こ. Λ;、 rs 維持でき る よ う にゲー ト 9 0 を開いて複合原料を間欠的 に少量づっ排出すれば、 連続 ミ キ サ ー 6 5 内の減圧状態 を阻害する こ と な く 複合原料を排出する こ とができ る。 尚図中真空タ ン ク 6 9 、 ゲー ジ 7 0 及び真空吸引装置 6 8 は こ れを省略 した。 If W> F, then the low pressure is maintained in the continuous mixer 65, so that the composite raw material always has a constant weight within the above range-this Λ ;, r s If the gate 90 is opened so that the composite material can be maintained and the composite material is discharged intermittently in small amounts, it is possible to discharge the composite material without disturbing the depressurized state in the continuous mixer 65. You can In the figure, the vacuum tank 69, gauge 70 and vacuum suction device 68 are omitted.
以上複合体の連続製造装置について説明 したが、 排出 装置か ら ホ ッ パー 8 4 に排出 さ れた複合原料を再度混練 して取 り 出 し硬化さ せれば、 複合体を得る。  The continuous production apparatus for composites has been described above, but the composite material discharged from the discharge device to the hopper 84 is kneaded again, taken out, and cured to obtain a composite.
第 2 3 図〜第 3 4 図で説明 した複合体の製造法及び製 造装置では、 搬送管 8 0 を図示さ れていない水源ま た は 硬化原料糟に繫ぎ ( 貯蔵糟 7 7 に代えて ) かつホ ッ パー 7 1 と ベ ル ト ス ケ ー ル 7 6 を設けた ベ ル ト フ ィ ー ダ一 7 2 複数組を設け、 多孔物質 舍む複数の材料を ロ ー タ リ — フ ィ ー ダ一 7 4 のホ ッ パー 7 3 に供給 して も よい。 即 ち連続 ミ キ サ ー 6 5 に排送管 8 0 で水を供給 し、 複数の ベル ト フ ィ ー ダ一か ら 多孔物質、 セ メ ン ト 或いは更に砂 等を供給 して も よい。 ま た排出装置 6 6 に は、 こ れに代え て ロ ー タ リ — フ ィ ー ダ一を使用 して も よ く 、 ロ ー タ リ ー フ ィ ー ダ一 7 4 に は、 これに代えて排出装置 6 6 の う ち 適切な も のを使用する こ と も でき る。 尚連続 ミ キ サ ー 6 5 に は複合原料を供給 して多孔物質の脱気をむ ら な く 行 い、 排出装置か ら排出 して復圧 してよい こ と はい う ま で も ない。 ま たパ'ルブ 8 3 , 8 7 に はダイ ヤ フ ラ ム ま たは ピ ンチパルブが適 してい る。  In the composite manufacturing method and manufacturing apparatus described in Figs. 23 to 34, the carrier pipe 80 is connected to a water source or a curing raw material tank (not shown) (instead of the storage tank 77). ) And a belt feeder 1 7 2 provided with a hopper 7 1 and a belt scale 7 6 are provided, and a plurality of materials for the porous material are rotatably fed. It may be supplied to the hopper 7 3 of the feeder 7 4. Immediately, water may be supplied to the continuous mixer 65 through the discharge pipe 80, and porous material, cement, or sand may be supplied from a plurality of belt feeders. In addition, a rotary feeder may be used instead of the discharge device 66, and a rotary feeder may be used instead of the rotary feeder. You can also use a suitable discharge device 66. It should be noted that the composite raw material may be supplied to the continuous mixer 65 to prevent degassing of the porous material, and then discharged from the discharge device to restore the pressure. In addition, a diaphragm or a pinch valve is suitable for the par 8 3 and 8 7.
第 3 5 図は複合体の連続製造装置 1 例を示 し、 9 1 は  Figure 35 shows one example of continuous production equipment for composites, and 91 is
OMPI 2 は供給管、 9 3 は拡散板、 9 4 は排出管、OMPI 2 is a supply pipe, 9 3 is a diffusion plate, 9 4 is a discharge pipe,
9 5 は図示さ れていない真空吸引装置に繋がれた減圧管 9 6 は図示さ れていな い コ ン プ レ ッ サ一に繋がれた加圧 管、 9 7 は容器 9 1 内に設け られた攪拌具、 9 6 は攪拌 具 9 7 を回動させるモ ー タ であ る。 9 5 is a decompression pipe connected to a vacuum suction device (not shown) 9 6 is a pressure pipe connected to a compressor (not shown), 9 7 is provided in the container 9 1. The agitator 9 6 is a motor for rotating the agitator 9 7.
供給管 9 2 、 排出管 9 4 、 及び加圧管 9 6 を閉 じてお き 、 真空吸引装置を作動させ減圧管 9 5 を介 し 容 ¾ 9 1 を減圧 し、 次に洪給管 9 2 を開き定量の複合原料を 内に供給する と、 複合原料は供給管 9 2 の下部 に設け られた拡散板 9 3 によ っ て分散 し容器 9 1 内に落 下する。 次に容器 9 1 内を復圧 し、 攪拌具 9 . 7 で攪拌 し た後供給管 9 2 と減圧管 9 5 を閉 じ排出管 9 4 と加圧管 9 6 を開き コ ン プ レ ッ サ一を作動させて容器 9 1 内を加 圧する と 、 容器 9 1 内の複合原料は排出管 9 4 か ら排出 さ れる。 次に コ ンプ レ ッ サ一の作動を停止 して加圧管 9 6 、 排出管 9 4 を閉 じ、 減圧管 9 5 を開いて真空吸引装 置を作動させる と、 容器 9 1 内は減圧さ れる。 上記作動 ¾:探返 し行 う と排出管 9 4 か ら間欠的に複合原料が排出 さ れ、 これを硬化させて複合体をつ く る 0 fnj 散板 9 3 は これを回転させて も よ く 他の分散具に代えて もよい。 減圧下の複合原料を攪拌具 9 7 で攪拌 してよい こ と はい う ま で も ない。 また供給管 9 2 には 口 一 タ リ ーフ ィ ー ダ 一や前記 した排出装置等を設け、 自動制御 して定量づっ 複合原料を供給する よ う に して も よい The supply pipe 9 2, the discharge pipe 9 4, and the pressurizing pipe 9 6 are closed, the vacuum suction device is operated to reduce the pressure of the container 9 1 via the decompressing pipe 9 5, and then the supply pipe 9 2 When the container is opened and a fixed amount of the composite raw material is supplied to the inside, the composite raw material is dispersed by the diffusion plate 9 3 provided at the lower part of the supply pipe 9 2 and drops into the container 9 1. Next, after the pressure inside the container 9 1 is restored and the mixture is agitated by the agitator 9.7, the supply pipe 9 2 and the decompression pipe 9 5 are closed, and the discharge pipe 9 4 and the pressurization pipe 9 6 are opened. When one is operated to pressurize the inside of the container 91, the composite raw material in the container 9 1 is discharged from the discharge pipe 9 4. Next, stop the operation of the compressor, close the pressure pipe 9 6 and the discharge pipe 9 4, and open the decompression pipe 9 5 to activate the vacuum suction device, so that the pressure inside the container 9 1 is reduced. Be done. Above operation ¦: When searching back, the composite raw material is intermittently discharged from the discharge pipe 94, and it is cured to connect the composite. It may be replaced with another disperser. May this and not even among cormorants Yes you are stirring in the stirring device 9 7 the complex raw materials of under reduced pressure. Further, the supply pipe 92 may be provided with a mouth tally feeder, the above-mentioned discharge device, etc., and may be automatically controlled to supply the composite raw material quantitatively.
第 3 6 図は複合体の違続製造装置 1 例を示 し、 9 9 は シ リ ン ダ、 1 0 0 は シ リ ン ダ 9 9 の ピ ス ト ン 、 1 0 1 は シ リ ン ダ壁であ り 、 シ リ ン ダ壁 1 0 1 の底部に はその下 部に一体的に形成さ れた容器 1 0 3 に連通する孔 1 0 2 が設け られてお り 、 孔 1 0 2 にはフ ィ ルタ ーが張 られて い る。 ま た容器 1 0 3 に は供給管 1 0 4 , 排出管 1 0 5 減圧管 1 0 6 及び加圧管 1 0 7 が設け られてい る。 即ち 第 3 5 図示の複合体の連続製造装置に シ リ ンダ 9 9 を付 加 した も のであ り 、 複合体の製造法は第 3 5 図で説明 し た と 同 じ要領で行われる ので、 その詳細は省略する が、 シ リ ン ダ 9 9 を利用 して容器 1 0 3 内の減圧と加圧を行 う こ と ができ る ので、 減圧管 1 0 6 及び加圧管 1 0 7 は 必ず し も必要ではない。 ま た容器 1 0 3 内に攪拌具を設 ける こ と は第 3 5 図の装置崗様であ る。 Fig. 36 shows an example of a discontinuous manufacturing device for composites, and 9 9 indicates The cylinder, 1 0 0 is the cylinder 9 9 piston, 1 0 1 is the cylinder wall, and the bottom of the cylinder wall 1 0 1 is below it. A hole 10 2 communicating with the integrally formed container 10 3 is provided, and the hole 10 2 is provided with a filter. In addition, the container 103 is provided with a supply pipe 1104, a discharge pipe 105, a pressure reducing pipe 106, and a pressurizing pipe 107. That is, a cylinder 999 was added to the continuous production system for composites shown in Fig. 35, and the method for producing composites is the same as that explained in Fig. 35. Although the details are omitted, it is possible to depressurize and pressurize the inside of the container 10 3 by using the cylinder 99, so the depressurizing pipe 10 6 and the pressurizing pipe 10 7 must be used. However, it is not necessary. In addition, it is similar to the equipment granule in Fig. 35 that an agitator is installed in the container 103.
第 3 5 図及び第 3 6 図では、 供給管が 1 本であ り 、 こ れか ら複合原料を容器内に供給 したが、 供給管を複数本 設け、 こ れか ら複数の材料及びま た は硬化原料を容器内 に供給 し、 容器内を減圧 し減圧下で攪拌 して複合原料を つ く り 、 復圧と した後弓、 ί続き攪拌 して複合原料を排出 し - こ の動作を繰返 して間欠的に連続 して複合原料を排出す る こ と ができ る。 尚容器の形状はホ ッ パー同様に下部を 径小に形成するが望ま し く 、 こ のよ う な形状にすれば複 合原料の排出に は必ず し も圧搾空気を必要と しない。  In Figures 35 and 36, there was one supply pipe, and the composite raw material was supplied from this into the container.However, multiple supply pipes were provided, and multiple materials and Or supply the curing raw material into the container, depressurize the inside of the container and stir under reduced pressure to build up the composite raw material.After the pressure is restored, bow and then stir to mix and discharge the composite raw material. By repeating the above, it is possible to intermittently and continuously discharge the composite raw material. Like the hopper, it is desirable that the shape of the container is such that the lower part has a small diameter, and it is not necessary to use compressed air to discharge the mixed raw materials if such a shape is used.
第 3 7 図は排出装置に利用する こ と ができ る他の ロ ー タ リ-一フ ィ ー ダ一 7 4 に代えて使用する こ と も でき る流 動体用ポ ン プ Ε を示 し、 1 0 8 は半円形型の両側端を接  Figure 37 shows a fluid pump Ε which can also be used in place of the other rotary feeders 74 that can be used in the discharge device. , 1 0 8 connects both ends of the semicircular type.
m 線方向に延設 した断面形状を有する断面形状略半円形の ケ ー シ ング、 1 0 9 はその内側面に沿 づて U字状に配設 さ れた可撓管、 1 1 0 はケ ー シ ング 1 0 '8 に対 しその半 円形部と 同心的に回転する アー ム であ り 、 アー ム 1 1 0 の下方には同形伏の下部アー ム が設け られてお り 、 駆動 軸 1 1 3 がアー ム 1 1 0 の中心部軸受と下部アー ム の中 心部軸受に挿嵌さ れ、 従動軸 1 1 4 及び 1 1 4 ' が夫々 アー ム 1 1 0 の端部軸受と下部アー ム の端部軸受に揷嵌 さ れてい る。 ま た駆動軸 1 1 3 には、 駆動軸スプロ ケ ッ ト 1 1 5 が上部及び下部に夫々固着さ れてお り 、 上部の 駆動軸 ス プ ロ ケ ッ ト 1 1 5 と従動軸 1 1 4 の上部に固挈 した従動軸ス プロ ケ ッ ト 1 1 1 間にはチ ェ ン 1 1 6 が巻 回さ れ、 下部の駆動軸スプ σ ケ ッ ト 1 1 5 と従動軸 114 の下部に固着 した従動軸ス プロケ ッ ト 1 1 1 ' 間にはチ ェ ン 1 1 6 ' が巻回 さ れていて、 動力によ り 駆動軸 113 を矢印方向に回転さ せる と従動軸 1 1 4 及び 1 1 4 ' も 矢印方向に回転 し、 従動軸 1 1 4 及び 1 1 4 ' の夫々 の 径大部即ち回転ロ ー ラ 1 1 2 , 1 1 2 ' は夫々 可撓管 1 0 9 を押圧 しなが ら 自転自走 し、 可撓管 1 0 9 内の流 動体 ( 流動性を有する材料、 硬化原料、 複合原料等 ) を 一定方向へ押 し出すよ う に して搬送 し、 アー ム 1 1 0 も 駆動軸 1 1 3 を中心に矢印方向へ回転する。 尚アー ム 1 1 0 と同様な ア ー ムをアー ム 1 1 0 と直交させて設け 4 個の回転ロ ー ラ を自転自走させて可撓管 1 0 9 内の流 動体を搬送してよい こ と はい う ま で あ ない。 即ち可撓管の一側を連続 ミ キ サー或い は貯蔵糟等へ連 結 しておき、 図示さ れていない原動機を作動さ せて駆動 軸 1 1 3 を回転さ せる と、 連続 ミ キ サーでつ く られた、 或いは貯蔵糟へ貯え られた流動体を、 可撓管の他側か ら 連続的に排出する こ と ができ、 排出 と 同時に復圧する こ と ができ る。 従 って第 2 3 図に示さ れる連続 ミ キサー 6 5 に、 排出装置 6 6 に代えて取付け使用する こ とがで き る他、 連続 ミ キ サー 6 5 に供給さ れる も のが複合原料 等の流動体であ る場合は、 口 一 タ リ 一 フ ィ ー ダ一 7 4 に 代えて使用する こ と も でき る。 m A substantially semicircular casing with a cross-sectional shape extending in the line direction, 109 is a flexible tube arranged in a U shape along its inner surface, and 110 is a casing. It is an arm that rotates concentrically with the semi-circular portion of the casing 1 0 '8, and a lower arm of the same contour is provided below the arm 1 10 and the drive shaft 1 1 3 are inserted into the central bearing of the arm 1 10 and the central bearing of the lower arm, and the driven shafts 1 1 4 and 1 1 4'are the end bearings of the arm 1 1 0, respectively. It is fitted to the end bearing of the lower arm. In addition, the drive shaft 1 1 3 has drive shaft sprockets 1 15 attached to the upper and lower parts, respectively, and the upper drive shaft sprockets 1 1 5 and the driven shaft 1 1 5 A chain 1 1 6 is wound between a driven shaft sprocket 1 1 1 fixed to the upper part of 4 and a lower drive shaft sp σ 1 1 5 and driven shaft 114 lower part. A chain 1 1 6 ′ is wound between the driven shaft sprocket 1 1 1 ′ fixed to the drive shaft 113, and when the drive shaft 113 is rotated in the direction of the arrow by the power, the driven shaft 1 1 1 1 ′ is rotated. 4 and 1 1 4 ′ also rotate in the direction of the arrow, and the large diameter parts of the driven shafts 1 1 4 and 1 1 4 ′, that is, the rotary rollers 1 1 2 and 1 1 2 ′, respectively, are flexible tubes 1 0 9 While moving by pressing, the fluid body (fluid material, curing raw material, composite raw material, etc.) in the flexible tube 109 is pushed and conveyed in a certain direction. The arm 1 1 0 also rotates in the direction of the arrow around the drive shaft 1 1 3. An arm similar to arm 1 10 was installed orthogonally to arm 1 1 0, and four rotating rollers were made to rotate on their own axis to convey the fluid inside flexible tube 1 09. Good and good. That is, if one side of the flexible tube is connected to a continuous mixer or a storage tank, and the drive shaft 1 1 3 is rotated by operating a prime mover (not shown), the continuous mixer is It is possible to continuously discharge the fluid, which is connected to the sir or is stored in the storage tank, from the other side of the flexible tube, and the pressure can be restored at the same time as the discharge. Therefore, the continuous mixer 65 shown in Fig. 23 can be installed and used in place of the discharge device 66, and the material supplied to the continuous mixer 65 is a composite raw material. In the case of a liquid such as the above, it can be used in place of the mouthpiece feeder 1 74.
尚流動体用 ポ ン プに は、 駆動軸に固着さ れた ア ー ムを 回転さ せ、 ア ー ム の両端に回動自在に取付け られた回転 ロ ー ラ によ り 可撓管を押圧 Lなが ら可撓管内の流動体を 搬送する流動体用 ポ ンプ等 も知 られてお り 、 上記 した流 動体用 ポ ン プ E を含めた流動体用ポ ン プを F と総称 して, 以下複合体の製造法と製造装置他例につき説明する。  For the fluid pump, rotate the arm fixed to the drive shaft and press the flexible tube with the rotary rollers rotatably attached to both ends of the arm. A fluid pump that conveys fluid in a flexible tube while L is also known, and the fluid pump including the fluid pump E described above is collectively referred to as F. The following will describe another example of the manufacturing method of the composite body and the manufacturing apparatus.
第 3 8 図〜第 4 2 図において、 1 1 7 は第 4 2 図に示 さ れる連続 ミ キ サ ー 1 1 8 等でつ く られる複合原料 1 3 0 を 1 時貯蔵する貯蔵糟、 1 1 9 は貯蔵糟 1 1 7 か ら容器 1 2 0 ま たは連続 ミ キ サ ー 1 2 1 に複合原料を供給する 供給管、 1 2 2 は容器 1 2 0 ま たは連続 ミ キ サ ー 1 2 1 に減圧管 1 2 3 を介 して設け られた真空吸引装置、 1 2 4 は減圧管 1 2 3 に設け られた気液分離器、 1 2 5 は容器 1 2 0 ま たは連続 ミ キ サ ー 1 2 1 か ら複合原料を排出す る排出管、 F は供給管 1 1 9 及び排出管 1 2 5 に設け ら  In Figures 38 to 42, 1 1 7 is a storage tank for temporarily storing the composite raw material 1 3 0, which is connected by the continuous mixer 1 1 8 etc. shown in Figure 4 2, 1 1 9 is a supply pipe for supplying composite raw material from a storage tank 1 17 to a container 1 2 0 or a continuous mixer 1 2 1, and 1 2 2 is a container 1 2 0 or a continuous mixer. Vacuum suction device installed in 1 2 1 via decompression pipe 1 2 3, 1 2 4 is gas-liquid separator installed in decompression pipe 1 2 3, 1 2 5 is container 1 2 0 or continuous The discharge pipe for discharging the composite raw material from the mixer 1 2 1, F is installed in the supply pipe 1 1 9 and the discharge pipe 1 2 5.
O PI _ れた流動体用ポ ンプであ り 、 その両側の可撓管が洪絵管 1 1 9 及び排出管 1 2 5 に取付け られてい る。 ま た 126 は第 3 9 図示の容器 1 2 0 内に設け られた回転式拡散板 - 1 2 7 は第 4 0 図示の容器 1 2 0 内に設けられた攪拌具- 1 2 8 は回転式拡散板 1 2 6 、 攪拌具 1 2 7 、 反び連続 ミ キサー 1 1 8 , 1 2 1 を夫々 駆動する原動機、 1 2 9 は第 4 2 図における連続 ミ キサー 1 1 8 内に供給管 13 1 を介 して供給さ れる材料、 1 3 2 は連続 ミ キサー 1 1 8 で混練されてつ く られた複合原料 1 3 0 を貯蔵糟 1 1 Ί へ排出する排出管であ る。 O PI _ It is a pump for fluids, and flexible pipes on both sides of the pump are attached to the flood picture tube 1 19 and the discharge tube 1 2 5. In addition, 126 is a rotary diffuser plate provided in the container 120 shown in Fig. 39-1 2 7 is an agitator provided in the container 120 shown in 40-1 2 8 is a rotary type A diffuser 1 2 6, a stirrer 1 2 7 and a prime mover for driving the warped continuous mixers 1 1 8 and 1 2 1 respectively, and 1 2 9 is a supply pipe 13 inside the continuous mixer 1 1 8 in Fig. 42. The material supplied through 1 and 1 3 2 are discharge pipes for discharging the composite raw material 1 3 0 mixed and kneaded by the continuous mixer 1 1 8 to the storage tank 11 1 Ί.
即ち、 第 3 8 図〜第 4 2 図の複合体の製造装置は、 何 れも連続 ミ キサー 1 1 8 等で複数の材料を混練 してつ く られた複合原料 1 3 0 を貯歲糟 1 1 7 に一時貯え、 これ を真空吸引装置 1 2 2 によ っ て減圧さ れた容器 1 2 0 ま たは連続 ミ キサー 1 2 1 内に供給管 1 1 9 の流動体用ポ ン プ F を介 して連続的に供給する一方、 排出管 1 2 5 の 流動体用ポ ン プ F を介 して排出かつ復圧 して図示さ れて いない ホ ッ パー等へ排出する もので、 復圧された複合原 料を適切な ミ キ サーで混練 して取出 し硬化させる と複合 体を得る。 尚複合原料 1 3 0 をむ らな く 減圧する 目的で 第 3 8 図の装置では容器 1 2 0 の高さ を高 く して複合原 料を落下時均一に減圧する よ う に考慮さ れてお り 、 第 3 9 図の装置では回転式拡散板 1 2 6 ( 固定式拡散板で も 分散具で も よい ) を使用 して複合原料の分散によ る減圧 効果が考慮さ れてい る。 ま た第 4 0 図の装置では減圧下 の複合原料を攪拌具で攪拌 して、 第 4 1 図及び第 4 2 図 の装置では減圧下の連続 ミ キ サ ー .1 2 1 の拡 ^を利用 し て複合原料の均一な減圧が考慮さ れてい る。 以上述べた 製造装置で貯蔵糟 1 1 7 へ複合原料を供給する ミ キ サ ー は、 第 4 2 図示の連続 ミ キ サ ー 1 1 8 に限定さ れる も の ではな く 、 貯蔵糟 1 1 7 内へ常時複合原料が貯蔵さ れる 構成の も のであれば、 ワ ン ロ ッ ト 毎に複合原料をつ く る ミ キ サ ーであ っ て も よ い。 In other words, all of the composite manufacturing devices shown in Figs. 38 to 42 store the composite raw material 130 made by kneading a plurality of materials with a continuous mixer 118 or the like. The fluid pump of the supply pipe 1 1 9 is temporarily stored in 1 1 7 and is stored in a container 1 2 0 or a continuous mixer 1 2 1 whose pressure is reduced by a vacuum suction device 1 2 2. While it is continuously supplied via F, it is discharged via the fluid pump F of the discharge pipe 1 2 5 and is recompressed and discharged to a hopper or the like not shown. The recompressed composite raw material is kneaded with an appropriate mixer, taken out, and cured to obtain a composite. For the purpose of evenly reducing the pressure of the composite raw material 130, in the device shown in Fig. 38, the height of the container 120 is increased so that the composite raw material is uniformly depressurized when dropped. Therefore, in the device shown in Fig. 39, the depressurizing effect due to the dispersion of the composite raw materials is taken into consideration by using the rotary diffuser plate 1 2 6 (either a fixed diffuser plate or a disperser may be used). .. In addition, under the reduced pressure The composite raw material of Fig. 41 and Fig. 42 is stirred by a stirrer and the uniform decompression of the composite raw material is considered by utilizing the expansion of continuous mixer .1 21 under reduced pressure. It is being touched. The mixer for supplying the composite raw material to the storage tank 1 17 by the above-mentioned manufacturing apparatus is not limited to the continuous mixer 1 18 shown in Fig. 42, but the storage tank 1 1 7 As long as the composite raw material is stored in the inside of the mixer, it may be a mixer that connects the composite raw material for each lot.
第 4 3 図及び第 4 4 図は、 以上のよ う に してつ く られ た複合原料 1 3 0 を更に含泡させて含泡複合原料とする 製造装置 2 例を示 し、 1 2 5 は第 3 8 図〜第 4 2 図の複 合体の製造装置の排出管、 F は排出管 1 2 5 に設け られ た流動体用 ポ ン プ、 1 3 3 ほ造泡機、 1 3 4 は造泡機 1 3 3 でつ く られた泡を ミ キサ ー 1 3 5 内に供絵する泡 供給管、 1 3 6 は ミ キサ ー 1 3 5 内に排出管 1 2 5 か ら 排出 さ れる複合原料と造泡機 1 3 3 か ら供給 さ れる 泡 1 3 7 を混練 して含泡複合原料をつ く る攪拌具、 1 3 8 は攪拌具 1 3 6 を駆動する原動機、 1 3 9 は ミ キサ ー 1 3 5 内でつ く られた舍泡複合原料を排出する排出管、 1 4 0 は排出管 1 3 9 か ら排出 さ れる舍泡複合原料 141 を一時貯蔵する貯蔵糟、 1 4 2 は聍蔵糟 1 4 0 内の会泡 複合 料 1 4 1 を排出する排出管、 F は排出管 1 4 2 に 設け られた流動体用 ポ ン プ、 1 4 3 は連続 ミ キ サ ー 144 と造泡機 1 3 3 の間の泡供給管 1 3 4 に設け られた流量 計、 1 4 5 は連続 ミ キ サ ー 1 4 4 内に排出管 1 2 5 か ら  Figures 43 and 44 show two examples of production equipment for producing a foam-containing composite material by further entrapping the composite material 1300 produced as described above into a foam-containing composite material. Is the discharge pipe of the composite manufacturing equipment in Figs. 38 to 42, F is the fluid pump provided in the discharge pipe 1 2 5, 1 3 3 is a foaming machine, and 1 3 4 is A foam supply pipe for supplying the foam made by the foaming machine 1 3 3 into the mixer 1 3 5, and 1 3 6 is discharged from the discharge pipe 1 2 5 into the mixer 1 3 5. Mixing material and foaming machine 1 3 3 Kneading foam 1 3 7 to stir the foamed composite material, 1 3 8 is a prime mover driving the stirring tool 1 3 6, 1 3 9 Is a discharge pipe that discharges the foam composite material that has been packed in the mixer 1 3 5; 1 4 0 is a storage tank that temporarily stores the foam composite material 141 that is discharged from the discharge pipe 1 3 9; 4 2 is a discharge pipe for discharging the foam composite material 1 41 in the Lizhong Kwa 1 4 0, F is a fluid pump provided in the discharge pipe 1 4 2, and 1 4 3 is a continuous mixer. -The flow meter installed on the foam supply pipe 1 3 4 between the 144 and the foaming machine 1 3 3, 1 4 5 is the discharge pipe 1 2 5 from the discharge pipe 1 2 5 in the continuous mixer 1 4 4.
O PI 供給さ れる複合原料と造泡機 1 3 3 か ら供給さ れる泡を 混練 してつ く られる舍泡複合原料、 1 4 7 は連続 ミ キサ - 1 4 でつ く られた舍泡複合原料 1 4 5 を排出する排 出管であ る o O PI Composite raw material supplied and foaming machine 1 3 3 A foam composite material that is kneaded and mixed with foam, 1 4 7 is a foam composite material that is connected by a continuous mixer 1 4 1 It is a discharge pipe that discharges 45 o
尚図示さ れていないが、 排出管 1 2 5 の途中には復圧 後の複合原料を混練する ミ キサ一が設け られてい る  Although not shown, a mixer for kneading the composite raw material after decompression is provided in the middle of the discharge pipe 1 25.
第 4 3 図の装置では、 排出管 1 3 9 を閉 じておいて排 出管 1 2 5 か ら排出 さ れる複合原料と造泡機 1 3 3 でつ く られる泡とを ミ キサー 1 3 5 内で混練 して舍泡複合原 料をつ く 、 排出管 1 3 9 を開いて貯蔵糟 1 4 0 へ排出 し、 流動体用 ポ ンプ F の作動によ り 排出管 4 2 か ら連続 して排出するが、 こ の装置ではワ ン ロ ッ ド毎に舍泡複合 原料がつ く られる ので、 ミ Φサ 一 1 3 5 への複合原料の 供袷は第 3 8 図〜第 4 2 図の装置か ら供給する こ と な く 第 1 図〜第 3 6 図で説明 して装置か ら拱給 しても よい。  In the device shown in Fig. 43, the mixer 1 3 3 mixes the composite raw material discharged from the discharge pipe 1 2 5 with the discharge pipe 1 3 9 closed and the foam created by the foaming machine 1 3 3. Mix the mixture in 5 to fill the foam composite raw material, open the discharge pipe 1 3 9 and discharge it to the storage tank 1 4 0.Continue from the discharge pipe 4 2 by operating the pump F for fluid. However, in this equipment, the composite foam raw material is connected to each wire, so the supply of the composite raw material to the mill Φ 1135 is shown in Figs. 38 to 42. Instead of supplying from the device in the figure, it may be supplied from the device as described in FIGS. 1 to 36.
第 4 4 図の装置は、 排出管 1 2 5 か ら連続して供給さ れる複合原料と造泡機 1 3 3 から連続 して供給さ れる泡 を、 連続 ミ キ サー 1 4 4 で連続 して混練 し舍泡複合原料 と な し、 これを排出管 1 4 7 か ら連続して排出する も の であ る。 尚流動体用 ポ ンプ F の吐出量と h m. st 1 4 3 で 検出 さ れる泡の流量を図示さ れていない制御装置で制御 して任意の配合比の舍泡複合原料をつ く る は( う ま で も ない 中 1 4 6 は連続 ミ キサー - 1 4 4 を駆動する 原動機でめ <5> 。  The device shown in Fig. 44 continuously feeds the composite raw materials continuously supplied from the discharge pipe 1 2 5 and the foam continuously supplied from the foaming machine 1 3 3 to the continuous mixer 1 4 4. The mixture is kneaded to form a composite foam, and this is continuously discharged from the discharge pipe 1447. In addition, the discharge amount of the pump F for fluid and the flow rate of bubbles detected at h m.st 1 4 3 are controlled by a controller (not shown) to connect the sapphire composite raw material with an arbitrary mixing ratio. While (1) 4 6 is a motor, it is a prime mover driving a continuous mixer-1 4 4 <5>.
以上複合原料と含泡複合原料の製造法について説明 し たが、 材料の配合、 減圧度、 ポ ンプの吐出量等を 自動制 御 して、 所望の複合原料或いは更に含泡複合原料をつ く り 、 これを硬化さ せてよ い こ と はい う ま で も ない。 The manufacturing method of composite raw materials and foam-containing composite raw materials has been described above. However, it is advisable to automatically control the compounding of materials, the degree of pressure reduction, the discharge amount of pumps, etc. to obtain the desired composite material or further the foam-containing composite material, and to cure it. Not really.
以上実施例を多々 説明 したが、 上記実施例は適切であ れぱ何れも下記のよ う に構成 してよい。  Although many embodiments have been described above, any of the above embodiments may be configured as described below as appropriate.
(1) 減圧下で材料ま たは複合原料を攪拌 してよい。  (1) The material or composite raw material may be stirred under reduced pressure.
(2) 減圧下の複合原料を攪拌 しなが ら復圧 してよい。  (2) The composite raw material under reduced pressure may be recompressed while being stirred.
(3) 多孔物質にはパー ラ イ ト 、 シ ラ ス発泡粒、 高炉滓、 輕石、 人造餒量骨材 ( メ サ ラ イ ト 、 セ ィ ラ イ ト 等 ) 、 多孔質の鉱滓、 炭素、 炭化珪素、 硝子、 耐ァルカ リ 性 ガ ラ ス 、 金属、 窒化珪素、 合成樹脂等を使用する こ と ができ、 複合原料をつ く る には上記多孔物質の 1 ま た は 2 以上を使用する こ と ができ る。  (3) Porous materials include pearlite, glass foam granules, blast furnace slag, meteorites, man-made bean aggregate (mesalite, celite, etc.), porous slag, and carbon. , Silicon carbide, glass, alkalous glass, metal, silicon nitride, synthetic resin, etc. can be used, and 1 or 2 or more of the above porous materials can be used for composite materials. can do.
(4) 多孔物質に は繊維、 片、 粒、 塊等の形状の も のを使 用する こ とができ、 複合原料をつ く る に は上記多孔物 質の 1 ま たは 2 以上を使用する こ と ができ る。  (4) Fibers, pieces, grains, lumps, and other shapes can be used as the porous material, and one or more of the above porous materials can be used as the composite raw material. can do.
(5) 硬化原料に は水硬性無機質系 ( セ メ ン ト 系、 水滓系、 及び珪灰系 ) 硬化原料を使用する こ と ができ る。  (5) As a curing raw material, a hydraulic inorganic type (cement type, dregs type, and silica ash type) curing raw material can be used.
(6) 複合原料を硬化 させる に は乾燥、 加熱、 蒸気養生、 オ ー ト ク レ ー プ養生、 等を利用する こ と ができ る。  (6) Drying, heating, steam curing, autoclave curing, etc. can be used to cure the composite raw material.
次に多孔物質に高炉滓を使用 し、 硬化原料にセ メ ン 卜 と水を使用 し、 減圧下におかれた多孔物質が内在す る硬 化原料を、 復圧 した後.直ちに取出 しで硬化 さ せる複合体 ( コ ン ク リ ー ト ) の製造法を参考例と して述べ、 次いで 上記復圧後引続いて混練を行 う 実施例を示す。 参考例 1 Next, blast furnace slag was used as the porous material, cement and water were used as the hardening raw materials, and the hardening raw material containing the porous material under reduced pressure was decompressed and immediately taken out. A method for producing a cured composite (concrete) will be described as a reference example, and then an example will be shown in which kneading is continued after the above pressure recovery. Reference example 1
第 1 図〜第 3 図に示さ れる キ シ ング ド ラ ム 4 内にセ メ ン ト 4 1 4 重量部、 水 1 6 5 重量部、 砂 6 1 7 重量部- 高炉滓 1 0 0 0 重量部を投入 し、 蓋 1 8 を閉 じて ミ キ シ ング ド ラ ム 4 を密閉 し、 ミ キ シ ング ド ラ ム 4 を回転させ て上記材料を混練する と共に 充分に混練が行われてセ メ ン ト の飛散がな く な っ た所で ミ キ シ ン グ ド ラ ム 4 内の 圧力を 6 0 0 薩 H gま で減圧 し この減圧下で 4 分間混練 を続け、 次いで ミ キ シ ング ド ム 4 内を大気内に復圧 し ミ キ シ ン グ ド ラ ム 4 の回転を停止して蓋' 1 8 を開き、 ミ キ シ ン グ ド ラ ム 4 を傾斜させて複合原料を取出 し、 これ を型枠に流 し込んで成形 し、 蒸気養生 して硬化させた後 離型 して複合钵 ( コ ン ク リ ー 卜 ) を得た。  In the draft drum 4 shown in Fig. 1 to Fig. 3, 4 parts by weight of cement, 14 5 parts by weight of water, 6 17 parts by weight of sand 6 100 parts by weight of blast furnace-100 parts by weight of blast furnace slag Portion, close the lid 18 to seal the mixing drum 4, and rotate the mixing drum 4 to knead the above materials and perform sufficient kneading. The pressure in the mixing drum 4 was reduced to 600 Satsuma Hg at the place where there was no splattering of the ment, and kneading was continued for 4 minutes under this reduced pressure. The internal pressure of the interior of the mixing chamber 4 is restored to the atmosphere, the rotation of the mixing chamber 4 is stopped, the lid '18 is opened, and the mixing chamber 4 is tilted to produce the composite raw material. It was taken out, cast into a mold, molded, and cured by steam curing, and then released from the mold to obtain a composite steel (concrete).
上記参考例における複合原料 ( 未硬化コ ン ク リ ー ト ) のス ラ ンプは 7 . 5 cra、 7 曰 の圧縮強度は 407. 6 kg / cnf、 2 8 曰後の圧縮強度は 5 4 8 kg / cnf であ り 、 減圧す る こ と な く 硬化させた ものに比 し、 やや高強度であ る こ とが判明 した。 尚上記参考例の他に材料の配合比及び粒 径を種々 変更 してテ ス ト したが、 高強度を目的と した配 合では最高圧縮強度 9 6 0 kg / cniを得る こ とができ、 ― 般には 6 0 0 〜 9 0 0 kg / erf の圧縮強度が比較的容易に 得 られ、 これに伴い曲げ強度及び引張強度も増大 し、 し かもバラ ッ キかン少ない均一な 口  In the above reference example, the composite raw material (uncured concrete) has a slump of 7.5 cra, the compressive strength of 7 scoops is 407.6 kg / cnf, and the compressive strength after scooping is 5 4 8 It was found that the strength was kg / cnf, which was slightly higher than that of what was cured without being depressurized. In addition to the above-mentioned reference example, various compounding ratios and particle diameters of the materials were tested, but in the case of a composition intended for high strength, the maximum compressive strength of 960 kg / cni could be obtained. -Generally, a compressive strength of 600 to 900 kg / erf can be obtained relatively easily, and bending strength and tensile strength also increase with this, and a uniform mouth with little variation is obtained.
質の軽量高強度ま たは高 強度コ ン ク リ ー ト を得る こ とができた。 軽量高強度コ ン ク リ ー ト の場合は高炉滓の中心部にセ メ ン ト 物質が圧入  We were able to obtain a lightweight, high-strength or high-strength concrete. In the case of lightweight and high strength concrete, cement material is pressed into the center of the blast furnace slag.
ΟΜΡΙΟΜΡΙ
H  H
: R ATV さ れない気孔ま た は空洞が残存 し、 高強度コ ン ク リ ー ト の場合は高炉滓の粒径が小さ く 総ての気孔にセ メ ン ト 物 質が圧入 したか ら と考え られる。 ま た曲げ試験における 圧縮側と 引張側のひずみを検討 した結果、 比例限度応力 比は約 0. 6 7の一定値と 高い応力比を离た。 従 っ て初期ひ び割れが従来のコ ン ク リ ー ト に比 し発生 し に く い こ と も 考察さ れた。 上記 したよ う な良果が得 られた こ と は、 高 炉滓の表面組織に圧入さ れた セ メ ン ト 物質が無数の針状 と な っ て高炉滓に突き刺さ り 、 コ ン ク リ ー ト と 一体化 し かつ高炉滓自体が圧入セ メ ン ト 物質によ り 補強さ れて強 度が高 く な っ たか ら と考え られる。 : R ATV It is considered that unretained pores or cavities remained, and in the case of high-strength concrete, the grain size of the blast furnace slag was small and the cement material was pressed into all the pores. .. Moreover, as a result of examining the strains on the compression side and the tension side in the bending test, the proportional limit stress ratio deviates from the constant value of about 0.67 and a high stress ratio. Therefore, it was also considered that the initial cracks are less likely to occur than the conventional concrete. The good results as described above were obtained because the cement material pressed into the surface texture of the blast furnace slag became innumerable needles and stuck into the blast furnace slag. It is considered that the strength was high because the blast furnace slag itself was integrated with the ground and the blast furnace slag itself was reinforced by the press-in cement material.
以上復圧後直ちに複合原料を取出 して硬化 さ せる セ メ ン ト 系複合体の製造法 1 例 ^参考例と して説明 したが、 砂利等の非多孔物質を使用 した も のに比 し、 強度が大で あ る と はい う も のの、 ブ リ ー ジ ングが大であ り 表面仕上 げを行いに く い欠点があ っ た。 日本国特開昭 5 5 - 3 0 9 6 2 号等に開示さ れてい る公知技術において復圧後直 ちに複合原料を取出 し硬化'さ せる のは、 減圧によ り 複合 原料中の空気を除去 し緻密で強度の高い複合体を得る こ と にあ り 、 再び混練する こ と によ り 折角除去 した空気を 再度混入 さ せないためであ る と考え られるが、 こ こ にお いて、 復圧後再度混練 して硬化 さ せた と こ ろ、 プ リ ー ジ ングが顕著に除去 さ れ、 加 う る に更に強度の高い複合体 を得る と い う 、 前記公知技術にお け る知見か ら は全 く 予 期でき ない秀れた効果を得て、 こ 、 に実用化の途を開 く ことができた。 As described above, a method for manufacturing a cement-based composite in which the composite raw material is taken out and cured immediately after recompression is described as a reference example ^, but as compared with the case where a non-porous material such as gravel is used. However, although it had high strength, it had a drawback that it had a large amount of bleeding and it was difficult to finish the surface. In the publicly known technology disclosed in Japanese Patent Laid-Open No. 5-390062, it is necessary to take out the composite raw material and cure it immediately after recompression. It is thought that this is because the air is removed to obtain a dense and strong composite, and the air that has been removed by the kneading is not mixed again. Then, after the pressure is restored and the mixture is kneaded again to be hardened, the pringing is remarkably removed, and in addition, a composite having higher strength is obtained. Based on this knowledge, we can obtain excellent effects that cannot be predicted at all, and open the way to practical use. I was able to do it.
実施例 1 Example 1
セ メ ン ト 3 4 0 重量部、 水 1 6 5 重量部、 砂 7 1 7 重 量部、 高炉ス ラ グ 1 1 4 0 重量部を第 1 図〜第 3 図で説 明した製造装置で混練し、 6 0 0 m ni H gに減圧して 4分間 混練を続け、 次いで混練しながら大気圧に復圧し、 更に 3 0 分間混練した後取出 して硬化させ、 複合体 ( コ ン ク リ ー ト ) を得た。  340 parts by weight of water, 165 parts by weight of water, 717 parts by weight of sand, and 1140 parts by weight of blast furnace sludge were produced using the manufacturing equipment described in Figs. 1 to 3. Knead, depressurize to 600 m ni H g and continue kneading for 4 minutes, then return to atmospheric pressure while kneading, knead for another 30 minutes, then remove and harden the composite (concrete). ))
実施例 1 、 参考例 1 および従来の慣用技術によ り得ら れた複合体のス ラ ン プ値および圧縮強度の試験値を、 以 下の表によ り示す。 The following table shows the slump value and the test value of the compressive strength of the composite obtained in Example 1, Reference Example 1 and the conventional conventional technique.
上記 か ら示さ れる よ う に、 減圧 しない ものに比 し減 圧 したものは強度が高 く 砂利を使用 した ものに比 し高炉 ス ラ グを使用 した も のは強度が高い。 しかも高炉ス ラ グ を使用 し減圧 して復圧後 3 0 分混練 して取出 した ものは 従来の生コ ン車においては混練後ス ラ ンプが小さ く な る のに対 して逆にス ラ ンプが大き く な る ばか り か、 ブ リ ー ジ ングもな く 更に強度が大にな る と い う 信 じ られないよ う な劲果を得た As can be seen from the above, the decompressed one has a higher strength than the non-decompressed one and the blast furnace slugger has a higher strength than the one using gravel. What is more, the blast furnace sludge was decompressed, decompressed, and kneaded for 30 minutes and then taken out. Only when the lamp was large, there was no bridging, and it was not possible to believe that the strength was even stronger.
尚テス ト Να 3 、 :4 と テス ト Not 5 、 6 、 7 のス ラ ンプ值 が異な るのはテス ト NOL 3 、 4 に使用 した高炉ス ラ グの舍 水率が大であ り 、 テス ト Να 5 、 6 、 7 に使用 した高炉ス ラ グの 水率が小さ い こ と に 因する  The difference between the test Να 3 ,: 4 and the test Not 5, 6 and 7 is that the blast furnace slag used in the test NOL 3 and 4 has a large drainage rate. This is due to the low water content of the blast furnace slag used for tests Να 5, 6, and 7.
減圧 した後復圧 してす ぐ取出 した ものに比し、 その後 で 3 0 分混練 した ものが強度が大であ り 、 しかも ス ラ ン プが大 な っ てい る理由は、 ら く は復圧時セ メ ン ト ミ ルク が 炉ス ラ グ中に急速に圧入さ れ、 このため高炉ス ラ グの中の残存空気が圧縮されて常圧よ り や ^ 高 く な り 混練中 高炉ス ラ グ中の水分のみが徐々 に高炉ス ラ グ外 に放出 れる か ら と考え られる o a; i>~復圧後す ぐ取出 し た も の ブ リ 一ジ ングが多いのは、 上記理由 によ り 高炉 ス ラ グか ら放出 さ れた水が良 く 混練さ し と な く 浮上 した ものと考え られる  The reason why the strength of the kneaded product after kneading for 30 minutes after being decompressed and then re-compressed was higher, and the slump was greater was probably The pressure-time cement mill is rapidly injected into the furnace slag, which causes the residual air in the blast furnace slag to be compressed and become higher than normal pressure. It is considered that only the water in the lag is gradually released to the outside of the blast furnace oa; i> ~ There is a lot of bridging that was taken out immediately after the pressure was restored. Therefore, it is considered that the water released from the blast furnace slugged well and did not knead.
実施例 2 Example 2
第 4 3 図、 第 4 4 図に示さ れる造泡機 1 3 3 を利用 し 安定剤 界面活性剤よ り な る起泡剤と水を使用 して泡を つ く り 、 実施例 1 でつ く られた複合原料 ( 未硬化コ ン ク リ ー ト ) と 上記泡とを容積比 3 : 1 の割合で混合 し、 つ く られた舍泡複合原料を型枠に打設 し硬化させて軽量高 強度複合体 ( 軽量高強度気泡コ ン ク リ 一 ト ) を得た。 Using the foaming machine 1 3 3 shown in Fig. 43 and Fig. 44, a foaming agent consisting of a stabilizer, a surfactant, and water are used to generate foam. That is, the composite raw material (uncured concrete) prepared in Example 1 was mixed with the above-mentioned foam in a volume ratio of 3: 1 to form the combined foamed composite raw material into a mold. It was cast into a frame and cured to obtain a lightweight high-strength composite (lightweight high-strength cellular concrete).
上記実施例では、 高炉滓を粉砕 した等の高炉滓粉と セ メ ン ト 及び水を使用 して実施例 1 の方法によ り 水セ メ ン ト 比 5 5 %程度の高炉滓にセ メ ン ト 物質が圧入さ れた ス ラ リ ー ( 複合原料 ) をつ く り 、 これに泡を混合 して硬化 させ気泡コ ン ク リ ー ト ( 複合体 ) をつ く っ て も よい。 尚 泡を混合 して含泡複合原料をつ く る時は、 造泡に使用す る起泡剤と 水の混合水を複合原料の製造時にお け る水と して使用すれば、 複合体の嵩比重の調整が容易であ る。 ま たセ ル ロ ーズ系等の減水剤を使用すれば水セ メ ン ト 比 の少ない複合原料をつ く り 得て強度の高い複合体を得る 実施例 1 及び 2 では第 1 図〜第 3 図で説明 した製造装 置を使用 したが、 本明細書および図面に開示 した他の製 造装置を使用 し、 他の多孔物質を使用 して も本発明を実 施する こ と ができ る。 これ らの場合において も 、 上記実 施例と 同様な傾向の効果を得たので詳細を省略する。  In the above example, blast furnace slag powder, such as crushed blast furnace slag, cement and water were used to set the blast furnace slag with a water content ratio of about 55% by the method of Example 1. A slurry (composite raw material) in which a hot substance has been pressed may be obtained, and then a foam may be mixed and cured to form an air bubble concrete (composite). When mixing foams to form a foam-containing composite material, if the water mixture of the foaming agent used for foaming and water is used as the water during the production of the composite material, It is easy to adjust the bulk specific gravity of. Moreover, if a water reducing agent such as a cellulosic type is used, a composite material having a low water cement ratio can be obtained to obtain a composite having high strength. 3 Although the manufacturing apparatus described in the figure is used, the present invention can be carried out by using other manufacturing apparatuses disclosed in this specification and the drawings and by using other porous materials. .. In these cases as well, the effect of the same tendency as that of the above-described embodiment was obtained, and therefore the details are omitted.
この発明では、 以下の実施態様をと る こ と ができ る。  The present invention can have the following embodiments.
(1) 多孔物質に水滓ま たは徐冷滓を使用する こ と ができ ο  (1) It is possible to use water slag or slowly cooled slag as the porous material.
(2) 安山岩や玄武岩等の火山岩ま たはその砕体を付加 し て複合原料をつ く り 、 減圧下の上記複合原料を復圧 し た後引続き混練 して取出 し硬化さ せ、 耐火性複合体と  (2) By adding volcanic rocks such as andesite and basalt or crushed rocks to form composite raw materials, the composite raw materials under reduced pressure are recompressed, and then continuously kneaded, taken out and hardened, and fire resistant. With a complex
Ο ΡΙ Ο ΡΙ
. WIPO する こ とができ Ώ .WIPO Can be done Ώ
(3) マ ンガ ンまたは / 及びマ ンガ ン鉱石微粉、 或いは更 に粘板岩、 ペ ン ト ナ イ ト 、 ゼォ ラ イ ト の う ち 1 種ま た は 2 種以上を加えた ものを適暈付加 して複合原料をつ < Ό 、 減圧下の上記複合原料を復圧した後引続き混練 して取出 し、 硬化させて耐塩耐酸性複合体とする こ と ができ る。  (3) Manganese and / or manganese ore fine powder, or slate, penite, zeolite, or a mixture of one or more of them is suitable. It is possible to add the composite raw material <A, add the composite raw material under a reduced pressure, re-pressurize it, and then continue to knead and take it out, and cure it to obtain a salt-acid resistant composite.
(4) マ ンガ ンを酸 (特に ク ェ ン酸ゃ リ ンゴ酸等の食酸が 好ま しい ) に溶解 した溶液の適量を水に加え この水を 使用 して.複合原料をつ く り、 減圧下の上記複合原料を 復圧 した後引続き混練 して取出 し硬化させ、 耐塩耐酸 性複合体とする こ とができ る。  (4) Add an appropriate amount of a solution of manganese dissolved in an acid (particularly preferably edible acids such as citric acid and lingoic acid) to water, and use this water. The composite raw material under reduced pressure can be decompressed, then continuously kneaded, taken out, and cured to form a salt-acid resistant composite.
(5) マ ンガ ン酸塩または / 及び過マ ンガ ン酸塩の水溶液 を付加 して複合原料をつ く り 、 減圧下の上記複合 原料を復圧 した後引続き混練 して取出 し硬化させ、 耐 (5) Add an aqueous solution of manganese salt and / or permanganate to form a composite raw material, and after decompressing the composite raw material under reduced pressure, continue kneading, take out and cure it. Resistance
IT酸性複合体とする こ とができ る IT can be an acidic complex
(6) セ メ ン ト に は高炉セ メ ン ト 、 急硬セ メ ン ト 、 加熱硬 化セ メ ン ト 等を使用する こ と ができ る o  (6) Blast furnace cement, rapid hardening cement, heat hardening cement, etc. can be used for cementing.
(7) 減圧下の複合原料を復圧 した後引続き混繍 して取出 し、 バイ ブ レ ー シ ョ ンを加えて成形 し硬化させる こ と ができ る。  (7) It is possible to decompress the composite raw material under reduced pressure, then continue to knead and take it out, add vibration to it, and mold and cure it.
(8) 減圧下の複合原料を復圧 した後引続き混練 して取出 し、 加圧形成 して硬化させる こ と一ができ る。  (8) It is possible to recompress the composite raw material under reduced pressure, then continue to knead and take it out, press-form it, and cure it.
次に この 明の製造法によ り つ く られる製品の具体例 について述べる。  Next, specific examples of products produced by this manufacturing method will be described.
WIPO (1) 多孔物質に高炉滓を使用 し或い は更に含泡さ れたセ メ ン ト 系、 水滓系等の水硬性無機質系複合体。 ( 用途 - 断熱性瓦、 ブロ ッ ク 、 壁、 床、 柱、 梁、 杭、 ポ ー ル 枕木、 コ ン ク リ ー ト バー ジ、 海洋構築物等 ) WIPO (1) A hydraulic inorganic composite such as a cement system or a water slag system in which a blast furnace slag is used as the porous material or is further foamed. (Uses-Insulating roof tiles, blocks, walls, floors, columns, beams, piles, pole sleepers, concrete barges, marine structures, etc.)
(2) 多孔物質に高炉滓を使用 した珪灰系複合体。 ( 減圧 下の珪灰系複合原料を復圧 した後混練 し、 これにア ル ミ ニ ゥ ム粉等の発泡剤を混合 して発泡 させ、 オ ー ト ク レ ー ブ養生 して硬化 さ せる。 )  (2) Silica-based composite using blast furnace slag as the porous material. (The silica ash-based composite material under reduced pressure is decompressed and then kneaded, and a foaming agent such as aluminum powder is mixed with this to foam and then autoclave cured to cure. )
(3) 多孔物質に合成樹脂系、 炭素系、 炭化珪素系、 窒化 珪素'系、 ま たは金属系の、 多孔質繊維ま たは及び多孔 質粒 ( 片ま たは塊で も よ い ) を使用 した水硬性無気質 系複合体。 (3) Porous fibers, carbon fibers, silicon carbide, silicon nitride ', or metal porous fibers or porous particles (either single or lump) may be used as the porous material. The hydraulic, airless composite used.
こ の発明において、 1 実施例に使用 した物ま た は方法 が、 他の実施例に適切であ るかま たは利用する こ と がで き る時は、 要旨を変更 しない範囲内で こ れを他の実施例 に使用 しま たは利用する こ と がで き る 。  In this invention, when the product or method used in one embodiment can be applied or used in another embodiment, the gist is not changed. Can be used in other embodiments or can be used.
こ の発明は詳記のよ う に構成さ れるか ら、 多孔物質に 硬化原料が圧入さ れて多孔物質の強度が改善さ れ、 多 ¾ 物質と硬化体は一体化 して複合体は圧縮強度が大と な る ばか り か、 引張強度 , 曲げ強度共に増大 し、 ク ラ ッ ク を 生 じ難 く 、 粘り 強い特性を有 し、 ブ リ ー ジ ン グ少 く 表面 成形を行いやすいばか り か、 気圧差を利用するだけであ るか ら製造法、 製造装置共に簡単であ り 、 セ メ ン ト 等の 使用量を削減する こ と も でき る。 ま た多孔物質に粒、 片、 塊等の形状の も のを使用 し、 非多孔質の金属系、 炭素系 炭化珪素系、 窒化珪素系、 或いは'合成樹脂系等の織維を 複合原料をつ く り 、 減圧下の上記複合原料を復圧 した後混練 して硬化させれば、 多孔物質への硬化原料の 圧入のみな らず、 上記繊維と硬化原料の付着強度も改善 されて曲げ強度や引張強度が更に大き い複合体を得る こ とがでさ る。 ま た復圧 した後混繍した複合原料に発泡ス チ 13 — ノレやパ一ラ イ ト 等を加えて混練 し、 これを硬化さ せて輳量な複合体をつ く る こ とができ る等、 種々 の方法 や用途を有 し、 その用途は極めて広い。 Since the present invention is configured as described in detail, the curing raw material is pressed into the porous substance to improve the strength of the porous substance, the multiple substance and the cured product are integrated, and the composite is compressed. The strength is high, the tensile strength and bending strength are both increased, cracks are less likely to occur, and the tenacity is strong. It is easy to perform surface molding with little brittleness. In addition, since only the pressure difference is used, both the manufacturing method and manufacturing equipment are simple, and it is possible to reduce the amount of cement used. In addition, it is possible to use non-porous metal-based or carbon-based Silicon carbide-based, silicon nitride-based, or'synthetic resin-based fiber is used as a raw material for curing a porous material by connecting the composite raw material, repressurizing the composite raw material under reduced pressure, and then kneading and curing. Not only the press-fitting, but also the adhesion strength between the fiber and the cured raw material is improved, and a composite having higher bending strength and tensile strength can be obtained. In addition, after recompressing, the composite material that has been kneaded and kneaded can be mixed with foamed polystyrene 13 — glue, pellets, etc., and the mixture can be cured to form a complex composite. It has various methods and uses, and its uses are extremely wide.
(産業上の利用可能性 ) (Industrial availability)
本発明によ り 得 られる水硬性無機質系複合体は、 圧綰 強度が大であ り 、 粘り 強い特性を有し、 ク ラ ッ ク を生ず る こ とが少 く かつ表面成形性に秀れてい るので、 各種鉄 筋コ ン ク リ 一 ト 建造物工事およびコ ン ク リ 一 ト 製船舶、 各種プ レ ス ト レス ト コ ン ク リ ー ト 、 コ ン ク リ ー ト 杭の製 造の際の コ ン ク リ 一 ト 材料と して広 く 利用可能な技術で あ な。  The hydraulic inorganic composite obtained according to the present invention has high ridge strength, tenacity, few cracks, and excellent surface formability. As a result, various types of reinforced concrete construction work and concrete vessels, various types of prestressed concrete, and concrete piles are manufactured. It is a technology that can be widely used as a concrete material for manufacturing.

Claims

/03063 / 03063
39 39
( 請求の範囲 ) ( The scope of the claims )
(1) 減圧下におかれた多孔物質が内在する水硬性無機質 系硬化原料を、 復圧 した後引続き混練 して取出 し硬化 さ せる こ と を特徵とする水硬性無機質菜複合体の製造 法。  (1) A method for producing a hydraulic inorganic vegetation composite, which is characterized in that a hydraulic inorganic inorganic curing raw material containing a porous substance placed under reduced pressure is decompressed, then continuously kneaded, taken out and cured. ..
(2) 上部容器と下部容器の間に開閉自在なゲー ト を設け ておき、 該ゲー ト を閉 じて上記上部容器内に多孔物質 が内在する水硬性無機質系硬化原料を入れて密閉する 一方、 上記下部容器内或い は更に上記上部容器内を減 圧 し、 次いで上記ゲー ト を開いて上記多孔物質が内在 する硬化原料を上記下部容器内に落下さ せ、 該下部容 器内の減圧下におかれた多孔物質が内在する硬化原料 を、 復圧 した後引続き混練 して取出 し硬化さ せてな る こ と を特徵とする請求の範囲第(1)項記載の水硬性無機 質系複合体の製造法。  (2) A gate that can be opened and closed is provided between the upper container and the lower container, the gate is closed, and a hydraulic inorganic hardening material containing a porous substance is placed in the upper container and sealed. Then, the inside of the lower container or the inside of the upper container is depressurized, and then the gate is opened to drop the curing raw material containing the porous substance into the lower container. The hydraulic inorganic substance according to claim (1), characterized in that the curing raw material containing the underlying porous substance is decompressed, then continuously kneaded, taken out and cured. Method of manufacturing a composite system.
(3) 多孔物質が内在する 水硬性無機質系硬化原料が上部 容器か ら下部容器へ落下する時、 上記多孔物質が内在 する硬化原料を上記下部容器内に設け られた拡散板か ま たは分散具を介 し分散さ せて落下さ せる こ と を特徵 とする、 請求の範囲第 (2)項記載の水硬性無機質系複合 体の製造法。  (3) When the hydraulic inorganic hardening material containing the porous material falls from the upper container to the lower container, the hardening material containing the porous material is dispersed or dispersed in the lower container. The method for producing a hydraulic inorganic composite according to claim (2), characterized in that it is dispersed through a tool and dropped.
(4) 下部容器内に落下 し減圧下におかれた多孔物質が内 在する水硬性無機質系硬化原料を、 下部容器内に設け られた攪拌具で攪拌 し、 攪拌中か、 攪拌停止と 同時か - ま たは攪拌停止後、 下部容器内を復圧 し、 引続き混練 して取出 し、 硬化させる こ とを特徵とする、 請求の範 囲第 (2)項及び第 (3)項記載の水硬性無機質系複合钵の製 造法。 . (4) Stir the hydraulic inorganic curing material containing the porous substance that has fallen into the lower container and is under reduced pressure with the stirrer provided in the lower container.While stirring or while stirring is stopped, Or, after stirring is stopped, the pressure in the lower container is restored and the kneading is continued. The method for producing a hydraulic inorganic composite steel as described in the claims (2) and (3), which is characterized in that it is taken out and cured. .
(5) 多孔物質が内在する水硬性無機質系硬化原料を容器 内に入れて密閉 し、 該容器内を減圧して該容器内に設 け られた攪拌具で攪拌し、 攪拌中か、 攪拌停止と同時 か、 ま たは攪拌停止後容器内を復圧 し、 引続き混鎳 し て多孔物質が内在する硬化原料を取出 し硬化させる こ とを特徵とする請求の範囲第(1)項記載の水硬性無機質 系複合体の製造'法。  (5) Put the hydraulic inorganic inorganic curing raw material containing the porous substance in a container and seal it, depressurize the container and stir with a stirrer installed in the container, while stirring or while stirring is stopped. At the same time, or after the stirring is stopped, the pressure in the container is re-pressurized, and subsequently the mixed raw material is taken out to cure and cure the raw material containing the porous substance. Manufacturing method of hydraulic inorganic composites.
(6) 上部容器と下部容器の間に開閉自在なゲー ト を設け ておき、 該ゲー ト を閉 じて上記上部容器内に多孔物質 が内在する水硬性無機質系硬化原料を入れ、 上記上部 容器或いは更に上記下部容器を減圧 して上記上部容器 内に設けた攪拌具で攪拌 し、 復圧 して上記上部容器内 の多孔物質が内在する硬化原料を上記下部容器内に落 下させ、 引続き これを混練 して取出 し硬化させてな る こ とを特徵とする請求の範囲第(1)項記載の水硬性無機 質系複合体の製造法。  (6) An openable and closable gate is provided between the upper container and the lower container, the gate is closed, and a hydraulic inorganic curing material containing a porous substance is placed in the upper container. Alternatively, the lower container is further decompressed and agitated by an agitator provided in the upper container, and then recompressed to drop the curing raw material containing the porous substance in the upper container into the lower container. The method for producing a hydraulic inorganic composite according to claim (1), characterized in that the composition is kneaded, taken out, and cured.
(7) 上部容器と下部容器の間に開閉自在なゲー ト を設け ておき、 該ゲー ト を閉じて上記上部容器内に多孔物質 と水硬性無機質系硬化原料とを入れ、 上記上部容器を 密閉するか密閉する こ と な く 上記上部容器内に設け ら れた攪拌具によ り 多孔物質と硬化原料を攪拌 して多孔 物質が内在する水硬性無機質系硬化原料をつ く り 、 (a) (7) A gate that can be opened and closed is provided between the upper container and the lower container, the gate is closed, the porous substance and the hydraulic inorganic curing material are placed in the upper container, and the upper container is sealed. Do not seal or seal, and stir the porous substance and the curing raw material with the stirrer provided in the upper container to connect the hydraulic inorganic inorganic curing raw material containing the porous substance, (a)
ΟΜΡΙ /03063 ΟΜΡΙ / 03063
41 上記上部容器内を減圧 して更に攪拌を続けた後復圧 し て上記ゲー ト か ら上記下部容器内へ多孔物質が内在す る硬化原料を落下させ引続き混練 した後これを取出 し て硬化さ せるか、 (b)ま たは上記下部容器内あ る い は更 に上記上部容器内を減圧 し、 次いで上記ゲー ト を開い て上記多孔物質が内在する硬化原料を上記下部容器内 に落下さ せ、 該下部容器内の減圧下におかれた多孔物 質が内在する硬化原料を復圧 し引続き混練 して取出 し これを硬化 させてな る こ と を特徵とする請求の範囲第 (1)項記載の水硬性無機質系複合体の製造法。 41 After decompressing the inside of the upper container and continuing stirring, the pressure is restored to drop the hardening raw material containing the porous substance from the gate into the lower container and continue to knead, then take it out and cure it. Alternatively, (b) or the inside of the lower container or the inside of the upper container is decompressed, and then the gate is opened to drop the curing raw material containing the porous substance into the lower container. At this point, the characteristic feature is that the curing raw material in which the porous material is placed under reduced pressure in the lower container is decompressed, continuously kneaded, taken out, and cured. The method for producing a hydraulic inorganic composite according to the item 1).
(8) 多孔物質が内在する水硬性無機質系硬化原料が上部 容器か ら下部容器内へ落下する 時、 上記多孔物質が内 在する硬化原料を上記下部容器内に設け られた拡散板 かま たは分散具を介 し分散 さ せて落下さ せる こ と を特 徵とする、 請求の範囲第 (7)項記載の水硬性無機賈系複 合体の製造法。  (8) When the hydraulic inorganic hardening material containing the porous material falls from the upper container into the lower container, the hardening material containing the porous material is used as a diffusion plate or in the lower container. The method for producing a hydraulic inorganic cabbage-based composite according to claim (7), which is characterized in that it is dispersed through a dispersing tool and dropped.
(9) 下部容器内に落下 し減圧下におかれた多孔物質が内 在する水硬性無機質系硬化原料を、 下部容器内に設け た攪拌具で攪拌 し、 攪拌中か、 攪拌停止と 同時か、 ま たは攪拌停止後下部容器内を復圧 し引続き混練 して取 出 し硬化さ せる こ と を特徵と する 、 請求の範囲第(7)項 及び第 ( 項記載の水硬性無機質系複合体の製造法。  (9) Stir the hydraulic inorganic curing material that contains the porous substance that has fallen into the lower container and is under reduced pressure with the stirrer provided in the lower container to see if it is stirring or at the same time when stirring is stopped. Alternatively, the characteristic feature is that after the stirring is stopped, the inside of the lower container is decompressed, and then continuously kneaded to be taken out and cured, and the hydraulic inorganic compound composite according to claim (7) and (). Body manufacturing method.
変形可能な容器内に多孔物質と水硬性無機質系硬化 原料を入れて上記容器を密閉 し、 上記容器にその外側 か ら圧力を加えて容器を変形させる こ と によ り 多孔物  A porous material is prepared by placing a porous substance and a hydraulic inorganic curing material in a deformable container to seal the container, and applying pressure to the container from the outside to deform the container.
WIPO 質と硬化原料を混練し、 上記容器内を減圧 して更に混 練を行っ た後容器内を復圧 し、 引続き混練 した後多孔 物質が内在する硬化原料を取出 し硬化させる こ とを特 徵とする請求の範囲第(1)項記載の水硬性無機質系複合 体の製造法。 WIPO The special feature is that the quality and the curing raw material are kneaded, the inside of the container is depressurized and further kneaded, the pressure inside the container is restored, and the kneading is continued, and then the curing raw material containing the porous substance is taken out and cured. The method for producing a hydraulic inorganic composite according to claim (1).
(11) 多孔物質が内在する水硬性無機質系硬化原料か、 ま たは多孔物質と水硬性無機質系硬化原料とを容器に入 れ、 該容器を往復動させて混繍する と共に容器内を減 圧 し、 次に上記容器の往復動中か、 往復動停止と同時 か、 ま たは往復動停止後に容器を復圧 し、 引続き これ を混練 して多孔物質が内在する硬化原料を取出 し硬化 させる こ とを特徵とする請求の範囲第(1)項記載の水硬 性無機質系複合体の製造法。  (11) Place the hydraulic inorganic curing material containing the porous substance therein, or the porous substance and the hydraulic inorganic curing material into the container, and reciprocate the container to knead and reduce the inside of the container. Then, the container is reciprocated, at the same time as the reciprocating motion is stopped, or after the reciprocating motion is stopped, the container is repressurized, and then this is kneaded to remove the curing raw material containing the porous substance and cure it. The method for producing a hydraulic inorganic composite according to claim (1), which is characterized by this.
02) 往復動が直線型往復動か、 揺動型往復動か、 または 円型往復動であ る こ とを特徵とする、 請求の範囲第 an 項記載の水硬性無機質系複合体の製造法。  02) The method for producing a hydraulic inorganic composite according to claim an, wherein the reciprocating motion is linear reciprocating motion, oscillating reciprocating motion, or circular reciprocating motion.
(13) 減圧下におかれた多孔物質が内在する水硬性無機質 系硬化原料を、 直列に配設さ れた 3 組のバル ブを組合 わせ作動 させる こ と によ り 、 順次排出かつ復圧させ、 引続き混練 した後取出 し硬化させてな る こ と を特徵と する請求の範囲第(1)項記載の水硬性無機質系複合体の 製造法。  (13) Sequential discharge and re-pressurization are performed by combining three sets of valves arranged in series to operate a hydraulic inorganic curing material containing a porous substance under reduced pressure. The method for producing a hydraulic inorganic composite according to claim (1), characterized in that the mixture is kneaded, then taken out, and then cured.
(14) 減圧下におかれた多孔物質が内在する水硬性無機質 系硬化原料を、 両側にバ ル ブを設けかつ真空吸引装置 に繋がれた容器を介 し順次排出かつ復圧 し、 復圧後引 /03063 (14) The hydraulic inorganic inorganic curing material containing the porous substance under reduced pressure is sequentially discharged and recompressed through a container provided with valves on both sides and connected to a vacuum suction device, and then recompressed. Backtracking / 03063
43 続き混練 して取出 し硬化 させる こ とを特徵とする請求 の範囲第(1)項記載の水硬性無機箕系複合体の製造法。 (13 減圧下におかれた多孔物質が内在する水硬性無機質 系硬化原料を、 レ ベ ル検出器ま たは重量測定器を設け かつ下端にゲー ト を設けた下向き管を介 し順次排出か っ復圧 し、 復圧後引続き混練 して取出 し硬化さ せる こ とを特徵とする請求の範囲第(1)項記載の水硬性無機質 系複合体の製造法。 43 The method for producing a hydraulic inorganic smelt-based composite according to claim (1), which is characterized in that it is subsequently kneaded, taken out, and cured. (13) Is the hydraulic inorganic curing material containing the porous substance under reduced pressure sequentially discharged through a downward pipe equipped with a level detector or a weight measuring device and a gate at the lower end? The method for producing a hydraulic inorganic composite according to claim (1), which is characterized in that it is repressurized, and after repressurization, it is subsequently kneaded, taken out and cured.
(16) 減圧下におかれた多孔物質が内在する水硬性無機質 系硬化原料を、 直列に配設さ れた 2 組のバ ル ブを組合 わせ作動させる こ と によ り 、 順次復圧かつ排出 し、 復 圧 した後引続き混練 して取出 し硬化さ せてな る こ と を 特徵と する請求の範囲第(1)項記載の水硬性無機質系複 合体の製造法。 (16) The hydraulic inorganic hardening material containing the porous substance under reduced pressure is operated in combination with two sets of valves arranged in series, whereby the pressure is gradually restored. The method for producing a hydraulic inorganic compound composite according to claim (1), which is characterized in that the material is discharged, decompressed, and subsequently kneaded, taken out, and cured.
07) 多孔物質が内在する 水硬性無機質系硬化原料を、 減 圧下の容器内に.導 く かま た は容器内に導いた後減圧 し . 圧搾空気を利用 して排出かつ復圧 し、 その後引続き混 練 して取出 し硬化さ せる こ と を特徵とする請求の範囲 第(1)項記載の水硬性無機質系複合体の製造法。 07) The hydraulic inorganic inorganic hardening raw material containing the porous substance is introduced into a container under reduced pressure, introduced into the container or depressurized after being introduced into the container, and then discharged and recompressed using compressed air, and then continued. The method for producing a hydraulic inorganic composite according to claim (1), which is characterized in that it is kneaded, taken out, and cured.
08) 多孔物質が内在する水硬性無機質系硬化原料を容器 に導 く 時、 拡散板ま たは分散具を介 し分散さ せて導 く こ と を特徵とする、 $青求の範囲第 ϋ?)項記載の水硬性無 機質系複合体の製造法。 08) When introducing a hydraulic inorganic curing material containing a porous substance into a container, the characteristic is that the material is dispersed through a diffusion plate or a dispersing tool and introduced. ? The method for producing a hydraulic inorganic composite body as described in the above item.
減圧下の多孔物質が内在する水硬性無機質系硬化原 料を容器内に設けた攪拌具で攪拌する こ とを特徵と す 3063 The special feature is to stir the hydraulic inorganic inorganic curing raw material containing the porous substance under reduced pressure with the stirring tool provided in the container. 3063
4 一 る、 πΗふの範囲第 (1?)項記載の水硬性無機質系複合体の 製造法。 4. A method for producing a hydraulic inorganic composite according to item (1?) Of the πΗ range.
(20 減圧下におかれた多孔物質が内在する水硬性無機質 系硬化原料を、 復圧 した後引続き混練し、 これを舍泡 させるか発泡させ硬化させてな る こ とを特徵とする請 求の範囲第 (1)項記載の水硬性無機質系複合体の製造法 (20) A special feature is that a hydraulic inorganic curing material containing a porous substance that has been placed under reduced pressure is recompressed and then kneaded, and the mixture is then foamed or foamed and cured. Method for producing a hydraulic inorganic composite according to item (1)
(21 ) 上部 と下部容器の間に開閉自在なゲー ト が設 け られてお り 、 上 sd上部谷 と下部容器の う ちの 1 ま たは 2 が真空吸引装置に繋がれてい る こ とを特徵とす る水硬性無機質系複合体の製造 (21) There is a gate that can be opened and closed between the upper and lower vessels, and the upper valley of the upper sd and one or two of the lower vessels are connected to the vacuum suction device. Production of special hydraulic inorganic composite
(22) 上部谷 ¾と下部容器の 1 ま たは 2 に攪拌具が設け られてい る とを特徵とする、 請求の範囲第 (2 1 )項記 載の水硬性無機質系複合钵の製造装置。  (22) An apparatus for producing a hydraulic inorganic compound steel as described in claim (2 1), characterized in that an agitator is provided in the upper valley and the lower container 1 or 2. ..
(23 ) 下部 内に拡散板かまたは分散具が設け られて い る こ と を特徵とする、 請求の範囲第 (2 1)項及び第 (22 )項記載の水硬性無機質系複合体の製造装 . a  (23) Production of a hydraulic inorganic composite according to claims (21) and (22), which is characterized in that a diffuser plate or a dispersion tool is provided in the lower part. Dress .a
(24) 変形可能な ¾■ ¾と、 s¾谷 ¾ に圧力を加えて変形さ せる押圧具と 、 上記容器内を真空吸引する真空吸引装 を具備 し、 減圧下におかれた多孔物質が内在する 水硬性無機質系硬化原料を、 復圧した後引続き混練す る よ う に した こ と を特徵とする水硬性無機質系複合体 の製造装  (24) Deformable ¾ ¾, a pressing tool that applies pressure to s ¾ trough ¾ to deform, and a vacuum suction device that vacuum-sucks the inside of the container, and a porous substance placed under reduced pressure is internally contained. The manufacturing equipment for hydraulic inorganic composites is characterized in that the hydraulic inorganic curing material is recompressed and then continuously kneaded.
(25 ) 押圧具が直線型往復動ま たは及び円運動を行う も のであ る こ とを特徵とする、 請求の範囲第 (24)項記載 の水硬性無機質系複合体の製造装置。 (25) The apparatus for producing a hydraulic inorganic composite according to claim (24), characterized in that the pressing tool performs linear reciprocating motion and circular motion.
Ο ?Ι一 03063 Ο? Ιichi 03063
45 45
(26) 押圧具が膨張狭搾 自在な袋であ る こ と を特徵とす る請求の範囲第 (25)項記載の永硬性無機質系複合体の 製造装置。 (26) The apparatus for producing a permanent-hardening inorganic composite according to claim (25), characterized in that the pressing tool is a bag that can be inflated and squeezed.
(27) 減圧下におかれた多孔物質が内在する水硬性無機 質系硬化原料を、 復圧 した後引続き混練する水硬性無 機質系複合体の製造装置において、 供給装置に間欠的 ま たは連続的排出装置が設け られてい る こ と を特徵と する水硬性無機質系複合体の製造装置。  (27) In a manufacturing apparatus for hydraulically-based inorganic composites, in which a hydraulically setting inorganic-based curing material containing a porous substance under reduced pressure is repressurized and subsequently kneaded, the supply device is intermittently operated. Is an apparatus for producing hydraulic inorganic composites, which has a continuous discharge device.
(28) 間欠的排出装置が直列に配設さ れた 2 ま たは 3組 . のバルブによ っ て構成さ れてい る こ と を特徵とする、 請求の範囲第 (27)項記載の水硬性無機質系複合体の製 造装置。  (28) The characteristic feature is that the intermittent discharge device is composed of two or three sets of valves arranged in series. Equipment for manufacturing hydraulic inorganic composites.
(29) 間欠的排出装置が、 真空吸引装置に繋がれかつ両 側にバルブが設け られた容器であ る こ と を特徵とする . 請求の範囲第 (27)項記載の水硬性無機質系複合体の製 造装置。  (29) The intermittent discharge device is a container connected to the vacuum suction device and provided with valves on both sides. The hydraulic inorganic compound composite according to claim (27). Body manufacturing equipment.
(30) 間欠的排出装置が、 レベル検出器かま た は重量測 定器を設けかつ下端に開閉 自 在なゲー ト ルを設けた下 向き管であ る こ と を特徴とする、 請求の範囲第 (27)項 記載の水硬性無機質系複合体の製造装置。  (30) The intermittent discharge device is a downward pipe provided with a level detector or a weight scale and an open / closed gate at the lower end thereof. An apparatus for producing a hydraulic inorganic composite according to the item (27).
(31) 連続的排出装置が、 半円形のケ ー シ ン グと、 こ の 内側に沿 っ て配設 さ れた可撓管と 、 該可撓管を押圧 し て摺接円運動を行 う 回転ロ ー ラ に よ っ て構成さ れる ポ ンプであ る こ と を特徵と する、 請求の範囲第 (27)項記 載の水硬性無機質系複合体の製造装置。 PGT/JP84/000323063 (31) A continuous ejection device performs semi-circular casing, a flexible tube arranged along the inside of the casing, and a sliding contact circular motion by pressing the flexible tube. An apparatus for producing a hydraulic inorganic composite body as set forth in claim (27), which is characterized in that it is a pump constituted by a rotary roller. PGT / JP84 / 000323063
46 46
(32) 供絵装置が連続供給装置であ る こ とを特徵とする It求の範囲第 (27)項〜第(31)項記載の水硬性無機質系 複合体の製造 (32) Production range of hydraulically-inorganic composites according to Item (27) to (31), where It is a special feature that the picture-providing device is a continuous feeding device.
(33) 供絵装置が連続 ミ キサ 一であ る こ とを特徵とする 請求の範囲第 (27)項〜第 (31)項記載の水硬挫無機質系 複合体の製造  (33) Production of a hydraulically crushed inorganic composite according to any one of claims (27) to (31), characterized in that the picture-providing device is a continuous mixer.
(34) 導入口 と排出口を設けた容器に真空吸引装置或い は更に コ ンプ レ ッ サ ーを繫いだこ とを特徵とする減圧 下におかれた多孔物質が内在する水硬性無機質系硬化 原料を、 復圧 した後引続き混練する水硬性無機質系複 合体の製造装  (34) A hydraulic inorganic material containing a porous substance placed under a reduced pressure, which is characterized by a vacuum suction device or a condenser installed in a container provided with an inlet and an outlet. A device for producing hydraulic inorganic composites, in which the curing raw material is decompressed and subsequently kneaded.
(35 ) 真空吸引装置と コ ンプ レ ッ サ ーが シ リ ンダであ る こ とを特徵とする請求の範囲第(34)項記載の水硬性無 機質系複合体の製造装  (35) The apparatus for producing a hydraulic composite material for composite according to claim (34), characterized in that the vacuum suction device and the compressor are cylinders.
(36 ) 容器内に攪拌具が設け られてい る こ とを特徵とす る、 求の範囲第 (34)項及び第 (35)項記載の水硬性無 機質系複合体の製造装  (36) Scope of the request, which is characterized in that the vessel is provided with a stirrer, the manufacturing equipment for the hydraulic inorganic composite according to paragraphs (34) and (35).
(37) 容器内に拡散板かま たは分散具が設け られてい る こ とを特徵とする、 請求の範囲第 (34)項〜第 (36)項記 載の水硬性無機質系複合体の製造装置。  (37) Manufacturing a hydraulic inorganic composite according to any one of claims (34) to (36), characterized in that a diffusion plate or a dispersing tool is provided in the container. apparatus.
PCT/JP1984/000032 1983-02-04 1984-02-04 Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement WO1984003063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU24916/84A AU2491684A (en) 1983-02-04 1984-02-04 Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016252A JPS59146971A (en) 1983-02-04 1983-02-04 Composite body manufacture and device

Publications (1)

Publication Number Publication Date
WO1984003063A1 true WO1984003063A1 (en) 1984-08-16

Family

ID=11911366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000032 WO1984003063A1 (en) 1983-02-04 1984-02-04 Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement

Country Status (2)

Country Link
JP (1) JPS59146971A (en)
WO (1) WO1984003063A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300278A (en) * 1988-03-09 1994-04-05 Cis Bio International Process for the preparation of 99m Tc, 186 Re or 188 Re nitride complexes usable as radiopharmaceutical products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985693A (en) * 2015-06-29 2015-10-21 句容泰博尔机械制造有限公司 Multifunctional concrete mixer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738037Y1 (en) * 1968-09-13 1972-11-17
JPS4728751U (en) * 1971-04-13 1972-12-01
JPS49127429A (en) * 1973-04-09 1974-12-06
JPS5183625A (en) * 1975-01-21 1976-07-22 Denki Kagaku Kogyo Kk KIHOKONKURIITONOSEIZOHO
JPS5331167B2 (en) * 1973-03-12 1978-08-31
JPS54102660A (en) * 1978-01-30 1979-08-13 Daito Kikai Kk Mixer
JPS5530962A (en) * 1978-08-28 1980-03-05 Katsushi Nakagawa Method of and apparatus for producing concrete employing porous material for aggregate
JPS5530983A (en) * 1978-08-29 1980-03-05 Katsushi Nakagawa Method of producing concrete employing porous material for aggregate
JPS57165209A (en) * 1981-04-03 1982-10-12 Kitagawa Iron Works Co Device for manufacturing green concrete, etc.
JPS5748586Y2 (en) * 1980-09-25 1982-10-25
JPS5750650B2 (en) * 1978-03-29 1982-10-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242977B2 (en) * 1971-12-10 1977-10-27

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738037Y1 (en) * 1968-09-13 1972-11-17
JPS4728751U (en) * 1971-04-13 1972-12-01
JPS5331167B2 (en) * 1973-03-12 1978-08-31
JPS49127429A (en) * 1973-04-09 1974-12-06
JPS5183625A (en) * 1975-01-21 1976-07-22 Denki Kagaku Kogyo Kk KIHOKONKURIITONOSEIZOHO
JPS54102660A (en) * 1978-01-30 1979-08-13 Daito Kikai Kk Mixer
JPS5750650B2 (en) * 1978-03-29 1982-10-28
JPS5530962A (en) * 1978-08-28 1980-03-05 Katsushi Nakagawa Method of and apparatus for producing concrete employing porous material for aggregate
JPS5530983A (en) * 1978-08-29 1980-03-05 Katsushi Nakagawa Method of producing concrete employing porous material for aggregate
JPS5748586Y2 (en) * 1980-09-25 1982-10-25
JPS57165209A (en) * 1981-04-03 1982-10-12 Kitagawa Iron Works Co Device for manufacturing green concrete, etc.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300278A (en) * 1988-03-09 1994-04-05 Cis Bio International Process for the preparation of 99m Tc, 186 Re or 188 Re nitride complexes usable as radiopharmaceutical products

Also Published As

Publication number Publication date
JPS59146971A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
US11370148B2 (en) Volumetric mobile powder mixer
JPH0729292B2 (en) Block molding method and block molding apparatus
CN107650261A (en) A kind of construction site continuously stirs device with dry-mixed mortar
CN110603125A (en) Method for producing concrete building materials
CN107803930A (en) A kind of concrete high-efficiency stirring conveying device
CN107932738A (en) A kind of small-sized cement mixer easy to remove
CN111364770A (en) Grouting equipment based on green building construction can reuse many times
US3326535A (en) Methods and equipment for preparing mortar or concrete
WO1984003063A1 (en) Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement
US4190373A (en) Method and apparatus for mixing pulverulent drying substances and/or fluent media with one or more liquids
US4004782A (en) Machine for mixing aggregate and resin
US4698366A (en) Method for the manufacture of insulating porous shaped building articles
CN217777335U (en) Proportioning device for cement concrete production
US3669418A (en) Method of spraying concrete
JPS588330B2 (en) Continuous mixing method and device
JP2004156275A (en) Method and apparatus for treating lightweight soil
RU2470774C1 (en) Line for production of foam concrete articles
JPS6333895B2 (en)
JP2007007549A (en) Method and apparatus for producing coagulant liquid for sludge treatment
CN112008868A (en) Cement evenly stirring device for building
JPH0343205A (en) Controlling method of mixture and apparatus therefor
JP2003127127A (en) Concrete kneader
CN213166176U (en) Concrete mixing assembly line device
JP4471773B2 (en) Multi-function mixing device, foaming device, light-weight solidified material manufacturing method, light-weight solidified body
CN220008280U (en) Mixing arrangement is used in cement manufacture

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU SU US

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB LU NL SE

CR1 Correction of entry in section i