USRE47570E1 - Stressed substrates for transient electronic systems - Google Patents
Stressed substrates for transient electronic systems Download PDFInfo
- Publication number
- USRE47570E1 USRE47570E1 US15/726,944 US201715726944A USRE47570E US RE47570 E1 USRE47570 E1 US RE47570E1 US 201715726944 A US201715726944 A US 201715726944A US RE47570 E USRE47570 E US RE47570E
- Authority
- US
- United States
- Prior art keywords
- substrate
- stressed
- stressed substrate
- layer
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 350
- 230000001052 transient Effects 0.000 title claims abstract description 98
- 238000005381 potential energy Methods 0.000 claims abstract description 26
- 239000010409 thin film Substances 0.000 claims abstract description 22
- 238000005496 tempering Methods 0.000 claims abstract description 14
- 238000000151 deposition Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 130
- 230000035882 stress Effects 0.000 claims description 126
- 238000000034 method Methods 0.000 claims description 84
- 238000004519 manufacturing process Methods 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 38
- 239000002346 layers by function Substances 0.000 claims description 36
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 238000005342 ion exchange Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000005394 sealing glass Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000000977 initiatory Effects 0.000 claims description 6
- 238000007639 printing Methods 0.000 claims description 4
- 230000001902 propagating Effects 0.000 claims description 4
- 238000007669 thermal treatment Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 abstract description 28
- 239000002245 particle Substances 0.000 abstract description 20
- 230000001960 triggered Effects 0.000 abstract 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 229910052681 coesite Inorganic materials 0.000 description 14
- 229910052906 cristobalite Inorganic materials 0.000 description 14
- 229910052904 quartz Inorganic materials 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 229910052682 stishovite Inorganic materials 0.000 description 14
- 229910052905 tridymite Inorganic materials 0.000 description 14
- 239000010408 film Substances 0.000 description 10
- 238000006062 fragmentation reaction Methods 0.000 description 10
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 8
- 239000012266 salt solution Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 210000002381 Plasma Anatomy 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000006011 modification reaction Methods 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000008204 materials by function Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004377 microelectronic Methods 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000005341 toughened glass Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 210000003229 CMP Anatomy 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N Silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001808 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 230000003340 mental Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000002365 multiple layer Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000000737 periodic Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000644 propagated Effects 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/177—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
- H03K19/17748—Structural details of configuration resources
- H03K19/17768—Structural details of configuration resources for security
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/64—Manufacture or treatment of solid state devices other than semiconductor devices, or of parts thereof, not peculiar to a single device provided for in groups H01L31/00 - H10K99/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/57—Protection from inspection, reverse engineering or tampering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Abstract
A stressed substrate for transient electronic systems (i.e., electronic systems that visually disappear when triggered to do so) that includes one or more stress-engineered layers that store potential energy in the form of a significant internal stress. An associated trigger mechanism is also provided that, when triggered, causes an initial fracture in the stressed substrate, whereby the fracture energy nearly instantaneously travels throughout the stressed substrate, causing the stressed substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. The internal stress is incorporated into the stressed substrate through strategies similar to glass tempering (for example through heat or chemical treatment), or by depositing thin-film layers with large amounts of stress. Patterned fracture features are optionally provided to control the final fractured particle size. Electronic systems built on the substrate are entirely destroyed and dispersed during the transience event.
Description
This invention was made with Government support under Contract No. HR0011-14-C-0013 (G017.3765) awarded by defense Advanced Research Projects Agency. The Government has certain rights in this invention.
This is an application for reissue of U.S. Pat. No. 9,154,138.
This invention relates to transient electronic systems, and in particular to substrates used in transient electronic systems.
Large area sensing is critical for a variety of military, ecological and commercial interests and has historically been served through the use of centralized long-range sensors. However, rapid improvements in miniaturization of electronic systems have significantly improved the capabilities of small sensor devices. These micro-sensors have the potential to create “large N” distributed networks with advantages in operational adaptability, non-traditional sensing modalities that are only possible with close proximity, increased sensitivity and knowledge extraction through networked intelligence.
While distributed network systems have remarkable promise, their realistic use is limited by risks associated with their accumulation in the environment, detection and defeat, and exploitation due to inability to maintain positive control (unlike centralized long-range sensors).
The phrase “transient electronics” refers to a relatively new family of electronic devices that disappear (disaggregate and disperse) within a set period of time, making them ideally suited for distributed network systems. Conventional transient electronic systems typically rely on the use of soluble substrates and electronic materials (such as silk). When placed into solvent (typically water), these conventional substrates and electronics slowly dissolve into solution. As such, a distributed network system made up of conventional transient electronic devices can be expected to “disappear” over a relatively short amount of time (e.g., after periodic rainfall).
Although the conventional transient electronic approaches achieve the goal of causing the electronics to “disappear” after use, the long dissolution period required to achieve complete disaggregation and dispersal make the conventional approaches unfit for discrete (e.g., military) applications that require rapid and complete disaggregation upon command. Moreover, the conventional approaches utilize materials that are not compatible with existing integrated circuit fabrication and assembly techniques, requiring the development of new IC fabrication processes at significant cost.
What is needed is a substrate for transient electronics that is compatible with existing IC fabrication techniques, and achieves complete, on-command disaggregation of the electronic circuitry formed thereon.
The present invention is directed to a stressed substrate for transient electronic systems that utilizes one or more stress-engineered layers to store potential energy in the form of residual, self-equilibrating internal stresses, and an associated transient event triggering mechanism that, upon receiving a trigger signal, generates an initial fracture that causes the stressed substrate to suddenly and catastrophically release the stored potential energy in a manner that completely disaggregates (“powderizes”) the stressed substrate into micron-sized particulates (i.e., 100 μm across) using a mechanism similar to that captured in a Prince Rupert's Drop. The stressed substrate is stable enough to support either mounted or fabricated electronics thereon. In one embodiment, the stressed substrate comprises a suitable semiconductor material (e.g., SiO2) that is compatible with existing IC fabrication techniques. The stress-engineered layers include at least one tensile layer and at least one compressive layer that are operably attached together such that release of the potential energy powderizes the stressed substrate and any electronic devices disposed thereon. The transient event triggering system is connected to the stressed substrate, and includes an actuating mechanism that controls release of the potential energy, i.e., by generating an initial fracture in the stressed substrate upon receipt of a trigger signal (e.g., an externally delivered current pulse or a radio frequency signal). The present invention thus facilitates the production of transient electronic systems that reliably disappear (powderize) in a significantly shorter amount of time than is possible using conventional (e.g., soluble substrate) approaches. Moreover, because the stressed substrate is compatible with low-cost existing IC fabrication techniques, the present invention facilitates the production of transient electronic systems having custom-fabricated IC devices and/or the incorporation of high-performance off-the-shelf electronic devices with minimal (or potentially without any) modification to core IC fabrication process.
According to alternative exemplary embodiments, stressed substrates are fabricated either by depositing stress-engineered substrate layers using, for example, plasma vapor deposition techniques in which the deposition parameters (i.e., temperature or pressure) are varied such that the layers collectively contain a significant inbuilt stress gradient, or by post-treating the substrate material using strategies similar to glass tempering (e.g., by way of ion-exchange, heat or chemical treatment). In some cases, the stress-engineered substrate layers are sequentially deposited on top of each other inside a sacrificial mold that is later removed (i.e., such that the stressed substrate is entirely formed by the deposited stress-engineered substrate layers). In other cases, the stress-engineered layers are formed over a central core substrate. In each case, the stressed substrate includes at least one tensile stress layer having a residual tensile stress and at least one compressive stress layer having a residual compressive stress, where the compressive stress layer is operably integrally connected to the tensile stress layer such that residual tensile and compressive stresses are self-equilibrating (i.e., such that the laminated structure is stable), and such that the residual tensile and compressive stresses are sufficient to cause complete powderization of the substrate upon application of a triggering force (i.e., an initial fracture) by way of a suitable trigger mechanism (e.g., one of a resistive heat element, a chemical reaction element, and a mechanical pressure element).
According to an aspect of the present invention, transient electronic systems are fabricated by forming a stressed substrate using the methods mentioned above, and then disposing (i.e., fabricating or mounting) one or more electronic elements and one or more trigger mechanisms on the stressed substrate. According to alternative embodiments, the electronic devices are attached to the stressed substrate using various techniques. In one exemplary embodiment, already-formed microelectronic circuit “chips” are attached to the substrate using a bonding method (such as using sealing glasses or anodic bonding) that allows crack propagation to destroy the adhered chips. That is, during the transience event, not only will the substrate fracture into small difficult to detect particles, but the bonded microelectronic devices will also fracture into small particulates as well. The final particle size after triggering is based upon factors such as the stress profile and substrate thickness. In one embodiment, the IC chip is thinned and/or patterned to provide fracture points (features) that assist in controlling the final fractured particle size (i.e., the fracture features are formed such that, when the substrate is powderized by release of the stored potential energy, the substrate fractures along the patterned fracture features. In another embodiment, standard thin-film fabrication (e.g., photolithographic or inkjet printing) techniques are used to fabricate the electronic devices directly into and/or on the stressed substrate such that, upon triggering, the energy released by the stressed substrate destroys the thin, brittle functional layers and all electronics formed thereon.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, where:
The present invention relates to an improvement in transient electronic devices. The following description is presented to enable one of ordinary skill in the art to make and use the invention as provided in the context of a particular application and its requirements. As used herein, directional terms such as “upper”, “upward”, “lower”, “downward”, are intended to provide relative positions for purposes of description, and are not intended to designate an absolute frame of reference. Various modifications to the preferred embodiment will be apparent to those with skill in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed.
Referring to device 100(t0) and to the bubble located in the uppermost portion of FIG. 1 , stressed substrate 110 is a wafer-like structure including at least one tensile stress layer 110-1 having a residual tensile stress and at least one compressive stress layer 110-2 having a residual compressive stress. Tensile stress layer 110-1 and compressive stress layer 110-2 (collectively referred to herein as “stress-engineered layers) are operably integrally connected together such that residual tensile and compressive stresses are self-equilibrating and produce a stress gradient (e.g., indicated by the simplified stress graph shown at the right of the bubble). As set forth in additional detail below, the stress-engineered layers 110-1 and 110-2 are fabricated either by post-treating a substrate material using strategies similar to glass tempering (e.g., by way of heat or chemical treatment), or by depositing the substrate layers using, for example chemical, vapor deposition techniques in which the deposition parameters (i.e., temperature, pressure, chemistry) are varied such that the layers collectively contain a significant inbuilt stress gradient. Note that the arrangement of stress-engineered layers 110-1 and 110-2 indicated in the upper bubble is not intended to be limiting in that one or more non-stressed substrate layers may be disposed between the two stress-engineered layers, and in that the stress gradient is not necessarily linear.
Referring to the middle of FIG. 1 , functional layer 120 includes a suitable base layer 121 preferably formed using a semiconductor material (e.g., SiO2) that is compatible with existing IC fabrication techniques, and one or more electronic elements 122 that are fabricated on and in base layer 121 that perform one or more designated (e.g., sensor) operations. As described in additional detail below, functional layer 120 is operably attached to the stressed substrate 110 such that release of the potential energy powderizes both stressed substrate 110 and functional layer 120, along with any electronic devices disposed thereon.
Referring to the lower-middle portion of FIG. 1 , trigger mechanism 130 serves to initiate a transient event that controls the release of potential energy stored in stressed substrate 110 in response to a suitable trigger signal TS (e.g., an externally delivered current pulse or a radio frequency signal). As indicated in the middle bubble of FIG. 1 , trigger mechanism 130 is disposed on substrate 110 and constructed such that the transient event is initiated, for example, by generating an initial fracture F0. As indicated in the middle bubble, this initial fracture F0 is propagated by way of secondary fractures FP that travel rapidly throughout stressed substrate 110, whereby the potential energy stored in stressed substrate 110 is suddenly and catastrophically released in a manner that completely disaggregates (powderizes) the stressed substrate into micron-sized particulates 101 (i.e., having length L, width W, and height H dimensions that are less than approximately 100 μm across, as illustrated in the bubble located at the bottom of FIG. 1 ).
According to an aspect of the present invention, the mechanism by which transient device 100 is powderized during the above-described transient event is similar to that associated with a Prince Rupert's Drop. A Prince Rupert's Drop is formed by simply dropping a bead of molten glass into water, cooling the surface of the drop much more rapidly than the bulk during solidification. This leads to compressive stress on the surface of the glass and tensile stress within the bulk. The resulting glass is very strong as the surface stress resists cracking, however the tail is thin enough that it can be broken; when this is done the elastic strain energy within the drop is released rapidly (fracture propagation steeps are >1000 ms−1) and the drop is shattered into powder. The disaggregation of stressed substrate 110 in response to a transient event trigger signal TS is similar to that of a Prince Rupert's Drop, and hence the terms “powderize” and “powderization” are defined herein to describe a disaggregation event similar to that associated with a Prince Rupert's Drop.
Referring to the lower portion of FIG. 1 , by utilizing suitable device fabrication techniques and trigger mechanisms (some of which are described below), the above-mentioned transient event facilitates the controlled nearly instantaneous powderization of the entirety of device 100(t1) (i.e., functional layer 120) into particles of 100 μm or smaller that are not discernible by the human eye at greater than 50 cm viewing distance. That is, by storing sufficient potential energy in stressed substrate 110 to powderize functional layer 120, and by providing trigger mechanism 130 for releasing the potential energy on command, the present invention facilitates the production of transient electronic devices 100 that reliably essentially disappear on command and in a significantly shorter amount of time than is possible using conventional (e.g., soluble substrate) approaches. Moreover, because stressed substrate 110 is compatible with low-cost existing IC fabrication techniques, the present invention facilitates the production of transient electronic systems having custom-fabricated IC devices and/or the incorporation of high-performance off-the-shelf electronic devices with minimal (or potentially without any) modification to core IC fabrication process.
Various methods may be used to generate stressed substrate 110 utilized in transient electronic device 100 (shown in FIG. 1 ). A first approach to forming stressed substrates involves thin film sputter deposition. In thin film sputter deposition, generally two distinct regimes can be identified leading to very different film morphology and characteristics, and result in either compressive or tensile stress. Metals are often used because of functionality (e.g., electrical properties), their structural qualities (e.g., ductility), and the fact that a conductive sputter target allows for a simple, high yield, glow discharge DC magnetron sputtering process. However, stress-engineered metal oxides and glasses (silicon oxides) can be sputtered as well; these insulating or semiconducting films can be sputter deposited by either radiofrequency (RF) sputtering or by reactive sputtering in a mixed inert/reactive gas plasma (e.g. argon/oxygen). The assignee of the present invention has generated films of stress engineered vanadium oxide using the latter method, for use as temperature sensitive micro-probes. In addition, relatively thick oxide films have been sputter deposited and stress engineered in order to minimize intrinsic stress.
To achieve reliable powderization yielding fragmentation particulates ≤100 μm in any lateral dimension, the presently preferred methodology for generating stressed substrates involves adapting stress-engineered thin film fabrication techniques with ion-exchange tempering to create optimal stress profiles in glass (SiO2) substrates. The presently preferred stressed substrate fabrication methodologies are set forth in the exemplary embodiments described below with reference to FIGS. 2(A) to 2(E), 3(A) to 3(E) , and 4(A) to 4(E).
According to a fourth methodology, a hybrid of the above second and third methods is employed in which diced, thin glass core substrates are ion-exchange tempered, and then multiple layers of SiO2 are deposited on the tempered substrates to further increase the induced stresses. This combined approach has the advantage that much higher central tension values should be attainable by varying the parameters of the ion exchange or the thickness of the layering materials and their relative stress mismatch.
In addition to the localized heating approach described in the previous embodiment, other trigger mechanisms may be utilized to generate the initial fracture required to generate powderization of the stressed substrate. For example, suitable triggering mechanisms may be produced that generate localized fracturing using by initiating a chemical reaction on the surface of the stressed substrate, or by applying a localized mechanical pressure (e.g., using a piezoelectric element) to the stressed stressed substrate.
Although the present invention has been described with respect to certain specific embodiments, it will be clear to those skilled in the art that the inventive features of the present invention are applicable to other embodiments as well, all of which are intended to fall within the scope of the present invention.
Claims (25)
1. A transient electronic device comprising:
a stressed substrate including at least one tensile stress layer having a residual tensile stress and at least one compressive stress layer having a residual compressive stress and being operably integrally connected to the at least one tensile stress layer such that the residual tensile and compressive stresses are self-equilibrating; and
a trigger mechanism attached to the stressed substrate and including means for generating configured to generate an initial fracture in said stressed substrate,
wherein said residual tensile and compressive stresses are sufficient to generate secondary fractures in response to said initial fracture that propagate throughout through said stressed substrate, whereby said stressed substrate is powderized.
2. The transient electronic device of claim 1 , further comprising a functional layer including one or more electronic elements, wherein the functional layer is bonded to the stressed substrate such that the secondary fractures propagate into said functional layer, whereby said functional layer is powderized substantially simultaneously with said stressed substrate.
3. The transient electronic device of claim 2 ,
wherein the functional substrate layer comprises silicon, and
wherein the one or more electronic elements are integrally fabricated on the functional layer.
4. The transient electronic device of claim 1 , wherein said stressed substrate further comprises a central, substantially unstressed layer.
5. The transient electronic device of claim 1 , wherein said trigger mechanism comprises one of means for applying resistive heating to is configured to heat said stressed substrate, means for initiating initiate a chemical reaction in said stressed substrate, and means for applying or apply a mechanical pressure to said stressed stressed substrate to generate the initial fracture.
6. The transient electronic device of claim 2 , wherein at least one of said functional layer and said substrate comprises a plurality of patterned fracture features formed such that, when said substrate is powderized by release of said potential energy, said substrate fractures along said plurality of patterned fracture features in response to the initial fracture.
7. The transient electronic device of claim 2 , wherein said functional layer comprises one or more IC chips attached to the stressed substrate layer such that said IC chips are powderized upon release of the potential energy fracture in response to the initial fracture.
8. The transient electronic device of claim 7 , wherein said IC chips are attached to the stressed substrate layer by one of a sealing glass and an anodic bond.
9. The transient electronic device of claim 1 , wherein said functional layer comprises one or more thin-film electronic elements disposed directly on said stressed substrate.
10. A method for manufacturing a transient electronic device comprising:
forming a stressed substrate including at least one tensile stress layer having a residual tensile stress and at least one compressive stress layer having a residual compressive stress and being operably integrally connected to the at least one tensile stress layer such that residual tensile and compressive stresses are self-equilibrating; and
disposing a trigger mechanism configured to generate an initial fracture in the stressed substrate and one or more electronic elements on the stressed substrate.
11. The method of claim 10 , wherein forming stressed substrate comprises depositing one or more substrate materials while varying applied process conditions such that the deposited substrate material forms a plurality of layer portions collectively forming a stress gradient.
12. The method of claim 11 , wherein forming the stressed substrate comprises depositing said one or more substrate materials onto a sacrificial structure and then removing said one or more sacrificial structure.
13. The method of claim 11 , wherein forming stressed substrate comprises depositing said one or more substrate materials onto a core substrate.
14. The method of claim 10 , wherein forming stressed substrate comprises subjecting a core substrate to one of an ion-exchange tempering treatment, a chemical treatment and a thermal treatment.
15. The method of claim 10 , wherein disposing said one or more electronic elements comprises fabricating said one or more electronic elements on a functional substrate and then attaching said functional substrate to said stressed substrate.
16. The method of claim 15 , wherein fabricating said one or more electronic elements comprises forming said one or more electronic elements using a photolithographic semiconductor fabrication process flow.
17. The method of claim 15 , wherein attaching said functional substrate to said stressed substrate comprises using one of a sealing glass and an anodic bond.
18. The method of claim 15 , further comprising forming a plurality of patterned fracture features in said functional substrate.
19. The method of claim 10 , wherein disposing said one or more electronic elements comprises forming said one or more electronic elements directly on the stressed substrate.
20. The method of claim 19 , wherein forming said one or more electronic elements directly on the stressed substrate comprises printing one or more thin film electronic elements on the stressed substrate.
21. A method comprising:
actuating a trigger mechanism attached to a stressed substrate, the stressed substrate including at least one tensile stress layer having a residual tensile stress and at least one compressive stress layer having a residual compressive stress and being operably integrally connected to the at least one tensile stress layer such that the residual tensile and compressive stresses are self-equilibrating; and
generating an initial fracture in said stressed substrate in response to actuating the trigger mechanism, wherein the residual tensile and compressive stresses of the stressed substrate are sufficient to generate secondary fractures in response to the initial fracture, the secondary fractures propagating through the stressed substrate.
22. The method of claim 21, further comprising receiving a trigger signal, wherein actuating the trigger mechanism occurs in response to receiving the trigger signal.
23. The method of claim 22, wherein receiving the trigger signal comprises receiving a current pulse or a radio frequency signal.
24. The method of claim 21, wherein generating the initial fracture comprises heating the stressed substrate, initiating a chemical reaction in the stressed substrate, or applying mechanical pressure to the stressed substrate.
25. The method of claim 21, wherein the secondary fractures that propagate through the stressed substrate break a functional layer bonded to the stressed substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/726,944 USRE47570E1 (en) | 2013-10-11 | 2017-10-06 | Stressed substrates for transient electronic systems |
US16/537,258 USRE49059E1 (en) | 2013-10-11 | 2019-08-09 | Stressed substrates for transient electronic systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/052,348 US9154138B2 (en) | 2013-10-11 | 2013-10-11 | Stressed substrates for transient electronic systems |
US15/726,944 USRE47570E1 (en) | 2013-10-11 | 2017-10-06 | Stressed substrates for transient electronic systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US14/052,348 Reissue US9154138B2 (en) | 2013-10-11 | 2013-10-11 | Stressed substrates for transient electronic systems |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/052,348 Continuation US9154138B2 (en) | 2013-10-11 | 2013-10-11 | Stressed substrates for transient electronic systems |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE47570E1 true USRE47570E1 (en) | 2019-08-13 |
Family
ID=52809171
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/052,348 Ceased US9154138B2 (en) | 2013-10-11 | 2013-10-11 | Stressed substrates for transient electronic systems |
US15/726,944 Active 2034-04-16 USRE47570E1 (en) | 2013-10-11 | 2017-10-06 | Stressed substrates for transient electronic systems |
US16/537,258 Active 2034-04-16 USRE49059E1 (en) | 2013-10-11 | 2019-08-09 | Stressed substrates for transient electronic systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/052,348 Ceased US9154138B2 (en) | 2013-10-11 | 2013-10-11 | Stressed substrates for transient electronic systems |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/537,258 Active 2034-04-16 USRE49059E1 (en) | 2013-10-11 | 2019-08-09 | Stressed substrates for transient electronic systems |
Country Status (1)
Country | Link |
---|---|
US (3) | US9154138B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11107645B2 (en) * | 2018-11-29 | 2021-08-31 | Palo Alto Research Center Incorporated | Functionality change based on stress-engineered components |
USRE49059E1 (en) * | 2013-10-11 | 2022-05-03 | Palo Alto Research Center Incorporated | Stressed substrates for transient electronic systems |
US11459266B2 (en) | 2018-05-16 | 2022-10-04 | Palo Alto Research Center Incorporated | Apparatus and method for creating crack initiation sites in a self-fracturing frangible member |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2824701B1 (en) * | 2013-07-12 | 2020-05-06 | ABB Power Grids Switzerland AG | High-power semiconductor module |
US9780044B2 (en) * | 2015-04-23 | 2017-10-03 | Palo Alto Research Center Incorporated | Transient electronic device with ion-exchanged glass treated interposer |
US9577047B2 (en) * | 2015-07-10 | 2017-02-21 | Palo Alto Research Center Incorporated | Integration of semiconductor epilayers on non-native substrates |
US10043903B2 (en) | 2015-12-21 | 2018-08-07 | Samsung Electronics Co., Ltd. | Semiconductor devices with source/drain stress liner |
US10012250B2 (en) * | 2016-04-06 | 2018-07-03 | Palo Alto Research Center Incorporated | Stress-engineered frangible structures |
US10026579B2 (en) * | 2016-07-26 | 2018-07-17 | Palo Alto Research Center Incorporated | Self-limiting electrical triggering for initiating fracture of frangible glass |
US10224297B2 (en) * | 2016-07-26 | 2019-03-05 | Palo Alto Research Center Incorporated | Sensor and heater for stimulus-initiated fracture of a substrate |
US10903173B2 (en) | 2016-10-20 | 2021-01-26 | Palo Alto Research Center Incorporated | Pre-conditioned substrate |
US10026651B1 (en) | 2017-06-21 | 2018-07-17 | Palo Alto Research Center Incorporated | Singulation of ion-exchanged substrates |
US10626048B2 (en) | 2017-12-18 | 2020-04-21 | Palo Alto Research Center Incorporated | Dissolvable sealant for masking glass in high temperature ion exchange baths |
CN108831952B (en) * | 2018-06-21 | 2020-05-12 | 复旦大学 | Monocrystalline silicon nano-film flexible transient electronic device, preparation method and application |
US10947150B2 (en) | 2018-12-03 | 2021-03-16 | Palo Alto Research Center Incorporated | Decoy security based on stress-engineered substrates |
US10969205B2 (en) | 2019-05-03 | 2021-04-06 | Palo Alto Research Center Incorporated | Electrically-activated pressure vessels for fracturing frangible structures |
Citations (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397278A (en) | 1965-05-06 | 1968-08-13 | Mallory & Co Inc P R | Anodic bonding |
US3601114A (en) | 1969-01-21 | 1971-08-24 | Norton Co | Method and apparatus for cutting complex shapes |
US3666967A (en) | 1971-05-12 | 1972-05-30 | Us Navy | Self-destruct aluminum-tungstic oxide films |
US3673667A (en) | 1970-11-23 | 1972-07-04 | Whittaker Corp | Method for producing complex shapes by filled billet extrusion |
US3882323A (en) | 1973-12-17 | 1975-05-06 | Us Navy | Method and apparatus for protecting sensitive information contained in thin-film microelectonic circuitry |
US4102664A (en) | 1977-05-18 | 1978-07-25 | Corning Glass Works | Method for making glass articles with defect-free surfaces |
US4139359A (en) | 1977-11-02 | 1979-02-13 | Ppg Industries, Inc. | Method and apparatus for shaping glass sheets by roll forming |
US4598274A (en) * | 1983-08-18 | 1986-07-01 | Romag Holdings Ltd. | Security and protection panel |
US4673453A (en) | 1983-05-04 | 1987-06-16 | Ab Hydro Betong | Method of making a structural body |
US5374564A (en) | 1991-09-18 | 1994-12-20 | Commissariat A L'energie Atomique | Process for the production of thin semiconductor material films |
WO2001043228A1 (en) | 1999-12-07 | 2001-06-14 | Robert Bosch Gmbh | Leaky wave antenna |
US20040031966A1 (en) | 2002-08-16 | 2004-02-19 | Forrest Stephen R. | Organic photonic integrated circuit using a photodetector and a transparent organic light emitting device |
US20040222500A1 (en) | 2001-04-13 | 2004-11-11 | Bernard Aspar | Detachable substrate with controlled mechanical hold and method for production thereof |
US20050061032A1 (en) | 2002-08-22 | 2005-03-24 | Hideo Yoshizawa | Method and device for forming multi-curved glass sheet |
US20050084679A1 (en) | 2003-09-19 | 2005-04-21 | Universita ' Degli Studi Di Trento | ESP glass rupture disks, design and manufacture thereof |
US20050176573A1 (en) | 2003-03-05 | 2005-08-11 | Frank Thoma | Nondestructive ion exchange in phosphate glasses |
DE102004015546A1 (en) | 2004-03-30 | 2005-10-20 | Infineon Technologies Ag | Semiconductor chip for security-relevant applications with integrated circuit has light-sensitive state change device that alters state stored in state storage device when light incident and stored state monitoring device |
US7002517B2 (en) | 2003-06-20 | 2006-02-21 | Anritsu Company | Fixed-frequency beam-steerable leaky-wave microstrip antenna |
US20060138798A1 (en) | 2003-02-12 | 2006-06-29 | Saint-Gobain Glass France | Glazing comprising break lines |
US20060270190A1 (en) | 2005-05-25 | 2006-11-30 | The Regents Of The University Of California | Method of transferring a thin crystalline semiconductor layer |
US7153758B2 (en) | 2003-02-28 | 2006-12-26 | Hitachi, Ltd. | Anodic bonding method and electronic device having anodic bonding structure |
US20070113886A1 (en) | 2005-11-18 | 2007-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
US20080029195A1 (en) | 2006-07-05 | 2008-02-07 | Zhong-Hao Lu | Electrode Pattern For Resistance Heating Element and Wafer processing Apparatus |
US20080311686A1 (en) | 2005-08-03 | 2008-12-18 | California Institute Of Technology | Method of Forming Semiconductor Layers on Handle Substrates |
US20090086170A1 (en) | 2007-09-27 | 2009-04-02 | Ostendo Technologies, Inc. | Quantum Photonic Imagers and Methods of Fabrication Thereof |
US7554085B2 (en) * | 2003-10-09 | 2009-06-30 | Ocas Corp. | Bolometric infrared sensor having two-layer structure and method for manufacturing the same |
US20100035038A1 (en) | 2008-08-08 | 2010-02-11 | Barefoot Kristen L | Strengthened glass articles and methods of making |
US20100133641A1 (en) | 2008-12-03 | 2010-06-03 | Tae Gyu Kim | Image Sensor and Method for Manufacturing the Same |
US20100225380A1 (en) | 2009-03-03 | 2010-09-09 | International Business Machines Corporation | Implementing Tamper Resistant Integrated Circuit Chips |
US7880248B1 (en) | 2005-10-17 | 2011-02-01 | Teledyne Technologies Incorporated | Destructor integrated circuit chip, interposer electronic device and methods |
US20110048756A1 (en) | 2009-09-03 | 2011-03-03 | Shuxian Shi | Security protection device and method |
US20110089506A1 (en) * | 2008-06-13 | 2011-04-21 | Nxp B.V. | Intrusion protection using stress changes |
US20110183116A1 (en) | 2010-01-27 | 2011-07-28 | Jeng-Jye Hung | Method for cutting tempered glass and preparatory tempered glass structure |
US20120052252A1 (en) | 2010-08-26 | 2012-03-01 | Jeffrey Todd Kohli | Methods for extracting strengthened glass substrates from glass sheets |
US8130072B2 (en) | 2009-05-14 | 2012-03-06 | Palo Alto Research Center Incorporated | Vanadium oxide thermal microprobes |
US20120135195A1 (en) | 2010-11-30 | 2012-05-31 | Gregory Scott Glaesemann | Methods for separating glass articles from strengthened glass substrate sheets |
US20120135177A1 (en) | 2010-11-30 | 2012-05-31 | Cornejo Ivan A | Methods for forming grooves and separating strengthened glass substrate sheets |
US20120196071A1 (en) | 2011-02-01 | 2012-08-02 | Cornejo Ivan A | Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets |
US20120288676A1 (en) | 2009-12-01 | 2012-11-15 | Saint-Gobain Glass France | Method for structuring a surface by means of ion-beam etching, structured surface and uses |
US20130037308A1 (en) | 2011-08-12 | 2013-02-14 | Wintek Corporation | Reinforced glass cell and method for fabricating the same and cover glass having the reinforced glass cell |
US20130082383A1 (en) | 2011-10-03 | 2013-04-04 | Texas Instruments Incorporated | Electronic assembly having mixed interface including tsv die |
US20130140649A1 (en) * | 2011-12-01 | 2013-06-06 | John A. Rogers | Transient devices designed to undergo programmable transformations |
US20130192305A1 (en) | 2011-08-10 | 2013-08-01 | Matthew L. Black | Methods for separating glass substrate sheets by laser-formed grooves |
US20140091374A1 (en) | 2012-09-28 | 2014-04-03 | International Business Machines Corporation | STRESS ENGINEERED MULTI-LAYERS FOR INTEGRATION OF CMOS AND Si NANOPHOTONICS |
US20140103957A1 (en) | 2012-10-17 | 2014-04-17 | International Business Machines Corporation | Reactive material for integrated circuit tamper detection and response |
US20140266946A1 (en) | 2013-03-15 | 2014-09-18 | Searete Llc | Surface scattering antenna improvements |
US20140300520A1 (en) | 2011-04-07 | 2014-10-09 | Polyvalor, Limited Partnership | Full-space scanning end-switched crlh leaky-wave antenna |
US20140323968A1 (en) * | 2013-04-12 | 2014-10-30 | The Board Of Trustees Of The University Of Illinois | Materials, electronic systems and modes for active and passive transience |
US20150001733A1 (en) | 2013-06-28 | 2015-01-01 | Omkar G. Karhade | Reliable microstrip routing for electronics components |
US20150044445A1 (en) | 2013-08-07 | 2015-02-12 | Corning Incorporated | Laser controlled ion exchange process and glass articles formed therefrom |
US20150076677A1 (en) | 2012-04-13 | 2015-03-19 | Silex Microsystems Ab | Cte matched interposer and method of making |
US20150089977A1 (en) | 2009-11-30 | 2015-04-02 | Corning Incorporated | Methods for laser scribing and separating glass substrates |
US20150102852A1 (en) | 2013-10-11 | 2015-04-16 | Palo Alto Research Center Incorporated | Stressed Substrates For Transient Electronic Systems |
US20150121964A1 (en) | 2012-03-31 | 2015-05-07 | Luoy-Ang Landglass Technology Co., Ltd. | Method for manufacturing columnar curved tempered glass |
US20150229028A1 (en) | 2010-10-15 | 2015-08-13 | Searete Llc | Surface scattering antennas |
US20150318618A1 (en) | 2014-05-02 | 2015-11-05 | Searete Llc | Surface scattering antennas with lumped elements |
US20150348940A1 (en) | 2014-05-28 | 2015-12-03 | Invensas Corporation | Structure and method for integrated circuits packaging with increased density |
US20150358021A1 (en) | 2013-10-11 | 2015-12-10 | Palo Alto Research Center Incorporated | Thermally Tempered Glass Substrate Using CTE Mismatched Layers And Paste Mixtures For Transient Electronic Systems |
US20150372389A1 (en) | 2014-06-20 | 2015-12-24 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Modulation patterns for surface scattering antennas |
US9294098B2 (en) | 2013-11-26 | 2016-03-22 | Lawrence Livermore National Security, Llc | System and method for on demand, vanishing, high performance electronic systems |
US20160122225A1 (en) | 2013-07-30 | 2016-05-05 | Nippon Electric Glass Co., Ltd. | Method for manufacturing glass plate having curved shape, glass plate having curved shape, and manufacturing apparatus for glass plate having curved shape |
US20160137548A1 (en) | 2014-11-17 | 2016-05-19 | International Business Machines Corporation | Controlling fragmentation of chemically strengthened glass |
US20170036942A1 (en) | 2012-06-05 | 2017-02-09 | Corning Incorporated | Methods of cutting glass using a laser |
US9577047B2 (en) | 2015-07-10 | 2017-02-21 | Palo Alto Research Center Incorporated | Integration of semiconductor epilayers on non-native substrates |
US9630870B2 (en) | 2012-03-31 | 2017-04-25 | Luoyang Landglass Technology Co., Ltd | Method for manufacturing columnar curved tempered glass |
US20170217818A1 (en) | 2014-07-24 | 2017-08-03 | Saint-Gobain Glass France | Method for breaking out a sheet of glass |
US9780044B2 (en) | 2015-04-23 | 2017-10-03 | Palo Alto Research Center Incorporated | Transient electronic device with ion-exchanged glass treated interposer |
US20170292546A1 (en) | 2016-04-06 | 2017-10-12 | Palo Alto Research Center Incorporated | Complex Stress-Engineered Frangible Structures |
US20180033742A1 (en) | 2016-07-26 | 2018-02-01 | Palo Alto Research Center Incorporated | Sensor and heater for stimulus-initiated self-destructing substrate |
US20180033577A1 (en) | 2016-07-26 | 2018-02-01 | Palo Alto Research Center Incorporated | Self-Limiting Electrical Triggering for Initiating Fracture of Frangible Glass |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2529210A (en) | 1947-05-23 | 1950-11-07 | Joseph F Butler | Cutting apparatus for wallboards and the like |
DE3230554C2 (en) | 1982-04-28 | 1984-07-26 | GTI Glastechnische Industrie Peter Lisec, GmbH, Amstetten | Method and device for cutting laminated glass |
US4558622A (en) | 1983-11-04 | 1985-12-17 | Russell Tausheck | Apparatus for cutting laminated glass |
US4739555A (en) | 1985-06-18 | 1988-04-26 | Werner Jurgens | Laminated glass cutter |
GB9201863D0 (en) | 1992-01-29 | 1992-03-18 | Dunn Kenneth R | Multi glazing air cushion release unit |
US5791056A (en) | 1996-11-22 | 1998-08-11 | Messina; Gary D. | Emergency glass breaking tool |
KR100771258B1 (en) | 2000-05-09 | 2007-10-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | User identity authentication system and user identity authentication method and mobile telephonic device |
US6418628B1 (en) | 2001-03-22 | 2002-07-16 | Task Force Tips, Inc. | Spring-loaded car window breaker and retractable safety sheath |
GB0127083D0 (en) | 2001-11-10 | 2002-01-02 | P W Allen & Company Ltd | Device for breaking glass |
US20050082331A1 (en) | 2003-10-17 | 2005-04-21 | Chi-Hong Yang | Tempered glass breaker |
EP1862280A1 (en) * | 2004-12-28 | 2007-12-05 | Mitsuboshi Diamond Industrial Co., Ltd. | Method for cutting brittle material substrate and substrate cutting system |
GB0717489D0 (en) | 2007-09-08 | 2007-10-17 | Design Factor Ni The Ltd | A Glass breaking device |
JP2009212315A (en) | 2008-03-04 | 2009-09-17 | Elpida Memory Inc | Semiconductor device and manufacturing method thereof |
US20130273717A1 (en) | 2012-04-17 | 2013-10-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus and Method for the Singulation of a Semiconductor Wafer |
KR101395054B1 (en) | 2012-08-08 | 2014-05-14 | 삼성코닝정밀소재 주식회사 | Cutting method and stage for cutting of tempered glass |
US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
US10903173B2 (en) | 2016-10-20 | 2021-01-26 | Palo Alto Research Center Incorporated | Pre-conditioned substrate |
US10026651B1 (en) | 2017-06-21 | 2018-07-17 | Palo Alto Research Center Incorporated | Singulation of ion-exchanged substrates |
US10479300B2 (en) | 2017-10-06 | 2019-11-19 | Ford Global Technologies, Llc | Monitoring of vehicle window vibrations for voice-command recognition |
US10717669B2 (en) | 2018-05-16 | 2020-07-21 | Palo Alto Research Center Incorporated | Apparatus and method for creating crack initiation sites in a self-fracturing frangible member |
US11107645B2 (en) * | 2018-11-29 | 2021-08-31 | Palo Alto Research Center Incorporated | Functionality change based on stress-engineered components |
US10947150B2 (en) * | 2018-12-03 | 2021-03-16 | Palo Alto Research Center Incorporated | Decoy security based on stress-engineered substrates |
-
2013
- 2013-10-11 US US14/052,348 patent/US9154138B2/en not_active Ceased
-
2017
- 2017-10-06 US US15/726,944 patent/USRE47570E1/en active Active
-
2019
- 2019-08-09 US US16/537,258 patent/USRE49059E1/en active Active
Patent Citations (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397278A (en) | 1965-05-06 | 1968-08-13 | Mallory & Co Inc P R | Anodic bonding |
US3601114A (en) | 1969-01-21 | 1971-08-24 | Norton Co | Method and apparatus for cutting complex shapes |
US3673667A (en) | 1970-11-23 | 1972-07-04 | Whittaker Corp | Method for producing complex shapes by filled billet extrusion |
US3666967A (en) | 1971-05-12 | 1972-05-30 | Us Navy | Self-destruct aluminum-tungstic oxide films |
US3882323A (en) | 1973-12-17 | 1975-05-06 | Us Navy | Method and apparatus for protecting sensitive information contained in thin-film microelectonic circuitry |
US4102664A (en) | 1977-05-18 | 1978-07-25 | Corning Glass Works | Method for making glass articles with defect-free surfaces |
US4139359A (en) | 1977-11-02 | 1979-02-13 | Ppg Industries, Inc. | Method and apparatus for shaping glass sheets by roll forming |
US4673453A (en) | 1983-05-04 | 1987-06-16 | Ab Hydro Betong | Method of making a structural body |
US4598274A (en) * | 1983-08-18 | 1986-07-01 | Romag Holdings Ltd. | Security and protection panel |
US5374564A (en) | 1991-09-18 | 1994-12-20 | Commissariat A L'energie Atomique | Process for the production of thin semiconductor material films |
WO2001043228A1 (en) | 1999-12-07 | 2001-06-14 | Robert Bosch Gmbh | Leaky wave antenna |
US20040222500A1 (en) | 2001-04-13 | 2004-11-11 | Bernard Aspar | Detachable substrate with controlled mechanical hold and method for production thereof |
US20040031966A1 (en) | 2002-08-16 | 2004-02-19 | Forrest Stephen R. | Organic photonic integrated circuit using a photodetector and a transparent organic light emitting device |
US20050061032A1 (en) | 2002-08-22 | 2005-03-24 | Hideo Yoshizawa | Method and device for forming multi-curved glass sheet |
US20060138798A1 (en) | 2003-02-12 | 2006-06-29 | Saint-Gobain Glass France | Glazing comprising break lines |
US7153758B2 (en) | 2003-02-28 | 2006-12-26 | Hitachi, Ltd. | Anodic bonding method and electronic device having anodic bonding structure |
US20050176573A1 (en) | 2003-03-05 | 2005-08-11 | Frank Thoma | Nondestructive ion exchange in phosphate glasses |
US7002517B2 (en) | 2003-06-20 | 2006-02-21 | Anritsu Company | Fixed-frequency beam-steerable leaky-wave microstrip antenna |
US20050084679A1 (en) | 2003-09-19 | 2005-04-21 | Universita ' Degli Studi Di Trento | ESP glass rupture disks, design and manufacture thereof |
US7554085B2 (en) * | 2003-10-09 | 2009-06-30 | Ocas Corp. | Bolometric infrared sensor having two-layer structure and method for manufacturing the same |
DE102004015546A1 (en) | 2004-03-30 | 2005-10-20 | Infineon Technologies Ag | Semiconductor chip for security-relevant applications with integrated circuit has light-sensitive state change device that alters state stored in state storage device when light incident and stored state monitoring device |
US20060270190A1 (en) | 2005-05-25 | 2006-11-30 | The Regents Of The University Of California | Method of transferring a thin crystalline semiconductor layer |
US20080311686A1 (en) | 2005-08-03 | 2008-12-18 | California Institute Of Technology | Method of Forming Semiconductor Layers on Handle Substrates |
US7880248B1 (en) | 2005-10-17 | 2011-02-01 | Teledyne Technologies Incorporated | Destructor integrated circuit chip, interposer electronic device and methods |
US20070113886A1 (en) | 2005-11-18 | 2007-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
US20080029195A1 (en) | 2006-07-05 | 2008-02-07 | Zhong-Hao Lu | Electrode Pattern For Resistance Heating Element and Wafer processing Apparatus |
US20090086170A1 (en) | 2007-09-27 | 2009-04-02 | Ostendo Technologies, Inc. | Quantum Photonic Imagers and Methods of Fabrication Thereof |
US20110089506A1 (en) * | 2008-06-13 | 2011-04-21 | Nxp B.V. | Intrusion protection using stress changes |
US20100035038A1 (en) | 2008-08-08 | 2010-02-11 | Barefoot Kristen L | Strengthened glass articles and methods of making |
US20100133641A1 (en) | 2008-12-03 | 2010-06-03 | Tae Gyu Kim | Image Sensor and Method for Manufacturing the Same |
US20100225380A1 (en) | 2009-03-03 | 2010-09-09 | International Business Machines Corporation | Implementing Tamper Resistant Integrated Circuit Chips |
US8130072B2 (en) | 2009-05-14 | 2012-03-06 | Palo Alto Research Center Incorporated | Vanadium oxide thermal microprobes |
US20110048756A1 (en) | 2009-09-03 | 2011-03-03 | Shuxian Shi | Security protection device and method |
US20150089977A1 (en) | 2009-11-30 | 2015-04-02 | Corning Incorporated | Methods for laser scribing and separating glass substrates |
US20120288676A1 (en) | 2009-12-01 | 2012-11-15 | Saint-Gobain Glass France | Method for structuring a surface by means of ion-beam etching, structured surface and uses |
US20110183116A1 (en) | 2010-01-27 | 2011-07-28 | Jeng-Jye Hung | Method for cutting tempered glass and preparatory tempered glass structure |
US20120052252A1 (en) | 2010-08-26 | 2012-03-01 | Jeffrey Todd Kohli | Methods for extracting strengthened glass substrates from glass sheets |
US20150229028A1 (en) | 2010-10-15 | 2015-08-13 | Searete Llc | Surface scattering antennas |
US20120135177A1 (en) | 2010-11-30 | 2012-05-31 | Cornejo Ivan A | Methods for forming grooves and separating strengthened glass substrate sheets |
US20120135195A1 (en) | 2010-11-30 | 2012-05-31 | Gregory Scott Glaesemann | Methods for separating glass articles from strengthened glass substrate sheets |
US20120196071A1 (en) | 2011-02-01 | 2012-08-02 | Cornejo Ivan A | Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets |
US20140300520A1 (en) | 2011-04-07 | 2014-10-09 | Polyvalor, Limited Partnership | Full-space scanning end-switched crlh leaky-wave antenna |
US20130192305A1 (en) | 2011-08-10 | 2013-08-01 | Matthew L. Black | Methods for separating glass substrate sheets by laser-formed grooves |
US20130037308A1 (en) | 2011-08-12 | 2013-02-14 | Wintek Corporation | Reinforced glass cell and method for fabricating the same and cover glass having the reinforced glass cell |
US20130082383A1 (en) | 2011-10-03 | 2013-04-04 | Texas Instruments Incorporated | Electronic assembly having mixed interface including tsv die |
US20130140649A1 (en) * | 2011-12-01 | 2013-06-06 | John A. Rogers | Transient devices designed to undergo programmable transformations |
US20150121964A1 (en) | 2012-03-31 | 2015-05-07 | Luoy-Ang Landglass Technology Co., Ltd. | Method for manufacturing columnar curved tempered glass |
US9630870B2 (en) | 2012-03-31 | 2017-04-25 | Luoyang Landglass Technology Co., Ltd | Method for manufacturing columnar curved tempered glass |
US20150076677A1 (en) | 2012-04-13 | 2015-03-19 | Silex Microsystems Ab | Cte matched interposer and method of making |
US20170036942A1 (en) | 2012-06-05 | 2017-02-09 | Corning Incorporated | Methods of cutting glass using a laser |
US20140091374A1 (en) | 2012-09-28 | 2014-04-03 | International Business Machines Corporation | STRESS ENGINEERED MULTI-LAYERS FOR INTEGRATION OF CMOS AND Si NANOPHOTONICS |
US20140103957A1 (en) | 2012-10-17 | 2014-04-17 | International Business Machines Corporation | Reactive material for integrated circuit tamper detection and response |
US20140266946A1 (en) | 2013-03-15 | 2014-09-18 | Searete Llc | Surface scattering antenna improvements |
US20140323968A1 (en) * | 2013-04-12 | 2014-10-30 | The Board Of Trustees Of The University Of Illinois | Materials, electronic systems and modes for active and passive transience |
US20150001733A1 (en) | 2013-06-28 | 2015-01-01 | Omkar G. Karhade | Reliable microstrip routing for electronics components |
US20160122225A1 (en) | 2013-07-30 | 2016-05-05 | Nippon Electric Glass Co., Ltd. | Method for manufacturing glass plate having curved shape, glass plate having curved shape, and manufacturing apparatus for glass plate having curved shape |
US20150044445A1 (en) | 2013-08-07 | 2015-02-12 | Corning Incorporated | Laser controlled ion exchange process and glass articles formed therefrom |
US9154138B2 (en) | 2013-10-11 | 2015-10-06 | Palo Alto Research Center Incorporated | Stressed substrates for transient electronic systems |
US9356603B2 (en) | 2013-10-11 | 2016-05-31 | Palo Alto Research Center Incorporated | Thermally tempered glass substrate using CTE mismatched layers and paste mixtures for transient electronic systems |
US20150102852A1 (en) | 2013-10-11 | 2015-04-16 | Palo Alto Research Center Incorporated | Stressed Substrates For Transient Electronic Systems |
US20150358021A1 (en) | 2013-10-11 | 2015-12-10 | Palo Alto Research Center Incorporated | Thermally Tempered Glass Substrate Using CTE Mismatched Layers And Paste Mixtures For Transient Electronic Systems |
US9294098B2 (en) | 2013-11-26 | 2016-03-22 | Lawrence Livermore National Security, Llc | System and method for on demand, vanishing, high performance electronic systems |
US20150318618A1 (en) | 2014-05-02 | 2015-11-05 | Searete Llc | Surface scattering antennas with lumped elements |
US20150348940A1 (en) | 2014-05-28 | 2015-12-03 | Invensas Corporation | Structure and method for integrated circuits packaging with increased density |
US20150372389A1 (en) | 2014-06-20 | 2015-12-24 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Modulation patterns for surface scattering antennas |
US20170217818A1 (en) | 2014-07-24 | 2017-08-03 | Saint-Gobain Glass France | Method for breaking out a sheet of glass |
US20160137548A1 (en) | 2014-11-17 | 2016-05-19 | International Business Machines Corporation | Controlling fragmentation of chemically strengthened glass |
US9780044B2 (en) | 2015-04-23 | 2017-10-03 | Palo Alto Research Center Incorporated | Transient electronic device with ion-exchanged glass treated interposer |
US20180005963A1 (en) | 2015-04-23 | 2018-01-04 | Palo Alto Research Center Incorporated | Transient Electronic Device With Ion-Exchanged Glass Treated Interposer |
US9577047B2 (en) | 2015-07-10 | 2017-02-21 | Palo Alto Research Center Incorporated | Integration of semiconductor epilayers on non-native substrates |
US20170292546A1 (en) | 2016-04-06 | 2017-10-12 | Palo Alto Research Center Incorporated | Complex Stress-Engineered Frangible Structures |
US20180033742A1 (en) | 2016-07-26 | 2018-02-01 | Palo Alto Research Center Incorporated | Sensor and heater for stimulus-initiated self-destructing substrate |
US20180033577A1 (en) | 2016-07-26 | 2018-02-01 | Palo Alto Research Center Incorporated | Self-Limiting Electrical Triggering for Initiating Fracture of Frangible Glass |
Non-Patent Citations (19)
Title |
---|
Apr. 13, 2018, File History for U.S. Appl. No. 15/220,221. |
Apr. 5, 2018, EP Search Report for EP App. No. 17194476.2 dated Apr. 5, 2018, 9 pages. |
Dec. 6, 2017, Search Report for EP App. No. 17182802.3 dated Dec. 6, 2017, 9 pages. |
Feb. 13, 2018, File History for EP App. No. 17163445.4 as retrieved from the EP Patent Office electronic file system on Feb. 13, 2018, 74 pages. |
Feb. 13, 2018, File History for U.S. Appl. No. 14/796,440. |
Feb. 13, 2018, File History for U.S. Appl. No. 15/092,313. |
Feb. 13, 2018, File History for U.S. Appl. No. 15/220,164. |
Feb. 13, 2018, File History for U.S. Appl. No. 15/220,221. |
Feb. 14, 2018, File History for U.S. Appl. No. 15/629,506. |
File History for U.S. Appl. No. 15/092,313. |
File History for U.S. Appl. No. 15/220,164. |
File History for U.S. Appl. No. 15/220,221. |
File History for U.S. Appl. No. 15/629,506. |
File History for U.S. Appl. No. 15/689,566. |
File History for U.S. Appl. No. 16/025,573. |
File History for U.S. Appl. No. 16/033,783. |
Jan. 4, 2018, EP Search Report dated Jan. 4, 2018 for EP App. No. 17182800.7, 14 pages. |
U.S. Appl. No. 15/299,385, filed Oct. 20, 2016, Chua et al. |
U.S. Appl. No. 15/629,506, filed Jun. 21, 2017, Limb et al. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE49059E1 (en) * | 2013-10-11 | 2022-05-03 | Palo Alto Research Center Incorporated | Stressed substrates for transient electronic systems |
US11459266B2 (en) | 2018-05-16 | 2022-10-04 | Palo Alto Research Center Incorporated | Apparatus and method for creating crack initiation sites in a self-fracturing frangible member |
US11107645B2 (en) * | 2018-11-29 | 2021-08-31 | Palo Alto Research Center Incorporated | Functionality change based on stress-engineered components |
Also Published As
Publication number | Publication date |
---|---|
US20150102852A1 (en) | 2015-04-16 |
USRE49059E1 (en) | 2022-05-03 |
US9154138B2 (en) | 2015-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49059E1 (en) | Stressed substrates for transient electronic systems | |
US9356603B2 (en) | Thermally tempered glass substrate using CTE mismatched layers and paste mixtures for transient electronic systems | |
US10950406B2 (en) | Self-limiting electrical triggering for initiating fracture of frangible glass | |
US10541215B1 (en) | Transient electronic device with ion-exchanged glass treated interposer | |
EP3285399B1 (en) | Sensor and heater for stimulus-initiated self-destructing substrate | |
US10717669B2 (en) | Apparatus and method for creating crack initiation sites in a self-fracturing frangible member | |
CN108493326A (en) | The acoustic resonator and preparation method thereof of based single crystal piezoelectric membrane | |
EP2624451B1 (en) | Method for manufacturing piezoelectric device | |
US20080283944A1 (en) | PHOTOSTRUCTURABLE GLASS MICROELECTROMECHANICAL (MEMs) DEVICES AND METHODS OF MANUFACTURE | |
EP3391035B1 (en) | Sensing layer formation | |
US20200176200A1 (en) | Functionality change based on stress-engineered components | |
TW201233826A (en) | Method for forming dielectric thin film | |
Bansal et al. | Laser transfer of sol–gel ferroelectric thin films using an ITO release layer | |
RU2449412C1 (en) | Method for manufacturing multipurpose gas composition sensors | |
Barange et al. | Blue inorganic light emitting diode on flexible polyimide substrate using laser lift-off process | |
CN115448248A (en) | Cavity preparation method for realizing high-precision control of functional layer thickness by using intelligent stripping method | |
CN107640740A (en) | A kind of compound clamped beam and preparation method thereof | |
JP2004311624A (en) | Laminate and its manufacturing method | |
JP2002009568A (en) | Manufacturing method for surface acoustic wave device and manufacturing device for the surface acoustic wave device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |