USRE47466E1 - Systems and methods for IP communication over a distributed antenna system transport - Google Patents

Systems and methods for IP communication over a distributed antenna system transport Download PDF

Info

Publication number
USRE47466E1
USRE47466E1 US15/436,534 US201715436534A USRE47466E US RE47466 E1 USRE47466 E1 US RE47466E1 US 201715436534 A US201715436534 A US 201715436534A US RE47466 E USRE47466 E US RE47466E
Authority
US
United States
Prior art keywords
radio frequency
data
internet protocol
timeslot
serial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/436,534
Inventor
Larry G. Fischer
Jeffrey J. Cannon
Steven B. Stuart
John M. Hedin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CommScope Technologies LLC
Original Assignee
CommScope Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14425509P priority Critical
Priority to US12/555,912 priority patent/US8213401B2/en
Priority to US13/529,607 priority patent/US8958410B2/en
Priority to US15/436,534 priority patent/USRE47466E1/en
Application filed by CommScope Technologies LLC filed Critical CommScope Technologies LLC
Assigned to TYCO ELECTRONICS SERVICES GMBH reassignment TYCO ELECTRONICS SERVICES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADC TELECOMMUNICATIONS, INC., TE CONNECTIVITY SOLUTIONS GMBH
Assigned to COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMMSCOPE EMEA LIMITED
Assigned to COMMSCOPE EMEA LIMITED reassignment COMMSCOPE EMEA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TYCO ELECTRONICS SERVICES GMBH
Assigned to ADC TELECOMMUNICATIONS, INC. reassignment ADC TELECOMMUNICATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CANNON, JEFFREY J., HEDIN, JOHN M., FISCHER, LARRY G., STUART, STEVEN B.
Publication of USRE47466E1 publication Critical patent/USRE47466E1/en
Application granted granted Critical
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. ABL SECURITY AGREEMENT Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. TERM LOAN SECURITY AGREEMENT Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: COMMSCOPE TECHNOLOGIES LLC
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Abstract

Systems and methods for IP communication over a distributed antenna system transport are provided. In one embodiment, a method for providing Ethernet connectivity over a distributed antenna system comprises receiving internet protocol (IP) formatted data from an internet protocol device coupled to a remote unit of a distributed antenna system; sampling wireless radio frequency (RF) signals received at the remote unit to produce digitized RF samples; generating a serial data stream for output to a host unit of the distributed antenna system, the serial data stream further comprising a multiple-timeslot communication frame providing a first partition of bandwidth for transporting the digitized RF samples and a second partition of bandwidth for implementing an Ethernet pipe for transporting the IP formatted data.

Description

CROSS-REFERENCE TO RELATED CASES

This Reissue Application is a reissue of application Ser. No. 13/529,607, filed Jun. 21, 2012, which issued as U.S. Pat. No. 8,958,410. This application is continuation of U.S. application Ser. No. 12/555,912 filed on Sep. 9, 2009 and entitled “SYSTEMS AND METHODS FOR IP COMMUNICATION OVER A DISTRIBUTED ANTENNA SYSTEM TRANSPORT,” which, in turn, claims the benefit of U.S. Provisional Application No. 61/144,255 filed on Jan. 13, 2009 both of which are incorporated herein by reference in their entirety.

This application is related to U.S. Provisional Application No. 61/144,257 filed on Jan. 13, 2009 entitled “SYSTEMS AND METHODS FOR MOBILE PHONE LOCATION WITH DIGITAL DISTRIBUTED ANTENNA SYSTEMS,” and which is incorporated herein by reference in its entirety.

This application is related to U.S. patent application Ser. No. 12/555,923 filed on Sep. 9, 2009 entitled “SYSTEMS AND METHODS FOR MOBILE PHONE LOCATION WITH DIGITAL DISTRIBUTED ANTENNA SYSTEMS,” and which is incorporated herein by reference in its entirety.

BACKGROUND

A Distributed Antenna System, or DAS, is a network of spatially separated antenna nodes connected to a common node via a transport medium that provides wireless service within a geographic area or structure. Common wireless communication system configurations employ a host unit as the common node, which is located at a centralized location (for example, at a facility that is controlled by a wireless service provider). The antenna nodes and related broadcasting and receiving equipment, located at a location that is remote from the host unit (for example, at a facility or site that is not controlled by the wireless service provider), are also referred to as “remote units.” Radio frequency (RF) signals are communicated between the host unit and one or more remote units. In such a DAS, the host unit is typically communicatively coupled to one or more base stations (for example, via wired connection or via wireless connection) which allow bidirectional communications between wireless subscriber units within the DAS service area and communication networks such as, but not limited to, cellular phone networks, the public switch telephone network (PSTN) and the Internet. A DAS can thus provide, by its nature, an infrastructure within a community that can scatter remote units across a geographic area thus providing wireless services across that area.

For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the specification, there is a need in the art for systems and methods for facilitation of supplemental data communication over a distributed antenna system transport.

DRAWINGS

Embodiments of the present invention can be more easily understood and further advantages and uses thereof more readily apparent, when considered in view of the description of the preferred embodiments and the following figures in which:

FIG. 1 is a block diagram of a distributed antenna system (DAS) of one embodiment of the present invention;

FIG. 2 is a block diagram of a remote unit of one embodiment of the present invention;

FIG. 3 is a block diagram of a host unit of one embodiment of the present invention;

FIG. 4 illustrates a superframe structure of one embodiment of the present invention; and

FIG. 5 illustrates a method of one embodiment of the present invention.

In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize features relevant to the present invention. Reference characters denote like elements throughout figures and text.

DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.

Embodiments of the present invention provide point-to-point Ethernet connections (100 Base-T, for example) between elements of a distributed antenna system by adapting the digital radio frequency (RF) transport medium to further carry internet protocol data traffic simultaneously with the RF traffic. Embodiments of the present invention enable installation of internet protocol devices at remote locations (for example, to extend a Local Area Network (LAN)/IP network into remote areas, or establish various services at remote locations that benefit from having IP network connectivity). Internet protocol devices may thus include networking devices such as switches, routers, and wireless access points (for WiFi, WiMAX, LTE, for example) or cameras, sensors, audio and/or video devices for security, distributing announcements, warnings or advertising. In one embodiment, the Internet Protocol device is a mobile phone locator such as described in the '1075 Application herein incorporated by reference. One of ordinary skill in the art after reading this specification would thus realize that such internet connectivity allows utilization of the remote facilities of a distributed antenna system to provide functions beyond that related to the principal RF functions of the system.

FIG. 1 is a block diagram of a distributed antenna system (DAS) 100 of one embodiment of the present invention. DAS 100 includes a host unit 102 and a plurality of remote units 106. At the physical layer, host units 102 and remote units 106 are interconnected via fiber optic cable as indicated in FIG. 1 to form a bidirectional communication link network comprising a plurality of point-to-point communication links shown at 130. Optionally, host units 102 and remote units 106 may be interconnected via coaxial cable, or a combination of both coaxial cable and fiber optic cable. Further, host units 102 and remote units 106 may be interconnected via wireless technology such as, but not limited to, microwave and e-band communication.

Remote units 106 each house electronic devices and systems used for wirelessly transmitting and receiving modulated radio frequency (RF) communications via antenna 107 with one or more mobile subscriber units 108. Host unit 102 is coupled to at least one base transceiver station (BTS) 110 often referred to as a base station. BTS 110 communicates voice and other data signals between the respective host unit 102 and a larger communication network via a gateway 124 coupled to a telephone system network 122 (for example, the public switched telephone network and/or wireless service provider networks) and an internet protocol (IP) network 124, such as the Internet. In one embodiment, DAS 100 comprises part of a cellular telephone network and subscriber units 108 are cellular telephones.

Downlink RF signals are received from the BTS 110 at the host unit 102, which the host unit 102 uses to generate one or more downlink transport signals for transmitting to one or more of the remote units 106. Each such remote unit 106 receives at least one downlink transport signal and reconstructs the downlink RF signals from the downlink transport signal and causes the reconstructed downlink RF signals to be radiated from a remote antenna 107 coupled to or included in that remote unit 106. A similar process is performed in the uplink direction. Uplink RF signals received at one or more remote units 106 from subscriber 108 are used to generate respective uplink transport signals that are transmitted from the respective remote units 106 to the host unit 102. The host unit 102 receives and combines the uplink transport signals transmitted from the multiple remote units 106. The host unit 102 communicates the combined uplink RF signals to the BTS 110 over a broadband medium.

DAS 100 comprises a digital DAS transport meaning that the downlink and uplink transport signals transmitted between host unit 102 and remote units 106 over communication links 130 are generated by digitizing the downlink and uplink RF signals, respectively. In other words, the downlink and uplink transport signals are not analog RF signals but instead are digital data signals representing digital RF samples of a modulated RF signal. For example, if a particular communication signal destined for transmission to subscriber unit 108 is a modulated RF signal in the 900 MHz band, then host unit 102 will generate baseband digital samples of the modulated 900 MHz RF signal from BTS 110, which are then distributed by host unit 102 to the remote units 106. Alternatively, an all-digital BTS may generate baseband digital samples directly. At the remote units, the digital samples of the modulated RF signal are converted from digital into an analog RF signal to be wirelessly radiated from the antennas 107. In the uplink analog RF signals received at remote unit 106 are sampled to generate RF data samples for the uplink transport signals. BTS 110, host unit 102 and remote units 106 each accommodate processing communication signals for multiple bands and multiple modulate schemes simultaneously. In addition to communicating the downlink and uplink transport RF signals, the digital transport between host unit 102 and each remote units 106 includes sufficient bandwidth (that is, in excess of what is necessary to transport the digitized RF data samples) to implement an Ethernet pipe (100 Base-T) between each remote unit 106 and the host unit 102 for facilitating supplemental Internet Protocol formatted data communications. In one embodiment, the Ethernet pipe provides a bandwidth of at least 100M bits/sec.

It is understood in the art that RF signals are often transported at intermediate frequencies (IF) or baseband. Therefore, within the context of this application, the terms “digital RF”, “digitized RF data”, “digital RF signal”, “digital RF samples”, “digitized RF samples” and “digitized RF signals” are understood to include signals converted to IF and baseband frequencies.

FIG. 2 is a block diagram of a remote unit 200 of one embodiment of the present invention such as the remote units 106 discussed with respect to FIG. 1. Remote unit 200 includes a serial radio frequency (SeRF) module 220, a digital to analog radio frequency transceiver (DART) module 208, a remote DART interface board (RDI) 224, a linear power amplifier 210, antenna 212, a duplexer 211, a low noise amplifier 214 and an Internet Protocol device (IPD) 216. In one embodiment, SeRF modules and DART modules and Internet Protocol (IP) devices described herein are realized using discrete RF components, FPGAs, ASICs, digital signal processing (DSP) boards, or similar devices.

DART module 208 provides bi-directional conversion between analog RF signals and digital sampled RF for the downlink and uplink transport signals transmitted between host unit 102 and remote units 106. In the uplink, DART module 208 receives an incoming analog RF signal from subscriber unit 108 and samples the analog RF signal to generate a digital data signal for use by SeRF module 220. Antenna 212 receives the wireless RF signal from subscriber 108 which passes the RF signal to DART module 208 via low noise amplifier 214. In the downlink direction DART module 208 receives digital sampled RF data from SeRF module 220, up converts the sampled RF data to a broadcast frequency, and converts the digital RF samples to analog RF for wireless transmission. After a signal is converted to an analog RF signal by DART module 208, the analog RF signal is sent to linear power amplifier 210 for broadcast via antenna 212. Linear power amplifier 210 amplifies the RF signal received from DART module 208 for output through duplexer 211 to antenna 212. Duplexer 211 provides duplexing of the signal which is necessary to connect transmit and receive signals to a common antenna 212. In one embodiment, low noise amplifier 214 is integrated into duplexer 211. One of ordinary skill in the art upon reading this specification would appreciate that DART modules may function to optionally convert the digital RF samples into intermediate frequency (IF) samples instead of, or in addition to, baseband digital samples.

DART modules in a remote unit are specific for a particular frequency band. A single DART module operates over a defined band regardless of the modulation technology being used. Thus frequency band adjustments in a remote unit can be made by replacing a DART module covering one frequency band with a DART module covering a different frequency band. For example, in one implementation DART module 208 is designed to transmit 850 MHz cellular transmissions. As another example, in another implementation DART module 208 transmits 1900 MHz PCS signals. Some of the other options for a DART module 208 include, but are not limited to, Nextel 800 band, Nextel 900 band, PCS full band, PCS half band, BRS, WiMax, Long Term Evolution (LTE), and the European GSM 900, GSM 1800, and UMTS 2100. By allowing different varieties of DART modules 208 to be plugged into RDI 224, remote unit 200 is configurable to any of the above frequency bands and technologies as well as any new technologies or frequency bands that are developed. Also, a single remote unit may be configured to operate over multiple bands by possessing multiple DART modules. The present discussion applies to such multiple band remote units, even though the present examples focuses on a the operation of a single DART module for simplicity.

SeRF module 220 is coupled to RDI 224. RDI 224 has a plurality of connectors each of which is configured to receive a pluggable DART module 208 and connect DART module 208 to SeRF module 220. RDI 224 is a common interface that is configured to allow communication between SeRF module 220 and different varieties of DART modules 208. In this embodiment, RDI 204 is a passive host backplane to which SeRF module 220 also connects. In another embodiment, instead of being a host backplane, RDI 224 is integrated with SeRF module 220. When a remote unit operates over multiple bands by possessing multiple DART modules, RDI 224 provides separate connection interfaces allowing each DART module to communicate RF data samples with SeRF module 220. Although FIG. 2 illustrates a single SeRF module connected to a single RDI, embodiments of the present invention are not limited to such. In alternate embodiments, a SeRF module may connect to multiple RDIs, each of which can connect to multiple DARTS. For example, in one embodiment, a SeRF module can connect to up to 3 RDIs, each of which can connect to up to 2 DARTs. SeRF module 220 provides bi-directional conversion between a serial stream of RF, IF or baseband data samples (a SeRF stream) and a high speed optical serial data stream. In the uplink direction, SeRF module 220 receives an incoming SeRF stream from DART modules 208 and sends a serial optical data stream over communication links 130 to host unit 102. In the downlink direction, SeRF module 220 receives an optical serial data stream from host unit 102 and provides a SeRF stream to DART modules 208.

Remote unit 200 further includes an internet protocol device (IPD) 216. IPD 216 is coupled to SeRF module 220 via an interface 222 that provides bidirectional access to a point-to-point Ethernet pipe established between remote unit 200 and the host unit 102 over the serial optical data stream. In one embodiment, interface 222 is a receptacle for a standard 8 Position 8 Contact (8P8C) modular plug and category 5/5e cable.

IPD 216 may include any device designed to network using an Ethernet connection. For example, IPD 216 may comprise a networking devices such a switch, router, and/or wireless access point (for WiFi or WiMAX, for example). In another implementation, IPD 216 is a data collection device such as a weather station collecting weather related data such as, but not limited to, temperature, relative humidity, wind speed and direction, precipitation, and the like. In still other implementations, IPD 216 may include any number of other data collection devices such as a surveillance camera, a motion, heat or vibration sensor or a subscriber unit locator. IPD 216 formats data it collects for transmission over an internet protocol (IP) connection and then outputs the data to the SeRF module 220 via interface 222 which in turn routes data over the Ethernet pipe to the host unit 102. In another implementation, IPD 216 is a data distribution device for distributing announcements, warnings or advertising. As such, IPD 216 may comprise a public announcement load speaker, sirens, or liquid crystal diode (LCD) display. Further IPD may support two way interactive messaging, chat, tele/video conferencing applications, and the like.

Although FIG. 2 (discussed above) illustrates a single DART module coupled to a SeRF module, a single remote unit housing may operate over multiple bands and thus include multiple DART modules. In one such embodiment, the systems illustrated in FIG. 2 would simply be replicated once for each band. In one alternate embodiment, a SeRF module also allows multiple DART modules to operate in parallel to communicate high speed optical serial data streams over a communication link with the host unit. In one such embodiment a SeRF module actively multiplexes the signals from multiple DART modules (each DART module processing a different RF band) such that they are sent simultaneously over a single transport communication link. In one embodiment a SeRF module presents a clock signal to each DART module to which it is coupled to ensure synchronization.

FIG. 3 is a block diagram illustrating a host unit (shown generally at 300) of one embodiment of the present invention such as the host unit 102 discussed with respect to FIG. 1. Multiple remote units 306 are coupled to host unit 300, as described with respect to FIG. 1, to form a digital DAS. Host unit 300 includes a host unit digital to analog radio frequency transceiver (DART) module 308 and a host unit serial radio frequency (SeRF) module 320. SeRF module 320 provides bi-directional conversion between a serial stream of RF data samples (a SeRF stream) and the multiple high speed optical serial data streams to and from the remote units 306. Each serial optical data stream includes a digital transport for communicating downlink and uplink transport RF signals as well as an Ethernet pipe between each remote unit 306 and host unit 300. In the uplink direction, SeRF module 320 receives incoming serial optical data streams from a plurality of remote units and converts each into a serial stream of digitized baseband RF data samples, which are summed into a broadband stream of RF data samples. DART module 308 provides a bi-directional interface between SeRF module 320 and one or more base stations, such as BTS 110. As with the remote units, when host unit 320 operates over multiple bands with multiple base stations, a separate DART module 308 is provided for each frequency band. In one embodiment, host unit 300 also maintains an Ethernet pipe with at least one base station (such as BTS 110) which provides access to at least one Internet gateway.

Host unit 300 further includes an Ethernet port interface 324 for coupling an Internet Protocol Device (IPD) 330 to SeRF module 320 via an Ethernet link 325. Ethernet link 325 may include a local area network (LAN), wide area network (WAN) having at least one network switch for routing data between interface 324 and IPD 330. Alternatively, IPD 330 may be an internet switch, router, or any of the IP devices discussed above with respect to IPD 216. Ethernet port interface 324 provides access to the Ethernet Pipes established between host unit 300 and one or more of the multiple remote units 306. In one embodiment, a single 8 Position 8 Contact (8P8C) modular plug Ethernet port interface 324 provides access for communication via a virtual Ethernet connection with each multiple remote unit's Ethernet port interface (such as interface 222). In an alternate embodiment, Ethernet port interface 324 provides multiple 8 Position 8 Contact (8P8C) modular plug connection points which each form a point-to-point virtual Ethernet connection with a specific one of the multiple remote units 306.

Referring back to FIG. 2, it can be seen that for upstream communications, IP data received via interface 222 and digitized RF data from DART module 208 are both pushed into SeRF 220 which produces the uplink transport signal that is communicated to the host unit 120 via communication links 130. In doing so, SeRF 220 performs multiplexing in the time domain to route both the IP data and the RF data into time slots within frames communicated to host unit 120. In downstream communications, SeRF 220 de-multiplexes IP data and RF data from within frames received from host unit 120. RF data is routed to the DART module 208 while IP data is routed to Ethernet interface 222. In the host unit 300 illustrated in FIG. 3, the host unit SeRF 320 similarly multiplexes and de-multiplexes IP data and RF data (via communication links 130) to route IP data to and from interface 324 and RF data to and from the host unit DART 308.

FIG. 4 illustrates one embodiment of a superframe 400, which may be used for either upstream or downstream communications between remote units 106 and host unit 102 via communication links 130. The particular superframe 400 shown comprises 12 frames (shown at 420-1 to 420-12) with each frame divided into 16 timeslots (shown generally at 410). One of ordinary skill in the art upon reading this specification would appreciate that this particular configuration of 12 frames of 16 timeslots is for illustrative purposes only and that embodiments of the present invention may be practiced with superframes having different numbers of frames and timeslots.

In the particular embodiment shown in FIG. 4, each RF data sample carried over the digital transport of the DAS utilizes 15 of 16 available bits within a single timeslot (shown generally at 412, for example). In one embodiment, the SeRF module 220 mulitplexes IP data into the remaining bits of each time slot. That is, for each timeslot carrying RF data, SeRF fills the 16th bit with IP data. The SeRF module assembling superframe 400 thus utilizes the remaining overhead in each time slot to transport the IP data along with the RF data sample. In other embodiments, the ratio and/or number of bits used to carry an RF data sample verses the total number of available bits per timeslot may vary. For example, in an alternate embodiment, an RF data sample may utilize 17 of 18 available bits in a timeslot. The SeRF may then fill the 18th bit with IP data. In another alternate embodiment, an RF data sample may utilize 15 of 18 available bits in a timeslot. The SeRF may then fill one or all of the 16th, 17th, and/or 18th bits with IP data.

At the receiving end of the communication link, the SeRF module receiving superframe 400 accordingly separates the IP data from each timeslot to reassemble standard IP data packets. It is not necessary that every timeslot of every frame will carry RF data. In other words, in some implementations, some timeslot of superframe 400 will not be utilized to carry RF data. This may occur where the bandwidth capacity of a particular communication link exceeds the bandwidth demand of a particular remote unit. In those cases, the SeRF module assembling superframe 400 may alternately multiplex IP data onto otherwise unutilized timeslots of superframe 400.

FIG. 5 is a flow chart illustrating a method of one embodiment of the present invention. The method begins at 510 with receiving data from an internet protocol device, the data formatted for transport via an internet protocol network (IP data) at a remote unit of a distributed antenna system. The method proceeds to 520 with converting analog RF signals received at the remote unit into digitized RF samples. The method proceeds to 530 with multiplexing the IP data with the digitized RF samples into frames for transmission to a host unit of the distributed antenna system. In one embodiment, multiplexing the IP data with the digitized RF samples into frames is achieved by inserting digitized RF samples into timeslots and then multiplexing the IP data into remaining bits within each time slot. For example, where each RF data sample is 15 bits and each timeslot has a capacity of 16 bits, the method utilizes 15 of 16 available bits within a timeslot to carry the RF data sample and mulitplexes IP data into the remaining 16th bits of each timeslot. The method then proceeds to 540 with transmitting a superframe to the host unit, the superframe comprising timeslots carrying the IP data with the digitized RF samples.

Several means are available to implement the systems and methods of the current invention as discussed in this specification. In addition to any means discussed above, these means include, but are not limited to, digital computer systems, microprocessors, programmable controllers, field programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). Therefore other embodiments of the present invention are program instructions resident on computer readable media which when implemented by such controllers, enable the controllers to implement embodiments of the present invention. Computer readable media include devices such as any physical form of computer memory, including but not limited to punch cards, magnetic disk or tape, any optical data storage system, flash read only memory (ROM), non-volatile ROM, programmable ROM (PROM), erasable-programmable ROM (E-PROM), random access memory (RAM), or any other form of permanent, semi-permanent, or temporary memory storage system or device. Program instructions include, but are not limited to computer-executable instructions executed by computer system processors and hardware description languages such as Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL).

Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.

Claims (20)

We claim:
1. A distributed antenna system, the system comprising:
a host unit;
at least one remote unit for wirelessly communicating with one or more subscriber units, the at least one remote unit communicatively coupled to the host unit over a point-to-point communication link, wherein the at least one remote unit receives uplink radio frequency signals from the one or more subscriber units and samples the generates sample data from the uplink radio frequency signals to generate digitized radio frequency signals, the at least one remote unit further comprising an Ethernet interface for receiving to receive Internet Protocol formatted data; and
an internet protocol device coupled to the Ethernet interface;
wherein the at least one remote unit outputs a serial data stream to the host unit, the serial data stream including digitized radio frequency signals corresponding to distinct spectral regions of analog radio frequency spectrum the sample data and an Ethernet pipe for transporting the Internet Protocol formatted data received via the Ethernet interface;
wherein the serial data stream comprises a multiple-timeslot communication frame, the digitized radio frequency signals sample data including first bits within a timeslot of the multiple-timeslot communication frame and the Ethernet pipe including second bits within the timeslot.
2. The distributed antenna system of claim 1, wherein the at least one remote unit multiplexes the Internet Protocol formatted data received via the Ethernet interface and the digitized radio frequency signals sample data into timeslots of the serial data stream.
3. The distributed antenna system of claim 1, the at least one remote unit further comprising:
at least one digital to analog radio frequency transceiver module for generating a digitized radio frequency signal the sample data from an analog radio frequency signal received from the one or more subscriber units; and
a serial data stream module coupled to receive the digitized radio frequency signal sample data from the at least one digital to analog radio frequency transceiver module, the serial data stream module performing multiplexing in the a time domain to route both the Internet Protocol formatted data and the digitized radio frequency signals sample data into time slots within frames communicated to the host unit.
4. The distributed antenna system of claim 3, wherein the digitized radio frequency signal sample data is a baseband digital radio frequency signal.
5. The distributed antenna system of claim 1, wherein the Ethernet interface for receiving the Internet Protocol formatted data comprises an eight-position eight-contact modular plug.
6. The distributed antenna system of claim 1, wherein the Ethernet pipe further comprises at least one timeslot of the multiple-timeslot communication frame that does not carry digitized radio frequency signal data the sample data.
7. The distributed antenna system of claim 1, the host unit further comprising:
a host serial radio frequency module receiving the serial data stream from the at least one remote unit, wherein the host serial radio frequency module de-multiplexes the digitized radio frequency data sample data and the Internet Protocol formatted data from the serial data stream and routes the Internet Protocol formatted data to an Ethernet interface at the host unit.
8. The distributed antenna system of claim 1, wherein the at least one remote unit inputs a downlink serial data stream from the host unit, the downlink serial data stream including downlink digitized radio frequency data samples corresponding to distinct spectral regions of analog radio frequency spectrum sample data and an Ethernet pipe for transporting the downlink Internet Protocol formatted data for output via the Ethernet interface.
9. The distributed antenna system of claim 1, wherein each timeslot of the multiple-timeslot communication frame includes first bits communicating the digitized radio frequency signals sample data and second bits implementing the Ethernet pipe.
10. A method for providing Ethernet connectivity over a distributed antenna system, the method comprising:
receiving Internet Protocol formatted data from an Internet Protocol device coupled to a remote unit of a distributed antenna system;
samplinggenerating sample data from wireless radio frequency signals received at the remote unit to produce digitized radio frequency samples; and
generating a serial data stream for output to a host unit of the distributed antenna system, the serial data stream further comprising a multiple-timeslot communication frame providing a first set of bits within a timeslot for transporting the digitized radio frequency samples sample data and a second set of bits within the timeslot for implementing an Ethernet pipe for transporting the Internet Protocol formatted data; wherein generating the serial data stream further comprises multiplexing the digitized radio frequency signals sample data into the first set of bits within the timeslot of the multiple-timeslot communication frame and multiplexing the IP formatted data into the second set of bits within the timeslot of the multiple-timeslot communication frame.
11. The method of claim 10, wherein generating the serial data stream further comprises:
multiplexing the Internet Protocol data with the digitized radio frequency samples sample data into timeslots of the multiple-timeslot communication frame.
12. The method of claim 10, wherein receiving Internet Protocol formatted data further comprises receiving the Internet Protocol formatted data via an eight-position eight-contact modular plug.
13. The method of claim 10, wherein generating the serial data stream further comprises:
multiplexing the Internet Protocol formatted data into a second set of timeslots of the multiple-timeslot communication frame, wherein the second set of timeslots do not carry digitized radio frequency signal data the sample data.
14. The method of claim 10, further comprising:
receiving the serial data stream at the host unit;
de-multiplexing the digitized radio frequency data sample data and the Internet Protocol formatted data from the serial data stream; and
routing the Internet Protocol formatted data to an Ethernet interface at the host unit.
15. The method of claim 10, wherein generating the serial data stream further comprises generating the first set of bits within each timeslot of the multiple-timeslots communication frame for transporting the digitized radio frequency samples sample data and generating the second set of bits within each timeslot of the multiple-timeslot communication frame for implementing the Ethernet pipe for transporting the Internet Protocol formatted data.
16. A remote unit for a distributed antenna system, the remote unit comprising:
at least one digital to analog radio frequency transceiver module for generating a digital radio frequency signal sample data from an analog radio frequency signal received from one or more subscriber units;
at least one Internet Protocol device; and
a serial radio frequency module coupled to receive the digital radio frequency signal sample data from the at least one digital to analog radio frequency transceiver module, the serial radio frequency module further comprising an Ethernet interface for communicating Internet Protocol formatted data with the at least one Internet Protocol device;
wherein the serial radio frequency module communicating with a host unit via an upstream serial data stream and a downstream serial data stream;
the upstream serial data stream comprising a multiple-timeslot communication frame having a first set of bits within a timeslot for transporting the digital radio frequency signal sample data and a second set of bits within the timeslot implementing an Ethernet pipe for transporting upstream Internet Protocol formatted data received via the Ethernet interface; and
wherein the serial radio frequency module multiplexes Internet Protocol formatted data received via the Ethernet interface and the digital radio frequency signal sample data into timeslots of the upstream serial data stream.
17. The remote unit of claim 16, wherein the serial radio frequency module demultiplexes Internet Protocol formatted data from timeslots of the downstream serial data stream and outputs downstream Internet Protocol formatted data to the Ethernet interface.
18. The remote unit of claim 16, wherein the second Ethernet pipe further comprises a timeslot of the multiple-timeslot communication frame that does not carry the digitized radio frequency signal data sample data.
19. The remote unit of claim 16, wherein the Ethernet interface comprises an eight-position eight-contact modular plug.
20. The remote unit of claim 16, wherein the serial radio frequency module demultiplexes downlink Internet Protocol formatted data and a downlink digital radio frequency signal sample data from timeslots of a downlink serial data stream.
US15/436,534 2009-01-13 2017-02-17 Systems and methods for IP communication over a distributed antenna system transport Active USRE47466E1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14425509P true 2009-01-13 2009-01-13
US12/555,912 US8213401B2 (en) 2009-01-13 2009-09-09 Systems and methods for IP communication over a distributed antenna system transport
US13/529,607 US8958410B2 (en) 2009-01-13 2012-06-21 Systems and methods for IP communication over a distributed antenna system transport
US15/436,534 USRE47466E1 (en) 2009-01-13 2017-02-17 Systems and methods for IP communication over a distributed antenna system transport

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/436,534 USRE47466E1 (en) 2009-01-13 2017-02-17 Systems and methods for IP communication over a distributed antenna system transport

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/529,607 Reissue US8958410B2 (en) 2009-01-13 2012-06-21 Systems and methods for IP communication over a distributed antenna system transport

Publications (1)

Publication Number Publication Date
USRE47466E1 true USRE47466E1 (en) 2019-06-25

Family

ID=66866831

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/436,534 Active USRE47466E1 (en) 2009-01-13 2017-02-17 Systems and methods for IP communication over a distributed antenna system transport

Country Status (1)

Country Link
US (1) USRE47466E1 (en)

Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183054A (en) 1977-09-30 1980-01-08 Harris Corporation Digital, frequency-translated, plural-channel, vestigial sideband television communication system
US4611323A (en) 1983-05-24 1986-09-09 Ant Nachrichtentechnik Gmbh Method for transmitting digitally coded analog signals
US4628501A (en) 1983-12-29 1986-12-09 The United States Of America As Represented By The Secretary Of The Army Optical communications systems
US4654843A (en) 1982-09-17 1987-03-31 U.S. Philips Corporation Signal distribution system
US4691292A (en) 1983-04-13 1987-09-01 Rca Corporation System for digital multiband filtering
EP0391597A2 (en) 1989-04-04 1990-10-10 AT&T Corp. Optical fiber microcellular mobile radio
US4999831A (en) 1989-10-19 1991-03-12 United Telecommunications, Inc. Synchronous quantized subcarrier multiplexer for digital transport of video, voice and data
WO1991015927A1 (en) 1990-04-10 1991-10-17 British Telecommunications Public Limited Company Signal distribution
US5193109A (en) 1989-02-06 1993-03-09 Pactel Corporation Zoned microcell with sector scanning for cellular telephone system
US5243598A (en) 1991-04-02 1993-09-07 Pactel Corporation Microcell system in digital cellular
US5321849A (en) 1991-05-22 1994-06-14 Southwestern Bell Technology Resources, Inc. System for controlling signal level at both ends of a transmission link based on a detected valve
US5339184A (en) 1992-06-15 1994-08-16 Gte Laboratories Incorporated Fiber optic antenna remoting for multi-sector cell sites
US5627879A (en) 1992-09-17 1997-05-06 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
US6603976B1 (en) 1999-08-03 2003-08-05 Ericsson, Inc. Architecture for TOA positioning with LMU control functionality in BSC
WO2003065757A1 (en) 2002-01-29 2003-08-07 Opencell Corporation Method and apparatus for auxiliary pilot signal for mobile phone location
US6704545B1 (en) 2000-07-19 2004-03-09 Adc Telecommunications, Inc. Point-to-multipoint digital radio frequency transport
US20040106435A1 (en) 2002-12-03 2004-06-03 Adc Telecommunications, Inc. Distributed digital antenna system
US20040198386A1 (en) 2002-01-16 2004-10-07 Dupray Dennis J. Applications for a wireless location gateway
US6831901B2 (en) 2002-05-31 2004-12-14 Opencell Corporation System and method for retransmission of data
US20050153712A1 (en) 2004-01-08 2005-07-14 Ken Osaka Method and system for determining mobile unit location by aggregation of tagged signals from a distributed antenna system
US20050186937A1 (en) 2004-02-24 2005-08-25 Gerald Graham System and method for emergency 911 location detection
US6963552B2 (en) 2000-03-27 2005-11-08 Adc Telecommunications, Inc. Multi-protocol distributed wireless system architecture
US7024155B2 (en) * 2003-11-25 2006-04-04 G Squared, Llc Device and method for facilitating transmission, production, recording, sound reinforcement and real-time monitoring of audio and visual elements of a production
US7039399B2 (en) 2002-03-11 2006-05-02 Adc Telecommunications, Inc. Distribution of wireless telephony and data signals in a substantially closed environment
US20060172775A1 (en) 2005-02-01 2006-08-03 Adc Telecommunications, Inc. Scalable distributed radio network
US7103377B2 (en) 2002-12-03 2006-09-05 Adc Telecommunications, Inc. Small signal threshold and proportional gain distributed digital communications
CN1844948A (en) 2006-03-15 2006-10-11 重庆邮电学院 Positioning method based on distributed antenna
US20070008939A1 (en) 2005-06-10 2007-01-11 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
US7171244B2 (en) 2002-12-03 2007-01-30 Adc Telecommunications, Inc. Communication system and method with gain control for signals from distributed antennas
US7224170B2 (en) 2004-12-27 2007-05-29 P. G. Electronics Fault monitoring in a distributed antenna system
US7286507B1 (en) 2005-10-04 2007-10-23 Sprint Spectrum L.P. Method and system for dynamically routing between a radio access network and distributed antenna system remote antenna units
US20080014948A1 (en) 2006-07-14 2008-01-17 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
CN101123758A (en) 2006-08-11 2008-02-13 中兴通讯股份有限公司 An implementation method based on location routing in digital cluster call
US7336961B1 (en) 2004-06-04 2008-02-26 Sprint Spectrum L.P. Method and system for determining location of a mobile station within a distributed antenna system
US20080058018A1 (en) 2006-08-29 2008-03-06 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
US20080151846A1 (en) 2006-12-22 2008-06-26 Stefan Scheinert System for and method of providing remote coverage area for wireless communications
US20080181282A1 (en) 2007-01-25 2008-07-31 Adc Telecommunications, Inc. Modular wireless communications platform
US20080181171A1 (en) 2007-01-25 2008-07-31 Adc Telecommunications, Inc. Distributed remote base station system
US20080232328A1 (en) 2007-03-23 2008-09-25 Stefan Scheinert Localization of a mobile device in distributed antenna communications system
US20080267142A1 (en) 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
US20090005096A1 (en) 2007-06-26 2009-01-01 Stefan Scheinert Distributed antenna communications system
US20090061940A1 (en) 2007-08-31 2009-03-05 Stefan Scheinert System for and method of configuring distributed antenna communications system
US20090092142A1 (en) 2007-10-04 2009-04-09 Barrett Kreiner Methods, systems and computer program products for dynamic communication data routing by a multi-network remote communication terminal
US7583929B2 (en) 2005-07-11 2009-09-01 Pantech & Curitel Communications, Inc. Mobile communication terminal, channel information providing module, method of automatically accessing to DMB, and method of providing channel access information
US7668153B2 (en) 2007-03-27 2010-02-23 Adc Telecommunications, Inc. Method for data converter sample clock distribution
US20100178936A1 (en) 2009-01-13 2010-07-15 Adc Telecommunications, Inc. Systems and methods for mobile phone location with digital distributed antenna systems
US20100177759A1 (en) 2009-01-13 2010-07-15 Adc Telecommunications, Inc. Systems and methods for ip communication over a distributed antenna system transport
US7948897B2 (en) 2007-08-15 2011-05-24 Adc Telecommunications, Inc. Delay management for distributed communications networks
US7962174B2 (en) * 2006-07-12 2011-06-14 Andrew Llc Transceiver architecture and method for wireless base-stations
US8005152B2 (en) 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
US20110270978A1 (en) * 2008-12-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus to Migrate Transport Protocols
US8204543B2 (en) * 2005-08-01 2012-06-19 Ubiquisys Limited Local area cellular basestation
US8315648B2 (en) * 2007-11-14 2012-11-20 Andrew Llc Ranging in UMTS networks
US8359409B2 (en) * 2008-05-27 2013-01-22 Fujitsu Semiconductor Limited Aligning protocol data units
US8489089B1 (en) * 2012-02-03 2013-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Human-readable, semi-persistent overlay that dynamically displays a changeable operational state of a radio base station
US8514800B2 (en) * 2010-01-27 2013-08-20 Samsung Electronics Co., Ltd. Method for transmitting and receiving ethernet data between digital unit and RF unit and apparatus thereof

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183054A (en) 1977-09-30 1980-01-08 Harris Corporation Digital, frequency-translated, plural-channel, vestigial sideband television communication system
US4654843A (en) 1982-09-17 1987-03-31 U.S. Philips Corporation Signal distribution system
US4691292A (en) 1983-04-13 1987-09-01 Rca Corporation System for digital multiband filtering
US4611323A (en) 1983-05-24 1986-09-09 Ant Nachrichtentechnik Gmbh Method for transmitting digitally coded analog signals
US4628501A (en) 1983-12-29 1986-12-09 The United States Of America As Represented By The Secretary Of The Army Optical communications systems
US5193109A (en) 1989-02-06 1993-03-09 Pactel Corporation Zoned microcell with sector scanning for cellular telephone system
EP0391597A2 (en) 1989-04-04 1990-10-10 AT&T Corp. Optical fiber microcellular mobile radio
US4999831A (en) 1989-10-19 1991-03-12 United Telecommunications, Inc. Synchronous quantized subcarrier multiplexer for digital transport of video, voice and data
WO1991015927A1 (en) 1990-04-10 1991-10-17 British Telecommunications Public Limited Company Signal distribution
US5243598A (en) 1991-04-02 1993-09-07 Pactel Corporation Microcell system in digital cellular
US5321849A (en) 1991-05-22 1994-06-14 Southwestern Bell Technology Resources, Inc. System for controlling signal level at both ends of a transmission link based on a detected valve
US5339184A (en) 1992-06-15 1994-08-16 Gte Laboratories Incorporated Fiber optic antenna remoting for multi-sector cell sites
US5627879A (en) 1992-09-17 1997-05-06 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
US6603976B1 (en) 1999-08-03 2003-08-05 Ericsson, Inc. Architecture for TOA positioning with LMU control functionality in BSC
US6963552B2 (en) 2000-03-27 2005-11-08 Adc Telecommunications, Inc. Multi-protocol distributed wireless system architecture
US6704545B1 (en) 2000-07-19 2004-03-09 Adc Telecommunications, Inc. Point-to-multipoint digital radio frequency transport
US20040198386A1 (en) 2002-01-16 2004-10-07 Dupray Dennis J. Applications for a wireless location gateway
WO2003065757A1 (en) 2002-01-29 2003-08-07 Opencell Corporation Method and apparatus for auxiliary pilot signal for mobile phone location
US7039399B2 (en) 2002-03-11 2006-05-02 Adc Telecommunications, Inc. Distribution of wireless telephony and data signals in a substantially closed environment
US6831901B2 (en) 2002-05-31 2004-12-14 Opencell Corporation System and method for retransmission of data
US7171244B2 (en) 2002-12-03 2007-01-30 Adc Telecommunications, Inc. Communication system and method with gain control for signals from distributed antennas
US20040106435A1 (en) 2002-12-03 2004-06-03 Adc Telecommunications, Inc. Distributed digital antenna system
US7103377B2 (en) 2002-12-03 2006-09-05 Adc Telecommunications, Inc. Small signal threshold and proportional gain distributed digital communications
US7024155B2 (en) * 2003-11-25 2006-04-04 G Squared, Llc Device and method for facilitating transmission, production, recording, sound reinforcement and real-time monitoring of audio and visual elements of a production
US20050153712A1 (en) 2004-01-08 2005-07-14 Ken Osaka Method and system for determining mobile unit location by aggregation of tagged signals from a distributed antenna system
US20050186937A1 (en) 2004-02-24 2005-08-25 Gerald Graham System and method for emergency 911 location detection
US7336961B1 (en) 2004-06-04 2008-02-26 Sprint Spectrum L.P. Method and system for determining location of a mobile station within a distributed antenna system
US20080267142A1 (en) 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
US7224170B2 (en) 2004-12-27 2007-05-29 P. G. Electronics Fault monitoring in a distributed antenna system
US20060172775A1 (en) 2005-02-01 2006-08-03 Adc Telecommunications, Inc. Scalable distributed radio network
US20070008939A1 (en) 2005-06-10 2007-01-11 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
US7583929B2 (en) 2005-07-11 2009-09-01 Pantech & Curitel Communications, Inc. Mobile communication terminal, channel information providing module, method of automatically accessing to DMB, and method of providing channel access information
US8204543B2 (en) * 2005-08-01 2012-06-19 Ubiquisys Limited Local area cellular basestation
US7286507B1 (en) 2005-10-04 2007-10-23 Sprint Spectrum L.P. Method and system for dynamically routing between a radio access network and distributed antenna system remote antenna units
CN1844948A (en) 2006-03-15 2006-10-11 重庆邮电学院 Positioning method based on distributed antenna
US7962174B2 (en) * 2006-07-12 2011-06-14 Andrew Llc Transceiver architecture and method for wireless base-stations
US20080014948A1 (en) 2006-07-14 2008-01-17 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
CN101123758A (en) 2006-08-11 2008-02-13 中兴通讯股份有限公司 An implementation method based on location routing in digital cluster call
US20080058018A1 (en) 2006-08-29 2008-03-06 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
US20080151846A1 (en) 2006-12-22 2008-06-26 Stefan Scheinert System for and method of providing remote coverage area for wireless communications
US20080181282A1 (en) 2007-01-25 2008-07-31 Adc Telecommunications, Inc. Modular wireless communications platform
US20080181171A1 (en) 2007-01-25 2008-07-31 Adc Telecommunications, Inc. Distributed remote base station system
US20080232328A1 (en) 2007-03-23 2008-09-25 Stefan Scheinert Localization of a mobile device in distributed antenna communications system
US7668153B2 (en) 2007-03-27 2010-02-23 Adc Telecommunications, Inc. Method for data converter sample clock distribution
US20090005096A1 (en) 2007-06-26 2009-01-01 Stefan Scheinert Distributed antenna communications system
US7948897B2 (en) 2007-08-15 2011-05-24 Adc Telecommunications, Inc. Delay management for distributed communications networks
US20090061940A1 (en) 2007-08-31 2009-03-05 Stefan Scheinert System for and method of configuring distributed antenna communications system
US20090092142A1 (en) 2007-10-04 2009-04-09 Barrett Kreiner Methods, systems and computer program products for dynamic communication data routing by a multi-network remote communication terminal
US8315648B2 (en) * 2007-11-14 2012-11-20 Andrew Llc Ranging in UMTS networks
US8005152B2 (en) 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
US8359409B2 (en) * 2008-05-27 2013-01-22 Fujitsu Semiconductor Limited Aligning protocol data units
US20110270978A1 (en) * 2008-12-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus to Migrate Transport Protocols
US20100177759A1 (en) 2009-01-13 2010-07-15 Adc Telecommunications, Inc. Systems and methods for ip communication over a distributed antenna system transport
US8213401B2 (en) 2009-01-13 2012-07-03 Adc Telecommunications, Inc. Systems and methods for IP communication over a distributed antenna system transport
US8346278B2 (en) * 2009-01-13 2013-01-01 Adc Telecommunications, Inc. Systems and methods for mobile phone location with digital distributed antenna systems
US20100178936A1 (en) 2009-01-13 2010-07-15 Adc Telecommunications, Inc. Systems and methods for mobile phone location with digital distributed antenna systems
US20130079035A1 (en) 2009-01-13 2013-03-28 Adc Telecommunications, Inc. Systems and methods for mobile phone location with digital distributed antenna systems
US8526970B2 (en) * 2009-01-13 2013-09-03 Adc Telecommunications, Inc. Systems and methods for mobile phone location with digital distributed antenna systems
US8958410B2 (en) 2009-01-13 2015-02-17 Adc Telecommunications, Inc. Systems and methods for IP communication over a distributed antenna system transport
US8514800B2 (en) * 2010-01-27 2013-08-20 Samsung Electronics Co., Ltd. Method for transmitting and receiving ethernet data between digital unit and RF unit and apparatus thereof
US8489089B1 (en) * 2012-02-03 2013-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Human-readable, semi-persistent overlay that dynamically displays a changeable operational state of a radio base station

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
"CPRI Specification V1.4, Common Public Radio Interface; Interface Specification", Mar. 31, 2006, pp. 1-64, Publisher: Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, Nortel Networks SA and Siemens AG.
Australian Government IP Australia, "Patent Examination Report No. 1 from AU Application No. 2010204891 dated Nov. 12, 2014", from Foreign Counterpart of U.S. Appl. No. 12/555,912, filed Nov. 12, 2014, pp. 1-3, Published: AU.
European Patent Office, "Communication pursuant to Article 94(3) from EP Application No. 10731977.A dated Apr. 22, 2015", from Foreign Counterpart of U.S. Appl. No. 12/555,912, filed Apr. 22, 2015, pp. 1-4, Published: EP.
European Patent Office, "Extended European Search Report for Application No. 10731977.4", "for Foreign counterpart of U.S. Appl. No. 12/555,923", dated Aug. 28, 2014, pp. 1-10, Published in: EP.
European Patent Office, "Office Action from EP Application No. 10731977.4 dated Mar. 14, 2018", "from Foreign Counterpart of U.S. Appl. No. 12/555,912", Mar. 14, 2018, p. 1 - 6, Published in: EP.
Grace, Martin K., "Synchronous Quantized Subcarrier Multiplexing for Transport of Video, Voice and Data", "IEEE Journal on Selected Areas in Communications", Sep. 1990, pp. 1351-1358, vol. 8, No. 7, Publisher: IEEE.
Harvey et al., "Cordless Communications Utilising Radio Over Fibre Techniques for the Local Loop", "IEEE International Conference on Communications", Jun. 1991, pp. 1171-1175, Publisher: IEEE.
International Searching Authority, "International Search Report and Written Opinion", "from Foreign Counterpart of U.S. Appl. No. 12/555,923", dated Jul. 29, 2010, pp. 1-10, Published in: WO.
State Intellectual Property Office Peoples Republic of China, "Third Office Action for CN Aplication No. 201080004462.0", "from Foreign Counterpart of U.S. Appl. No. 12/555,923", dated Jan. 9, 2015, pp. 1-6, Published in: CN.
State Intellectual Property Office, P.R. China, "First Office Action from CN Application No. 201080004462.0", "from Foreign Counterpart of U.S. Appl. No. 12/555,923", dated Jul. 12, 2013, pp. 1-17, Published in: CN.
State Intellectual Property Office, P.R. China, "Office Action from CN Application No. 201080004462.0 dated Jun. 3, 2014", "from Foreign Counterpart of U.S. Appl. No. 12/555,923", filed Jun. 3, 2014, pp. 1-12, Published in: CN.
State Intellectual Property Office, P.R. China, "Second Office Action from CN Application No. 201080004462.0 dated Jan. 23, 2014", "from Foreign Counterpart of U.S. Appl. No. 12/555,923", filed Jan. 23, 2014, pp. 1-12, Published in: CN.
U.S. Patent and Trademark Office, "Notice of Allowance", "U.S. Appl. No. 12/555,912", dated Apr. 2, 2012, pp. 1-8.
U.S. Patent and Trademark Office, "Notice of Allowance", "U.S. Appl. No. 12/555,912", dated May 11, 2012, pp. 1-12.
U.S. Patent and Trademark Office, "Notice of Allowance", "U.S. Appl. No. 12/555,923", Aug. 24, 2012, pp. 1-13.
U.S. Patent and Trademark Office, "Notice of Allowance", "U.S. Appl. No. 12/555,923", dated Aug. 24, 2012, pp. 1-13.
U.S. Patent and Trademark Office, "Notice of Allowance", "U.S. Appl. No. 13/681,535", dated Jun. 28, 2013, pp. 1-10.
U.S. Patent and Trademark Office, "Notice of Allowance", "U.S. Appl. No. 13/681,535", Jun. 28, 2013, pp. 1-10.
U.S. Patent and Trademark Office, "Office Action", "U.S. Appl. No. 12/555,923", dated Mar. 29, 2012, pp. 1-32.
U.S. Patent and Trademark Office, "Office Action", "U.S. Appl. No. 12/555,923", Mar. 29, 2012, pp. 1-32.
U.S. Patent and Trademark Office, "Office Action", "U.S. Appl. No. 13/681,535", dated May 9, 2013, pp. 1-16.
U.S. Patent and Trademark Office, "Office Action", "U.S. Appl. No. 13/681,535", May 9, 2013, pp. 1-16.
U.S. Patent and Trademark Office, "Office Action", U.S. Appl. No. 12/555,912, dated Feb. 2, 2012, pp. 1-32, Published: US.
U.S. Patent and Trademark Office, "Restriction Requirement", "U.S. Appl. No. 13/681,535", Apr. 18, 2013, pp. 1-6.
U.S. Patent and Trademark Office, "Restriction Requirement", "U.S. Appl. No. 13/681,535", dated Apr. 18, 2013, pp. 1-6.
U.S. Patent and Trademark Office, "Supplemental Notice of Allowance", "U.S. Appl. No. 12/555,923", Sep. 26, 2012, pp. 1-6.
United States Patent and Trademark Office, "Notice of Allowance", "from U.S. Appl. No. 13/529,607", dated Oct. 2, 2014, pp. 1-16, Published in: US.
United States Patent and Trademark Office, "Office Action", "from U.S. Appl. No. 13/529,607", dated Apr. 18, 2014, pp. 1-46, Published in: US.
United States Patent and Trademark Office, "Office Action", "from U.S. Appl. No. 13/529,607", Jun. 25, 2014, pp. 1-47, Published in: US.
Wala et al., "U.S. Appl. No. 12/555,923, Systems and Methods for Mobile Phone Location With Digital Distributed Anenna Systems", filed Sep. 9, 2009, pp. 25 pgs.

Similar Documents

Publication Publication Date Title
US8160570B2 (en) Multiprotocol antenna system for multiple service provider-multiple air interface co-located base stations
US6785558B1 (en) System and method for distributing wireless communication signals over metropolitan telecommunication networks
JP5307887B2 (en) Method and system for real-time control of an active antenna via a distributed antenna system
US7359392B2 (en) Architecture for signal distribution in wireless data networks
US8346091B2 (en) Distributed antenna system for wireless network systems
US7650112B2 (en) Method and system for extending coverage of WLAN access points via optically multiplexed connection of access points to sub-stations
US6477154B1 (en) Microcellular mobile communication system
US9246557B2 (en) Multiple data services over a distributed antenna system
US7190963B2 (en) Method for performing frequency synchronization of a base station and a network part
US8649388B2 (en) Transmission of multiprotocol data in a distributed antenna system
KR101971584B1 (en) Evolved distributed antenna system
CA2059370C (en) Radiotelephony system
US5642348A (en) Access director interface for narrowband/broadband information distribution network
US9385797B2 (en) Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
US20170181008A1 (en) Providing wireless coverage into substantially closed environments
US8422884B2 (en) Method and apparatus for picocell distributed radio heads providing macrocell capabilities
US6009096A (en) Wireless services distribution system
US8467823B2 (en) Method and system for CPRI cascading in distributed radio head architectures
US7039399B2 (en) Distribution of wireless telephony and data signals in a substantially closed environment
US9941921B2 (en) Modular wireless communications platform
KR20130009806A (en) Synchronous transfer of streaming data in a distributed antenna system
JP2897492B2 (en) Mobile communication device
EP1113594B1 (en) Radio base station system and central control station with unified transmission format
US8422885B2 (en) Bandwidth allocation and management system for cellular networks
EP0906672B1 (en) Low power microcellular wireless drop interactive network

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO ELECTRONICS SERVICES GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADC TELECOMMUNICATIONS, INC.;TE CONNECTIVITY SOLUTIONS GMBH;REEL/FRAME:041669/0077

Effective date: 20150825

Owner name: ADC TELECOMMUNICATIONS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FISCHER, LARRY G.;CANNON, JEFFREY J.;STUART, STEVEN B.;AND OTHERS;SIGNING DATES FROM 20090826 TO 20090827;REEL/FRAME:041669/0054

Owner name: COMMSCOPE EMEA LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYCO ELECTRONICS SERVICES GMBH;REEL/FRAME:042053/0001

Effective date: 20150828

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE EMEA LIMITED;REEL/FRAME:042054/0001

Effective date: 20150828

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: TERM LOAN SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049905/0504

Effective date: 20190404

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: ABL SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049892/0396

Effective date: 20190404

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051

Effective date: 20190404