USRE46558E1 - Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis - Google Patents
Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis Download PDFInfo
- Publication number
- USRE46558E1 USRE46558E1 US14/789,935 US201514789935A USRE46558E US RE46558 E1 USRE46558 E1 US RE46558E1 US 201514789935 A US201514789935 A US 201514789935A US RE46558 E USRE46558 E US RE46558E
- Authority
- US
- United States
- Prior art keywords
- composition
- formula
- compound according
- carcinoma
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 0 [1*]C1=C2C3=C(C([6*])=C([7*])C([8*])=C3)C([5*])CC2=C([4*])C([3*])=C1[2*] Chemical compound [1*]C1=C2C3=C(C([6*])=C([7*])C([8*])=C3)C([5*])CC2=C([4*])C([3*])=C1[2*] 0.000 description 8
- JAVRAWJMRHPQRL-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC=C3OC)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC=C3OC)C=C1OC2=O JAVRAWJMRHPQRL-UHFFFAOYSA-N 0.000 description 3
- GIZPJRSWRNILAF-UHFFFAOYSA-N COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)=CC(OC)=C1 Chemical compound COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)=CC(OC)=C1 GIZPJRSWRNILAF-UHFFFAOYSA-N 0.000 description 3
- RZBZZCZUYWKEMI-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(Br)C=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(Br)C=C3)C=C1OC2=O RZBZZCZUYWKEMI-UHFFFAOYSA-N 0.000 description 2
- ZZIAAXLMMQYDPR-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(C(=O)C4=CC=CC=C4)C=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(C(=O)C4=CC=CC=C4)C=C3)C=C1OC2=O ZZIAAXLMMQYDPR-UHFFFAOYSA-N 0.000 description 2
- LUNZYEIIWZIZLO-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(C(=O)OC)C=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(C(=O)OC)C=C3)C=C1OC2=O LUNZYEIIWZIZLO-UHFFFAOYSA-N 0.000 description 2
- IQBVVEADDVFKEQ-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(OC)C=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(OC)C=C3)C=C1OC2=O IQBVVEADDVFKEQ-UHFFFAOYSA-N 0.000 description 2
- WTYJWHSJWGWRJA-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC=C3)C=C1OC2=O WTYJWHSJWGWRJA-UHFFFAOYSA-N 0.000 description 2
- HRXFICFTYHXZDA-UHFFFAOYSA-N COC1=C(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)O)=C2)C=CC=C1 Chemical compound COC1=C(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)O)=C2)C=CC=C1 HRXFICFTYHXZDA-UHFFFAOYSA-N 0.000 description 2
- OKYKEWDDMVDRIY-UHFFFAOYSA-N COC1=C(O)C(Br)=C(C)C(C2NC(=O)C3=C(F)C=CC=C3N2)=C1 Chemical compound COC1=C(O)C(Br)=C(C)C(C2NC(=O)C3=C(F)C=CC=C3N2)=C1 OKYKEWDDMVDRIY-UHFFFAOYSA-N 0.000 description 2
- UACMGWLJDLTDSS-UHFFFAOYSA-N COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)(C)O)=C3)C2=C1 Chemical compound COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)(C)O)=C3)C2=C1 UACMGWLJDLTDSS-UHFFFAOYSA-N 0.000 description 2
- PMQPRCJFDJHMBM-UHFFFAOYSA-N COC1=C(OCC2=CC=C(C)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=C(C)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 PMQPRCJFDJHMBM-UHFFFAOYSA-N 0.000 description 2
- OXATXGMVPZNLTM-UHFFFAOYSA-N COC1=C(OCC2=CC=C(C)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=C(C)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 OXATXGMVPZNLTM-UHFFFAOYSA-N 0.000 description 2
- IXFRMPYANHRXPX-UHFFFAOYSA-N COC1=C(OCC2=CC=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 IXFRMPYANHRXPX-UHFFFAOYSA-N 0.000 description 2
- CVVGICZSMZHHEX-UHFFFAOYSA-N COC1=C(OCCC2=CC=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCCC2=CC=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 CVVGICZSMZHHEX-UHFFFAOYSA-N 0.000 description 2
- BJNDNECUULYUDK-UHFFFAOYSA-N COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)=CC=C1 Chemical compound COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)=CC=C1 BJNDNECUULYUDK-UHFFFAOYSA-N 0.000 description 2
- VZISOBSTWTVLAI-UHFFFAOYSA-N COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)=CC(OC)=C1OC Chemical compound COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)=CC(OC)=C1OC VZISOBSTWTVLAI-UHFFFAOYSA-N 0.000 description 2
- OPVIQHRGTNKABR-UHFFFAOYSA-N COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)Br)=C2)=CC(OC)=C1 Chemical compound COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)Br)=C2)=CC(OC)=C1 OPVIQHRGTNKABR-UHFFFAOYSA-N 0.000 description 2
- VNPZLVHQNQGMJH-UHFFFAOYSA-N COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)O)=C2)=CC(OC)=C1 Chemical compound COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)O)=C2)=CC(OC)=C1 VNPZLVHQNQGMJH-UHFFFAOYSA-N 0.000 description 2
- PARKZYXKCGEPHR-UHFFFAOYSA-N COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)C=C1 Chemical compound COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)C=C1 PARKZYXKCGEPHR-UHFFFAOYSA-N 0.000 description 2
- YEAHTLOYHVWAKW-UHFFFAOYSA-N COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)C=C1 Chemical compound COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)C=C1 YEAHTLOYHVWAKW-UHFFFAOYSA-N 0.000 description 2
- HOKBRRLXNQJBEK-UHFFFAOYSA-L C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.COC(=O)C1=C(O)C=CC(C(C)=O)=C1.COC(=O)C1=C(OS(=O)(=O)C(F)(F)F)C=CC(C(C)=O)=C1.COC(=O)C1=CC(C(C)=O)=CC=C1C1=CC(OC)=C(OCC2=CC=CC=C2)C=C1OC.COC1=C(O)/C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1.COC1=C(OCC2=CC=CC=C2)C=C(C=O)C(Br)=C1.COC1=C(OCC2=CC=CC=C2)C=C(O)C(Br)=C1.COC1=C(OCC2=CC=CC=C2)\C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1.COC1=CC(OCC2=CC=CC=C2)=C(OC)C=C1B(O)O.COC1=CC(OCC2=CC=CC=C2)=C(OC)C=C1Br.COC1=CC(OCC2=CC=CC=C2)=C(OC)C=C1C1=CC=C(C(C)=O)C=C1C(=O)O.ClCCCl.O=CC1=CC(O)=C(O)C=C1Br.O=COO[K].O=S(=O)(OS(=O)(=O)C(F)(F)F)C(F)(F)F.O[K].[KH].[NaH].[Pd] Chemical compound C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.COC(=O)C1=C(O)C=CC(C(C)=O)=C1.COC(=O)C1=C(OS(=O)(=O)C(F)(F)F)C=CC(C(C)=O)=C1.COC(=O)C1=CC(C(C)=O)=CC=C1C1=CC(OC)=C(OCC2=CC=CC=C2)C=C1OC.COC1=C(O)/C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1.COC1=C(OCC2=CC=CC=C2)C=C(C=O)C(Br)=C1.COC1=C(OCC2=CC=CC=C2)C=C(O)C(Br)=C1.COC1=C(OCC2=CC=CC=C2)\C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1.COC1=CC(OCC2=CC=CC=C2)=C(OC)C=C1B(O)O.COC1=CC(OCC2=CC=CC=C2)=C(OC)C=C1Br.COC1=CC(OCC2=CC=CC=C2)=C(OC)C=C1C1=CC=C(C(C)=O)C=C1C(=O)O.ClCCCl.O=CC1=CC(O)=C(O)C=C1Br.O=COO[K].O=S(=O)(OS(=O)(=O)C(F)(F)F)C(F)(F)F.O[K].[KH].[NaH].[Pd] HOKBRRLXNQJBEK-UHFFFAOYSA-L 0.000 description 1
- AAXJZGBDSOORCJ-UHFFFAOYSA-N C=C(C1=CC=CC=C1)C1=CC2=C(C=C1)C1=CC(OC)=C(O)C=C1OC2=O Chemical compound C=C(C1=CC=CC=C1)C1=CC2=C(C=C1)C1=CC(OC)=C(O)C=C1OC2=O AAXJZGBDSOORCJ-UHFFFAOYSA-N 0.000 description 1
- SATGDYWVRIPPCD-UHFFFAOYSA-N C=C(C1=CC=CC=C1)C1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC=C3)C=C1OC2C1=CC=CC=C1 Chemical compound C=C(C1=CC=CC=C1)C1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC=C3)C=C1OC2C1=CC=CC=C1 SATGDYWVRIPPCD-UHFFFAOYSA-N 0.000 description 1
- XASLXDCHNHYENL-UHFFFAOYSA-N C=S(N)(=O)OC(C)C1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(OC)C=C3)C=C1OC2=O Chemical compound C=S(N)(=O)OC(C)C1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(OC)C=C3)C=C1OC2=O XASLXDCHNHYENL-UHFFFAOYSA-N 0.000 description 1
- PYHFONDHNDJEKC-UHFFFAOYSA-N CC(=O)COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1 Chemical compound CC(=O)COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1 PYHFONDHNDJEKC-UHFFFAOYSA-N 0.000 description 1
- RAHGAWYHOZHDAV-UHFFFAOYSA-N CC(=O)OC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1 Chemical compound CC(=O)OC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1 RAHGAWYHOZHDAV-UHFFFAOYSA-N 0.000 description 1
- USIQBZCKWWHMJB-UHFFFAOYSA-N CC(OC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=CC=C1 Chemical compound CC(OC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=CC=C1 USIQBZCKWWHMJB-UHFFFAOYSA-N 0.000 description 1
- RSSVARSMJDLTSH-UHFFFAOYSA-N CC1=C2C(=CC(OCC3=C(F)C(F)=C(F)C(F)=C3F)=C1)OC(=O)C1=C2C=CC=C1 Chemical compound CC1=C2C(=CC(OCC3=C(F)C(F)=C(F)C(F)=C3F)=C1)OC(=O)C1=C2C=CC=C1 RSSVARSMJDLTSH-UHFFFAOYSA-N 0.000 description 1
- ZGZYSAOPWQDKEE-UHFFFAOYSA-N CC1=C2OC(=O)C3=C(C=CC=C3)C2=CC=C1OC(=O)C(CC(=O)OCC1=CC=CC=C1)CC1=CC=CC=C1 Chemical compound CC1=C2OC(=O)C3=C(C=CC=C3)C2=CC=C1OC(=O)C(CC(=O)OCC1=CC=CC=C1)CC1=CC=CC=C1 ZGZYSAOPWQDKEE-UHFFFAOYSA-N 0.000 description 1
- IUFJFVYKUXEJOT-UHFFFAOYSA-N CC1=CC=C(COC2=CC=C3C4=C(C=CC=C4)C(=O)OC3=C2C)C=C1 Chemical compound CC1=CC=C(COC2=CC=C3C4=C(C=CC=C4)C(=O)OC3=C2C)C=C1 IUFJFVYKUXEJOT-UHFFFAOYSA-N 0.000 description 1
- RTXRJFLHFJHTFV-UHFFFAOYSA-N CCC(C)(O)C1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC(OC)=CC(OC)=C3)C=C1OC2=O Chemical compound CCC(C)(O)C1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC(OC)=CC(OC)=C3)C=C1OC2=O RTXRJFLHFJHTFV-UHFFFAOYSA-N 0.000 description 1
- HQGCMGXBKQXVCB-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(Br)C=C3)\C=C\1OC2=O.CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(C(=O)C4=CC=CC=C4)C=C3)\C=C\1OC2=O.CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(C(=O)OC)C=C3)\C=C\1OC2=O.COC1=C(OCC2=CC=C(C)C=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)O)=C3)\C2=C\1.COC1=C(OCCC2=CC=CC=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1 Chemical compound CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(Br)C=C3)\C=C\1OC2=O.CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(C(=O)C4=CC=CC=C4)C=C3)\C=C\1OC2=O.CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(C(=O)OC)C=C3)\C=C\1OC2=O.COC1=C(OCC2=CC=C(C)C=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)O)=C3)\C2=C\1.COC1=C(OCCC2=CC=CC=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1 HQGCMGXBKQXVCB-UHFFFAOYSA-N 0.000 description 1
- GDGGIFMOJYADLI-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(OC)C=C3)\C=C\1OC2=O.CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=CC=C3OC)\C=C\1OC2=O.COC1=C(OCC2=CC=C(C)C=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1.COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)=CC(OC)=C1.COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)=CC(OC)=C1 Chemical compound CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=C(OC)C=C3)\C=C\1OC2=O.CCC1=CC2=C(C=C1)C1=C/C(OC)=C(OCC3=CC=CC=C3OC)\C=C\1OC2=O.COC1=C(OCC2=CC=C(C)C=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)=O)=C3)\C2=C\1.COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)=CC(OC)=C1.COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)=CC(OC)=C1 GDGGIFMOJYADLI-UHFFFAOYSA-N 0.000 description 1
- DADCAEFXHIVJDF-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC(Cl)=CC=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC(Cl)=CC=C3)C=C1OC2=O DADCAEFXHIVJDF-UHFFFAOYSA-N 0.000 description 1
- IZMVEVOMDONPDX-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC(OC)=CC(OC)=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC(OC)=CC(OC)=C3)C=C1OC2=O IZMVEVOMDONPDX-UHFFFAOYSA-N 0.000 description 1
- SDGSQHPOXMMSET-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(Cl)C=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(Cl)C=C3)C=C1OC2=O SDGSQHPOXMMSET-UHFFFAOYSA-N 0.000 description 1
- TZGILRHDNYOROE-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(F)C=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=C(F)C=C3)C=C1OC2=O TZGILRHDNYOROE-UHFFFAOYSA-N 0.000 description 1
- VSPWWCLZCBMDBA-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC(Br)=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC(Br)=C3)C=C1OC2=O VSPWWCLZCBMDBA-UHFFFAOYSA-N 0.000 description 1
- LUIZRXQHGYRKMC-UHFFFAOYSA-N CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC(OC)=C3)C=C1OC2=O Chemical compound CCC1=CC2=C(C=C1)C1=CC(OC)=C(OCC3=CC=CC(OC)=C3)C=C1OC2=O LUIZRXQHGYRKMC-UHFFFAOYSA-N 0.000 description 1
- NGOVFHWFLUHZKP-UHFFFAOYSA-N CCOC(=O)COC1=C(OC)C=C2C(=C1)OC(=O)C1=C2C=CC(C(C)=O)=C1 Chemical compound CCOC(=O)COC1=C(OC)C=C2C(=C1)OC(=O)C1=C2C=CC(C(C)=O)=C1 NGOVFHWFLUHZKP-UHFFFAOYSA-N 0.000 description 1
- OLLDISNTSCDJMX-UHFFFAOYSA-N CCOC(=O)COC1=C(OC)C=C2C(=C1)OC(=O)C1=C2C=CC(C(C)O)=C1 Chemical compound CCOC(=O)COC1=C(OC)C=C2C(=C1)OC(=O)C1=C2C=CC(C(C)O)=C1 OLLDISNTSCDJMX-UHFFFAOYSA-N 0.000 description 1
- GCLVWKIYBQFMNO-UHFFFAOYSA-N CCOC1=C(OC)\C=C2\C3=C(C=C(C(C)O)C=C3)C(=O)O\C2=C\1 Chemical compound CCOC1=C(OC)\C=C2\C3=C(C=C(C(C)O)C=C3)C(=O)O\C2=C\1 GCLVWKIYBQFMNO-UHFFFAOYSA-N 0.000 description 1
- JXTWROBUYDIOAS-UHFFFAOYSA-N CCc1ccc(-c(c(OC2=O)c3)cc([U]C)c3OCc(cc3)ccc3Br)c2c1 Chemical compound CCc1ccc(-c(c(OC2=O)c3)cc([U]C)c3OCc(cc3)ccc3Br)c2c1 JXTWROBUYDIOAS-UHFFFAOYSA-N 0.000 description 1
- BEMAPOPZFOZVDQ-UHFFFAOYSA-N CN(C)C1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1 Chemical compound CN(C)C1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1 BEMAPOPZFOZVDQ-UHFFFAOYSA-N 0.000 description 1
- JQNMLAKMMGZKJM-UHFFFAOYSA-N COC(=O)C1=CC(C(C)=O)=CC=C1C1=CC=C(OC)C=C1OC Chemical compound COC(=O)C1=CC(C(C)=O)=CC=C1C1=CC=C(OC)C=C1OC JQNMLAKMMGZKJM-UHFFFAOYSA-N 0.000 description 1
- KCRYHCDKBNNCHF-UHFFFAOYSA-N COC(=O)C1=CC=C(COC2=CC=C3C(=C2)OC(=O)C2=C3C=CC=C2)C=C1 Chemical compound COC(=O)C1=CC=C(COC2=CC=C3C(=C2)OC(=O)C2=C3C=CC=C2)C=C1 KCRYHCDKBNNCHF-UHFFFAOYSA-N 0.000 description 1
- YFZXYEZCFRKKRA-UHFFFAOYSA-N COC1=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)C=CC=C1.COC1=C(OCC2=CC=CC=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)O)=C3)\C2=C\1.COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)=CC=C1.COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)C=C1.COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)C=C1 Chemical compound COC1=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)C=CC=C1.COC1=C(OCC2=CC=CC=C2)/C=C2\OC(=O)C3=C(C=CC(C(C)O)=C3)\C2=C\1.COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)=CC=C1.COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)C=C1.COC1=CC=C(COC2=C(OC)/C=C3/C4=C(C=C(C(C)O)C=C4)C(=O)O/C3=C\2)C=C1 YFZXYEZCFRKKRA-UHFFFAOYSA-N 0.000 description 1
- YCTLXIJBASCTAN-UHFFFAOYSA-N COC1=C(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)C=CC=C1 Chemical compound COC1=C(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)C=CC=C1 YCTLXIJBASCTAN-UHFFFAOYSA-N 0.000 description 1
- VRAODUFWGRWUHF-UHFFFAOYSA-N COC1=C(O)C(CC2=CC=C(O)C=C2)=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(O)C(CC2=CC=C(O)C=C2)=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 VRAODUFWGRWUHF-UHFFFAOYSA-N 0.000 description 1
- SOOFYBSDFMIKJR-UHFFFAOYSA-N COC1=C(O)C(CC2=CC=C(OC(C)=O)C=C2)=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(O)C(CC2=CC=C(OC(C)=O)C=C2)=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 SOOFYBSDFMIKJR-UHFFFAOYSA-N 0.000 description 1
- FTQITHZJPSUULC-UHFFFAOYSA-N COC1=C(O)C(CC2=CC=CC=C2O)=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(O)C(CC2=CC=CC=C2O)=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 FTQITHZJPSUULC-UHFFFAOYSA-N 0.000 description 1
- RCQXCXAGZHTMCM-UHFFFAOYSA-N COC1=C(O)C(CC2=CC=CC=C2O)=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(O)C(CC2=CC=CC=C2O)=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 RCQXCXAGZHTMCM-UHFFFAOYSA-N 0.000 description 1
- CJNMVMRMDCLCET-UHFFFAOYSA-N COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)(O)C4=CC=CC=C4)=C3)C2=C1 Chemical compound COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)(O)C4=CC=CC=C4)=C3)C2=C1 CJNMVMRMDCLCET-UHFFFAOYSA-N 0.000 description 1
- DSJJWYLTABUBAA-UHFFFAOYSA-N COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 DSJJWYLTABUBAA-UHFFFAOYSA-N 0.000 description 1
- VHLUUPPWOBSHNG-UHFFFAOYSA-N COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)C)=C3)C2=C1 Chemical compound COC1=C(O)C=C2OC(=O)C3=C(C=CC(C(C)C)=C3)C2=C1 VHLUUPPWOBSHNG-UHFFFAOYSA-N 0.000 description 1
- UOKAZZWYNXINJD-UHFFFAOYSA-N COC1=C(OC(=O)C2=CC=C(OCC3=CC=CC=C3)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OC(=O)C2=CC=C(OCC3=CC=CC=C3)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 UOKAZZWYNXINJD-UHFFFAOYSA-N 0.000 description 1
- ZBRPXFSILQBBNP-UHFFFAOYSA-N COC1=C(OC(=O)C2=CC=C([N+](=O)[O-])C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OC(=O)C2=CC=C([N+](=O)[O-])C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 ZBRPXFSILQBBNP-UHFFFAOYSA-N 0.000 description 1
- XOJIMCOPDDCAEA-UHFFFAOYSA-N COC1=C(OC(=O)C2=CC=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OC(=O)C2=CC=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 XOJIMCOPDDCAEA-UHFFFAOYSA-N 0.000 description 1
- VNQGLPVBFJRWAE-UHFFFAOYSA-N COC1=C(OC(C)=O)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(OC(C)=O)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 VNQGLPVBFJRWAE-UHFFFAOYSA-N 0.000 description 1
- JZWBRFYWUMMNNJ-UHFFFAOYSA-N COC1=C(OCC(C)C)\C=C2\OC(O)C3=C(C=CC(C(C)O)=C3)\C2=C\1 Chemical compound COC1=C(OCC(C)C)\C=C2\OC(O)C3=C(C=CC(C(C)O)=C3)\C2=C\1 JZWBRFYWUMMNNJ-UHFFFAOYSA-N 0.000 description 1
- ZDLJAFPMWNWMRV-UHFFFAOYSA-N COC1=C(OCC2=CC(C)=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC(C)=CC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 ZDLJAFPMWNWMRV-UHFFFAOYSA-N 0.000 description 1
- DRVWXEKVIYMASM-UHFFFAOYSA-N COC1=C(OCC2=CC=C(C(=O)C3=CC=CC=C3)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=C(C(=O)C3=CC=CC=C3)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 DRVWXEKVIYMASM-UHFFFAOYSA-N 0.000 description 1
- FDSVOYNKYGMFQT-UHFFFAOYSA-N COC1=C(OCC2=CC=C(C(F)(F)F)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=C(C(F)(F)F)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 FDSVOYNKYGMFQT-UHFFFAOYSA-N 0.000 description 1
- OKGJPZKCJPDMFZ-UHFFFAOYSA-N COC1=C(OCC2=CC=C(C=O)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=C(C=O)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 OKGJPZKCJPDMFZ-UHFFFAOYSA-N 0.000 description 1
- FOLCIQQTUKUDBB-UHFFFAOYSA-N COC1=C(OCC2=CC=C(F)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=C(F)C=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 FOLCIQQTUKUDBB-UHFFFAOYSA-N 0.000 description 1
- MGBHKZIZISYSPP-UHFFFAOYSA-N COC1=C(OCC2=CC=CC=C2)C=C2OC(=O)C=CC2=C1 Chemical compound COC1=C(OCC2=CC=CC=C2)C=C2OC(=O)C=CC2=C1 MGBHKZIZISYSPP-UHFFFAOYSA-N 0.000 description 1
- YWQDRTGMPBQBGE-UHFFFAOYSA-N COC1=C(OCC2=CC=CC=N2)/C=C2\OC(=O)C3=C(C=CC(C(C)O)=C3)\C2=C\1 Chemical compound COC1=C(OCC2=CC=CC=N2)/C=C2\OC(=O)C3=C(C=CC(C(C)O)=C3)\C2=C\1 YWQDRTGMPBQBGE-UHFFFAOYSA-N 0.000 description 1
- QFDGTAUTKQIJQH-UHFFFAOYSA-N COC1=C(OCC2=CC=CN=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=CN=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 QFDGTAUTKQIJQH-UHFFFAOYSA-N 0.000 description 1
- IZWMMEXSTMULQD-UHFFFAOYSA-N COC1=C(OCC2=CC=NC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=NC=C2)C=C2OC(=O)C3=C(C=CC(C(C)=O)=C3)C2=C1 IZWMMEXSTMULQD-UHFFFAOYSA-N 0.000 description 1
- NLXSFCSZYKJWTP-UHFFFAOYSA-N COC1=C(OCC2=CC=NC=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 Chemical compound COC1=C(OCC2=CC=NC=C2)C=C2OC(=O)C3=C(C=CC(C(C)O)=C3)C2=C1 NLXSFCSZYKJWTP-UHFFFAOYSA-N 0.000 description 1
- ISGUEYJYWXVOBW-UHFFFAOYSA-N COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)=CC=C1 Chemical compound COC1=CC(COC2=C(OC)/C=C3/C4=C(C=C(C(C)=O)C=C4)C(=O)O/C3=C\2)=CC=C1 ISGUEYJYWXVOBW-UHFFFAOYSA-N 0.000 description 1
- JKYXDYIMBKUJLS-UHFFFAOYSA-N COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)(C)O)=C2)=CC(OC)=C1 Chemical compound COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)(C)O)=C2)=CC(OC)=C1 JKYXDYIMBKUJLS-UHFFFAOYSA-N 0.000 description 1
- PFZQTIYEYYSNMV-UHFFFAOYSA-N COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)O)=C2)=CC(OC)=C1OC Chemical compound COC1=CC(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)O)=C2)=CC(OC)=C1OC PFZQTIYEYYSNMV-UHFFFAOYSA-N 0.000 description 1
- NSXHREQVVWOMFX-UHFFFAOYSA-N COC1=CC(COC2=CC=C3C=C(C4=CC=C(Br)C=C4)C(=O)OC3=C2)=CC(OC)=C1 Chemical compound COC1=CC(COC2=CC=C3C=C(C4=CC=C(Br)C=C4)C(=O)OC3=C2)=CC(OC)=C1 NSXHREQVVWOMFX-UHFFFAOYSA-N 0.000 description 1
- QGAWMUQBOWNISI-UHFFFAOYSA-N COC1=CC2=C(C=C1)C1=CC=C(OC(C)=O)C=C1OC2=O Chemical compound COC1=CC2=C(C=C1)C1=CC=C(OC(C)=O)C=C1OC2=O QGAWMUQBOWNISI-UHFFFAOYSA-N 0.000 description 1
- NYQSZSGLYQYAOH-UHFFFAOYSA-N COC1=CC=C(C(=O)COC2=CC=C3C(=C2)OC(=O)C2=C3C=CC=C2)C=C1 Chemical compound COC1=CC=C(C(=O)COC2=CC=C3C(=C2)OC(=O)C2=C3C=CC=C2)C=C1 NYQSZSGLYQYAOH-UHFFFAOYSA-N 0.000 description 1
- SIASWRGJXLCPQG-UHFFFAOYSA-N COC1=CC=C(C(=O)OC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)C=C1 Chemical compound COC1=CC=C(C(=O)OC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)=O)=C2)C=C1 SIASWRGJXLCPQG-UHFFFAOYSA-N 0.000 description 1
- FLTZDSVIFBIENN-UHFFFAOYSA-N COC1=CC=C(C2=CC3=CC=C(OC)C=C3OC2=O)C=C1 Chemical compound COC1=CC=C(C2=CC3=CC=C(OC)C=C3OC2=O)C=C1 FLTZDSVIFBIENN-UHFFFAOYSA-N 0.000 description 1
- SXAQOGIVCVQEGG-UHFFFAOYSA-N COC1=CC=C(C2=CC=C(C(C)=O)C=C2C(=O)O)C(OC)=C1 Chemical compound COC1=CC=C(C2=CC=C(C(C)=O)C=C2C(=O)O)C(OC)=C1 SXAQOGIVCVQEGG-UHFFFAOYSA-N 0.000 description 1
- PUMOGHXVUUDZOO-UHFFFAOYSA-N COC1=CC=C(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)OS(N)(=O)=O)=C2)C=C1 Chemical compound COC1=CC=C(COC2=C(OC)C=C3C(=C2)OC(=O)C2=C3C=CC(C(C)OS(N)(=O)=O)=C2)C=C1 PUMOGHXVUUDZOO-UHFFFAOYSA-N 0.000 description 1
- FQINTQNKRIQEGD-UHFFFAOYSA-N COC1=CC=C(COC2=CC=C3C=C(C4=CC=C(Br)C=C4)C(=O)OC3=C2)C=C1 Chemical compound COC1=CC=C(COC2=CC=C3C=C(C4=CC=C(Br)C=C4)C(=O)OC3=C2)C=C1 FQINTQNKRIQEGD-UHFFFAOYSA-N 0.000 description 1
- HGRLHNOBVPOBFL-UHFFFAOYSA-N COC1=CC=C2C(=C1)OC(=O)C(C1=CC=C(Br)C=C1)=C2C Chemical compound COC1=CC=C2C(=C1)OC(=O)C(C1=CC=C(Br)C=C1)=C2C HGRLHNOBVPOBFL-UHFFFAOYSA-N 0.000 description 1
- HDOJVDIHLDYHNS-UHFFFAOYSA-N COC1=CC=C2C(=C1)OC(=O)C(C1=CC=C(Br)C=C1)=C2C1=CC=CC=C1 Chemical compound COC1=CC=C2C(=C1)OC(=O)C(C1=CC=C(Br)C=C1)=C2C1=CC=CC=C1 HDOJVDIHLDYHNS-UHFFFAOYSA-N 0.000 description 1
- FWTOKBXCPIENSR-UHFFFAOYSA-N COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC(C(C)=O)=C1 Chemical compound COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC(C(C)=O)=C1 FWTOKBXCPIENSR-UHFFFAOYSA-N 0.000 description 1
- NJMPMYZBFOQWIK-UHFFFAOYSA-N COC1=CC=C2C=C(C3=CC(Br)=CC=C3)C(=O)OC2=C1 Chemical compound COC1=CC=C2C=C(C3=CC(Br)=CC=C3)C(=O)OC2=C1 NJMPMYZBFOQWIK-UHFFFAOYSA-N 0.000 description 1
- QLGZUPAEDKGXOM-UHFFFAOYSA-N COC1=CC=C2C=C(C3=CC=C(Cl)C=C3)C(=O)OC2=C1 Chemical compound COC1=CC=C2C=C(C3=CC=C(Cl)C=C3)C(=O)OC2=C1 QLGZUPAEDKGXOM-UHFFFAOYSA-N 0.000 description 1
- WBYGYFJKFKFGLR-UHFFFAOYSA-N COC1=CC=C2C=C(C3=CC=CC=C3)C(=O)OC2=C1 Chemical compound COC1=CC=C2C=C(C3=CC=CC=C3)C(=O)OC2=C1 WBYGYFJKFKFGLR-UHFFFAOYSA-N 0.000 description 1
- JVLFNHAXXYPMEZ-UHFFFAOYSA-N COC1=CC=C2OC(=O)C(C3=CC=CC=C3)=CC2=C1 Chemical compound COC1=CC=C2OC(=O)C(C3=CC=CC=C3)=CC2=C1 JVLFNHAXXYPMEZ-UHFFFAOYSA-N 0.000 description 1
- TWBJSDISJSVFBT-UHFFFAOYSA-N COC1=C\C=C2\C3=C(C=C(C(C)O)C=C3)C(=O)O\C2=C\1 Chemical compound COC1=C\C=C2\C3=C(C=C(C(C)O)C=C3)C(=O)O\C2=C\1 TWBJSDISJSVFBT-UHFFFAOYSA-N 0.000 description 1
- BJRAVYIGDWDTIC-UHFFFAOYSA-N COC1=C\C=C2\C=C(C3=CC=C(Br)C=C3)C(=O)O\C2=C\1 Chemical compound COC1=C\C=C2\C=C(C3=CC=C(Br)C=C3)C(=O)O\C2=C\1 BJRAVYIGDWDTIC-UHFFFAOYSA-N 0.000 description 1
- DGSQFJGGUZPEHU-UHFFFAOYSA-N NC1=CC=C2OC(=O)C3=C(C=CC=C3)C2=C1 Chemical compound NC1=CC=C2OC(=O)C3=C(C=CC=C3)C2=C1 DGSQFJGGUZPEHU-UHFFFAOYSA-N 0.000 description 1
- FVDOPJKMGMZDSU-UHFFFAOYSA-N O=C(COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=C(C2=CC=CC=C2)C=C1 Chemical compound O=C(COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=C(C2=CC=CC=C2)C=C1 FVDOPJKMGMZDSU-UHFFFAOYSA-N 0.000 description 1
- FWKNWWOUCYOHST-UHFFFAOYSA-N O=C(COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=C(Cl)C=C1 Chemical compound O=C(COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=C(Cl)C=C1 FWKNWWOUCYOHST-UHFFFAOYSA-N 0.000 description 1
- MEJSSMHTIYPYHZ-UHFFFAOYSA-N O=C(COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=C2OCOC2=C1 Chemical compound O=C(COC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=C2OCOC2=C1 MEJSSMHTIYPYHZ-UHFFFAOYSA-N 0.000 description 1
- RGVYMDARSMLQKU-UHFFFAOYSA-N O=C(OC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=CC=C1 Chemical compound O=C(OC1=CC=C2C(=C1)OC(=O)C1=C2C=CC=C1)C1=CC=CC=C1 RGVYMDARSMLQKU-UHFFFAOYSA-N 0.000 description 1
- VZGVJCLHCZWSMU-UHFFFAOYSA-N O=C1NC(C2=CC=C3OCOC3=C2)NC2=CC=C([N+](=O)[O-])C=C12 Chemical compound O=C1NC(C2=CC=C3OCOC3=C2)NC2=CC=C([N+](=O)[O-])C=C12 VZGVJCLHCZWSMU-UHFFFAOYSA-N 0.000 description 1
- OJWSCRAZKRSYIB-UHFFFAOYSA-N O=C1NC2=CC=C(Br)C=C2C2=C1C=CC=C2 Chemical compound O=C1NC2=CC=C(Br)C=C2C2=C1C=CC=C2 OJWSCRAZKRSYIB-UHFFFAOYSA-N 0.000 description 1
- QMKNKUCTQSRDGU-UHFFFAOYSA-N O=C1OC2=CC(O)=CC=C2C=C1C1=CC=C(Br)C=C1 Chemical compound O=C1OC2=CC(O)=CC=C2C=C1C1=CC=C(Br)C=C1 QMKNKUCTQSRDGU-UHFFFAOYSA-N 0.000 description 1
- CWPAQLWRYYUNQH-UHFFFAOYSA-N O=C1OC2=CC(OCC3=C4/C=C\C=C/C4=CC=C3)=CC=C2C2=C1C=CC=C2 Chemical compound O=C1OC2=CC(OCC3=C4/C=C\C=C/C4=CC=C3)=CC=C2C2=C1C=CC=C2 CWPAQLWRYYUNQH-UHFFFAOYSA-N 0.000 description 1
- APKWWCPHPUFCBL-UHFFFAOYSA-N O=C1OC2=CC(OCC3=CC(Cl)=C(Cl)C=C3)=CC=C2C2=C1C=CC=C2 Chemical compound O=C1OC2=CC(OCC3=CC(Cl)=C(Cl)C=C3)=CC=C2C2=C1C=CC=C2 APKWWCPHPUFCBL-UHFFFAOYSA-N 0.000 description 1
- OACYMBSHIHXLTN-UHFFFAOYSA-N O=C1OC2=CC(OCC3=CC=C(F)C=C3)=CC=C2C2=C1C=CC=C2 Chemical compound O=C1OC2=CC(OCC3=CC=C(F)C=C3)=CC=C2C2=C1C=CC=C2 OACYMBSHIHXLTN-UHFFFAOYSA-N 0.000 description 1
- KWGYGQPIDANWAX-UHFFFAOYSA-N O=C1OC2=CC([N+](=O)[O-])=CC=C2C2=C1C=CC=C2 Chemical compound O=C1OC2=CC([N+](=O)[O-])=CC=C2C2=C1C=CC=C2 KWGYGQPIDANWAX-UHFFFAOYSA-N 0.000 description 1
- JIOCZMQHSOXWTI-UHFFFAOYSA-N O=C1OC2=CC=C(O)C=C2C2=C1C=CC=C2 Chemical compound O=C1OC2=CC=C(O)C=C2C2=C1C=CC=C2 JIOCZMQHSOXWTI-UHFFFAOYSA-N 0.000 description 1
- WGHLTJMVFCIUON-UHFFFAOYSA-N O=C1OC2=CC=CC=C2C=C1C1=CC=C(Br)C=C1 Chemical compound O=C1OC2=CC=CC=C2C=C1C1=CC=C(Br)C=C1 WGHLTJMVFCIUON-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/80—Dibenzopyrans; Hydrogenated dibenzopyrans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/382—Heterocyclic compounds having sulfur as a ring hetero atom having six-membered rings, e.g. thioxanthenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4433—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/473—Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A61K47/48246—
-
- A61K47/48384—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4906—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
- A61K8/4926—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/494—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
- A61K8/4953—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom containing pyrimidine ring derivatives, e.g. minoxidil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4973—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
- A61K8/498—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C65/00—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C65/32—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups
- C07C65/40—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups containing singly bound oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/78—Benzoic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/86—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
- C07D239/88—Oxygen atoms
- C07D239/90—Oxygen atoms with acyclic radicals attached in position 2 or 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/06—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
- C07D311/08—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
- C07D311/16—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/06—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
- C07D311/08—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
- C07D311/18—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted otherwise than in position 3 or 7
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- the present invention relates to compositions and methods for preventing and/or treating diseases associated with cellular proliferation and/or angiogenesis.
- the current invention is directed in part to a series of chemical compositions that demonstrate therapeutic benefit in diseases involving abnormal cellular proliferation, abnormal angiogenesis or a combination thereof.
- Blood vessels that make up the cardiovascular system may be broadly divided into arteries, veins and capillaries. Arteries carry blood away from the heart at relatively high pressure; veins carry blood back to the heart at low pressure, while capillaries provide the link between the arterial and venous blood supply During embryonic development, vessels are first formed through vasculogenesis, utilizing pluripotent endothelial cell precursors. Later, through arteriogenesis, larger blood vessels are formed possessing a more complex structure of endothelial cells, smooth muscle cells and pericytes (tunica media). Although arteriogenesis is not considered to occur in the adult, blood vessels may be formed in the adult through vasculogenesis and notably a process known as angiogenesis.
- angiogenic neovascularization occurs during such conditions as wound repair, ischemic restoration and the female reproductive cycle (generating endometrium forming the corpus luteum and during pregnancy to create the placenta).
- the capillaries relatively simple vessels formed by angiogenesis, lack a developed tunica as they arc predominantly composed of endothelial cells and to a lesser extent perivascular cells and basement membrane.
- Cancer is a disease state characterized by the uncontrolled proliferation of altered tissue cells. Tumors less than a few millimeters in size utilize nearby normal vessels to provide nutrients and oxygen. However, above this critical size, cancer cells utilize angiogenesis to create additional vascular support. Normally, angiogenesis is kept in check by the body naturally creating angiogenic inhibitors to counteract angiogenic factors. However, the cancer cell changes this balance by producing angiogenic growth factors in excess of the angiogenic inhibitors, thus favoring blood vessel growth. Cancer initiated angiogenesis is not unlike angiogenesis observed during normal vessel growth.
- Angiogenic factors pass from the tumor cell to the normal endothelium, binding the endothelial cell, activating it and inducing endothelial signaling events leading to endothelial cell proliferation. Endothelial tubes begin to form, homing in toward the tumor with the formation of capillary loops. Capillaries then undergo a maturation process to stabilize loop structure.
- chemotherapeutic approaches targeted against tumor cell proliferation including alkylating agents, antimitotics, antimetabolites and antibiotics. These act preferentially on the rapidly proliferating tumor cells.
- Hormonal therapy with anti-estrogens or anti-androgens is another approach to attacking cancer cells that work by inhibiting the proliferative action of the required hormone.
- anti-cancer agents fall into specific classifications, it is not uncommon for agents to act by multiple modes of action.
- the anti-estrogen tamoxifen has been shown to have anti-proliferative activity on cancer cells and endothelial cells (anti-angiogenic) by an estrogen independent mechanism.
- Taxol an antimitotic agent acting on microtubules has also demonstrated anti-angiogenic properties, possibly by inducing apoptosis of endothelial cells through Bcl-2 phosphorylation.
- Cancer is but one disease associated with a pathological neovasculature.
- Agents capable of inhibiting angiogenesis would be expected to exert activity on a variety of pathological neovascular diseases.
- Angiogenesis may be considered a key component in the pathogenesis of a number of diseases. If through therapeutic intervention angiogenesis could be slowed down or eliminated, anti-angiogenic agents would then be expected to abolish or lessen a variety of neovasculature associated diseases. Anti-angiogenic therapy will likely be very effective at suppressing tumor growth by denying the tumors a blood supply. However, anti-angiogenic therapy may prove more effective in combination with other therapies aimed directly at the tumor cells. Chemical agents that demonstrate both anti-angiogenic and tumor directed properties would be advantageous in this regard.
- the present invention relates to compositions and methods for treating diseases associated with cellular proliferation and/or angiogenesis.
- the current invention is directed in part to a series of chemical compositions that demonstrate a therapeutic benefit in diseases involving abnormal cellular proliferation, abnormal angiogenesis or a combination thereof.
- One embodiment of the present invention is directed to compositions used to prevent and/or treat abnormal cellular proliferation.
- the invention is directed to a series of benzo[c]chromen-6-one derivatives that demonstrate enhanced anti-proliferative effects against human endothelial cells for the treatment of a variety of diseases, including, but not limited to, cancer. These agents have a dual anti-angiogenic, tumor cell anti-proliferative activity.
- the invention is directed to a series of benzo[c]chromen-6-one derivatives that demonstrate enhanced anti-proliferative effects against human endothelial cells for the treatment of a variety of diseases including, but not limited to, cancer with minimal or no anti-proliferative effects directly on tumor cells. In other words, these agents show predominantly anti-angiogenic activity.
- Another embodiment of the present invention is directed to a series of benzo[c]chromen-6-one derivatives that demonstrate enhanced anti-proliferative effects against human endothelial cells for the treatment of a variety of diseases including, but not limited to, cancer.
- the enhanced anti-proliferative effect against human endothelial cells is complimented by an anti-proliferative inhibitory effect directly on tumor cells for the treatment of cancer.
- the enhanced anti-proliferative effect against endothelial cells is complimented with an anti-proliferative inhibitory effect on pathologically relevant cells specific to the disease, outside of cancer, for example keratinocytes for skin diseases.
- the present invention is directed toward methods of administering a therapeutically effective amount of one or more compositions described herein to a subject in need thereof.
- the targeted subject has been diagnosed with or is predisposed toward one or more diseases associated with abnormal cellular proliferation and/or angiogenesis, including for example, a cancer.
- FIG. 1A is a bar graph showing inhibition of bFGF-stimulated endothelial cell proliferation by Palomid 529;
- FIG. 1B is a bar graph showing inhibition of VEGF-stimulated endothelial cell proliferation by Palomid 529;
- FIG. 2 is a bar graph presenting data on the apoptotic inducing ability of compounds of the present invention
- FIG. 3 is a bar graph presenting data on the apoptotic inducing activity in keratinocytes
- FIG. 4 is a graph showing inhibition of keratinocyte growth
- FIG. 5 is a bar graph showing induction of apoptotic activity at varying concentrations of compound.
- FIG. 6 is a bar graph showing metabolic stability of compounds of the present invention.
- the present invention relates to compositions and methods for preventing and/or treating diseases associated with unwanted cellular proliferation and/or angiogenesis.
- the current invention is directed in part to a series of chemical compositions that demonstrate therapeutic benefit in diseases involving abnormal cellular proliferation, abnormal angiogenesis or a combination thereof.
- the instant invention relates to benzo[c]chromen-6-one derivatives that demonstrate their effect on diseases characterized by abnormal proliferation, abnormal angiogenesis or a combination thereof.
- a derivative is understood by those skilled in the art.
- a derivative can be understood as a chemical compound that is produced from another compound of similar structure in one or more steps, such as illustrated in Table I (infra) for benzo[c]chromen-6-one.
- Disease therapeutic agents currently under development are based on a variety of targeting strategies.
- One strategy is the use of natural inhibitors of angiogenesis such as thrombospondin, angiostatin and endostatin.
- Another strategy is the use of agents that block receptors required to stimulate angiogenesis, such as antagonists of the VEGF receptor.
- a third strategy is the inhibition of enzymes which allow new blood vessels to invade surrounding tissues, for example, inhibitors of matrix metalloproteinases.
- Another strategy for inhibiting angiogenesis is through the use of integrin antagonists such as ⁇ v ⁇ 1 antibodies or small molecule drugs through the inhibition of endothelial cell adhesion effecting capillary tube formation.
- the present invention relates to a therapeutic formulation comprising one or more compositions useful in the treatment of unwanted cellular proliferation and/or angiogenesis and/or keratinocyte proliferation.
- the present invention also relates to a therapeutic formulation comprising one or more compositions useful in the treatment of cancer as well as other diseases characterized by the undesired excessive, abnormal stimulation or proliferation of, for example endothelial cells or other cells resulting in such diseases including, but not limited to, ocular diseases of corneal, retinal or anterior chamber neovasculature, cancer (including, but not limited to, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma,
- angiogenesis diseases associated with angiogenesis include Sjögren's syndrome, systemic lupus, polyarteritis, pemphigoid, sickle cell anemia, Paget's disease, vein or artery occlusion, carotid obstructive disease, Lyme disease, Behcet's disease, bartonelosis, arteriosclerosis, induction of amenorrhea to block ovulation or to prevent implantation by the blastula, surgical adhesions and chronic inflammation (including but not limited to ulcerative colitis and Crohn's disease).
- compositions comprising Formula I:
- compositions comprising Formula II:
- compositions comprising Formula III:
- compositions comprising Formula IV:
- composition comprising a therapeutically effective amount of one or more benzo[c]chromen-6-one derivatives having the following structure depicted in Table I:
- the compounds of Table I exhibit anti-angiogenic and/or anti-keratinocyte activities.
- the invention includes other benzo[c]-chromen-6-one derivatives having anti-angiogenic, and/or anti-tumor activities. These characteristics can be determined for each derivative using the assays detailed below and elsewhere in the literature.
- benzo[c]chromen-6-one derivates may induce changes in the levels and activities of various proteins involved in the progression of the cell cycle. These include cofactors of DNA replication and repair, e.g., proliferating cell nuclear antigen and cell division cycle kinases (and regulators). Benzo[c]chromen-6-one may also up-regulate Death Receptor 5 and caspase 8, inhibit HIF-1 ⁇ (a global transcriptional regulator of angiogenesis genes), or inhibit the Akt/mTor signal transduction pathway (a key regulator pathway of cell growth and proliferation with its deregulation associated with human diseases, including but not limited to cancer).
- HIF-1 ⁇ a global transcriptional regulator of angiogenesis genes
- Akt/mTor signal transduction pathway a key regulator pathway of cell growth and proliferation with its deregulation associated with human diseases, including but not limited to cancer.
- Assays relevant to these mechanisms of action and inhibition of cell proliferation are well-known in the art.
- anti-mitotic activity mediated by effects on tubulin polymerization activity can be evaluated by testing the ability of a benzo[c]chromen-6-one derivative to inhibit tubulin polymerization and microtubule assembly in vitro.
- Other such assays include counting of cells in tissue culture plates or assessment of cell number through metabolic assays or incorporation into DNA of labeled (radio-chemically, e.g., 3H-thymidine or fluorescently labeled) or immuno-reactive (BrdU) nucleotides.
- measuring HIF- ⁇ activity for example through luciferase reporter groups or Akt/mTor signalling through for example activated intermediates as in the phosphorylation of Akt.
- anti-angiogenic activity may be evaluated through endothelial cell migration, endothelial cell tubule formation or vessel outgrowth in ex-vivo models of rat aortic rings.
- the present invention also relates to implants or other devices comprised of one or more compositions described herein or prodrugs thereof wherein the composition or pro-drug is formulated in a biodegradable or non-biodegradable format for sustained release.
- Non-biodegradable formats release the drug in a controlled manner through physical or mechanical processes without the format being itself degraded.
- Bio-degradable formats are designed to gradually be hydrolyzed or solubilized by natural processes in the body, allowing gradual release of the admixed drug or prodrug. Both bio-degradable and non-biodegradable formats and the process by which drugs are incorporated into the formats for controlled release are well known to those skilled in the art.
- These implants or devices can be implanted in the vicinity where delivery is desired, for example, at the site of a aberrant skin or in the vicinity of aberrant vasculature.
- the present invention also relates to coated vascular stents to prevent restentosis, a re-narrowing or blockage of an artery at the same site where treatment, such as angioplasty or stent procedure, has already been done.
- the stent or other surgically implantable device is coated with one or more compositions described herein. The coating of such a device is well known to those skilled in the art.
- the present invention also relates to conjugated prodrugs and uses thereof. More particularly, the invention relates to conjugates of benzo [c] chromen-6-one derivatives and the use of such conjugates in the prophylaxis or treatment of conditions associated with uncharacteristic cell proliferation and/or uncharacteristic angiogenesis.
- diseases include, but are not limited to, excessive, abnormal stimulation or proliferation of cancer cells, endothelial cells or other pathologically involved cells.
- the present invention also provides a conjugated prodrug of a benzo[c]chromen-6-one derivative conjugated to a biological activity modifying agent, e.g., a peptide, an antibody or fragment thereof, or in vivo hydrolysable esters, such as methyl esters, phosphate or sulfate groups, and amides or carbamates.
- a biological activity modifying agent e.g., a peptide, an antibody or fragment thereof, or in vivo hydrolysable esters, such as methyl esters, phosphate or sulfate groups, and amides or carbamates.
- Modifications can include modifying a hydroxyl group with a phosphate group.
- This derivative would not be expected to have activity due to the modification causing a significant change to the derivative thereby losing biological activity.
- the modification imparts better solubility characteristics, i.e., more water soluble, which could facilitate transport through the blood or give it better oral availability to allow it to reach
- the pharmaceutical composition of this invention may also contain or be co-administered (simultaneously or sequentially) with one or more pharmacological agents of value in treating one or more disease conditions referred to hereinabove.
- agents include, but are not limited to, pharmaceutical agents well known to those skilled in the art for their oncolytic or anti-cancer activity.
- Other agents include those that suppress the side-effects of oncolytic or anti-cancer agents such as those directed toward counter-acting nausea and emesis.
- the benzo[c]chromen-6-one derivatives or prodrugs thereof may be incorporated into bio-degradable or non-degradable formats allowing for sustained release.
- the formulation being implanted in the proximity of where the delivery is desired, at the site of a tumor or in the vicinity of aberrant vasculature.
- the pharmaceutical formulation can be, packaged into a delivery vehicle that has a chemical moiety that provides for specificity.
- the moiety can be an antibody or some other such molecule that directs and facilitates delivery of the active agent to the desirable site (or cell/tumor).
- the present invention also relates to use of the benzo[c]chromen-6-one derivatives or prodrugs thereof for the preparation of a medicant for the prophylaxis or treatment of conditions associated with any disease characterized by uncharacteristic cell proliferation and-or uncharacteristic angiogenesis and/or inflammation.
- the present invention also relates to the provision of a pharmaceutical composition
- a pharmaceutical composition comprising benzo[c]chromen-6-one derivatives or prodrugs thereof according to the present invention together with a pharmaceutical acceptable carrier, diluent or excipient.
- the pharmaceutical composition may also be used for the prophylaxis or treatment of conditions associated with any disease characterized by uncharacteristic cell proliferation and/or uncharacteristic angiogenesis and/or inflammation.
- the present invention also pertains to methods of prophylaxis or treatment of a condition associated with any disease characterized by uncharacteristic cell proliferation and/or uncharacteristic angiogenesis and/or inflammation, said method including administering to a subject in need of such prophylaxis or treatment an effective amount of benzo[c]chromen-6-one derivatives or prodrugs thereof according to the present invention as described hereinabove. (It should be understood that prophylaxis or treatment of said condition includes amelioration of said condition.)
- an effective amount it is meant a therapeutically effective amount that relieves symptoms, partially or completely, associated with a particular disease or syndrome. Such amounts can be readily determined by an appropriately skilled practitioner, taking into account the condition to be treated, the route of administration, and other relevant factors—well known to those skilled in the art. Such a person will be readily able to determine a suitable dose, mode and frequency of administration.
- compositions or prodrugs thereof may be prepared in any conventional manner.
- hydrolysable esters for example, methyl esters, phosphate or sulfate groups, and amides or carbamates may be prepared in any conventional manner.
- compositions can be provided as physiologically acceptable formulations using known techniques and these formulations can be administered by standard routes.
- the compositions may be administered through means including, but not limited to, topical, oral, rectal or parenteral, for example, intravenous, subcutaneous or intramuscular, route.
- the compositions may be incorporated into formats allowing for sustained release, the formats being implanted in the proximity of where the delivery is desired, for example, at the site of the skin disease or aging skin or in the vicinity of aberrant vasculature.
- the dosage of the composition will depend on the condition being treated, the particular derivative used, and other clinical factors such as weight and condition of the subject and the route of administration of the compound—all of which is appreciated by those skilled in the art. For example, a person skilled in the art will be able by reference to standard texts, such as Remington's Pharmaceuticals Sciences 17th edition (the entire teaching of which is incorporated herein by reference), determine how the formulations are to be made and how these may be administered.
- the formulations including, but not limited to, those suitable for oral, rectal, nasal, inhalation, topical (including, but not limited to, dermal, transdermal, buccal and sublingual), vaginal or parenteral (including, but not limited to, subcutaneous, intramuscular, intravenous, intradermal, intraocular (including, but not limited to, intra-vitreal, sub-conjunctival, sub-Tenon's, trans-scleral), intra-tracheal and epidural) and inhalation administration.
- the formulations may be conveniently presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and a pharmaceutical carrier(s) or excipient(s).
- the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary shaping the product.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion, etc.
- a tablet may be made by compression or molding, optimally with one or more accessory ingredient.
- Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent.
- Molded tablets may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
- Formulations suitable for administration via the mouth include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the ingredient to be administered in a suitable liquid carrier.
- Formulations suitable for topical administration to the skin may be presented as ointments, creams, gels and pastes comprising the ingredient to be administered in a pharmaceutical, cosmeceutical or cosmetic acceptable carrier.
- a viable delivery system is a transdermal patch containing the ingredient to be administered.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- Formulations suitable for nasal administration wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner in which snuff is taken, for example, by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations include wherein the carrier is a liquid for administration, as for example a nasal spray or as nasal drop, including aqueous or oily solutions of the active ingredient.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing, in addition to the active ingredient, ingredients such as carriers as are known in the art to be appropriate.
- Formulation suitable for inhalation may be presented as mists, dusts, powders or spray formulations containing, in addition to the active ingredient, ingredients such as carriers as are known in the art to be appropriate.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostatic agents and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried, lyophilized, conditions requiring only the addition of the sterile liquid, for example, water for injections, immediately prior to use.
- Extemporaneous injection solution and suspensions may be prepared from sterile powders, granules and tablets of the kinds previously described.
- Acceptable unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof of the administered ingredient.
- formulations of the present invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include flavoring agents.
- the present invention includes compositions of about 100% to about 90% pure isomers.
- the invention pertains to compositions of about 90% to about 80% pure isomer.
- the invention pertains to compositions of about 80% to about 70% pure isomer.
- the invention pertains to a composition of about 70% to about 60% pure isomer.
- the invention pertains to a composition of about 60% to about 50% pure isomer.
- a steriochemical isomer labeled as alpha or beta may be a mixture of both in any ratio, where it is chemically possible by one skilled in the art.
- bio-isosteric replacements include, for example, substitution of ⁇ S or ⁇ NH for ⁇ O.
- Known compounds that are used in accordance with the invention and precursors to novel compounds according to the invention can be purchased from commercial sources, for example, Sigma-Aldrich.
- Other compounds according to the invention can be synthesized according to known methods well known to those skilled in the art.
- Benzo[c]chromen-6-one derivatives according to the present invention may be prepared using the following reaction schemes, Scheme 1 and synthetic methods Scheme 2.
- the present invention also includes benzo[c]chromen-6-one derivatives prepared from the starting point of Scheme 1.
- the synthesis of these analogs are described in the synthetic methods shown in Scheme 3 and represents examples from the benzo[c]chromen-6-one derivatives as depicted in Table 1.
- Methyl 5-acetylsalicylate (25.0 g, 0.129 mol) was dissolved in CH 2 Cl 2 (250 mL) and pyridine (60 mL) under Ar at 0° C. Trifluoromethanesulfonic anhydride (37.9 g, 0.133 mol) was then added over 20 min. The reaction mixture was stirred for an additional 30 min and then quenched with water (500 mL). The organic layer was separated and washed three times with 5% HCl (80 mL). After removing the solvent the solid obtained was dried under vacuum to yield 40.3 g (96%) of 6.
- SG00393 SG00392 (1.0 g, 2.67 mmol) and NaBH4 (0.1 g, 2.67 mmol) were added to a 2:1 mixture of THF (20 mL) and absolute ethanol (10 mL) and left to stir for 1.5 h. The reaction mixture was cooled in an ice bath and 0.5 N HCl added until the color changed from yellow to clear. Water (20 mL) was added and the mixture extracted with CH2Cl2, dried, concentrated and the residue purified by silica gel flash column chromatography using CH2Cl2:acetone (8/1) to give 0.71 g of SG00393.
- SG0093 (0.1 g, 0.27 mmol) was added to anhydrous CH2Cl2 (6 mL) and cooled to ⁇ 78° C. giving a heterogeneous mixture.
- DIBAL (1M in hexanes, 0.66 mL, 0.66 mmol) was added dropwise over 2 h.
- An additional amount of DIBAL was added (0.2 mL) and after a total time of 2.5 h the reaction was quenched by the addition of methanol (0.8 mL).
- the reaction mixture was allowed to come to room temperature, CH2Cl2 (100 mL), ice and a small amount of acetone were added and the mixture stirred for 15 min.
- SG00396 SG00395 (0.83 g, 0.197 mmol) was added to anhydrous CH2Cl2 (25 mL) and cooled in a methanol/dry ice bath under N2.
- Et3SiH (0.631 mL, 3.95 mmol) was added followed by BF3 Et2O (0.375 mL, 2.96 mmol) dropwise and stirred vigorously for 0.5 h.
- the reaction mixture was removed from the cooling bath and after 45 minutes quenched with sat NaHCO3 (3 mL).
- the reaction mixture was extracted with CH2Cl2, washed with sat. NaHCO3, brine, dried, concentrated and purified by silica gel flash column chromatography using ethyl acetate:hexanes (1/2) to give 0.71 g of SG00396.
- SG00397 SG00396 (0.135 g, 0.334 mmol), formic acid (0.525 mL, 1.34 mmol), sodium formate (27 mg, 0.4 mmol), 10% Pd/C (0.3 mol %), anhydrous THF (4 mL) and absolute ethanol (4 mL) were heated to reflux under N2 for 1.5 h. The reaction was cooled and approximately half of the reaction mixture evaporated. The silica gel residue was purified by silica gel flash column chromatography using ethyl acetate: hexanes (1/2) to give 50 mg of SG00397.
- SG00398 To the remaining half of the reaction mixture in the preparation of SG00397 was added additional 10% Pd/C and the reaction refluxed for 0.5 h. The Pd/C was filtered off, washed with methanol and silica gel added to the filtrate. After concentrating, the silica gel residue was purified by silica gel flash column chromatography using ethyl acetate: hexanes (1/2) to give 32 mg of SG00398.
- SG00400 SG00397 (95 mg, 0304 mmol) was added to methanol (2 mL). To this mixture K2CO3 (0.126 g, 0.912 mmol) and water (0.1 mL) were added and the reaction stirred under N2 for 3 h. The reaction was stopped by the addition of 1% HCl (0.1 mL) and methanol (10 mL). Silica gel was added, the solvent evaporated and the residue was purified by silica gel flash column chromatography using ethyl acetate: hexanes (1/1) to give 72 mg of SG0400.
- SG00477 SG00292 (0.18 g, 0.63 mmol) was added to anhydrous CH2Cl2 (7 mL) with stirring under N2. Et3N (0.35 mL, 2.53 mmol), acetic anhydride (0.24 mL, 2.53 mmol) and one crystal of DMAP were added. After stirring for 15 min. CH2Cl2 was added and the mixture washed with sat NaHCO3, brine, dried, concentrated and pre-adsorbed onto silica gel. The silica gel flash column chromatography using ethyl acetate:hexanes (2/1) to give 80 mg of SG0477.
- SG00490 SG00396 (122 mg, 0.3 mmol), K2CO3 (125 mg, 0.9 mmol) and water (0.13 mL) were added to methanol (3.3 mL) and stirred under N2 for 1.5 h then quenched with 1% H2SO4. The reaction was extracted with CH2Cl2 and divided into two equal portions. One portion was concentrated and purified by silica gel flash column chromatography using ethyl acetate:hexanes (1/1) to give 48 mg of SG00490. The remaining portion was converted to SG00491.
- SG00493 SG492 (116 mg, 0.41 mmol), K2CO3 (112 mg, 0.82 mmol) and CH3I (1 mL) were added to acetone (10 mL) and refluxed for 2 days.
- Silica gel was added to the reaction mixture, concentrated and purified by silica gel column chromatography using silica gel flash column chromatography using CH2Cl2:acetone (9/1) to give 100 mg of SG00493.
- SG00496 SG00393 (116 mg, 0.308 mmol) was added to anhydrous THF (10 mL) in an ice bath. NaH (60% dispersion in oil, 22 mg, 0.92 mmol) was added and the mixture stirred for 20 min. CH3I was added dropwise and the reaction stirred for 0.5 h. The ice bath was removed and the reaction was stirred overnight. Additional CH3I was added and the reaction mixture refluxed for 5 h. The reaction was quenched with water and distilled to remove the excess CH3I.
- SG00527 SG292 (100 mg, 0.35 mmol) was added to a mixture of NaH (15.4 mg, 0.4 mmol) in DMF (10 mL) and the reaction mixture refluxed for 2 h. After cooling down to room temperature 4-methoxybenzyl bromide (0.57 mL, 0.42 mmol) dissolved in DMF was added and the reaction mixture heated to 70° C. for 9 h. Water (10 mL) was added and the reaction mixture extracted with CHCl3 (3 ⁇ 20 mL), the combined organic layers were washed with water, brine, dried and concentrated. The residue was purified by hexanes:CHCl3 (1/2) followed by CHCl3 to give 85 mg of SG00527.
- the dimethyl alcohol was purified by silica gel flash column chromatography using ethyl acetate:hexanes (2/1) and used in the next step.
- the dimethyl alcohol (58 mg, 0.15 mmol) was debenzylated following the method for SG00292 to give SG00543. Yield 32 mg.
- SG00548 The dimethyl alcohol (56 mg, 0.14 mmol) produced in the preparation of SG00543 was added to anhydrous CH2Cl2 (3 mL) containing a catalytic amount of Amberlyst-15 and MgSO4 and stirred for 6 h and then placed in the freezer overnight. After filtering, the crude dehydration product was purified by silica gel flash column chromatography using ethyl acetate:hexanes (1/2) and used in the next step. The purified dehydration product was dissolved in absolute ethanol (3 mL) and a suspension of 10% Pd—C (30 mg) in absolute ethanol (1.5 mL) was added and a balloon filled with H2 attached.
- SG00292 (0.1 g, 0.35 mmol) was added to anhydrous CH2Cl2 (10 mL) with stirring. Pyridine (0.05 mL) and benzoyl chloride (0.1 mL) were added and the reaction stirred for 1 h. The reaction was poured into 5% HCl, extracted with CH2Cl2, washed with sat NaHCO3, dried, concentrated and purified by flash silica gel chromatography using ethyl acetate:hexanes (1/1) to give 25 mg of SG00612.
- SG00614 SG00547 (50 mg, 0.114 mmol) was dissolved in a 1:1 mixture of anhydrous diethyl ether and CH2Cl2 (6 mL). PBr3 (124 mg, 0.46 mmol) was added and the reaction stirred over the weekend at room temperature. Sat NaHCO3 was added and the reaction extracted with CH2Cl2, washed with brine, dried, concentrated and purified by flash silica gel chromatography using hexanes then CHCl3 then 1% methanol in CHCl3 to give 20 mg of SG00614.
- SG00616 Prepared following the method for SG00543 starting with SG00546 and CH3MgI. Yield 74 mg.
- SG00617 Prepared following method for SG00527 using SG00293 (the ketone of SG00292 reduced to the alcohol) and 4-bromomethyl benzophenone. Yield 13 mg.
- SG00618 4-benzyloxybenzoic acid (1 g, 4.4 mmol) was added to anhydrous CH2Cl2 (11 mL). A catalytic amount of DMF (5 drops) was added along with oxalyl chloride in CH2Cl2(2M, 5.75 mL) and the reaction stirred for 2 h. The solvents were evaporated and the crude 4-benzyloxybenzoyl chloride was used directly.
- SG00618 was prepared following the method for SG00612 using 4-benzylbenzoyl chloride. Yield 49 mg.
- SG00619. Prepared following the method of SG00527 but using SG00293 (the methyl ketone of SG00292 reduced to the alcohol) and 4-formylbenzyl bromide (prepared by DIBAL reduction of 4-cyanobenzyl bromide. Yield 45 mg.
- Anti-tumor anti-proliferative for cancer cells
- anti-angiogenic activity anti-proliferative for endothelial cells measured in vitro as inhibition of proliferation binding to estrogen receptor alpha and beta HUVEC Proliferation.
- Inhibition of the proliferation of human umbilical vein endothelial cells, HUVECs is shown as one measure of anti-angiogenic activity.
- HUVECS and the required media complements were purchased from Cascade Biologics (Portland, Oreg.) and the growth and maintenance of the cultures was as described by the manufacturer.
- the proliferation assay was carried out by seeding the HUVECs in 96-well plates at a density of 1,000 cells/well in complete medium.
- the cells were starved for 24 h in 0.5% serum before being treated with SG (“Signal Gene” now “Palomid”) angiogenic inhibitors in the presence of 10 ng/ml b-FGF or dosing ranging presence of either b-FGF or VEGF in complete medium.
- SG Synchronization Gene
- cell number was determined using a calorimetric method as described by the supplier (Promega Corp., Madison, Wis.). The results were expressed as the percentage of the maximal b-FGF or VEGF response in the absence of angiogenic inhibitors.
- Non-proliferating endothelial cells were assayed by growing HUVECs to quiescence in 96-well plates and treating with angiogenic inhibitors for 48 h. Initially, 5,000 cells/well were seeded and confluence was achieved the next day. The plates were incubated another 24 h to ensure growth arrest before treatment with angiogenic inhibitors. Cell number was determined as outlined above.
- Cancer Cell Lines Measurement of the inhibition of tumor cell growth is one measure of anti-cancer activity.
- Two human cancer cell lines were used to assess the effects of SG angiogenic inhibitors on the proliferation of these cells.
- the cell lines were MCF-7 breast cancer cells and the colon carcinoma cell line, HCT-116. All cell lines were obtained from Americans Type Tissue Culture (Manassas, Va.) and maintained in their respective media as described by the supplier.
- the proliferation studies were carried out essentially as described for the proliferating endothelial cells.
- ER Binding Assay Derivatives which bind and transduce a signal through estrogen receptors would not be considered a positive activity as such an activity could enhance cancer growth as well as induce angiogenesis. Derivatives which either have little or no binding to estrogen receptors (“ER”) would be one desired activity. Alternatively, derivatives which bound to estrogen receptors but did not transduce a signal could also be considered a positive activity.
- Human cDNAs encoding ERa and ERb were used as templates to express receptor proteins in vitro. The proteins were produced with rabbit reticulocyte lysates as supplied by Promega (TNT kit) that couples transcription and translation in a single reaction.
- Apoptosis Assay The apoptosis assay was conducted to determine if the derivatives inhibited cellular proliferation by inducing programmed cell death. Representative apoptotic activity is shown for endothelial cells with activity implied for other proliferating cells such as keratinocytes. Apoptosis of endothelial cells is yet another means to show anti-angiogenic activity. Cell death is monitored by quantifying the amount of cytoplasmic histone-associated DNA fragments that accumulate in the cell. Apoptosis assay kit was supplied by Roche (cat #1 544 675) with ELISA detection and a monoclonal antihistone antibody.
- HUVECs or keratinocytes were trypsinized, diluted, and aliquoted into microfuge tubes at a concentration of 50,000 cells/tube. Treatment with a compound was for six hours at 37° C. followed by cell lysis and analysis using the detection kit according to the manufacturer. Apoptosis was quantified calorimetrically at an absorbance of 405 nm. Controls consisted of a negative vehicle (ctl) control (1% ethanol) and a positive camptothecin (CAM) control at 4 mg/mL in ethanol. See FIG. 2 .
- Palomid 529 a leading clinical candidate available from Paloma Pharmaceuticals, was added at 100 ⁇ M. Results are shown in FIG. 3 . (Palomid 529 is “SG00529”, see Table I).
- Skin diseases at least in part are due to abnormal presence and proliferation of keratinocytes.
- Means to either inhibit said keratinocyte proliferation and/or the ability to induce apoptosis of keratinocytes in said diseases would be expected to aid in the amelioration of abnormal skin pathologies.
- the following represents illustrative data to support this supposition.
- Keratinocyte proliferation A benzo[c] chromen-6-one derivative, Palomid 529, was examined with the following protocol. Low passage human keratinocytes (NHEK, neonatal-pooled, p3-5, Cambrex, CC2507) were seeded in black 96-well plates at 1,000 cells per well in complete media (KBM, Cambrex) and incubated overnight. Cell culture media was then removed and replaced with fresh growth media plus either Palomid 529 or vehicle (1% DMSO). Palomid 529 was examined at nine concentrations (1:2 dilutions starting at 100 ⁇ M). Each experimental and control group was examined in replicates of six.
- lysing reagent supplied with the Roche Cell Death ELISA plus kit. Lysed cells were then transferred to clean eppendorf tubes and centrifuged at 200 ⁇ g to remove nuclei and cell debris. Supernatants, containing the cytoplasmic fraction (including cytoplasmic nucleosomes), were then transferred to streptavidin coated plates and incubated with anti-Histone (biotin conjugated) and anti-DNA (POD conjugated) antibodies for two hours. Wells were then carefully washed. ABTS was then added to the wells and following the development of color (approximately 30 minutes), the reaction stopped by the addition of ABTS Stop solution. Apoptosis was then measured by reading the OD at 405 nm with a reference background wavelength of 490 nm. See FIG. 5 .
- the cell based assay serves to determine the stability or half-life of compounds in cells.
- These specialized hepatocytes contain all of the necessary phase I and phase II enzymes that can act upon drugs. Compounds that are not or hardly metabolized in these cells are thought to be metabolically stable and would be expected to have a longer half-life in vivo than those that are metabolized by the hepatocytes. Results are shown in FIG. 6 . Derivatives were incubated with human primary hepatocytes for 120 or 240 minutes. % remaining compound is shown at left. Control derivative capable of metabolism by phase I and/or phase II enzymes is shown as derivative 292.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Birds (AREA)
- Emergency Medicine (AREA)
- Dermatology (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- R1=H or alkyl;
- R2=H, OH, O-alkyl, amino, O-heterocyc, O-aryl, O-substituted alkyl, where substitution is e.g. halo, aryl, or heteroaryl, O—Ac, O—PO3, O—SO3, or OSO2NH2;
- R3-H, OH, O-alkyl, O—CH2Aryl, O—CH2heteroaryl, O-alkylaryl O-acyl, or nitro;
- R4=H, Alkyl, CH2Aryl, substituted alkyl, OH, O-alkyl, O-aryl, OCH2Aryl, OCH2Heteroaryl, O-Acyl, OPO3, OSO3, or OSO2NH2;
- R5=H, Oxo, aryl, hydroxyl, alkyl, or O-alkyl;
- R6=H;
- R7=H, Acyl, substituted alkyl, where substitution is e.g. hydroxyl or sulfamoyl, alkyl, O-alkyl, or O-substituted alkyl where substitution is O—PO3 or OSO3;
- R8=H; and
- X=O, N, or S.
- R1=H or alkyl;
- R2=H, O-alkyl, OH, amino, O-heterocyc, O-aryl, O-substituted alkyl where substitution is e.g. halo, aryl, or heteroaryl, O—Ac, O—PO3, O—SO3, or OSO2NH2;
- R3=H, O-alkyl, O-substituted alkyl where substitution is aryl or heteroaryl, OH, O-acyl, or nitro;
- R4=H, Alkyl, CH2Aryl, substituted alkyl, O), O-alkyl, O-aryl, OCH2Aryl, OCH2Heteroaryl, O-Acyl, OPO3, OSO3, or OSO2NH2;
- R5=H, Aryl, heteroaryl or substituted alkyl; and
- R6=H, Alkyl, or Aryl.
- R1=alkyl or N;
- R2=alkyl or H;
- R3=Acetyl; and
- R4=H or Alkyl.
- R1=H or F;
- R2=H or nitro;
- R3=H;
- R4=H; and
- R5=alkyl, substituted alkyl or aryl.
| TABLE I |
| Structural formula of benzo[c]chromen-6-one derivatives |
|
|
| SG00526 |
|
|
| SG00527 |
|
|
| SG00528 |
|
|
| SG00529 |
|
|
| SG00530 |
|
|
| SG00531 |
|
|
| SG00532 |
|
|
| SG00533 |
|
|
| SG00535 |
|
|
| SG00536 |
|
|
| SG00537 |
|
|
| SG00538 |
|
|
| SG00539 |
|
|
| SG00540 |
|
|
| SG00272 |
|
|
| SG00541 |
|
|
| SG00542 |
|
|
| SG00543 |
|
|
| SG00544 |
|
|
| SG00545 |
|
|
| SG00546 |
|
|
| SG00547 |
|
|
| SG00548 |
|
|
| SG00549 |
|
|
| SG00550 |
|
|
| SG00551 |
|
|
| SG00552 |
|
|
| SG00553 |
|
|
| SG00554 |
|
|
| SG00555 |
|
|
| SG00556 |
|
|
| SG00557 |
|
|
| SG00558 |
|
|
| SG00559 |
|
|
| SG00560 |
|
|
| SG00561 |
|
|
| SG00562 |
|
|
| SG00563 |
|
|
| SG00564 |
|
|
| SG00565 |
|
|
| SG00566 |
|
|
| SG00567 |
|
|
| SG00568 |
|
|
| SG00569 |
|
|
| SG00570 |
|
|
| SG00571 |
|
|
| SG00572 |
|
|
| SG00573 |
|
|
| SG00574 |
|
|
| SG00575 |
|
|
| SG00576 |
|
|
| SG00577 |
|
|
| SG00579 |
|
|
| SG00580 |
|
|
| SG00581 |
|
|
| SG00582 |
|
|
| SG00583 |
|
|
| SG00584 |
|
|
| SG00585 |
|
|
| SG00586 |
|
|
| SG00587 |
|
|
| SG00588 |
|
|
| SG00589 |
|
|
| SG00590 |
|
|
| SG00591 |
|
|
| SG00592 |
|
|
| SG00593 |
|
|
| SG00594 |
|
|
| SG00595 |
|
|
| SG00596 |
|
|
| SG00597 |
|
|
| SG00598 |
|
|
| SG00599 |
|
|
| SG00600 |
|
|
| SG00601 |
|
|
| SG00602 |
|
|
| SG00603 |
|
|
| SG00604 |
|
|
| SG00605 |
|
|
| SG00606 |
|
|
| SG00607 |
|
|
| SG00609 |
|
|
| SG00610 |
|
|
| SG00611 |
|
|
| SG00612 |
|
|
| SG00613 |
|
|
| SG00614 |
|
|
| SG00615 |
|
|
| SG00616 |
|
|
| SG00617 |
|
|
| SG00618 |
|
|
| SG00619 |
|
|
| SG00620 |
|
|
| SG00273 |
|
|
| SG00393 |
|
|
| SG00477 |
|
|
| SG00519 |
|
|
| SG00292 |
|
|
| SG00629 |
| TABLE II | |||||||
| HUVECp | HUVECp | HUVECq | Colon | Breast | hERa | hERb | |
| % inhibition | % inhibition | % inhibition | % inhibition | % inhibition | | % | |
| Palomid | |||||||
| 3 mM | 0.3 |
3 |
3 |
3 mM | binding | binding | |
| 529 | 113 | 65 | 31 | 20 | 32 | na | na |
| 547 | 106 | 42 | 25 | 17 | 35 | na | na |
| 575 | 104 | 41 | 33 | 10 | 31 | na | na |
| 545 | 100 | 32 | 22 | 21 | 17 | na | na |
| 528 | 80 | <10 | 25 | 11 | 16 | 41 | 31 |
| 550 | 77 | nd | 14 | <10 | 28 | na | na |
| 574 | 74 | 13 | 29 | 24 | na | na | na |
| 393 | 71 | nd | 21 | 26 | 11 | na | na |
| 551 | 62 | nd | na | na | 25 | na | na |
| 573 | 145 | nd | <10 | <10 | na | na | na |
| 546 | 100 | 18 | 23 | na | 13 | na | na |
| 559 | 96 | 72 | 35 | na | 17 | na | na |
| 568 | 78 | nd | 14 | na | <10 | na | 37 |
| 560 | 53 | nd | na | na | na | na | na |
| na, no activity, HUVECp, HUVEC proliferating; HUVECq, HUVEC quiescent; hERa, human estrogen receptor alpha; hERb, human estrogen receptor beta | |||||||
Claims (30)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/789,935 USRE46558E1 (en) | 2005-04-28 | 2015-07-01 | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US67570705P | 2005-04-28 | 2005-04-28 | |
| US77731806P | 2006-02-28 | 2006-02-28 | |
| US11/412,618 US20060257337A1 (en) | 2005-04-28 | 2006-04-27 | Compositions and methods to treat skin diseases characterized by cellular proliferation and angiogenesis |
| US11/680,292 US8475776B2 (en) | 2005-04-28 | 2007-02-28 | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
| US14/789,935 USRE46558E1 (en) | 2005-04-28 | 2015-07-01 | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/680,292 Reissue US8475776B2 (en) | 2005-04-28 | 2007-02-28 | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE46558E1 true USRE46558E1 (en) | 2017-09-26 |
Family
ID=59886250
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/789,935 Expired - Fee Related USRE46558E1 (en) | 2005-04-28 | 2015-07-01 | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USRE46558E1 (en) |
Citations (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4248861A (en) | 1979-02-21 | 1981-02-03 | Schutt Steven R | Skin treatment methods |
| US4299826A (en) | 1979-10-12 | 1981-11-10 | The Procter & Gamble Company | Anti-acne composition |
| US4363812A (en) | 1978-11-30 | 1982-12-14 | Kakenyaku Kako Co., Ltd. | 3-(Tetrazol-5-yl), 4-methyl-8-alkoxy coumarins and anti-allergic compositions thereof |
| WO1993001529A1 (en) | 1991-07-01 | 1993-01-21 | Eastman Kodak Company | Feedback control for receiver member in-track registration in an electrostatographic reproduction apparatus or the like |
| WO1993015219A1 (en) | 1992-02-04 | 1993-08-05 | Kyowa Medex Co., Ltd. | Method of quantitative determination of substance with coumarin derivative |
| EP0645382A1 (en) | 1993-04-13 | 1995-03-29 | Morinaga Milk Industry Co., Ltd. | Coumarin derivative and use thereof |
| US5853742A (en) | 1994-12-20 | 1998-12-29 | Chesebrough-Pond's Usa Co., Division Of Conopco | Cosmetic compositions containing lactate dehydrogenase inhibitors |
| WO2000056303A2 (en) | 1999-03-22 | 2000-09-28 | Immugen Pharmaceuticals, Inc. | Treatment of immune diseases |
| WO2001046110A2 (en) | 1999-12-23 | 2001-06-28 | The University Of Georgia Research Foundation, Inc. | Chalcone and its analogs as agents for the inhibition of angiogenesis and related disease states |
| US6399082B1 (en) | 1997-11-25 | 2002-06-04 | Yamanouchi Europe B.V. | Mixture of a diol and an alpha-hydroxy acid for the treatment of hyperkeratotic skin diseases |
| US20020115711A1 (en) | 2001-02-22 | 2002-08-22 | Schmidt Johnathan Martin | Dibenzo[c]chromen-6-one derivatives as anti-cancer agents |
| US20020119914A1 (en) | 2000-12-26 | 2002-08-29 | Deguang Zhu | New uses of insulin and pancreatin |
| WO2002094984A2 (en) | 2001-05-18 | 2002-11-28 | Natreon Inc. | Process for preparing purified shilajit composition from native shilajit |
| WO2003105842A1 (en) | 2002-06-13 | 2003-12-24 | Novuspharma S.P.A. | Derivatives of chromen-2-one as inhibitors of vegf production in mammalian cells |
| US20040162281A1 (en) | 2001-04-06 | 2004-08-19 | Biocryst Pharmaceuticals, Inc. | Biaryl compounds as serine protease inhibitors |
| WO2004073612A2 (en) | 2003-02-13 | 2004-09-02 | Merck & Co. Inc. | Estrogen receptor modulators |
| US20040198750A1 (en) | 2003-04-03 | 2004-10-07 | Jeremy Green | Compositions useful as inhibitors of protein kinases |
| US20040242593A1 (en) | 2003-05-20 | 2004-12-02 | Moore Bob M. | Cannabinoid derivatives, methods of making, and use thereof |
| US6849757B2 (en) | 1998-05-22 | 2005-02-01 | Abbott Laboratories | Antiangiogenic drug to treat cancer, arthritis and retinopathy |
| US6908917B2 (en) | 2002-08-13 | 2005-06-21 | Warner-Lambert Company | Chromone derivatives as matrix metalloproteinase inhibitors |
| US20050245490A1 (en) | 2004-05-03 | 2005-11-03 | Pinney Kevin G | Chromene-containing compounds with anti-tubulin and vascular targeting activity |
| US20060257337A1 (en) | 2005-04-28 | 2006-11-16 | David Sherris | Compositions and methods to treat skin diseases characterized by cellular proliferation and angiogenesis |
| US20070197567A1 (en) | 2005-04-28 | 2007-08-23 | Paloma Pharmaceuticals, Inc. | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
| US7326447B2 (en) | 2003-02-25 | 2008-02-05 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Benzochromene derivatives |
| US7378421B2 (en) | 2003-04-30 | 2008-05-27 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Chromenone derivatives |
| WO2010129622A1 (en) | 2009-05-04 | 2010-11-11 | Macusight, Inc. | Mtor pathway inhibitors for treating ocular disorders |
| US9381187B2 (en) | 2011-02-16 | 2016-07-05 | Paloma Pharmaceuticals, Inc. | Radiation countermeasure agents |
-
2015
- 2015-07-01 US US14/789,935 patent/USRE46558E1/en not_active Expired - Fee Related
Patent Citations (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4363812A (en) | 1978-11-30 | 1982-12-14 | Kakenyaku Kako Co., Ltd. | 3-(Tetrazol-5-yl), 4-methyl-8-alkoxy coumarins and anti-allergic compositions thereof |
| US4248861A (en) | 1979-02-21 | 1981-02-03 | Schutt Steven R | Skin treatment methods |
| US4299826A (en) | 1979-10-12 | 1981-11-10 | The Procter & Gamble Company | Anti-acne composition |
| WO1993001529A1 (en) | 1991-07-01 | 1993-01-21 | Eastman Kodak Company | Feedback control for receiver member in-track registration in an electrostatographic reproduction apparatus or the like |
| WO1993015219A1 (en) | 1992-02-04 | 1993-08-05 | Kyowa Medex Co., Ltd. | Method of quantitative determination of substance with coumarin derivative |
| EP0645382A1 (en) | 1993-04-13 | 1995-03-29 | Morinaga Milk Industry Co., Ltd. | Coumarin derivative and use thereof |
| US5853742A (en) | 1994-12-20 | 1998-12-29 | Chesebrough-Pond's Usa Co., Division Of Conopco | Cosmetic compositions containing lactate dehydrogenase inhibitors |
| US6399082B1 (en) | 1997-11-25 | 2002-06-04 | Yamanouchi Europe B.V. | Mixture of a diol and an alpha-hydroxy acid for the treatment of hyperkeratotic skin diseases |
| US6849757B2 (en) | 1998-05-22 | 2005-02-01 | Abbott Laboratories | Antiangiogenic drug to treat cancer, arthritis and retinopathy |
| WO2000056303A2 (en) | 1999-03-22 | 2000-09-28 | Immugen Pharmaceuticals, Inc. | Treatment of immune diseases |
| WO2001046110A2 (en) | 1999-12-23 | 2001-06-28 | The University Of Georgia Research Foundation, Inc. | Chalcone and its analogs as agents for the inhibition of angiogenesis and related disease states |
| US20020119914A1 (en) | 2000-12-26 | 2002-08-29 | Deguang Zhu | New uses of insulin and pancreatin |
| US6632835B2 (en) * | 2001-02-22 | 2003-10-14 | Nanodesign Inc. | Dibenzo[c]chromen-6-one derivatives as anti-cancer agents |
| US20020115711A1 (en) | 2001-02-22 | 2002-08-22 | Schmidt Johnathan Martin | Dibenzo[c]chromen-6-one derivatives as anti-cancer agents |
| US20040162281A1 (en) | 2001-04-06 | 2004-08-19 | Biocryst Pharmaceuticals, Inc. | Biaryl compounds as serine protease inhibitors |
| WO2002094984A2 (en) | 2001-05-18 | 2002-11-28 | Natreon Inc. | Process for preparing purified shilajit composition from native shilajit |
| WO2003105842A1 (en) | 2002-06-13 | 2003-12-24 | Novuspharma S.P.A. | Derivatives of chromen-2-one as inhibitors of vegf production in mammalian cells |
| US6908917B2 (en) | 2002-08-13 | 2005-06-21 | Warner-Lambert Company | Chromone derivatives as matrix metalloproteinase inhibitors |
| WO2004073612A2 (en) | 2003-02-13 | 2004-09-02 | Merck & Co. Inc. | Estrogen receptor modulators |
| US7326447B2 (en) | 2003-02-25 | 2008-02-05 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Benzochromene derivatives |
| US20040198750A1 (en) | 2003-04-03 | 2004-10-07 | Jeremy Green | Compositions useful as inhibitors of protein kinases |
| US7378421B2 (en) | 2003-04-30 | 2008-05-27 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Chromenone derivatives |
| US20040242593A1 (en) | 2003-05-20 | 2004-12-02 | Moore Bob M. | Cannabinoid derivatives, methods of making, and use thereof |
| US7169942B2 (en) | 2003-05-20 | 2007-01-30 | University Of Tennessee Research Foundation | Cannabinoid derivatives, methods of making, and use thereof |
| US20050245490A1 (en) | 2004-05-03 | 2005-11-03 | Pinney Kevin G | Chromene-containing compounds with anti-tubulin and vascular targeting activity |
| US20060257337A1 (en) | 2005-04-28 | 2006-11-16 | David Sherris | Compositions and methods to treat skin diseases characterized by cellular proliferation and angiogenesis |
| US20070197567A1 (en) | 2005-04-28 | 2007-08-23 | Paloma Pharmaceuticals, Inc. | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
| US20140105920A1 (en) | 2005-04-28 | 2014-04-17 | Paloma Pharmaceuticals, Inc. | Compositions and methods to treat disease characterized by cellular proliferation and angiogenesis |
| WO2007101247A2 (en) | 2006-02-28 | 2007-09-07 | Paloma Pharmaceuticals, Inc. | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis |
| WO2010129622A1 (en) | 2009-05-04 | 2010-11-11 | Macusight, Inc. | Mtor pathway inhibitors for treating ocular disorders |
| US9381187B2 (en) | 2011-02-16 | 2016-07-05 | Paloma Pharmaceuticals, Inc. | Radiation countermeasure agents |
Non-Patent Citations (67)
| Title |
|---|
| Adams et al., Document No. XP-002563538, 1940. |
| Adams, R. et al., "Structure of Cannabinol. I. Preparation of an Isomer, 3-hydroxy-1-amyl-6,6,9-trimethy1-6-dibenzopyran," Journal of the American Chemical Society, 1940, 62, 2197-2200, XP002563538, Chemical Abstracts only. |
| Aoyama, N. et al., "Coumarin Derivatives for Quantitative Determination of Peroxidation-Active Substances by Chemiluminescence Analysis," 1993, XP002563539, Chemical Abstracts only. |
| Applicant-Initiated Interview Summary dated Oct. 10, 2014, in U.S. Appl. No. 13/901,011, 3 pages. |
| Carl et al. Proc. Natl. Acad. Sci. 77(4);224-2228 (1980). * |
| Carl et al; Proc. Natl. Acad. Sci., 77(4); 224-2228 (1980). |
| Carl, P. et al., "Protease-Activated ‘Prodrugs’ for Cancer Chemotherapy," Proceedings of the National Academy of Sciences, 1980, 77 (4), 2224-2228. |
| CHEMICAL ABSTRACTS, 1 January 1940, Columbus, Ohio, US; ADAMS ROGER, ET AL: "Structure of cannabinol. I. Preparation of an isomer, 3-hydroxy-1-amyl-6,6,9-trimethyl-6-dibenzopyran" XP002563538 |
| CHEMICAL ABSTRACTS, 1 January 1957, Columbus, Ohio, US; KENNER G. W.; MURRAY M. A.; TYLOR C. M. B.: "Oxidative cyclization of 2-biphenylcarboxylic acid" XP002563536 |
| CHEMICAL ABSTRACTS, 1 January 1957, Columbus, Ohio, US; RIGAUDY JEAN, THANG, KHA-VANG: "Dehydration of meso-dihydroanthracene alcohols. 9,10-Dihydro-9-anthryl tertiary carbinols. A case of elimination (of water) according to Hofmann's rule" XP002563540 |
| CHEMICAL ABSTRACTS, 1 January 1997, Columbus, Ohio, US; FARINA VITTORIO, ET AL: "The Stille reaction" XP002563537 |
| CHEMICAL ABSTRACTS, 5 August 1993, Columbus, Ohio, US; AOYAMA NORIHITO; TAKENAKA HIDEKI; MIIKE AKIRA: "Coumarin derivatives for quantitative determination of peroxidation-active substances by chemiluminescence analysis" XP002563539 |
| Children's Hospital, Atopic Dermatitis—Treatment, Care, & FAQ, retrieved Jul. 6, 2012, from http://childrenshospital.org/az/Site609/mainpageS609P4.html, 8 pages. |
| Children's Hospital, Atopic Dermatits—Treatment, Care, & FAQ, retrieve from http://childrenshospital.org/az/Site609/mainpageS609P4.html, Jul. 6, 2012. |
| DATABASE CA GARAZD, YA. L. ET AL: "Modified Coumarins. 6. Synthesis of Substituted 5,6-Benzopsoralens", XP002563541 |
| Dement Abstract for IN 200400392, retrieved Jul. 9, 2007, 3 pages, document indicates IN 200400932 published Feb. 24, 2006. |
| Devlin et al; "Synthesis and Structure Activity Relationships of 5H, 11H[2]benzopyrano[4, 3g][1]benzopyran 9 Carboxylic Acids"; Journal of Medicinal Chemistry, 1977, vol. 20, No. 2, pp. 205-209. |
| Devlin, J. et al., "Synthesis and Structure-Activity Relationships of 5H,11H[2]Benzopyrano [4,3-g] [1]benzopyran-9-carboxylic Acids," Journal of Medicinal Chemistry, 1977, 20 (2), 205-209. |
| Document No. XP-002563539, 1993. |
| Farina et al., Document No. XP-002563537, 1997. |
| Farina, V. et al., "The Stille Reaction," Organic Reactions, 1997, 50, XP002563537, Chemical Abstracts only. |
| Final Office Action dated Aug. 21, 2015, in U.S. Appl. No. 13/901,011, 11 pages. |
| Garazd et al; "Modified Couramins, 6, Synthesis of Substituted 5,6,-Benzopsoralens"; Chemistry of Natural Compounds, 2002, vol. 38, No. 3. |
| Garazd, Y. et al., "Modified Coumarins. 6. Synthesis of Substituted 5,6,-Benzopsoralens," Chemistry of Natural Compounds, 2002, 38 (5), 424-433, XP002563541, Chemical Abstracts only. |
| International Preliminary Report on Patentability for related International Application No. PCT/US2007/062971, dated Sep. 2, 2008. |
| International Search Report and Written Opinion of the International Searching Authority for related International Application No. PCT/US2006/040242, dated Dec. 9, 2008. |
| JM Schmidt et al. Synthesis and Evaluation of a Novel Nonsteroidal-Specific Endothelial Cell Proliferation Inhibitor. J. Med. Chem. 2003, 46, 1289-1292. * |
| Kenner et al., Document No. XP-002563536, 1957. |
| Kenner, G. et al., "Oxidative Cyclization of 2-Biphenylcarboxylic Acid," Tetrahedron, 1957, 1, 259-268, XP002563536, Chemical Abstracts only. |
| Kurita, et al., Induction of Keratinocyte Apoptosis by Photosensitizing Chemicals Plus UVA, J. Dermatological Science, 2007, 54, 105-112. |
| Kurita, M. et al., "Induction of Keratinocyte Apoptosis by Photosensitizing Chemicals Plus UVA," Journal of Dermatological Science, 2007, 45 (2), 105-112. |
| Larrosa et al., "Urolithins, Ellagic Acid-Derived Metabolites Produced by Human Colonic Microflora, Exhibit Estrogenic and Antiestrogenic Activities." Document No. XP-002563535, Journal of Agricultural and Food Chemistry, 2006, 54, pp. 1611-1620, © 2006 American Chemical Society, Published on Web Feb. 11, 2006. |
| Larrosa, M. et al., "Urolithins, Ellagic Acid-Derived Metabolites Produced by Human Colonic Microflora, Exhibit Estrogenic and Antiestrogenic Activities," Journal of Agricultural and Food Chemistry, 2006, 54, 1611-1620. |
| Liu, et al., Facilitation of Retinal Function Recovery by Coumarin—Derivatives, J. of Ocular Phamacology and Therapeutics, 1997, 13, 69-79. |
| Liu, S. et al., "Facilitation of Retinal Function Recovery by Coumarin Derivatives," Journal of Ocular Pharmacology and Therapeutics, 1997, 13 (1), 69-79. |
| Lopez-Gonzalez, et al., Apoptosis and Cell Cycle Disturbances Induced by Coumarin and 7-Hydroxycoumarin on Human Lung Carcinoma Cell Lines, Lung Cancer, 2004, 43, 275-283. |
| Lopez-Gonzalez, J. et al., "Apoptosis and Cell Cycle Disturbances Induced by Coumarin and 7-Hydroxycouramin on Human Lung Carcinoma Cell Lines," Lung Cancer, 2004, 43 (3), 275-283. |
| Manfred E. Wolff, Burger's Medicinal Chemistry and Drug Discovery, 5th edition, vol. 1, 1995, pp. 975-997. * |
| Non-Final Office Action dated Jan. 12, 2015, in U.S. Appl. No. 13/901,011, 12 pages. |
| Notice of Allowance and Fee(s) Due mailed Oct. 25, 2016, in U.S. Appl. No. 13/901,011, 20 pages. |
| Notice of Appeal filed Feb. 22, 2016, in U.S. Appl. No. 13/901,011, 2 pages. |
| Q Xue et al. Palomid 529, a Novel Small-Molecule Drug, Is a TORC1/TORC/2 Inhibitor That Reduces Tumor Growth, Tumor Angiogenesis, and Vascular Permeability.Cancer Res 2008; 68(22):9551-7. * |
| Reply to Office Action filed Jul. 13, 2015, in U.S. Appl. No. 13/901,011, 12 pages. |
| Requirement for Restriction/Election dated Jun. 4, 2014, in U.S. Appl. No. 13/901,011, 10 pages. |
| Response to Requirement for Restriction/Election filed Dec. 4, 2014, in U.S. Appl. No. 13/901,011, 9 pages. |
| Rigaudy et al., Document No. XP-002563540, 1957. |
| Rigaudy, J. et al., "Dehydration of Meso-dihydroanthracene Alcohols. 9,10-Dihydro-9-anthryl Tertiary Carbinols. A Case of Elimination (of water) According to Hofmann's Rule," Comptes Rendus, 1957, 245, 86-88, XP002563540, Chemical Abstracts only. |
| Sapuntsova et al; "Proliferative Processes in the Epidermis of Patients with Atopic Dermatitis Treated with Thymodepressing"; Bulletin of Experimental Biology and Medicine, May 2002; pp. 488-490. |
| Sapuntsova, S. et al., "Proliferative Processes in the Epidermis of Patients with Atopic Dermatitis Treated with Thymodepressin," Bulletin of Experimental Biology and Medicine, 2002, 133 (5), 488-490. |
| Schmidt et al., "Synthesis and Evaluation of a Novel Nonsteroidal-Specific Endothelial Cell Proliferation Inhibitor." Document No. XP-002563534, J. Med. Chem. 2003, 46, pp. 1289-1292, © 2003 American Chemical Society, Published on Web Mar. 15, 2003. |
| Submission Under 37 C.F.R. § 1.114 filed Sep. 22, 2016, U.S. Appl. No. 13/901,011, 12 pages. |
| The Acne Resource Center Online, Your Online Guide to Skin Care, retrieved Jul. 6, 2012, from http ://www.acne -resource.org/understanding-acne/understanding-index.html, 2 pages. |
| The Acne Resource Center Online, Your Online Guide to Skin Care, retrieved Jul. 6, 2012, from http://www.acneresource.org/understanding-acne/understanding-index.html, 2 pages. |
| The Acne Resource Center Online, Your Online Guide to Skincare, retrieved from http://www.acne-resource.org/understanding-acne/understanding-index.html, Jul. 6, 2012. |
| Umamoto, H. et al., "Fluorescent Whitening Agents for Synthetic Fibers. 18. Annenation Effects in the Fluorescence of Some Coumarins," Kogyo Kagaku Zasshi, 1971, 74 (10), 2123-2126, XP002563541, Chemical Abstracts only. |
| Vilar, et al., Design, Synthesis, and Vasorelaxant and Platelet Antiagregatory Activities of Coumarin-Resveratrol Hybrids, Bioorg. & Medicinal Chem. Letters, 2006, 16, 257-26. |
| Vilar, S. et al., "Design, Synthesis, and Vasorelaxant and Platelet Antiaggregatory Activities of Coumarin-Resveratrol Hybrids," Bioorganic & Medicinal Chemistry Letters, 2006, 16, 257-261. |
| Wolff, M., Ed., Burger's Medicinal Chemistry and Drug Discovery, Fifth Edition, vol. 1: Priciples and Practice, 1995, 975-977. |
| Written Opinion of the International Searching Authority for related International Application No. PCT/US2007/062971, dated Aug. 30, 2007. |
| Xie et al; "Regulation of Keratinocyte Proliferation in Rats with Deep, Partial Thickness Scald: Modulation of Cyclin D1-Cyclin-Dependent Kinsae 4 and Histone H1 Kinase Activity of M-Phase Promoting Factor"; Journal of Surgical Research, Jun. 2008, vol. 147, No. 1. |
| Xie, T. et al., "Regulation of Keratinocyte Proliferation in Rats with Deep, Partial-Thickness Scald: Modulation of Cyan D1-Cyclin-Dependent Kinase 4 and Histone H1 Kinase Activity of M-Phase Promoting Factor," Journal of Surgical Research, 2008, 147 (1), 9-14. |
| Yano et al; "Targeted Overexpressin of the Angiogenesis Inhibitor Thrombospondin-1 in the Epidermis of Tranfenic Mice Prevents Ultraviolent-B-induced Angiogenesis and Cutaneous Photo-Dam-age"; Journal of Investigative Dermatology, 2002, 118:800-805. |
| Yano, K. et al., "Targeted Overexpression of the Angiogenesis Inhibitor Thrombosponclin-1 in the Epidermis of Transgenic Mice Prevents Ultraviolet-B-Induced Angiogenesis and Cutaneous Photo-Damage," The Journal of Investigative Dermatology, 2002, 118 (5), 800-805. |
| Yoo et al; Biodegradable Nanoparticles Containing Doxorubicin-PLGA Conjugate for Sustrained Release; Pharm. Res. 16(7), 1995, 1114-1118. |
| Yoo, H. et al., "Biodegradable Nanoparticles Containing Doxorubicin-PLGA Conjugate for Sustained Release," Pharmaceutical Research, 1999, 16 (7), 1114-1118. |
| Zhang et al., Document No. XP-002563541, 2003. |
| Zhang, Y. et al., "Study on the Synthesis and Spectra Characteristics of Coumarins," Ranliao Yu Ranse Bianjibu, 2003, 40 (2), 68-70, XP002563541, Chemical Abstracts only. |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8475776B2 (en) | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis | |
| EP2545913A1 (en) | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis | |
| US7812020B2 (en) | Substituted pyridine derivatives | |
| US20060252748A1 (en) | Use of CDK II inhibitors for birth control | |
| EP3458448B1 (en) | Fasn inhibitors for use in treating non-alcoholic steatohepatitis | |
| CA2599352A1 (en) | Novel lipoxygenase inhibitors | |
| US6358940B1 (en) | Modified 2-Alkoxyestradiol derivatives with prolonged pharmacological activity | |
| US7528164B2 (en) | Substituted 4-aryl-4h-pyrrolo[2,3-h]chromenes and analogs as activators of caspases and inducers of apoptosis and the use thereof | |
| USRE46558E1 (en) | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis | |
| US7879835B2 (en) | Pharmaceutical composition for preventing and treating metabolic bone diseases containing alpha-arylmethoxyactylate derivatives | |
| CN101431893B (en) | Compositions and methods to treat diseases characterized by cellular proliferation and angiogenesis | |
| KR20140090696A (en) | Steroidal compounds as steroid sulphatase inhibitors | |
| KR20230169982A (en) | Compositions and methods for treating anemia associated with ribosomal disorders | |
| US20030149025A1 (en) | Use of benzopyranones for treating or preventing a primary brain cancer or a brain metastasis | |
| EP2114410B1 (en) | N-amino tetrahydrothiazine derivatives, method of manufacture and use | |
| AU2002332014A1 (en) | Use of benzopyranones for treating or preventing a primary brain cancer or a brain metastasis | |
| CN102992983B (en) | Up-regulator for expression of ATP (adenosine triphosphate)-binding cassette transporter A1 and application thereof | |
| Zhi | Discovery of structurally diverse nonsteroidal SPRMs based on a screening hit, 1, 2-dihydro-2, 2, 4-trimethyl-6-phenylquinolinone | |
| KR20040062018A (en) | Pharmaceutical compositions for angiogenesis inhibition containing phenylthionocarbamate derivatives or its pharmaceutically acceptable salts |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
| AS | Assignment |
Owner name: CANTERBURY LABORATORIES, LLC, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PALOMA PHARMACEUTICALS, INC.;REEL/FRAME:055320/0328 Effective date: 20190107 Owner name: PALOMA PHARMACEUTICALS, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHERRIS, DAVID;REEL/FRAME:055320/0934 Effective date: 20111006 Owner name: PALOMA PHARMACEUTICALS, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GILL, MANJINDER;MA, FUPENG;DUNN-DUFAULT, ROBERT;AND OTHERS;SIGNING DATES FROM 20130610 TO 20130709;REEL/FRAME:055321/0562 Owner name: PALOMA PHARMACEUTICALS, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BHAL, SANJIVANJIT KAUR;REEL/FRAME:055334/0201 Effective date: 20150710 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |



























































































































