USRE46179E1 - Rotation knobs for surgical instruments - Google Patents

Rotation knobs for surgical instruments Download PDF

Info

Publication number
USRE46179E1
USRE46179E1 US14748809 US201514748809A USRE46179E US RE46179 E1 USRE46179 E1 US RE46179E1 US 14748809 US14748809 US 14748809 US 201514748809 A US201514748809 A US 201514748809A US RE46179 E USRE46179 E US RE46179E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
rotation knob
housing
shaft
nose
surgical instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14748809
Inventor
Keir Hart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0042Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping
    • A61B2017/00424Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping ergonomic, e.g. fitting in fist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • A61B2017/2929Details of heads or jaws the angular position of the head being adjustable with respect to the shaft with a head rotatable about the longitudinal axis of the shaft

Abstract

A surgical instrument includes a housing having a shaft extending therefrom. The housing includes a nose having a neck and a base that defines a diameter greater than that of the neck. A rotation knob has a distal end defining a first aperture and a proximal end defining a second aperture, the apertures cooperating to define a lumen extending through the rotation knob that is configured to receive the shaft. The first aperture defines a diameter that generally approximates a diameter of the shaft. The rotation knob is transitionable between an at-rest position and a flexed position. In the flexed position, the second aperture is expanded to permit passage of the base of the nose into an interior of the rotation knob. In the at-rest position, the second aperture generally approximates the diameter of the neck to rotatably engage the rotation knob about the nose with the shaft extending therethrough.

Description

BACKGROUND

1. Technical Field

The present disclosure relates to surgical instruments and, more particularly, to rotation knobs for surgical instruments having rotatable end effector assemblies.

2. Background of Related Art

As an alternative to open surgical instruments for use in open surgical procedures, many modern surgeons use endoscopic apparatus for remotely accessing tissue through smaller openings or incisions. As a direct result thereof, patients tend to benefit from less scarring, fewer infections, shorter hospital stays, less pain, less restriction of activity, and reduced healing time. A typical endoscopic instrument includes a housing, an end effector assembly, and a shaft interconnecting the housing and the end effector assembly. The housing includes one or more controls that are operable to control the end effector assembly such that the end effector assembly may be inserted through the opening in tissue and into the internal surgical site, while the housing remains externally disposed, allowing the surgeon to manipulate the housing controls to control operation of the end effector assembly within the internal surgical site.

An endoscopic surgical forceps, for example, includes a plier-like end effector assembly which relies on mechanical action between its jaw members to grasp, clamp and constrict vessels or tissue. Energy-based surgical forceps utilize both mechanical clamping action and energy, e.g., electrical energy, ultrasonic energy, light energy, thermal energy, etc., to treat tissue. In some procedures, once the tissue has been treated, the surgeon has to sever the tissue and, as such, many forceps have been designed which incorporate a knife or blade member that effectively severs the tissue after treating the tissue.

The housings of endoscopic surgical forceps typically include a movable handle for opening and closing the jaw members, a trigger for selectively advancing the knife or blade, and an actuator for controlling the supply of energy to the end effector assembly. Further, some handle assemblies incorporate a rotation assembly that is operable to selectively rotate the end effector assembly in order to position the end effector assembly as desired within the internal surgical site.

SUMMARY

As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.

In accordance with one aspect of the present disclosure, a surgical instrument is provided. The surgical instrument includes a housing having a shaft extending distally therefrom. The shaft defines a longitudinal axis. The housing includes a nose disposed at a distal end thereof. The nose includes a neck extending distally from the housing and a base disposed at a distal end of the neck. The base defines a diameter that is greater than a diameter of the neck. The surgical instrument further includes a rotation knob having a distal end defining a first aperture and a proximal end defining one or more second apertures. The first aperture defines a diameter that generally approximates a diameter of the shaft. The first and second apertures cooperate to define a lumen extending longitudinally through the rotation knob. The lumen is configured to receive the shaft. The rotation knob is transitionable between an at-rest position and a flexed position. In the flexed position, the diameter of the second aperture is expanded to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob. In the at-rest position, the second aperture defines a diameter that generally approximates the diameter of the neck of the nose to rotatably engage the proximal end of the rotation knob about the nose with the shaft extending through the lumen of the rotation knob.

In one aspect, the rotation knob includes one or more protrusions extending into the interior thereof. The protrusion(s) is configured to engage the shaft, e.g., cut-outs defined within the shaft, to engage the rotation knob and the shaft to one another.

In another aspect, the rotation knob includes a retaining ring configured to bias the rotation knob towards the at-rest position. The retaining ring may include an interruption defined therein that permits expansion of the retaining ring to thereby permit transitioning of the rotation knob between the at-rest and flexed positions.

In still another aspect, the rotation knob includes first and second pairs of proximal support walls. Each pair of proximal support walls cooperates to define one of the second apertures therethrough. In this configuration, the retaining ring may be disposed between the first and second pairs of proximal support walls.

In yet another aspect, the rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof. The alternating flanges and recesses are configured to facilitate grasping and rotating the rotation knob.

In still yet another aspect, an outer distal corner of the base of the nose defines an angled surface configured to facilitate transitioning of the rotation knob from the at-rest position to the flexed position to permit passage of the base through the one or more second apertures.

In another aspect, the rotation knob is monolithically formed as a single component.

In yet another aspect, the housing is formed from first and second housing parts. In this configuration, when the rotation knob is engaged about the nose of the housing, the rotation knob helps maintain the engagement of the first and second housing parts to one another.

In accordance with the present disclosure, another aspect of a surgical instrument is provided. The surgical instrument includes a housing having a shaft extending distally therefrom. The shaft defines a longitudinal axis. The housing includes a nose disposed at a distal end thereof. The nose includes a neck extending distally from the housing and a base disposed at a distal end of the neck. The base defines a diameter that is greater than a diameter of the neck. The surgical instrument further includes a rotation knob. The rotation knob has a distal end defining a first aperture and a plurality of radially-spaced fingers extending proximally from a proximal end of the rotation knob. The fingers each including a radially inwardly-extending tab disposed at a free end thereof. The tabs cooperate with one another to define a second aperture. The first aperture defines a diameter that generally approximates a diameter of the shaft. The first and second apertures cooperate to define a lumen extending longitudinally through the rotation knob that is configured to receive the shaft. The rotation knob is transitionable between an at-rest position and a flexed position. In the flexed position, the fingers are flexed radially outwardly to expand a diameter of the second aperture to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob. In the at-rest position, the second aperture defines a diameter that generally approximates the diameter of the neck of the nose to rotatably engage the tabs of the fingers of the rotation knob about the nose, with the shaft extending through the lumen of the rotation knob.

In one aspect, the rotation knob includes one or more protrusions extending into the interior thereof. The protrusion(s) is configured to engage the shaft, e.g., a cut-out defined within the shaft, to engage the rotation knob and the shaft to one another.

In one aspect, the fingers are biased towards the at-rest position.

In another aspect, the rotation knob is monolithically formed as a single component.

In yet another aspect, the housing is formed from first and second housing parts. In this configuration, when the rotation knob is engaged about the nose of the housing, the rotation knob helps maintain the engagement of the first and second housing parts to one another.

In accordance with yet another aspect of the present disclosure, a surgical instrument is provided. The surgical instrument includes a housing and a shaft extending distally from the housing. The shaft defines a longitudinal axis and extends through an aperture defined within a distal surface of the housing. The shaft further includes a bushing disposed about the shaft towards a proximal end thereof. The surgical instrument further includes a rotation knob. The rotation knob includes a proximal end, a distal end, and a lumen extending longitudinally therethrough that is configured to receive the shaft. The rotation knob defines an internal cavity in communication with the lumen that is configured to receive the bushing therein. The rotation knob includes a plurality of radially-spaced fingers extending proximally from a proximal end thereof. The fingers each include a radially outwardly-extending tab disposed at a free end thereof. The tabs cooperating to define an outer peripheral diameter. The rotation knob is transitionable between a first at-rest position and a first flexed position, while the fingers are transitionable between a second at-rest position and a second flexed position. In the first flexed position, the rotation knob is flexed to expand a diameter of the lumen to permit passage of the bushing distally through the lumen and into the internal cavity of the rotation knob. In the first at-rest position, the diameter of the lumen generally approximates a diameter of the shaft to engage the bushing within the internal cavity. In the second flexed position, the fingers are flexed radially-inwardly such that the fingers are permitted to pass through the aperture defined within the distal surface of the housing. In the second at-rest position, the outer peripheral diameter defined by the tabs of the fingers is greater than a diameter of the aperture defined through the distal surface of the housing to rotatably engage the distal surface of the housing within a slot defined between the proximal end of the rotation knob and the tabs of the fingers, with the shaft extending through the lumen of the rotation knob.

In one aspect, the fingers are biased towards the second at-rest position.

In another aspect, the rotation knob is biased towards the first at-rest position.

In still another aspect, the rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof. The alternating flanges and recesses are configured to facilitate grasping and rotating the rotation knob.

In yet another aspect, the rotation knob and fingers are monolithically formed as a single component.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are described herein with reference to the drawings wherein like reference numerals identify similar or identical elements:

FIG. 1 is a perspective view of an endoscopic surgical forceps configured for use in accordance with the present disclosure;

FIG. 2 is a side, cut-away view of a housing of the forceps of FIG. 1;

FIG. 3 is an perspective view of a shaft and an end effector assembly of the forceps of FIG. 1 shown with parts separated;

FIG. 4A is a perspective view of one embodiment of a rotation knob configured for use with the forceps of FIG. 1;

FIG. 4B is a longitudinal, cross-sectional view of the rotation knob of FIG. 4A;

FIG. 4C is a transverse, cross-sectional view taken along section line 4C-4C of FIG. 4B;

FIG. 4D is a transverse, cross-sectional view taken along section line 4D-4D of FIG. 4B;

FIG. 4E is a top view of a retaining ring of the rotation knob of FIG. 4A;

FIG. 5A is a side view of a distal end of the shaft of the forceps of FIG. 1 showing the rotation knob of FIG. 4A sliding proximally therealong;

FIG. 5B is a side, cut-away view of a distal end of the housing of FIG. 2 showing the rotation knob of FIG. 4A flexed outwardly for engagement about the housing;

FIG. 5C is a side, cut-away view of a distal end of the housing of FIG. 2 shown including the rotation knob of FIG. 4A engaged thereon;

FIG. 6 is a side, cut-away view of a distal end of the housing of the forceps of FIG. 1 shown including another embodiment of a rotation knob engaged thereon;

FIG. 7 is a side, cut-away view of a distal end of a housing of another embodiment of a forceps, shown including another embodiment of a rotation knob engaged thereon;

FIG. 8A is a perspective view of another embodiment of a rotation knob configured for use with the forceps of FIG. 1;

FIG. 8B is a perspective view of another embodiment of a rotation knob configured for use with the forceps of FIG. 1; and

FIG. 8C is a perspective view of another embodiment of a rotation knob configured for use with the forceps of FIG. 1.

DETAILED DESCRIPTION

FIGS. 1-3 show in detail the operating features and inter-cooperating components of one example of a surgical instrument, forceps 10, configured for use in accordance with the present disclosure. Although the present disclosure is described with exemplary reference to forceps 10, the present disclosure is equally applicable for use with any other suitable surgical instrument having a housing including one or more mechanical and/or electrical controls operable to control and/or manipulate an end effector assembly of the surgical instrument. For the purposes herein, forceps 10 is generally described.

Forceps 10 defines a longitudinal axis “X-X” and includes a housing 20, a handle assembly 30, a rotating assembly 70, a trigger assembly 80 and an end effector assembly 90. Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 90 and a proximal end 16 that mechanically engages housing 20. Forceps 10 also includes cable 2 that connects forceps 10 to a generator (not shown) or other suitable power source, although forceps 10 may alternatively be configured as a battery powered instrument. Cable 2 includes wires (not shown) extending therethrough that have sufficient length to extend through shaft 12 in order to provide energy to at least one of the jaw members 92 and 96 of end effector assembly 90.

With continued reference to FIGS. 1-3, handle assembly 30 includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50. Rotating assembly 70, as will be described in greater detail below, includes a rotation knob 100 that is rotatable in either direction about longitudinal axis “X-X” to rotate end effector assembly 90 about longitudinal axis “X-X.”

End effector assembly 90 is shown attached at a distal end 14 of shaft 12 and includes a pair of opposing jaw members 92 and 96. More specifically, jaw members 92, 96 are pivotably coupled to shaft 12 via pivot 91. Each jaw member 92, 96 includes an opposed, electrically conductive tissue sealing surface 93, 97, respectively. End effector assembly 90 is configured as a bilateral assembly, i.e., where both jaw member 92 and jaw member 96 are movable about pivot 91 relative to one another and to shaft 12. However, end effector assembly 90 may alternatively be configured as a unilateral assembly, i.e., where one of the jaw members 92, 96 is fixed relative to shaft 12 and the other jaw member 92, 96 is movable about pivot 91 relative to shaft 12 and the fixed jaw member 92, 96. A knife assembly 98 is disposed within shaft 12 and a knife channel 95 is defined within one or both jaw members 92, 96 to permit reciprocation of a knife blade 99 therethrough, e.g., via activation of trigger 82 of trigger assembly 80, to cut tissue grasped between jaw members 92, 96.

Continuing with reference to FIGS. 1-3, housing 20 houses the internal working components of forceps 10 and is formed from first and second cooperating housing parts 20a, 20b. Housing halves 20a, 20b may be snap-fit, or otherwise engaged to one another to form housing 20. Movable handle 40 of handle assembly 30 extends into housing 20, ultimately connecting to a drive assembly 32 that, together, mechanically cooperate to impart movement of jaw members 92 and 96 between a spaced-apart position and an approximated position to grasp tissue between sealing surfaces 93, 97 of jaw members 92, 96, respectively. More specifically, movable handle 40 includes a pair of driving flanges 34 that extends upwardly into housing 20 on either side of drive assembly 32, ultimately pivotably coupling to housing 20 via pivot 35. Driving flanges 34 are received within mandrel 36 of drive assembly 32, which is disposed about proximal end 38 of drive bar 37, while jaw members 92, 96 are pivotably coupled to distal end 39 of drive bar 37. Due to this configuration, upon pivoting of movable handle 40 relative to fixed handle 50, driving flanges 34 are pivoted about pivot 35, thereby urging mandrel 36 and drive bar 37 to translate longitudinally along longitudinal axis “X-X” and through shaft 12 to pivot jaw members 92, 96 between the spaced-apart and approximated positions. As shown in FIG. 1, movable handle 40 is initially spaced-apart from fixed handle 50 and, correspondingly, jaw members 92, 96 are in the spaced-apart position. Movable handle 40 is depressible from this initial position to a depressed position corresponding to the approximated position of jaw members 92, 96.

With continued reference to FIGS. 1-3, in conjunction with FIG. 5C, rotation knob 100 is disposed about both proximal end 16 of shaft 12 and nose 22 of housing 20 and, as mentioned above, is rotatable in either direction about longitudinal axis “X-X” to rotate end effector 100 about longitudinal axis “X-X.” Shaft 12 includes a pair of cut-outs 19 defined within opposed sides 18 thereof at proximal end 16 of shaft 12 and rotation knob 100 includes a pair of protrusions 102 shaped complementarily to cut-outs 19 such that, upon positioning of rotation knob 100 about proximal end 16 of shaft 12, protrusions 102 are received within cut-outs 19 to engage rotation knob 100 and shaft 12 to one another. With rotation knob 100 and shaft 12 engaged to one another, rotation knob 100 may be rotated about longitudinal axis “X-X” to effect corresponding rotation of shaft 12 and end effector assembly 90 about longitudinal axis “X-X.”

Nose 22 of housing 20 is configured to accept proximal end 104 of rotation knob 100 thereon to permit rotatable coupling of rotation knob 100 and housing 20 to one another. Nose 22 of housing 20 includes a neck 23 extending distally from body portion 21 of housing 20 and a distal base 25 disposed at free end 24 of neck 23. Neck 23 defines a reduced diameter as compared to distal base 25 of nose 22 such that, as will be described below, when proximal end 104 of rotation knob 100 is disposed about neck 23, rotation knob 100 is retained in fixed longitudinal position relative to nose 22 between body portion 21 of housing 20 and distal base 25 of nose 22. The specific features and configuration of rotation knob 100 and other embodiments of rotation knobs configured for use with forceps 10 are described in greater detail below.

Turning now to FIGS. 4A-4E and 5A-5C, rotation knob 100 defines a generally conically-shaped configuration having a minimum diameter at distal end 106 thereof and a maximum diameter at proximal end 104 thereof, although other configurations are also contemplated. Rotation knob 100 includes a shell 110 defining the conically-shaped configuration of rotation knob 100 and includes a generally hollow interior 112, a distal wall 120 defining distal end 106 of rotation knob 100, and first and second sets of proximal support walls 130, 140 defining proximal end 104 of rotation knob 100. Distal wall 120 defines an aperture 122 therethrough that generally approximates the dimensions of shaft 12 such that shaft 12 is permitted to pass therethrough. Walls 132, 134 of the first set of proximal support walls 130 extend inwardly from opposed sides of shell 110 and each define opposed surface 133, 135, respectively. Surfaces 133, 135 may define curvate configurations (or any other suitable configurations) that cooperate to define an aperture 136 therebetween that is substantially aligned with aperture 122 defined through distal wall 120. Aperture 136, in its at-rest position, generally approximates the dimensions of neck 23 of nose 22, such that proximal end 104 of rotation knob 100 may be disposed about nose 22 of housing 20, as will be described in greater detail below. Walls 142, 144 of the second set of proximal support walls 140 are spaced-apart from walls 132, 134 of the first set of proximal support walls 130 to define an annular slot 150 therebetween. Walls 142, 144 of the second set of proximal support walls 140, similar to the first set of proximal support walls 130, extend inwardly from opposed sides of shell 110 and each define an opposed surface 143, 145, respectively, e.g., a curvate surface (although other configurations are contemplated), that cooperate to define an aperture 146 that is substantially aligned with apertures 122 and 136. Similar to aperture 136, aperture 146, in its at-rest position, generally approximates the dimensions of neck 23 of nose 22, such that proximal end 104 of rotation knob 100 may be rotatably engaged about nose 22 of housing 20, as will be described in greater detail below. Apertures 122, 136, 146 together cooperate to define a lumen 160 extending longitudinally though rotation knob 100. Lumen 160 is configured to receive shaft 12 therethrough, thus permitting rotation knob 100 to be disposed about shaft 12 in a substantially at-rest position, as will be described below.

With continued reference to FIGS. 4A-4E and 5A-5C, rotation knob 100 includes a plurality of alternating flanges 114 and recesses 116 annularly disposed about the outer periphery of shell 110 towards proximal end 104 of rotation knob 100 (although other configurations are contemplated) to facilitate grasping and rotating rotation knob 100. Rotation knob 100 is monolithically formed as a single component and may be formed from any suitable material, e.g., biocompatible polymer(s), that provides at least some degree of flexibility to permit engagement of rotation knob 100 about nose 22 of housing 20, as will be described below. Further, shell 110 may be formed from a relatively thin material to facilitate flexing of shell 110 for engaging (and disengaging) rotation knob 100 about nose 22 of housing 20, while distal wall 120 and the sets of proximal support walls 130, 140 provide strength and support to rotation knob 100. Rotation knob 100 may also include a plurality of cut-outs 118 defined annularly about shell 110 at proximal end 104 thereof to provided increase flexibility to shell 110, e.g., to facilitate the outward-flexing of proximal end 104 of shell 110 such that shell 110 may be positioned about nose 22.

Continuing with reference to FIGS. 4A-4E and 5A-5C, shell 110 includes a pair of opposed protrusions 102 extending inwardly into hollow interior 112 of shell 110 that are configured to engage opposed cut-outs 19 defined within shaft 12 to engage rotation knob 100 and shaft 12 to one another. Protrusions 102 extend into lumen 160 defined through rotation knob 100 and are longitudinally disposed between distal wall 120 of rotation knob 100 and first set of proximal support walls 130 of rotation knob 100. Rotation knob 100 further includes a retaining ring 180 housed within annular slot 150 defined between the sets of proximal support walls 130, 140. Retaining ring 180 is secured within annular slot 150 via flanges 137, 139 of walls 132, 134 and flanges 147, 149 of walls 147, 149, although retaining ring 180 may otherwise be secured within annular slot 150 in any suitable fashion, e.g., mechanical engagement, friction-fitting, adhesion, etc.

As best shown in FIG. 4E, retaining ring 180 is formed from wire in a substantially ring-shaped configuration defining an interruption 182 that provides resilient flexibility to retaining ring 180, e.g., to permit radial expansion and contraction of ring 180. The wire forming retaining ring 180 may define a circular, oval, square, star-shaped, or any other suitable cross-sectional configuration. Alternatively, retaining ring 180 may be formed from any other suitable resiliently flexible material and/or may define any other suitable configuration that provides resilient flexibility to retaining ring 180. As will be described below, the resiliently flexible configuration of retaining ring 180 biases retaining ring towards an at-rest or contracted condition that, in turn, biases rotation knob 100 towards an at-rest, or un-flexed position (see FIG. 5C).

Turning now to FIGS. 5A-5C, in conjunction with FIGS. 1 and 4A-4E, the assembly of rotation knob 100 on a surgical instrument, e.g., forceps 10, and the use of rotation knob 100 in conjunction with forceps 10 to effect rotation of end effector assembly 90 is described. As will become apparent in view of the following, the configuration of rotation knob 100 permits efficient assembly and disassembly of rotation knob 100 on forceps 10 without requiring additional tools for assembly, without requiring multiple components cooperating to form rotation knob 100, and without compromising the integrity of rotation knob 100.

Initially, as shown in FIG. 5A, in conjunction with FIGS. 4A-4E, rotation knob 100 is slid proximally over end effector assembly 90 with end effector assembly 90 passing through lumen 160 defined through shell 110 of rotation knob 100. As mentioned above, lumen 160 is configured to receive shaft 12 therethrough such that rotation knob 100 may be easily slid proximally along shaft 12 towards housing 20. Lumen 160 is configured to permit passage of shaft 12 therethrough without requiring substantial flexing of rotation knob 100 such that, at this point, shell 110 and retaining ring 180 of rotation knob 100 remain disposed in their respective at-rest positions (the at-rest position of rotation knob 100). Upon reaching proximal end 16 of shaft 12, with rotation knob 100 disposed in the at-rest position, rotation knob 100 is inhibited from being translated further proximally due to the abutment of the second set of proximal support walls 140 of rotation knob 100 and distal base 25 of nose 22 of housing 20. That is, distal base 25 of nose 22 of housing 20 defines a diameter larger than the at-rest diameter of lumen 160 of shell 110 of rotation knob 100 such that distal base 25 is inhibited from passing through lumen 160 when rotation knob 100 is disposed in the at-rest position. Thus, in order to permit passage of proximal end 104 of rotation knob 100 proximally beyond distal base 25 of nose 22 and into position about neck 23 of nose 22, rotation knob 100 is must flex from the at-rest position to a flexed position, thereby increasing the diameter of lumen 160 so as to permit 25 passage of distal base 25 of nose 22 therethrough.

As shown in FIG. 5B, in conjunction with FIGS. 4A-4E, in order to permit passage of rotation knob 100 over distal base 25 of nose 22, proximal end 104 of rotation knob 100 is flexed radially outwardly to expand lumen 160 to a sufficient diameter to permit passage of distal base 25 therethrough. That is, proximal end 104 of shell 110 is flexed radially outwardly such that walls 132, 134 of the first set of proximal support walls 130 are moved apart from one another and such that walls 142, 144 of the second set of proximal support walls 140 are likewise moved apart from one another to increase the diameter of apertures 136, 146, respectively, and, thus, the portion of lumen 160 extending through proximal end 104 of rotation knob 100. Upon outward flexing of proximal end 104 of shell 110, retaining ring 180 is likewise expanded against its bias to permit expansion of apertures 136, 146. Further, distal outer corner 26 of distal base 25 of nose 22 may define an angled surface 27 to facilitate outward flexing of shell 110 of rotation knob 100 as rotation knob 100 is urged proximally about distal base 25 of nose 22, e.g., angled surface 27 of distal base 25 permits proximal end 104 of rotation knob 100 to cam therealong towards the flexed position.

Rotation knob 100, in this flexed position, is advanced further proximally until the first and second sets of proximal support walls 130, 140, respectively, of rotation knob 100 are disposed proximally of distal base 25 of nose 22 and are positioned adjacent to neck 23 of nose 22. In this position, as shown in FIG. 5C, distal base 25 of nose 22 is disposed within hollow interior 112 of shell 110 longitudinally between distal wall 120 and the first set of proximal support walls 130. Upon achieving this position, with distal base 25 no longer disposed between the opposed walls 132, 134 and 142, 144 of first and second sets of proximal support walls 130, 140, respectively, and under the bias of retaining ring 180 and shell 110, proximal end 104 of rotation knob 100 is returned back towards the at-rest position (wherein apertures 136, 146 are returned towards their at-rest diameters) such that walls 132, 134 and 142, 144 are approximated, or clamped about neck 23 of nose 22. In this position, proximal end 104 of rotation knob 100 is engaged about nose 22 of housing 20, i.e., neck 23 of nose 22 extends through apertures 136, 146 defined by first and second sets of proximal support walls 130, 140, respectively, while distal end 106 of rotation knob 100 is disposed about proximal end 16 of shaft 12, i.e., proximal end 16 of shaft 12 extends through aperture 122 defined through distal wall 120 of rotation knob 100.

With continued reference to FIG. 5C, in conjunction with FIGS. 4A-4E, rotation knob 100 is retained in substantially fixed longitudinal position relative to nose 22 due to the positioning of the first and second sets of proximal support walls 130, 140, respectively, between body portion 21 of housing 20 and distal base 25 of nose 22 and under the bias of retaining ring 180 and shell 110. However, although rotation knob 100 is substantially fixed in longitudinal position relative to nose 22 due to the engagement of proximal end 104 of rotation knob 100 about neck 23 of nose 22, rotation knob 100 is permitted to rotate about longitudinal axis “X-X” relative to housing 20. The bias of retaining ring 180 and shell 110 towards their respective at-rest positions, which bias first and second sets of proximal support walls 130, 140, respectively, to approximate, or clamp about neck 23 of nose 22 also helps maintain the engagement of housing parts 20a, 20b, to one another, i.e., the clamping of rotation knob 100 about nose 22 inhibits substantial separation of housing parts 20a, 20b from one another.

In the engaged position, wherein rotation knob 100 is engaged about nose 22, protrusions 102 of rotation knob 100, which extend inwardly into hollow interior 112 of shell 110, are biased into engagement within cut-outs 19 defined within shaft 12 to rotatably fix rotation knob 100 and shaft 12 to one another. Thus, upon rotation of rotation knob 100 relative to housing 20, shaft 12 and end effector assembly 90 are similarly rotated relative to housing 20. Further, the bias of retaining ring 180 to clamp proximal end 104 of rotation knob 100 about neck 23 of nose 22 may be sufficient to retain rotation knob 100 and, thus, end effector assembly 90 in fixed rotational orientation in the absence of manipulation of rotation knob 100. Alternatively, neck 23 of nose 22 may includes a plurality of notches (not explicitly shown) defined therein that correspond to pre-determined intervals of rotation, e.g., 30 degrees, 60 degrees, 90 degrees, etc., of end effector assembly 90. As such, rotation knob 100 may be incrementally rotated and locked in engagement with each successive notch (not shown) under the bias of retaining ring 180 and shell 110 to rotate and fix end effector assembly 90 in various different rotational positions.

Referring again to FIGS. 4A-4E and 5A-5C, in order to disengaged rotation knob 100 from nose 22 of housing 20 and shaft 12, proximal end 104 of shell 110 of rotation knob 100 is flexed radially outwardly to the flexed position such that walls 132, 134 of the first set of proximal support walls 130 are moved apart from one another and such that walls 142, 144 of the second set of proximal support walls 140 are moved apart from one another to expand retaining ring 180, thus permitting expansion of apertures 136, 146. Apertures 136, 146, are expanded sufficiently so as to permit passage of proximal end 104 of rotation knob 100 distally over distal base 25 of nose 22 of housing 20 to disengage rotation knob 100 from housing 20. Further, upon outward flexing of shell 110, protrusions 102 are withdrawn from cut-outs 19 defined within shaft 12 to disengage shaft 12 and rotation knob 100 from one another. Once rotation knob 100 has been disengaged from shaft 12 and nose 22, rotation knob 100 may be slid distally along shaft 12, ultimately passing over end effector assembly 90 to remove rotation knob 100 from forceps 10.

Turning now to FIG. 6, another embodiment of a rotation knob 200 configured for use with forceps 10 is shown. Rotation knob 200 is similar to rotation knob 100 (FIGS. 4A-4E) and defines a generally conically-shaped configuration, although other configurations are also contemplated. Rotation knob 200 is monolithically formed as a single component and may be formed from any suitable material, e.g., biocompatible polymer(s), that provides at least some degree of flexibility to permit engagement of rotation knob 100 about nose 22 of housing 20. Rotation knob 200, except where specifically contradicted below, may include any of the features discussed above with respect to rotation knob 100 (FIGS. 4A-4E).

Continuing with reference to FIG. 6, rotation knob 200 includes a shell 210 defining the conically-shaped configuration of rotation knob 200 and having a generally hollow interior 212, a distal wall 220 defining distal end 202 of rotation knob 200, a plurality, e.g., four (4), spaced-apart, proximally-extending fingers 230 disposed at proximal end 204 of rotation knob 200, and a lumen 214 extending longitudinally through shell 210 of rotation knob 200. Shell 210 of rotation knob 200 includes a pair of opposed protrusions 260 extending inwardly into hollow interior 212 of shell 210 that are configured to engage opposed cut-outs 19 defined within shaft 12 to engage rotation knob 200 and shaft 12 to one another. Protrusions 260 extend into lumen 214 defined through rotation knob 200 and are longitudinally disposed between distal wall 220 and fingers 230 of rotation knob 200.

Each finger 230 of rotation knob 200 includes an inwardly-extending tab 240 disposed at a free end 244 thereof. Tabs 240 of fingers 230 cooperate to define an aperture 250 through proximal end 204 of rotation knob 200 that, in conjunction with aperture 250 defined through distal wall 220, define lumen 214 extending longitudinally through rotation knob 200. Fingers 230 are formed at least partially from a resiliently flexible material, thus permitting fingers 230 to flex radially outwardly from an at-rest position to a flexed position, wherein the diameter of aperture 250 is expanded to permit passage of proximal end 204 of rotation knob 200 about distal base 25 of nose 22 of housing 20. Fingers 230 are biased towards the at-rest position, wherein the diameter of aperture 250 generally approximates the diameter of shaft 12, thus permitting passage of shaft 12 therethrough while fingers 230 of rotation knob 200 remain in a substantially at-rest, or un-flexed position.

In use, rotation knob 200 is first slid proximally over end effector assembly 90 with end effector assembly 90 passing through lumen 214 defined through shell 210 of rotation knob 200. Upon reaching proximal end 16 of shaft 12, with rotation knob 200 still disposed in the at-rest position, rotation knob 200 is inhibited from being translated further proximally due to the abutment of tabs 240 of fingers 230 of rotation knob 200 and distal base 25 of nose 22 of housing 20. Thus, in order to permit passage of proximal end 204 of rotation knob 200 proximally beyond distal base 25 of nose 22 and into position about neck 23 of nose 22, fingers 230 are flexed radially outwardly from the at-rest position to the flexed position, thereby increasing the diameter of aperture 250 and, thus, the proximal portion of lumen 214 so as to permit passage of distal base 25 of nose 22 therethrough.

Rotation knob 200, in this flexed position, is now permitted to be advanced further proximally such that tabs 240 of fingers 230 are moved proximally over distal base 25 of nose 22 into position adjacent neck 23 of nose 22. In this position, as shown in FIG. 5C, distal base 25 of nose 22 is disposed within hollow interior 212 of shell 210 longitudinally between distal wall 220 and fingers 230. Upon achieving this position, with distal base 25 no longer disposed between fingers 230, fingers 230 are resiliently biased back towards the at-rest position such that tabs 240 are approximated about neck 23 of nose 22 and aperture 250 is returned towards its at-rest diameter. In this position, with tabs 240 approximated, or clamped about neck 23 of nose 22, rotation knob 200 is retained in substantially fixed longitudinal position relative to nose 22 due to the positioning of tabs 240 of fingers 230 between body portion 21 of housing 20 and distal base 25 of nose 22 under the bias of fingers 230, although rotation knob 200 is permitted to rotate about longitudinal axis “X-X” relative to housing 20. The clamping or bias of fingers 230 about neck 23 of nose 22 also helps maintain the engagement of housing parts 20a, 20b of housing 20 to one another, similarly as described about with respect to rotation knob 100 (see FIGS. 4A-4E).

In the engaged position, wherein rotation knob 200 is engaged about nose 22, protrusions 260 of rotation knob 200 are engaged within cut-outs 19 defined within shaft 12 to rotatably fix rotation knob 200 and shaft 12 to one another. Thus, upon rotation of rotation knob 200 relative to housing 20, shaft 12 and end effector assembly 90 are similarly rotated relative to housing 20.

In order to disengaged rotation knob 200 from nose 22 of housing 20 and shaft 12, fingers 230 are flexed radially outwardly from the at-rest position back to the flexed position to expand aperture 250 such that tabs 240 of fingers 230 may pass distally over distal base 25 of nose 22 of housing 20 to disengage rotation knob 200 from housing 20. Further, upon outward flexing of fingers 230, protrusions 260 are withdrawn from cut-outs 19 defined within shaft 12 to disengage shaft 12 and rotation knob 200 from one another. Once rotation knob 200 has been disengaged from shaft 12 and nose 22, rotation knob 200 may be slid distally along shaft 12, ultimately passing over end effector assembly 90 to remove rotation knob 200 from forceps 10.

With reference to FIG. 7, another embodiment of a rotation knob 300 configured to engage a distal end 22′ of a housing 20′ of a surgical instrument 10′ is shown. Surgical instrument 10′ may be a forceps, e.g., a forceps similar to forceps 10 (FIG. 1), or any other suitable surgical instrument including an end effector assembly disposed at a distal end of a shaft and a housing at the proximal end of the shaft for controlling operation of the end effector assembly. Rotation knob 300 is configured for use with a surgical instrument 10′ including a housing 20′ having a distal surface 24′ which defines a distal opening 26′ therethrough, rather than a distal nose configuration such as that described above with respect to forceps 10 (FIG. 1). Further, rather than having cut-outs defined within the shaft, surgical instrument 10′ includes a bushing 36′ engaged about shaft 12′ towards proximal end 16′ thereof that is configured to be received within a cavity 312 defined within rotation knob 300 to secure rotation knob 300 and shaft 12′ to one another such that rotation knob 300 can be rotated to effect similar rotation of shaft 12′ and the end effector assembly (not shown) thereof. Rotation knob 300, except where specifically contradicted below, may include any of the features discussed above with respect to rotation knob 100 (FIGS. 4A-4E).

Continuing with reference to FIG. 7, rotation knob 300 includes a housing 310 defining a proximal end 302, a distal end 304, and a lumen 306 extending longitudinally therethrough. Lumen 306 is dimensioned to receive shaft 12′ of surgical instrument 10′ therethrough. More specifically, housing 310 includes a distal hub 320 disposed at distal end 304 thereof that defines an aperture 322 therethrough and a pair of opposed proximal walls 330 that cooperate to define an aperture 332 therethrough. Apertures 322, 332 cooperate with one another to define lumen 306 extending longitudinally through housing 310 of rotation knob 300. Housing 310 is at least partially formed from a resiliently flexible material that is transitionable between a first at-rest position and a first flexed position to permit proximal walls 330 to be flexed apart from one another, thereby increasing the diameter of aperture 332 and, thus, increasing the diameter of the proximal portion of lumen 306. Housing 310 also defines an internal cavity 312 disposed about lumen 306 that, as mentioned above, is configured to retain bushing 36′ of surgical instrument 10′ therein.

A plurality of spaced-apart fingers 340 extends proximally from proximal end 302 of housing 310. Each finger 340 includes an outwardly-extending flange 344 disposed at the free end 342 thereof. As a result of this configuration, a slot 350 is defined between flanges 344 of fingers 340 and proximal end 302 of housing 310. Fingers 340 are formed at least partially from a resiliently flexible material such that fingers 340 may be flexed radially-inwardly from a second at-rest position, wherein fingers 340 cooperate to define a first outer peripheral diameter, to a second flexed position, wherein fingers 340 converge towards one another to define a reduced outer peripheral diameter. Rotation knob 300, including fingers 340, may be monolithically formed as a single component.

In use, rotation knob 300 is first slid over the end effector assembly (not shown) of the surgical instrument 10′ and proximally along shaft 12′. Upon reaching bushing 36′, proximal end 302 of rotation knob 300 is flexed radially-outwardly from its at-rest position (e.g., the first at-rest position) to its flexed position (e.g., the first flexed position) to permit passage of bushing 36′ through lumen 306 and into cavity 312 defined within housing 310. Bushing 36′ is configured to be engaged within housing 310 via friction-fitting (under the resilient bias of housing 310 back to its at-rest position), or other suitable engagement, to engage shaft 12′ and rotation knob 300 to one another such that rotation of rotation knob 300 relative to longitudinal axis “X-X” effects corresponding rotation of shaft 12′ and the end effector assembly (not shown) about longitudinal axis “X-X.” Once bushing 36′ is positioned within cavity 312, housing 310 may be released to return under bias (or otherwise return) back towards the at-rest position to engage bushing 36′ within cavity 312 of housing 310.

With housing 310 disposed about bushing 36′ of shaft 12′, rotation knob 300 may then be engaged to distal end 22′ of housing 20′. In order to engage rotation knob 300 to distal end 22′ of housing 20′, fingers 340 are flexed inwardly from their at-rest position (e.g., the second at-rest position) to their flexed position (e.g., the second flexed position) to define a reduced outer peripheral diameter that is sufficiently small so as to permit passage of fingers 340 through distal opening 26′ formed in distal surface 24′ of housing 310. Upon passing through opening 26′, fingers 340 are permitted to resiliently return back towards their at-rest position, thus engaging distal surface 24′ of housing 20′ within slot 350 defined between flanges 344 of fingers 340 and proximal end 304 of housing 310. In this engaged position, rotation knob 300 is substantially fixed in longitudinally position relative to housing 20′, but is permitted to rotate about longitudinal axis “X-X” relative to housing 20′.

Disengagement of rotation knob 300 from housing 20′ and shaft 12′ is effected in the opposite manner as the engagement described above, namely, fingers 340 are flexed inwardly to the second flexed position wherein fingers 340 define a reduced outer peripheral diameter, thus permitting withdrawal of fingers 340 through distal opening 26′ formed in distal surface 24′ of housing 20′. Fingers 340 are then returned under bias back towards the second at-rest position. Thereafter, housing 310 of rotation knob 300 is flexed outwardly to the first flexed position to permit bushing 36′ to be translated proximally through the expanded proximal portion of lumen 306 to remove bushing 36′ from cavity 312 of rotation knob 300. Once bushing 36′ has been removed from rotation knob 300, housing 310 is permitted to return under bias back towards the first at-rest position. Ultimately, rotation knob 300 is slid distally along shaft 12′ and passed over the end effector assembly (not shown) thereof to remove rotation knob 300 from surgical instrument 10′.

Referring now to FIGS. 8A-8C, various configurations of rotation knobs, e.g., rotation knobs 400, 500, 600, are shown. Rotation knobs 400, 500, 600 may be configured for use with forceps 10 (FIG. 1), surgical instrument 10′ (FIG. 7), or any other suitable surgical instrument, similarly as described above with respect to rotation knobs 100, 200, 300 (FIGS. 5A-5C, 6, 7, respectively). Additionally, the ergonomic features of these rotation knobs, or any other suitable ergonomic features, may be incorporated into the rotation knobs described herein. In other words, although specific ergonomic features of rotation knobs 100-600 are shown and described herein, rotation knobs 100-600 may be provided in any suitable size, shape, and/or ergonomic configuration.

Further, it is envisioned that these various different rotation knobs be interchangeable with one another, thus allowing the user to select a desired rotation knob depending on the surgical procedure to be performed, the surgeon's preference, or other factors. This interchangeability is facilitated in that the rotation knobs described herein are easily and efficiently engaged and disengaged from a surgical instrument, e.g., forceps 10 (FIG. 1), thus allowing for easy and efficient interchanging of rotation knobs. This configuration provides increased customization and versatility to a surgical instrument, without requiring a separate instrument that is customized for each user and/or procedure. Such a configuration also permits the rotation knobs to be used as disposable components that can be easily engaged and disengaged from the reusable components of a particular surgical instrument, thus facilitating removal of the first, used rotation knob, sterilization of the reusable components, and reassembly of the instrument with a second, new rotation knob in preparation for reuse.

With reference to FIG. 8A, rotation knob 400 includes a generally-cylindrical body 410 having a plurality of flanges 420 extending radially outwardly therefrom substantially along the length of body 410. Flanges 420 taper distally to proximally and are spaced-apart from one another to define a plurality of finger recesses 430 therebetween that facilitate grasping and rotation of rotation knob 400. Rotation knob 400 may otherwise be configured similarly to any of the rotation knobs described above.

Referring to FIG. 8B, rotation knob 500 includes a pair of spaced-apart housing members 510, 520 interconnected by a tube segment 530. Housing members 510, 520 each define a generally annular configuration having a plurality of flanges 512, 522, respectively, extending radially outwardly therefrom. Flanges 512 are spaced-apart from one another, as are flanges 522, to define a plurality of finger recesses 514, 524, respectively, therebetween. Finger recesses 514, 524 facilitate the grasping and rotation of rotation knob 500. Rotation knob 500 may otherwise be configured similarly to any of the rotation knobs described above.

As shown in FIG. 8C, rotation knob 600 defines a more spherical-shaped body 610 and includes a plurality of fingertip-shaped recesses 620 defined therein for grasping and rotating rotation knob 600. Rotation knob 600 may otherwise be configured similarly to any of the rotation knobs described above.

From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (18)

What is claimed is:
1. A surgical instrument, comprising:
a housing having a shaft extending distally therefrom and defining a longitudinal axis, the housing including a nose disposed at a distal end thereof, the nose including a neck extending distally from the housing and a base disposed at a distal end of the neck, the base defining a diameter greater than a diameter of the neck; and
a rotation knob having a distal end defining a first aperture and a proximal end defining at least one second aperture, the first and second apertures cooperating to define a lumen extending longitudinally through the rotation knob that is configured to receive the shaft, the rotation knob flexible between an at-rest position and a flexed position, wherein, in the flexed position, the diameter of the second aperture is expanded from a first diameter to a second, larger diameter to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob, and wherein, in the at-rest position, the second aperture defines the first diameter to rotatably engage the proximal end of the rotation knob about the nose with the shaft extending through the lumen of the rotation knob.
2. The surgical instrument according to claim 1, wherein the rotation knob includes at least one protrusion extending into the interior thereof, the at least one protrusion configured to engage the shaft to engage the rotation knob and the shaft to one another.
3. The surgical instrument according to claim 1, wherein the rotation knob includes a retaining ring configured to bias the rotation knob towards the at-rest position.
4. The surgical instrument according to claim 1, wherein the retaining ring includes an interruption defined therein to permit expansion of the retaining ring for transitioning the rotation knob between the at-rest and flexed positions.
5. The surgical instrument according to claim 3, wherein the rotation knob includes first and second pairs of proximal support walls, each pair of proximal support walls cooperating to define one of the at least one second apertures therethrough.
6. The surgical instrument according to claim 5, wherein the retaining ring is disposed between the first and second pairs of proximal support walls.
7. The surgical instrument according to claim 1, wherein the rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof, the alternating flanges and recesses configured to facilitate grasping and rotating the rotation knob.
8. The surgical instrument according to claim 1, wherein an outer distal corner of the base of the nose defines an angled surface configured to facilitate flexing of the rotation knob from the at-rest position to the flexed position to permit passage of the base through the second aperture.
9. The surgical instrument according to claim 1, wherein the rotation knob is monolithically formed as a single component.
10. The surgical instrument according to claim 1, wherein the housing is formed from first and second housing parts and wherein, when engaged about the nose of the housing, the rotation knob helps maintain the engagement of the first and second housing parts to one another.
11. A surgical instrument, comprising:
a housing having a shaft extending distally therefrom and defining a longitudinal axis, the housing including a nose disposed at a distal end thereof, the nose including a neck extending distally from the housing and a base disposed at a distal end of the neck, the base defining a diameter greater than a diameter of the neck; and
a rotation knob having a distal end defining a first aperture and a plurality of radially-spaced fingers extending proximally from a proximal end of the rotation knob, the fingers each including a radially inwardly-extending tab disposed at a free end thereof, the tabs cooperating to define a second aperture, the first and second apertures cooperating to define a lumen extending longitudinally through the rotation knob that is configured to receive the shaft, the rotation knob flexible between an at-rest position and a flexed position, wherein, in the flexed position, the fingers are flexed radially outwardly to expand a diameter of the second aperture from a first diameter to a second, larger diameter, to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob, and wherein, in the at-rest position, the second aperture defines the first diameter for rotatably engaging the tabs of the fingers of the rotation knob about the nose with the shaft extending through the lumen of the rotation knob.
12. The surgical instrument according to claim 11, wherein the rotation knob includes at least one protrusion extending into the interior thereof, the at least one protrusion configured to engage the shaft to engage the rotation knob and the shaft to one another.
13. The surgical instrument according to claim 11, wherein the fingers are biased towards the at-rest position.
14. The surgical instrument according to claim 11, wherein the rotation knob is monolithically formed as a single component.
15. The surgical instrument according to claim 11, wherein the housing is formed from first and second housing parts and wherein, when engaged about the nose of the housing, the rotation knob helps maintains the engagement of the first and second housing parts to one another.
16. A surgical instrument, comprising:
a housing defining a nose at a distal end thereof;
a shaft defining a proximal end and a distal end, the proximal end of the shaft rotatably coupled to the housing, the shaft extending distally from the nose of the housing;
at least one first engagement feature disposed towards the proximal end of the shaft adjacent the nose of the housing;
an end effector assembly disposed at the distal end of the shaft and operably coupled to the shaft such that rotation of the shaft effects corresponding rotation of the end effector assembly; and
a monolithic rotation knob including a distal portion and a proximal portion, the monolithic rotation knob defining a lumen extending longitudinally therethrough configured to receive the shaft, the distal portion of the monolithic rotation knob including at least one second engagement feature disposed therein, the monolithic rotation knob configured to slide proximally about the shaft from a disengaged position to an engaged position, wherein, upon movement of the monolithic rotation knob from the disengaged position to the engaged position, the monolithic rotation knob is configured to flex from an at-rest position, wherein a portion of the lumen defines a first perimeter, to a flexed position, wherein the portion of the lumen defines a second, larger perimeter, and back to the at-rest position, and wherein, in the engaged position, the proximal portion of the monolithic rotation knob is disposed about the nose of the housing and the at least one second engagement feature is engaged with the at least one first engagement feature to engage the shaft and the monolithic rotation knob with one another such that rotation of the monolithic rotation knob about the nose of the housing rotates the shaft and the end effector assembly relative to the housing.
17. The surgical instrument according to claim 16, wherein the monolithic rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof, the alternating flanges and recesses configured to facilitate grasping and rotating the rotation knob.
18. The surgical instrument according to claim 16, wherein the at least one first engagement feature is a cut-out and wherein the at least one second engagement feature is a protrusion.
US14748809 2011-09-13 2015-06-24 Rotation knobs for surgical instruments Active USRE46179E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13231643 US8679098B2 (en) 2011-09-13 2011-09-13 Rotation knobs for surgical instruments
US14748809 USRE46179E1 (en) 2011-09-13 2015-06-24 Rotation knobs for surgical instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14748809 USRE46179E1 (en) 2011-09-13 2015-06-24 Rotation knobs for surgical instruments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13231643 Reissue US8679098B2 (en) 2011-09-13 2011-09-13 Rotation knobs for surgical instruments

Publications (1)

Publication Number Publication Date
USRE46179E1 true USRE46179E1 (en) 2016-10-18

Family

ID=47830496

Family Applications (2)

Application Number Title Priority Date Filing Date
US13231643 Active 2031-12-07 US8679098B2 (en) 2011-09-13 2011-09-13 Rotation knobs for surgical instruments
US14748809 Active USRE46179E1 (en) 2011-09-13 2015-06-24 Rotation knobs for surgical instruments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13231643 Active 2031-12-07 US8679098B2 (en) 2011-09-13 2011-09-13 Rotation knobs for surgical instruments

Country Status (1)

Country Link
US (2) US8679098B2 (en)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20130334284A1 (en) 2005-08-31 2013-12-19 Ethicon Endo-Surgery, Inc. Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7669747B2 (en) 2007-06-29 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
RU2606493C2 (en) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Staple cartridge, containing staples, located inside its compressible part
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US8961514B2 (en) 2012-03-06 2015-02-24 Covidien Lp Articulating surgical apparatus
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
RU2014143245A (en) 2012-03-28 2016-05-27 Этикон Эндо-Серджери, Инк. Compensator tissue thickness, comprising a capsule for a medium with a low pressure
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
USD788302S1 (en) 2013-10-01 2017-05-30 Covidien Lp Knife for endoscopic electrosurgical forceps
US9265566B2 (en) 2012-10-16 2016-02-23 Covidien Lp Surgical instrument
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
RU2016110413A (en) * 2013-08-23 2017-09-28 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Design guides for surgical instruments with power and rotating the end effector
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
EP2845550B1 (en) * 2013-09-10 2017-03-29 Erbe Elektromedizin GmbH Surgical instrument with plastic shaft
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US20150280384A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument comprising a rotatable shaft
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
JP2017513567A (en) 2014-03-26 2017-06-01 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Power management with segmentation circuit and variable voltage protection
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US20150297234A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. End effector comprising an anvil including projections extending therefrom
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US10039593B2 (en) 2014-09-17 2018-08-07 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US10039592B2 (en) 2014-09-17 2018-08-07 Covidien Lp Deployment mechanisms for surgical instruments
US9987076B2 (en) 2014-09-17 2018-06-05 Covidien Lp Multi-function surgical instruments
US10080605B2 (en) 2014-09-17 2018-09-25 Covidien Lp Deployment mechanisms for surgical instruments
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US20160249916A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc System for monitoring whether a surgical instrument needs to be serviced
US20160249927A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Modular stapling assembly
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US20160367246A1 (en) 2015-06-18 2016-12-22 Ethicon Endo-Surgery, Llc Dual articulation drive system arrangements for articulatable surgical instruments
US20170056008A1 (en) 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control

Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU401367A1
DE2415263A1 (en) 1974-03-29 1975-10-02 Aesculap Werke Ag Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2514501A1 (en) 1975-04-03 1976-10-21 Karl Storz Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
DE2627679A1 (en) 1975-06-26 1977-01-13 Marcel Lamidey Hemostatic high frequency sezierpinzette
USD249549S (en) 1976-10-22 1978-09-19 Aspen Laboratories, Inc. Electrosurgical handle
DE3423356A1 (en) 1984-06-25 1986-01-02 Berchtold Medizin Elektronik G An electrosurgical high frequency cutting instrument
JPS61501068A (en) 1984-01-30 1986-05-29
DE3612646A1 (en) 1985-04-16 1987-04-30 Ellman International Electrosurgical handle piece for blades, needles and forceps
DE8712328U1 (en) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
JPH055106A (en) 1990-07-31 1993-01-14 Matsushita Electric Works Ltd Production of alloy sintered body
JPH0540112A (en) 1991-02-08 1993-02-19 Tokico Ltd Analyzing apparatus of component of sample liquid
JPH06502328A (en) 1990-10-17 1994-03-17
JPH06121797A (en) 1992-02-27 1994-05-06 United States Surgical Corp Device and method for carrying out intracutaneous stapling of body tissues
DE4303882A1 (en) 1993-02-10 1994-08-18 Kernforschungsz Karlsruhe Combined instrument for separating and coagulating in minimally invasive surgery
JPH06285078A (en) 1993-04-05 1994-10-11 Olympus Optical Co Ltd Forceps
JPH06343644A (en) 1993-05-04 1994-12-20 Gyrus Medical Ltd Surgical machine for laparoscopy
JPH06511401A (en) 1991-06-07 1994-12-22
DE4403252A1 (en) 1994-02-03 1995-08-10 Michael Hauser Instrument shaft for min. invasive surgery
JPH07265328A (en) 1993-11-01 1995-10-17 Gyrus Medical Ltd Electrode assembly for electrosurgical instrument and electrosurgical instrument using the same
JPH0856955A (en) 1994-06-29 1996-03-05 Gyrus Medical Ltd Electrosurgical apparatus
DE19515914C1 (en) 1995-05-02 1996-07-25 Aesculap Ag Tong or scissor-shaped surgical instrument
DE19506363A1 (en) 1995-02-24 1996-08-29 Frost Lore Geb Haupt Non-invasive thermometry in organs under hyperthermia and coagulation conditions
JPH08252263A (en) 1994-12-21 1996-10-01 Gyrus Medical Ltd Electrosurgical cutting instrument and electrosurgical cutting device using the same
DE29616210U1 (en) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handle for surgical instruments
JPH08317934A (en) 1995-04-12 1996-12-03 Ethicon Endo Surgery Inc Electrosurgical hemostatic device with adaptive electrode
JPH0910223A (en) 1995-06-23 1997-01-14 Gyrus Medical Ltd Generator and system for electric operation
DE19608716C1 (en) 1996-03-06 1997-04-17 Aesculap Ag Bipolar surgical holding instrument
JPH09122138A (en) 1995-10-20 1997-05-13 Ethicon Endo Surgery Inc Implement for operation
JPH1024051A (en) 1995-09-20 1998-01-27 Olympus Optical Co Ltd Coagulation forceps with separating function
DE19751106A1 (en) 1996-11-27 1998-05-28 Eastman Kodak Co Laser printer with array of laser diodes
JPH10155798A (en) 1996-12-04 1998-06-16 Asahi Optical Co Ltd Hot biopsy clamp for endoscope
USH1745H (en) 1995-09-29 1998-08-04 Paraschac; Joseph F. Electrosurgical clamping device with insulation limited bipolar electrode
JPH1147150A (en) 1997-08-06 1999-02-23 Olympus Optical Co Ltd Endoscopic surgery appliance
DE19738457A1 (en) 1997-09-03 1999-03-04 Laser & Med Tech Gmbh Method for in-vivo depth coagulation of biological tissue
JPH1170124A (en) 1997-05-14 1999-03-16 Ethicon Endo Surgery Inc Improved electrosurgical hemostatic apparatus having anvil
DE19751108A1 (en) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Electrosurgical operation tool, especially for diathermy
JPH11169381A (en) 1997-12-15 1999-06-29 Olympus Optical Co Ltd High frequency treating device
JPH11192238A (en) 1997-10-10 1999-07-21 Ethicon Endo Surgery Inc Ultrasonic forceps coagulation device improved of pivot-attaching of forceps arm
JPH11244298A (en) 1997-12-19 1999-09-14 Gyrus Medical Ltd Electric surgical instrument
US5993470A (en) * 1992-09-15 1999-11-30 Yoon; Inbae Universal handle for medical instruments
JP2000102545A (en) 1997-06-18 2000-04-11 Eggers & Associates Inc Electric tweezers for surgery
US6063050A (en) * 1996-10-04 2000-05-16 United States Surgical Corp. Ultrasonic dissection and coagulation system
WO2000036986A1 (en) 1998-12-18 2000-06-29 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
JP2000342599A (en) 1999-05-21 2000-12-12 Gyrus Medical Ltd Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation
JP2000350732A (en) 1999-05-21 2000-12-19 Gyrus Medical Ltd Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery
JP2001008944A (en) 1999-05-28 2001-01-16 Gyrus Medical Ltd Electric surgical signal generator and electric surgical system
JP2001029356A (en) 1999-06-11 2001-02-06 Gyrus Medical Ltd Electric and surgical signal generator
WO2001015614A1 (en) 1999-08-27 2001-03-08 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
JP2001128990A (en) 1999-05-28 2001-05-15 Gyrus Medical Ltd Electro surgical instrument and electrosurgical tool converter
JP2001190564A (en) 2000-01-12 2001-07-17 Olympus Optical Co Ltd Medical treatment instrument
WO2001054604A1 (en) 2000-01-25 2001-08-02 Aesculap Ag & Co. Kg Bipolar gripping device
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
EP1159926A2 (en) 2000-06-03 2001-12-05 Aesculap Ag Scissor- or forceps-like surgical instrument
USD453923S1 (en) 2000-11-16 2002-02-26 Carling Technologies, Inc. Electrical rocker switch guard
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
DE10045375A1 (en) 2000-09-14 2002-04-11 Aesculap Ag & Co Kg Medical instrument comprises temperature and pressure condition sensor and modification device for influencing transmitting device
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
USD465281S1 (en) 1999-09-21 2002-11-05 Karl Storz Gmbh & Co. Kg Endoscopic medical instrument
USD466209S1 (en) 2001-02-27 2002-11-26 Visionary Biomedical, Inc. Steerable catheter
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
JP2004528869A (en) 2001-01-26 2004-09-24 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Electrosurgical instrument for coagulation and cutting
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
DE102004026179A1 (en) 2004-05-14 2005-12-08 Erbe Elektromedizin Gmbh The electrosurgical instrument
US20060079875A1 (en) 2004-10-08 2006-04-13 Faller Craig N Clamp mechanism for use with an ultrasonic surgical instrument
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD533274S1 (en) 2004-10-12 2006-12-05 Allegiance Corporation Handle for surgical suction-irrigation device
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD538932S1 (en) 2005-06-30 2007-03-20 Medical Action Industries Inc. Surgical needle holder
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD541611S1 (en) 2006-01-26 2007-05-01 Robert Bosch Gmbh Cordless screwdriver
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD545432S1 (en) 2003-08-08 2007-06-26 Olympus Corporation Distal portion of hemostatic forceps for endoscope
USD547154S1 (en) 2006-09-08 2007-07-24 Winsource Industries Limited Rotary driving tool
DE202007009165U1 (en) 2007-06-29 2007-08-30 Kls Martin Gmbh + Co. Kg Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator
DE202007009317U1 (en) 2007-06-26 2007-08-30 Aesculap Ag & Co. Kg Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit
DE202007016233U1 (en) 2007-11-20 2008-01-31 Aesculap Ag & Co. Kg surgical forceps
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
USD567943S1 (en) 2004-10-08 2008-04-29 Sherwood Services Ag Over-ratchet safety for a vessel sealing instrument
USD575395S1 (en) 2007-02-15 2008-08-19 Tyco Healthcare Group Lp Hemostat style elongated dissecting and dividing instrument
USD575401S1 (en) 2007-06-12 2008-08-19 Tyco Healthcare Group Lp Vessel sealer
USD582038S1 (en) 2004-10-13 2008-12-02 Medtronic, Inc. Transurethral needle ablation device
US20090105750A1 (en) 2007-10-05 2009-04-23 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
DE102008018406B3 (en) 2008-04-10 2009-07-23 Bowa-Electronic Gmbh & Co. Kg An electrosurgical instrument
USD617901S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector chamfered tip
USD617902S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut top jaw
USD617900S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut bottom jaw
USD617903S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector pointed tip
USD618798S1 (en) 2009-05-13 2010-06-29 Tyco Healthcare Group Lp Vessel sealing jaw seal plate
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
USD621503S1 (en) 2009-04-28 2010-08-10 Tyco Healthcare Group Ip Pistol grip laparoscopic sealing and dissection device
USD627462S1 (en) 2009-09-09 2010-11-16 Tyco Healthcare Group Lp Knife channel of a jaw device
USD628289S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
USD628290S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
US7842028B2 (en) 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
USD630324S1 (en) 2009-08-05 2011-01-04 Tyco Healthcare Group Lp Dissecting surgical jaw

Patent Citations (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU401367A1
JP2004517668T5 (en) 2005-12-22
DE2415263A1 (en) 1974-03-29 1975-10-02 Aesculap Werke Ag Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2514501A1 (en) 1975-04-03 1976-10-21 Karl Storz Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
DE2627679A1 (en) 1975-06-26 1977-01-13 Marcel Lamidey Hemostatic high frequency sezierpinzette
USD249549S (en) 1976-10-22 1978-09-19 Aspen Laboratories, Inc. Electrosurgical handle
USD263020S (en) 1980-01-22 1982-02-16 Retractable knife
JPS61501068A (en) 1984-01-30 1986-05-29
DE3423356A1 (en) 1984-06-25 1986-01-02 Berchtold Medizin Elektronik G An electrosurgical high frequency cutting instrument
DE3612646A1 (en) 1985-04-16 1987-04-30 Ellman International Electrosurgical handle piece for blades, needles and forceps
USD299413S (en) 1985-07-17 1989-01-17 The Stanley Works Folding pocket saw handle
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
USD298353S (en) 1986-05-06 1988-11-01 Vitalmetrics, Inc. Handle for surgical instrument
DE8712328U1 (en) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
JPH055106A (en) 1990-07-31 1993-01-14 Matsushita Electric Works Ltd Production of alloy sintered body
JPH06502328A (en) 1990-10-17 1994-03-17
JPH0540112A (en) 1991-02-08 1993-02-19 Tokico Ltd Analyzing apparatus of component of sample liquid
JPH06511401A (en) 1991-06-07 1994-12-22
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
JPH06121797A (en) 1992-02-27 1994-05-06 United States Surgical Corp Device and method for carrying out intracutaneous stapling of body tissues
US5993470A (en) * 1992-09-15 1999-11-30 Yoon; Inbae Universal handle for medical instruments
USD349341S (en) 1992-10-28 1994-08-02 Microsurge, Inc. Endoscopic grasper
DE4303882A1 (en) 1993-02-10 1994-08-18 Kernforschungsz Karlsruhe Combined instrument for separating and coagulating in minimally invasive surgery
JPH06285078A (en) 1993-04-05 1994-10-11 Olympus Optical Co Ltd Forceps
JPH06343644A (en) 1993-05-04 1994-12-20 Gyrus Medical Ltd Surgical machine for laparoscopy
USD343453S (en) 1993-05-05 1994-01-18 Laparomed Corporation Handle for laparoscopic surgical instrument
USD354564S (en) 1993-06-25 1995-01-17 Richard-Allan Medical Industries, Inc. Surgical clip applier
JPH07265328A (en) 1993-11-01 1995-10-17 Gyrus Medical Ltd Electrode assembly for electrosurgical instrument and electrosurgical instrument using the same
USD358887S (en) 1993-12-02 1995-05-30 Cobot Medical Corporation Combined cutting and coagulating forceps
DE4403252A1 (en) 1994-02-03 1995-08-10 Michael Hauser Instrument shaft for min. invasive surgery
JPH0856955A (en) 1994-06-29 1996-03-05 Gyrus Medical Ltd Electrosurgical apparatus
USD384413S (en) 1994-10-07 1997-09-30 United States Surgical Corporation Endoscopic suturing instrument
JPH08252263A (en) 1994-12-21 1996-10-01 Gyrus Medical Ltd Electrosurgical cutting instrument and electrosurgical cutting device using the same
DE19506363A1 (en) 1995-02-24 1996-08-29 Frost Lore Geb Haupt Non-invasive thermometry in organs under hyperthermia and coagulation conditions
JPH08317934A (en) 1995-04-12 1996-12-03 Ethicon Endo Surgery Inc Electrosurgical hemostatic device with adaptive electrode
DE19515914C1 (en) 1995-05-02 1996-07-25 Aesculap Ag Tong or scissor-shaped surgical instrument
JPH0910223A (en) 1995-06-23 1997-01-14 Gyrus Medical Ltd Generator and system for electric operation
JPH1024051A (en) 1995-09-20 1998-01-27 Olympus Optical Co Ltd Coagulation forceps with separating function
USH1745H (en) 1995-09-29 1998-08-04 Paraschac; Joseph F. Electrosurgical clamping device with insulation limited bipolar electrode
JPH09122138A (en) 1995-10-20 1997-05-13 Ethicon Endo Surgery Inc Implement for operation
DE19608716C1 (en) 1996-03-06 1997-04-17 Aesculap Ag Bipolar surgical holding instrument
USD408018S (en) 1996-03-12 1999-04-13 Switch guard
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
DE29616210U1 (en) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handle for surgical instruments
US6063050A (en) * 1996-10-04 2000-05-16 United States Surgical Corp. Ultrasonic dissection and coagulation system
DE19751106A1 (en) 1996-11-27 1998-05-28 Eastman Kodak Co Laser printer with array of laser diodes
JPH10155798A (en) 1996-12-04 1998-06-16 Asahi Optical Co Ltd Hot biopsy clamp for endoscope
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
JPH1170124A (en) 1997-05-14 1999-03-16 Ethicon Endo Surgery Inc Improved electrosurgical hemostatic apparatus having anvil
JP2000102545A (en) 1997-06-18 2000-04-11 Eggers & Associates Inc Electric tweezers for surgery
JPH1147150A (en) 1997-08-06 1999-02-23 Olympus Optical Co Ltd Endoscopic surgery appliance
DE19738457A1 (en) 1997-09-03 1999-03-04 Laser & Med Tech Gmbh Method for in-vivo depth coagulation of biological tissue
JPH11192238A (en) 1997-10-10 1999-07-21 Ethicon Endo Surgery Inc Ultrasonic forceps coagulation device improved of pivot-attaching of forceps arm
USD402028S (en) 1997-10-10 1998-12-01 Invasatec, Inc. Hand controller for medical system
DE19751108A1 (en) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Electrosurgical operation tool, especially for diathermy
JPH11169381A (en) 1997-12-15 1999-06-29 Olympus Optical Co Ltd High frequency treating device
JPH11244298A (en) 1997-12-19 1999-09-14 Gyrus Medical Ltd Electric surgical instrument
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
WO2000036986A1 (en) 1998-12-18 2000-06-29 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
JP2000350732A (en) 1999-05-21 2000-12-19 Gyrus Medical Ltd Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery
JP2000342599A (en) 1999-05-21 2000-12-12 Gyrus Medical Ltd Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation
JP2001128990A (en) 1999-05-28 2001-05-15 Gyrus Medical Ltd Electro surgical instrument and electrosurgical tool converter
JP2001008944A (en) 1999-05-28 2001-01-16 Gyrus Medical Ltd Electric surgical signal generator and electric surgical system
JP2001029356A (en) 1999-06-11 2001-02-06 Gyrus Medical Ltd Electric and surgical signal generator
WO2001015614A1 (en) 1999-08-27 2001-03-08 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
USD465281S1 (en) 1999-09-21 2002-11-05 Karl Storz Gmbh & Co. Kg Endoscopic medical instrument
JP2001190564A (en) 2000-01-12 2001-07-17 Olympus Optical Co Ltd Medical treatment instrument
WO2001054604A1 (en) 2000-01-25 2001-08-02 Aesculap Ag & Co. Kg Bipolar gripping device
EP1159926A2 (en) 2000-06-03 2001-12-05 Aesculap Ag Scissor- or forceps-like surgical instrument
DE10045375A1 (en) 2000-09-14 2002-04-11 Aesculap Ag & Co Kg Medical instrument comprises temperature and pressure condition sensor and modification device for influencing transmitting device
USD453923S1 (en) 2000-11-16 2002-02-26 Carling Technologies, Inc. Electrical rocker switch guard
JP2004528869A (en) 2001-01-26 2004-09-24 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Electrosurgical instrument for coagulation and cutting
USD466209S1 (en) 2001-02-27 2002-11-26 Visionary Biomedical, Inc. Steerable catheter
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
USD545432S1 (en) 2003-08-08 2007-06-26 Olympus Corporation Distal portion of hemostatic forceps for endoscope
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
WO2005110264A3 (en) 2004-05-14 2006-04-13 Erbe Elektromedizin Electrosurgical instrument
DE102004026179A1 (en) 2004-05-14 2005-12-08 Erbe Elektromedizin Gmbh The electrosurgical instrument
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD567943S1 (en) 2004-10-08 2008-04-29 Sherwood Services Ag Over-ratchet safety for a vessel sealing instrument
US20060079875A1 (en) 2004-10-08 2006-04-13 Faller Craig N Clamp mechanism for use with an ultrasonic surgical instrument
USD533274S1 (en) 2004-10-12 2006-12-05 Allegiance Corporation Handle for surgical suction-irrigation device
USD582038S1 (en) 2004-10-13 2008-12-02 Medtronic, Inc. Transurethral needle ablation device
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
US7842028B2 (en) 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
USD538932S1 (en) 2005-06-30 2007-03-20 Medical Action Industries Inc. Surgical needle holder
USD541611S1 (en) 2006-01-26 2007-05-01 Robert Bosch Gmbh Cordless screwdriver
USD547154S1 (en) 2006-09-08 2007-07-24 Winsource Industries Limited Rotary driving tool
USD575395S1 (en) 2007-02-15 2008-08-19 Tyco Healthcare Group Lp Hemostat style elongated dissecting and dividing instrument
USD575401S1 (en) 2007-06-12 2008-08-19 Tyco Healthcare Group Lp Vessel sealer
DE202007009317U1 (en) 2007-06-26 2007-08-30 Aesculap Ag & Co. Kg Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit
DE202007009165U1 (en) 2007-06-29 2007-08-30 Kls Martin Gmbh + Co. Kg Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator
US20090105750A1 (en) 2007-10-05 2009-04-23 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
DE202007016233U1 (en) 2007-11-20 2008-01-31 Aesculap Ag & Co. Kg surgical forceps
DE102008018406B3 (en) 2008-04-10 2009-07-23 Bowa-Electronic Gmbh & Co. Kg An electrosurgical instrument
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
USD621503S1 (en) 2009-04-28 2010-08-10 Tyco Healthcare Group Ip Pistol grip laparoscopic sealing and dissection device
USD617901S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector chamfered tip
USD617902S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut top jaw
USD617900S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut bottom jaw
USD618798S1 (en) 2009-05-13 2010-06-29 Tyco Healthcare Group Lp Vessel sealing jaw seal plate
USD617903S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector pointed tip
USD630324S1 (en) 2009-08-05 2011-01-04 Tyco Healthcare Group Lp Dissecting surgical jaw
USD627462S1 (en) 2009-09-09 2010-11-16 Tyco Healthcare Group Lp Knife channel of a jaw device
USD628289S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
USD628290S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle

Non-Patent Citations (265)

* Cited by examiner, † Cited by third party
Title
"Electrosurgery: A Historical Overview" Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
"Reducing Needlestick Injuries in the Operating Room" Sales/Product Literature 2001.
Barbara Levy, "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C.
Benaron et al., "Optical Time-Of-Flight and Absorbance Imaging of Biologic Media", Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Bergdahl et al. "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Burdette et al. "In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies", IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carbonell et al., "Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003.
Carus et al., "Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery" Innovations That Work, Jun. 2002.
Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure" Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Craig Johnson, "Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000.
Crawford et al. "Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery" Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Crouch et al. "A Velocity-Dependent Model for Needle Insertion in Soft Tissue" Miccai 2005; LNCS 3750 pp. 624-632, Dated: 2005.
Dulemba et al. "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004.
E. David Crawford "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000.
E. David Crawford "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Literature 2000.
Heniford et al. "Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer" Oct. 1999.
Heniford et al. "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2000) 15:799-801.
Herman et al., "Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report"; Innovations That Work, Feb. 2002.
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005.
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005.
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005.
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005.
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010.
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005.
Int'l Search Report EP 05013894 dated Feb. 3, 2006.
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005.
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006.
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 05020532 dated Jan. 10, 2006.
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006.
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006.
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006.
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007.
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006.
Int'l Search Report EP 06005185.1 dated May 10, 2006.
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006.
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007.
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007.
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007.
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007.
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007.
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010.
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007.
Int'l Search Report EP 07 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008.
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008.
Int'l Search Report EP 07 016911 dated May 28, 2010.
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009.
Int'l Search Report EP 09 003677.3 dated May 4, 2009.
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009.
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009.
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009.
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009.
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009.
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010.
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009.
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009.
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009.
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009.
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009.
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009.
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009.
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010.
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010.
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009.
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010.
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011.
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010.
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010.
Int'l Search Report EP 10 160870,1 dated Aug. 9, 2010.
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010.
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010.
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010.
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010.
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010.
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011.
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011.
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011.
Int'l Search Report EP 10 182022.3 dated Mar. 11, 2011.
Int'l Search Report EP 10 185386.9 dated Jan. 10, 2011.
Int'l Search Report EP 10 185405.7 dated Jan. 5, 2011.
Int'l Search Report EP 10 189206.5 dated Mar. 17, 2011.
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011.
Int'l Search Report EP 11 151509.4 dated Jun. 6, 2011.
Int'l Search Report EP 11 152220.7 dated May 19, 2011.
Int'l Search Report EP 11 152360.1 dated Jun. 6, 2011.
Int'l Search Report EP 11 161117.4 dated Jun. 30, 2011.
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 98957773 dated Aug. 1, 2001.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Int'l Search Report Extended-EP 07 009029.5 dated Jul. 20, 2007.
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001.
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001.
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002.
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003.
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003.
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003.
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003.
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005.
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004.
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999.
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report-extended-EP 05021937.7 dated Mar. 15, 2006.
Jarrett et al., "Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000.
Johnson et al. "Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature; Jan. 2004.
Johnson et al. "Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectomy" American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Joseph Ortenberg "LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002.
Kennedy et al. "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878.
Koyle et al., "Laparoscopic Palomo Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
Levy et al. "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
Levy et al. "Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy" Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Levy et al., "Update on Hysterectomy-New Technologies and Techniques" OBG Management, Feb. 2003.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
McLellan et al. "Vessel Sealing for Hemostasis During Gynecologic Surgery" Sales/Product Literature 1999.
McLellan et al. "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
Michael Choti, "Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument"; Innovations That Work, Jun. 2003.
Muller et al., "Extended Left Hemicolectomy Using the LigaSure Vessel System" Innovations That Work, Sep. 1999.
Olsson et al. "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. "Randomized clinical trial of Ligasure versus open haemorrhoidectomy" British Journal of Surgery 2002, 89, 154-157.
Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Peterson et al. "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001).
Rothenberg et al. "Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (IPEG) 2000.
Sampayan et al, "Multilayer Ultra-High Gradient Insulator Technology" Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Sayfan et al. "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Sigel et al. "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Strasberg et al. "A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery" Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Strasberg et al., "Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Tinkcler L.F., "Combined Diathermy and Suction Forceps", Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan.
U.S. Appl. No. 12/328,772, filed Jul. 8, 2010, Gary M. Couture.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
U.S. Appl. No. 12/692,414, filed Jan. 22, 2010, Peter M. Mueller.
U.S. Appl. No. 12/696,592, filed Jan. 29, 2010, Jennifer S. Harper.
U.S. Appl. No. 12/696,857, filed Jan. 29, 2010, Edward M. Chojin.
U.S. Appl. No. 12/700,856, filed Feb. 5, 2010, James E. Krapohl.
U.S. Appl. No. 12/719,407, filed Mar. 8, 2010, Arlen J. Reschke.
U.S. Appl. No. 12/728,994, filed Mar. 22, 2010, Edward M. Chojin.
U.S. Appl. No. 12/748,028, filed Mar. 26, 2010, Jessica E.C. Olson.
U.S. Appl. No. 12/757,340, filed Apr. 9, 2010, Carine Hoarau.
U.S. Appl. No. 12/758,524, filed Apr. 12, 2010, Duane E. Kerr.
U.S. Appl. No. 12/759,551, filed Apr. 13, 2010, Glenn A. Horner.
U.S. Appl. No. 12/769,444, filed Apr. 28, 2010, Glenn A. Norner.
U.S. Appl. No. 12/770,369, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/770,380, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/770,387, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/773,526, filed May 4, 2010, Duane E. Kerr.
U.S. Appl. No. 12/773,644, filed May 4, 2010, Thomas J. Gerhardt.
U.S. Appl. No. 12/786,589, filed May 25, 2010, Duane E. Kerr.
U.S. Appl. No. 12/791,112, filed Jun. 1, 2010, David M. Garrison.
U.S. Appl. No. 12/792,001, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,008, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,019, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,038, filed Jun. 2, 2010, Glenn A. Horner.
U.S. Appl. No. 12/792,051, filed Jun. 2, 2010, David M. Garrison.
U.S. Appl. No. 12/792,068, filed Jun. 2, 2010, Glenn A. Horner.
U.S. Appl. No. 12/792,097, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,262, filed Jun. 2, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/792,299, filed Jun. 2, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/792,330, filed Jun. 2, 2010, David M. Garrison.
U.S. Appl. No. 12/821,253, filed Jun. 23, 2010, Edward M. Chojin.
U.S. Appl. No. 12/822,024, filed Jun. 23, 2010, Peter M. Mueller.
U.S. Appl. No. 12/843,384, filed Jul. 26, 2010, David M. Garrison.
U.S. Appl. No. 12/845,203, filed Jul. 28, 2010, Gary M. Couture.
U.S. Appl. No. 12/853,896, filed Aug. 10, 2010, William H. Nau, Jr.
U.S. Appl. No. 12/859,896, filed Aug. 20, 2010, Peter M. Mueller.
U.S. Appl. No. 12/861,198, filed Aug. 23, 2010, James A. Gilbert.
U.S. Appl. No. 12/861,209, filed Aug. 23, 2010, William H. Nau, Jr.
U.S. Appl. No. 12/876,668, filed Sep. 7, 2010, Sara E. Anderson.
U.S. Appl. No. 12/876,680, filed Sep. 7, 2010, Peter M. Mueller.
U.S. Appl. No. 12/876,705, filed Sep. 7, 2010, Kristin D. Johnson.
U.S. Appl. No. 12/876,731, filed Sep. 7, 2010, Kristin D. Johnson
U.S. Appl. No. 12/877,199, filed Sep. 8, 2010, Arlen J. Reschke.
U.S. Appl. No. 12/877,482, filed Sep. 8, 2010, Gary M. Couture
U.S. Appl. No. 12/895,020, filed Sep. 30, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/896,100, filed Oct. 1, 2010, Ryan Artale.
U.S. Appl. No. 12/897,346, filed Oct. 4, 2010, Ryan Artale.
U.S. Appl. No. 12/906,672, filed Oct. 18, 2010, Kathy E. Rooks.
U.S. Appl. No. 12/915,809, filed Oct. 29, 2010, Thomas J. Gerhardt, Jr.
U.S. Appl. No. 12/947,352, filed Nov. 16, 2010, Jason L. Craig.
U.S. Appl. No. 12/947,420, filed Nov. 16, 2010, Jason L. Craig.
U.S. Appl. No. 12/948,081, filed Nov. 17, 2010, Boris Chernov.
U.S. Appl. No. 12/948,144, filed Nov. 17, 2010, Boris Chernov.
U.S. Appl. No. 12/950,505, filed Nov. 19, 2010, David M. Garrison.
U.S. Appl. No. 12/955,010, filed Nov. 29, 2010, Paul R. Romero.
U.S. Appl. No. 12/955,042, filed Nov. 29, 2010, Steven C. Rupp.
U.S. Appl. No. 12/981,771, filed Dec. 30, 2010, James D. Allen, IV.
U.S. Appl. No. 12/981,787, filed Dec. 30, 2010, John R. Twomey.
U.S. Appl. No. 13/006,538, filed Jan. 14, 2011, John W. Twomey.
U.S. Appl. No. 13/029,390, filed Feb. 17, 2011, Michael C. Moses.
U.S. Appl. No. 13/030,231, filed Feb. 18, 2011, Jeffrey M. Roy.
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glenn A. Horner.
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld.
U.S. Appl. No. 13/075,847, filed Mar. 30, 2011, Gary M. Couture.
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison.
U.S. Appl. No. 13/083,962, filed Apr. 11, 2011, Michael C. Moses.
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart.
U.S. Appl. No. 13/089,779, filed Apr. 19, 2011, Yevgeniy Fedotov.
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend.
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey.
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada.
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey.
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin.
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison.
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey.
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell.
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead.
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov.
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims.
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings.
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey.
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV.
W. Scott Helton, "LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery"; Sales/Product Literature 1999.

Also Published As

Publication number Publication date Type
US20130066303A1 (en) 2013-03-14 application
US8679098B2 (en) 2014-03-25 grant

Similar Documents

Publication Publication Date Title
US8800841B2 (en) Surgical staple cartridges
US5954731A (en) Surgical instrument with multiple rotatably mounted spreadable end effectors
US5925064A (en) Fingertip-mounted minimally invasive surgical instruments and methods of use
US8142461B2 (en) Surgical instruments
US9326788B2 (en) Lockout mechanism for use with robotic electrosurgical device
EP2446835B1 (en) Wire spool for passing of wire through a rotational coupling
US20160184039A1 (en) Surgical end effectors having angled tissue-contacting surfaces
US9101358B2 (en) Articulatable surgical instrument comprising a firing drive
US8425511B2 (en) Clamp and scissor forceps
US20100179540A1 (en) Endoscopic Vessel Sealer and Divider Having a Flexible Articulating Shaft
US20120078244A1 (en) Control features for articulating surgical device
US20110276048A1 (en) Surgical Forceps
US9028494B2 (en) Interchangeable end effector coupling arrangement
US9204879B2 (en) Flexible drive member
US9119657B2 (en) Rotary actuatable closure arrangement for surgical end effector
US9101385B2 (en) Electrode connections for rotary driven surgical tools
US20150080924A1 (en) Articulation features for ultrasonic surgical instrument
US9125662B2 (en) Multi-axis articulating and rotating surgical tools
US8864795B2 (en) Surgical forceps
US20150164537A1 (en) Ultrasonic and electrosurgical devices
US20100094289A1 (en) Endoscopic Vessel Sealer and Divider Having a Flexible Articulating Shaft
US20090198272A1 (en) Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US7367973B2 (en) Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction
US5573535A (en) Bipolar surgical instrument for coagulation and cutting
US20140005702A1 (en) Ultrasonic surgical instruments with distally positioned transducers

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HART, KEIR;REEL/FRAME:035895/0812

Effective date: 20110913

Owner name: COVIDIEN LP, COLORADO

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:036012/0482

Effective date: 20120928

MAFP

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4