USRE46117E1 - Modulators of dopamine neurotransmission - Google Patents
Modulators of dopamine neurotransmission Download PDFInfo
- Publication number
- USRE46117E1 USRE46117E1 US14/693,783 US200014693783A USRE46117E US RE46117 E1 USRE46117 E1 US RE46117E1 US 200014693783 A US200014693783 A US 200014693783A US RE46117 E USRE46117 E US RE46117E
- Authority
- US
- United States
- Prior art keywords
- patient
- treatment
- administering
- therapeutically active
- pharmaceutical composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 *N1CCC(C2=CC=CC([1*])=C2)CC1 Chemical compound *N1CCC(C2=CC=CC([1*])=C2)CC1 0.000 description 22
- IZGVOANXLNJMDM-UHFFFAOYSA-N CC1=CCNCC1 Chemical compound CC1=CCNCC1 IZGVOANXLNJMDM-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N CCCNCCC Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- QRAUKVHXKDJILB-UHFFFAOYSA-N [Y]C1=CCNCC1 Chemical compound [Y]C1=CCNCC1 QRAUKVHXKDJILB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/06—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals
- C07D295/073—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals with the ring nitrogen atoms and the substituents separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/20—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/20—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
- C07D211/22—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/20—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
- C07D211/24—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by sulfur atoms to which a second hetero atom is attached
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/30—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly bound to the same carbon atom
- C07D211/32—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly bound to the same carbon atom by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/34—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/68—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D211/70—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/08—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
- C07D295/096—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/10—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms
- C07D295/112—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms with the ring nitrogen atoms and the doubly bound oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/14—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D295/155—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
Definitions
- the present invention relates to new modulators of dopamine neurotransmission, and more specifically to new substituted 4-(phenyl N-alkyl)-piperazines and 4-(phenyl N-alkyl)-piperidines, and use thereof.
- Dopamine is a neurotransmitter in the brain. Since this discovery, made in the 1950s, the function of dopamine in the brain has been intensely explored. To date, it is well established that dopamine is essential in several aspects of brain function including motor, cognitive, sensory, emotional and autonomous (e.g. regulation of appetite, body temperature, sleep) functions. Thus, modulation of dopaminergic function may be beneficial in the treatment of a wide range of disorders affecting brain functions. In fact, both neurologic and psychiatric disorders are treated with medications based on interactions with dopamine systems and dopamine receptors in the brain.
- Drugs that act, directly or indirectly, at central dopamine receptors are commonly used in the treatment of neurologic and psychiatric disorders, e.g. Parkinson's disease and schizophrenia.
- dopaminergic pharmaceuticals have severe side effects, such as extrapyramidal side effects and tardive dyskinesia in dopaminergic antagonists used as antipsychotic agents, and dyskinesias and psychoses in dopaminergic agonists used as anti-Parkinson's agents.
- Therapeutic effects are unsatisfactory in many respects.
- novel dopamine receptor ligands with selectivity at specific dopamine receptor sub-types or regional selectivity are sought for.
- dopamine receptor agonists i.e. dopamine receptor ligands with some but not full intrinsic activity at dopamine receptors, are being developed to achieve an optimal degree of stimulation at dopamine receptors, avoiding excessive dopamine receptor blockade or excessive stimulation.
- Boissier J. et al Chem Abstr. 61:10691c disclose disubstituted piperazines.
- the compounds are reportedly adrenolytics, antihypertensives, potentiators of barbiturates, and depressants of the central nervous system.
- WO 93/04684 and GB 2027703 also describe specific substituted piperazines useful in the treatment of CNS disorders.
- the object of the present invention is to provide new pharmaceutically active compounds, especially useful in treatment of disorders in the central nervous system, which do not have the disadvantages of the above described substances.
- the compounds according to the present invention have a very surprising and interesting dualistic dopaminergic action profile with antagonist-like effects on brain neurochemistry and mild agonist-like effects on normal behavior, but they induce inhibition of behavior in states of hyperactivity.
- the present invention thus relates to new 3-substituted 4-(phenyl-N-alkyl) piperazines and 3-substituted 4-(phenyl-N-alkyl) piperidines in the form of free base or pharmaceutically acceptable salts thereof, pharmaceutical compositions containing said compounds and use of said compounds in therapy.
- One subject of the invention is to provide new compounds for therapeutic use, and more precisely compounds for modulation of dopaminergic systems in the mammalian brain, including human brain.
- Another subject of the invention is to provide compounds with therapeutic effects after oral-administration.
- the present invention relates to 3-substituted 4-(phenyl N-alkyl)-piperazine and 4-(phenyl-N-alkyl)-piperidine compounds of Formula 1:
- the compounds according to the present invention possess dopamine-modulating properties and are useful in treating numerous central nervous system disorders including both psychiatric and neurological symptoms.
- Diseases in which compounds with modulating effects on dopaminergic systems may be beneficial are in disorders related to ageing, for preventing bradykinesia and depression and for the improvement of mental functions. They may also be used to improve cognitive functions and related emotional disturbances in neurodegenerative and developmental disorders as well as after brain damage.
- the compounds according to the invention can be used to improve all symptoms of psychosis, including schizophrenia and schizophreniform disorders as well as drug induced psychotic disorders.
- the compounds according to the invention may also be used in behavioral disorders usually first diagnosed in infancy, childhood, or adolescence as well as in impulse control disorders.
- speech disorders such as stuttering may improve. They may also be used for treating substance abuse disorders as well as disorders characterized by misuse of food.
- Mood and anxiety disorders, personality disorders, and conversion hysteria may also be treated with the compounds according to the invention.
- Neurological indications include the treatment of Huntington's disease and other movement disorders as well as movement disorders induced by drugs. Restless legs and related disorders as well as narcolepsy may also be treated with compounds included according to the invention. They may also improve mental and motor function in Parkinson's disease, and in related parkinsonian syndromes. They may also be used to ameliorate tremor of different origins. They may be used in the treatment of headaches and used to improve brain function following vascular or traumatic brain injury. Moreover, they may be used to relieve pain in conditions characterized by increased muscle tone.
- the compounds according to the present invention have unexpectedly been found to act specifically on dopaminergic systems in the brain. They have effects on biochemical indices in the brain with the characteristic features of selective dopamine antagonists, e.g. producing increases in concentrations of dopamine metabolites.
- dopamine receptor antagonists characteristically suppress behavioral activity and induce catalepsy, while the compounds of this invention show no, or only limited, inhibitory effects on spontaneous locomotion. In contrast they may induce a slight behavioral activation with concomitant increases in small-scale movements, e.g. stops in the center of the behavior recording arena, similar to that induced by dopaminergic agonists. The behavioral activation is limited, not reaching the profound increases in activity induced by direct or indirect dopaminergic agonists. On the other hand, the preferred substances reduce the increase in activity induced by direct or indirect dopaminergic agonists, i.e. d-amphetamine and congeners.
- the compounds of this invention surprisingly show an interesting dualistic dopaminergic action profile with antagonist like effects on brain neurochemistry and mild agonist like effects on normal behavior, but inhibition of behavior in states of hyperactivity.
- the action profile suggests modulatory effects on dopaminergic functions, clearly different from known compounds belonging to these chemical classes or effects anticipated of typical dopamine receptor antagonists or agonists from these or other chemical classes.
- the novel class of dopaminergic modulators presented in this invention may prove superior to presently known dopaminergic compounds in the treatment of several disorders related to dysfunctions of the CNS, in terms of efficacy as well as side effects.
- Some compounds according to the invention have been found to have surprisingly good pharmacokinetic properties including high oral bioavailability. They are thus suitable for the preparation of orally administered pharmaceuticals. There is no guidance in the prior art how to obtain compounds with this effect on dopamine systems in the brain.
- the present invention offers another principle for novel therapeutics based on interactions with dopamine systems.
- the compounds according to the invention have effects on brain neurochemistry similar to antagonists at dopamine D 2 receptors.
- the compounds according to the invention show no or limited inhibitory effects on spontaneous locomotion. They may induce behavioral activation with concomitant increases in small-scale movements, e.g. stops in the center of the behavior recording arena, similar to that induced by dopaminergic agonists.
- the behavioral activation is limited, not reaching the profound increases in activity induced by direct or indirect dopamine receptor agonists.
- the preferred substances can actually reduce the increase in activity induced by direct or indirect dopaminergic agonists, i.e. d-amphetamine and congeners.
- the preferred structures are substituted in the meta position on the aromatic ring.
- An example of such a compound is methanesulfonic acid 3-(1-propyl-piperidin-4-yl)-phenyl ester, which is shown in Example 14 below.
- Another preferred example of a compound according to the invention is 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine, further illustrated in Example 6.
- this compound increases 3,4-dihydroxy-phenylacetic acid in the striatum from 914 ⁇ 19 (controls) to 1703 ⁇ 19 ng/g tissue at 50 ⁇ mol/kg s.c.
- Example 6 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine, has the preferred ability to reduce behavioral activation induced by both d-amphetamine (1.5 mg/kg s.c.) and dizolcipine (Mk-801, 0, 7 mg/kg i.p.).
- the compound described in Example 6 has an oral availability (F) of 85% in rat.
- the compound of Example 6 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine, lacks affinity at the sigma receptor, ⁇ 50% inhibition of [ 3 H]-DTG binding (according to a method for measurement of sigma binding described by Shirayama Y. et al., 1993, Eur. J. Pharmacol. 237, p 117) at 10 ⁇ mol/L to rat brain membranes.
- 4-(4-methanesulphonyl-phenyl)-1-propyl piperidine illustrates that substitution in the para position yields inactive compounds.
- 4-(4-methanesulphonyl-phenyl)-1-propyl piperidine has no effect on 3,4-dihydroxyphenyl-acetic acid in the striatum as demonstrated in the neurochemical experiment; 988 ⁇ 70 (controls) ng/g tissue and 928 ⁇ 51 ng/g tissue at 50 ⁇ mol/kg s.c.
- 4-(4-methanesulphonyl-phenyl)-1-propyl piperidine does not have the properties desired according to the invention.
- 3-(4-Propyl-piperazine-1-yl)-benzonitrile has the following properties: m.p. 159° C. (fumarate) MS m/z (relative intensity, 70 eV) 229 (M+, 28), 200 (bp), 157 (27), 129 (22), 70 (25).
- preparation 14 which has no effect on 3,4-dihydroxyphenyl-acetic acid in the striatum; 1121 ⁇ 36 (controls) ng/g tissue to 1169 ⁇ 42 ng/g tissue at 50 ⁇ mol/kg s.c.
- the compounds according to the invention are especially suitable for treatment of disorders in the central nervous system, and particularly for treatment of dopamine mediated disorders. They may, e.g. used to ameliorate symptoms of mood disorders, in obesitas as an anorectic agent and in other eating disorders, to improve cognitive functions and related emotional disturbances, to improve cognitive and motor dysfunctions associated with developmental disorders, to improve all symptoms of schizophrenia and schizophreniform disorders as well as other psychoses, to improve ongoing symptoms as well as to prevent the occurrence of new psychotic episodes, to regulate pathological disorders due to intake of food, coffee, tea, tobacco, alcohol, addictive drugs etc.
- the compounds according to the invention can thus be used to treat symptoms in e.g.:
- the synthesis of the present compounds is carried out by methods that are conventional for the synthesis of related known compounds.
- the syntheses of compounds in Formula 1, in general, comprise the reaction of an intermediate that supplies the alkyl group with an intermediate piperidine or piperazine that supplies the amine group of Formula 2:
- a convenient method of synthesis of the present compounds is by use of an alkyl iodide (e.g. 1-propyl-iodide).
- alkyl iodide e.g. 1-propyl-iodide
- other leaving groups besides iodide may be used on the alkyl group, of course, such as sulfonates, particularly methanesulfonate or toluenesulfonate, bromo and the like.
- the alkyl intermediate is reacted with the appropriate amine in the presence of any convenient acid scavenger.
- the usual bases such as alkali metal or alkaline earth metal carbonates, bicarbonates and hydroxides are useful acid scavengers, as are some organic bases such as trialkylamines and trialkanolamines.
- the reaction medium for such reactions may be any convenient organic solvent which is inert to the basic conditions; acetonitrile, esters such as ethylacetate and the like and halogenated alkane solvents are useful. Usually the reactions will be carried out at elevated temperatures such as from ambient temperature to the reflux temperature of the reaction mixture, particularly from 50° C. to about 100° C.
- Z is a leaving group like iodide.
- Other leaving groups besides iodide may be used on the alkyl group, of course, such as sulfonates, particularly methanesulfonate or toluenesulfonate, bromo and the like.
- the alkyl intermediate is reacted with the appropriate amine in the presence of any convenient acid scavenger.
- the usual bases such as alkali metal or alkaline earth metal carbonates, bicarbonates and hydroxides are useful acid scavengers, as are some organic bases such as trialkylamines and trialkanolamines.
- the reaction is performed in a suitable solvent such as n-butanol by heating at about 50-150° C.
- Z is halide e.g. chloro, bromo, iodo, or sulfonate e. g. —OSO 2 CF 3 , or —OSO 2 F, in the presence of a base and a zerovalent transition metal catalyst such as Pd or Ni, according to known method (Tetrahedron Letters, vol 37, 1996, 4463-4466, J. Org. Chem., vol. 61, 1996, 1133-1135).
- the catalyst preferably Pd will have the ability to form ligand complex and undergo oxidative addition.
- Typical Pd catalysts will be Pd 2 (dba) 3 (wherein dba refers to di-benzylidene acetone), Pd(PPh 3 ) 4 , Pd(OAc) 2 , or PdCl 2 [P(o-tol) 3 ] 2 and typical phosphine ligands will be BINAP, P(o-tol) 3 , dppf, or the like.
- the usual bases such as alkali metal or alkaline earth metal carbonates, bicarbonates and alkyloxides are useful acid scavengers, as are some organic bases such as trialkylamines and trialkanolamines.
- the reaction medium for such reactions may be any convenient organic solvents, which are inert to the basic conditions; acetonitrile, toluene, dioxane, NMP (N-methyl-2-pyrrolidone), DME (dimethoxyethane), DMF (N,N-dimethylformamide), DMSO (dimethylsulfoxide) and THF (tetrahydrofuran) solvents are useful.
- organic solvents such as from ambient temperature to the reflux temperature of the reaction mixture, particularly from 50° C. to about 120° C.
- Y is, for example, a dialkylborane, dialkenylborane or boronic acid (e.g. BEt 2 , B(OH) 2 (dotted lines can be double bonds)) or a trialkyltin (e.g. SnMe 3 , SnBu 3 ), and an aryl substituted with a leaving group of Formula 7:
- Y can also be a zink- or magnesium-halide group (e.g. ZnCl 2 , ZnBr 2 , ZnI 2 , MgBr 2 , MgI 2 ) according to known methods (Tetrahedron Lett., vol. 33, 1992, 5373-5374, Tetrahedron Lett., vol. 37, 1996, 5491-5494).
- the catalyst preferably Pd will have the ability to form ligand complex and undergo oxidative addition.
- the definition of ligands, bases and solvents, is mentioned above.
- transition metal catalyzed cross-coupling reaction can be performed with the opposite substitution pattern:
- the tetrahydropyridine or pyridine can be prepared by catalytic hydrogenation of the tetrahydropyridine or pyridine from the previous paragraph, using standard methods known in the art, generally with palladium on carbon, PtO2, or Raney nickel as the catalyst.
- the reaction is performed in an inert solvent, such as ethanol or ethyl acetate, either with or without a protic acid, such as acetic acid or HCl.
- an inert solvent such as ethanol or ethyl acetate
- protic acid such as acetic acid or HCl.
- alkyllithium reagents for example, butyllithium, sec-butyllithium or tert-butyllithium, preferably butyllitium or Mg (grignard reaction) in an inert solvent.
- Suitable solvents include, for example ether or tetrahydrofuran, preferably tetrahydrofuran. Reaction temperatures range from about ⁇ 110° C. to about 60° C.
- the intermediate lithium anions or magnesium anions thus formed may then be further reacted with a suitable electrophile of Formula 12:
- A is defined as a protecting group like t-Boc (tert-butoxycarbonyl), Fmoc (fluorenylmethoxycarbonyl), Cbz (benzyloxycarbonyl) or a an alkylgroup like benzyl.
- t-Boc tert-butoxycarbonyl
- Fmoc fluorenylmethoxycarbonyl
- Cbz benzyloxycarbonyl
- This step may be accomplished by one of several standard methods known in the art.
- a thiocarbonyl derivative for example a xanthate
- the hydroxyl group may be removed by reduction with a hydride source such as triethylsilane under acidic conditions, using such as, for example, trifluoroacetic acid or boron trifluoride.
- the reduction reaction can be performed neat or in a solvent, such as methylene chloride.
- a further alternative would be to first convert the hydroxyl group to a suitable leaving group, such as tosylate or chloride, using standard methods.
- the leaving group is then removed with a nucleophilic hydride, such as, for example, lithium aluminium hydride.
- This last reaction is performed typically in an inert solvent, such as, ether or tetrahydrofuran.
- Another alternative method for removing the hydroxyl group is to first dehydrate the alcohol to an olefin with a reagent such as Burgess salt (J. Org. Chem., vol 38, 1973, 26) followed by catalytic hydrogenation of the double bond under standard conditions with a catalyst such as palladium on carbon.
- the alcohol may also be dehydrated to the olefin by treatment with acid such as p-toluenesulfonic acid or trifluoroacetic acid.
- the protecting group, A is removed under standard conditions known by those skilled in the art.
- t-Boc cleavages are conveniently carried out with trifluoroacetic acid either neat or in combination with methylene chloride.
- F-moc is conveniently cleaved off with simple bases such as, ammonia, piperidine, or morpholine, usually in polar solvents such as DMF and acetonitrile.
- A is Cbz or benzyl
- these are conveniently cleaved off under catalytic hydrogenation conditions.
- the benzyl group can also be cleaved off under N-dealkylation conditions such as treatment with ⁇ -chloroethyl chloroformate (J. Org. Chem., vol 49, 1984, 2081-2082).
- a radical R 1 in a compound of the Formula 1 into another radical R 1 , e.g. by oxidizing methylsulfide to methylsulfone (for example by m-chloroperoxybenzoic acid), substitution of a triflate or halide group with a cyano group (for example palladium catalyzed cyanation), substitution of triflate or halide group with a ketone (for example palladium catalyzed Heck reaction with butyl vinyl ether), substitution of a triflate or halide group with a carboxamide (for example, palladium catalyzed carbonylation), or cleaving an ether by, for example, converting a methoxy group into the corresponding hydroxyl derivate, which can further be converted into the corresponding mesylate or triflate.
- mesylate andtriflate refers to OSO 2 CH 3 , CH 3 SO 3 or OSO 2 CF 3 , CF
- C 1 -C 4 alkyl refers to an alkyl containing 1-4 carbon atoms in any isomeric form.
- the various carbon moieties are defined as follows:
- Alkyl refers to an aliphatic hydrocarbon radical and includes branched or unbranched forms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl.
- cycloalkyl refers to a radical of a saturated cyclic hydrocarbon such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.
- patient refers to an individual in need of the treatment according to the invention.
- treatment used herein relates to both treatment in order to cure or alleviate a disease or a condition, and to treatment in order to prevent the development of a disease or a condition.
- the treatment may either be performed in an acute or in a chronic way.
- Both organic and inorganic acids can be employed to form non-toxic pharmaceutically acceptable acid addition salts of the compounds according to the invention.
- Illustrative acids are sulfuric, nitric, phosphoric, hydrochloric, citric, acetic, lactic, tartaric, palmoic, ethane disulfonic, sulfamic, succinic, cyclohexylsulfamic, fumaric, maleic, and benzoic acid.
- These salts are readily prepared by methods known in the art.
- the pharmaceutical composition containing a compound according to the invention may also comprise substances used to facilitate the production of the pharmaceutical preparation or the administration of the preparations.
- substances are well known to people skilled in the art and may for example be pharmaceutically acceptable adjuvants, carriers and preservatives.
- the compounds used according to the present invention will normally be administered orally, rectally, or by injection, in the form of pharmaceutical preparations comprising the active ingredient either as a free base or as a pharmaceutically acceptable non-toxic, acid addition salt, such as the hydrochloride, lactate, acetate, sulfamate salt, in association with a pharmaceutically acceptable carrier.
- the carrier may be a solid, semisolid or liquid preparation.
- the active substance will constitute between 0.1 and 99% by weight of the preparation, more specifically between 0.5 and 20% by a weight for preparations intended for injection and between 0.2 and 50% by weight for preparations suitable for oral administration.
- the selected compound may be mixed with a solid excipient, e.g. lactose, saccharose, sorbitol, mannitol, starches such as potato starch, corn starch or amylopectin, cellulose derivatives, a binder such as gelatine or polyvinyl-pyrrolidine, and a lubricant such as magnesium stearate, calcium stearate, polyethylene glycol, waxes, paraffin, and the like, and then compressed intotablets.
- a solid excipient e.g. lactose, saccharose, sorbitol, mannitol, starches such as potato starch, corn starch or amylopectin, cellulose derivatives, a binder such as gelatine or polyvinyl-pyrrolidine, and a lubricant such as magnesium stearate, calcium stearate, polyethylene glycol, waxes, paraffin, and the like, and then compressed intotablets.
- the tablet can be coated with a polymer known to the man skilled in the art, dissolved in a readily volatile organic solvent or mixture of organic solvents. Dyestuffs may be added to these coatings in order to readily distinguish between tablets containing different active substances or different amounts of the active compound.
- the active substance may be admixed with e.g. a vegetable oil or poly-ethylene glycol.
- Hard gelatine capsules may contain granules of the active substance using either the mentioned excipients for tablets e.g. lactose, saccharose, sorbitol, mannitol, starches (e.g. potato starch, corn starch or amylopectin), cellulose derivatives or gelatine.
- liquids or semisolids of the drug can be filled into hard gelatine capsules.
- Dosage units for rectal application can be solutions or suspensions or can be prepared in the form of suppositories comprising the active substance in a mixture with a neutral fatty base, or gelatine rectal capsules comprising the active substance in admixture with vegetable oil or paraffin oil.
- Liquid preparations for oral application may be in the form of syrups or suspensions, for example solutions containing from about 0.2% to about 20% by weight of the active substance herein described, the balance being sugar and mixture of ethanol, water, glycerol and propylene glycol.
- Such liquid preparations may contain coloring agents, flavoring agents, saccharine and carboxymethylcellulose as a thickening agent or other excipients known to the man in the art.
- Solutions for parenteral applications by injection can be prepared in an aqueous solution of a water-soluble pharmaceutically acceptable salt of the active substance, preferably in a concentration of from 0.5% to about 10% by weight. These solutions may also containing stabilizing agents and/or buffering agents and may conveniently be provided in various dosage unit ampoules. The use and administration to a patient to be treated in the clinic would be readily apparent to an ordinary skill in the art.
- an effective amount or a therapeutic amount of the compounds according to the invention are from about 0.01 to about 500 mg/kg body weight daily, preferably 0.1-10 mg/kg body weight daily.
- the compounds may be administered in any suitable way, such as orally or parenterally.
- the daily dose will preferably be administered in individual dosages 1 to 4 times daily.
- the animals were placed in separate motility meter boxes 50 ⁇ 50 ⁇ 50 cm equipped with an array of 16 ⁇ 16 photocells (Digiscan activity monitor, RXYZM (16) TAO, Omnitech Electronics, USA), connected to an Omnitech Digiscan analyzer and a Apple Macintosh computer equipped with a digital interface board (NB DIO-24, National Instruments, USA).
- Behavioral data from each motility meter box, representing the position (center of gravity) of the animal at each time were recorded at a sampling frequency of 25 Hz and collected using a custom written LABViewTM application.
- the data from each recording session were analyzed with respect to distance traveled and small-scale movements, e.g. stops in the center of the behavior recording arena, during the recording session.
- velocity at each time point is calculated as the distance traveled since the preceding sample divided by the time elapsed since the preceding sample.
- the number of stops is then calculated as the number of times that the velocity changes from a non-zero value to zero.
- the number of stops in the center of the behavioral recording arena is calculated as the number of stops occurring at a position at least ten centimeters from the edges of the recording arena.
- Rats pre-treated with d-amphetamine are given the dose 1,5 mg/kg s.c. 5 min before the behavioral session in the motility meter.
- Rats pre-treated with dizolcipine (Mk-801) are given the dose 0,7 mg/kg i.p. 90 min before the behavioral session.in the motility meter.
- the rats were decapitated and their brains rapidly taken out and put on an ice-cold petri-dish.
- the limbic forebrain, the striatum, the frontal cortex and the remaining hemispheral parts of each rat were dissected and frozen.
- Each brain part was subsequently analyzed with respect to its content of monoamines and their metabolites.
- the monoaminergic indices analyzed were dopamine (DA), 3,4-dihydroxy-phenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA), and noradrenaline (NA).
- test compounds were administered either orally or in the jugular vein catheter. Blood samples are collected during 8 hours from the arterial catheter. The blood samples were heparinized and centrifuged. Plasma is collected from the centrifuged samples and frozen. The levels of test compound were subsequently determined in each sample by means of gas chromatography-mass spectrometry (Hewlett-Packard 5972MSD).
- the plasma samples taken from the rats of the Sprague-Dawley strain, (0.5 ml) were diluted with water (0.5 ml), and 30 pmol (50 ⁇ l) of (( ⁇ )-S-3-(3-Ethylsulfonylphenyl)-N-n-propyl-piperidine as internal standard was added. The pH was adjusted to 11.0 by the addition of 25 ⁇ l saturated Na 2 CO 3 . After mixing, the samples were extracted with 4 ml dichloromethane by shaking for 20 min. The organic layer was, after centrifugation, transferred to a smaller tube and evaporated to dryness under a stream of nitrogen and subsequently redissolved in 40 ⁇ l toluene for GC-MS analysis.
- a standard curve over the range of 1-500 ⁇ mol was prepared by adding appropriate amounts of test compound to blank plasma samples.
- GC was performed on a HP-Ultra 2 capillary column (12 m ⁇ 0.2 mm ID), and 2 ⁇ l was injected in the splitless mode. The GC temperature was held at 90° C. for 1 minute following injection, and was then increased by 30° C./min to the final temperature of 290° C. Each sample was run in duplicate. The lowest detectable concentration of test compound was generally found to be 1 pmol/ml.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- and pharmaceutically acceptable salts thereof, wherein:
- X is selected from the group consisting of N, CH, and C, however X may only be C when the compound comprises a double bond at the dotted line;
- R1 is selected from the group consisting of OSO2CF3, OSO2CH3, SOR3, SO2R3, COR3, NO2, and CONHR3, wherein R3 is as defined below, and when X is CH or C R1 may also be selected from the group consisting of CF3, CN, F, Cl, Br, and I;
- R2 is selected from the group consisting of C1-C4 alkyls, allyls, CH2SCH3, CH2CH2OCH3, CH2CH2CH2F, CH2CF3, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, and —(CH2)—R4, wherein R4 is as defined below;
- R3 is selected from the group consisting of C1-C3 alkyls, CF3, and N(R2)2, wherein R2 is as defined above;
- R4 is selected from the group consisting of C3-C6 cycloalkyls, 2-tetrahydrofurane and 3-tetra-hydrofurane.
-
- schizophrenia and other psychotic disorders, such as catatonic, disorganized, paranoid, residual or differentiated schizophrenia; schizophreniform disorder; schizoaffective disorder; delusional disorder; brief psychotic disorder; shared psychotic disorder; psychotic disorder due to a general medical condition with delusions and/or hallucinations;
- mood disorders, such as depressive disorders , e.g., dysthymic disorder or major depressive disorder; bipolar disorders, e.g., bipolar I disorder, bipolar II disorder, and cyclothymic disorder; mood disorder due to a general medical condition with depressive, and/or manic features; and substance-induced mood disorder;
- anxiety disorders, such as acute stress disorder, agoraphobia without history of panic disorder, anxiety disorder due to general medical condition, generalized anxiety disorder, obsessive-compulsive disorder, panic disorder with agoraphobia, panic disorder without agoraphobia, posttraumatic stress disorder, specific phobia, social phobia, and substance-induced anxiety disorder;
- eating disorders, such as anorexia nervosa, bulimia nervosa, and obesitas;
- sleep disorders, such as dyssomnias, e.g., breathing-related sleep disorder, circadian rhythm sleep disorder, hypersomnia, insomnia, narcolepsy, and “jet lag”;
- impulse-control disorders not elsewhere classified, such as intermittent explosive disorder, kleptomania, pathological gambling, pyromania, and trichotillomania;
- personality disorders, such as paranoid, schizoid or schizotypal disorder; antisocial, borderline, histrionic, and narcissistic disorder; and avoidant, dependent, obsessive-compulsive disorder;
- medication-induced movement disorders, such as neuroleptic induced parkinsonism, neuroleptic malignant syndrome, neuroleptic induced acute and tardive dystonia, neuroleptic induced akathisia, neuroleptic induced tardive dyskinesia, medication induced tremor, and medication induced dyskinesias;
- substance-related disorders, such as abuse, dependence, anxiety disorder, intoxication, intoxication delirium, psychotic disorder, psychotic disorder with delusions, mood disorder, persisting amnestic disorder, persisting dementia, persisting perception disorder, sexual dysfunction, sleep disorder, withdrawal, and withdrawal delirium due to use ore misuse of alcohol, amphetamine (or amphetamine-like substances), caffeine, cannabis, cocaine, hallucinogens, inhalants, nicotine, opioids, phencyclidine (or phencyclidine-like substances), sedative substances, hypnotic substances, and/or anxiolytic substances;
- disorders usually first.diagnosed in infancy, childhood, or adolescence, such as mental retardation; learning disorders; motor skills disorders, e.g. developmental coordination disorder; communication disorders, e.g. expressive language disorder, phonological disorder, receptive-expressive language disorder and stuttering; pervasive developmental disorders, e.g. Asperger's disorder, autistic disorder, childhood disintegrative disorder, and Rett's disorder; attention-deficit and disruptive behavior disorders, e.g. attention-deficit/hyperactivity disorder, conduct disorder, and oppositional defiant disorder; feeding and eating disorders of infancy or early childhood, e.g. feeding disorder of infancy or early childhood, pica, rumination disorder; tic disorders, e.g. chronic motor or vocal tic disorder, and Tourette's disorder; other disorders of infancy, childhood, or adolescence, e.g. selective mutism, and stereotypic movement disorder;
- delirium, dementia, amnestic and other cognitive disorders, such as Alzheimer's, Creutzfeldt-Jakob disease, dead trauma, Huntington's disease, HIV disease, Pick's disease, and diffuse Lewy body dementia;
- conversion hysteria;
- conditions connected to normal aging, such as disturbances in motor functions and mental functions;
- Parkinson's Disease and related disorders, such as multiple system atrophies, e.g. striatonigral degeneration, olivopontocerebellar atrophy, and shydrager syndrome; progressive supranuclear palsy; corticobasal degeneration; and vascular parkinsonism;
- tremors, such as essential, orthostatic, rest, cerebellar, and secondary tremor
- headaches, such as migraine, cluster headache, tension type headache, and paroxysmal headache;
- movement disorders, such as dyskinesias, e.g. in deneral medicine condition, secondary to trauma or vascular insult, hemiballism, athetosis, Sydenham's chorea, and paroxyssmal; dystonias; Ekbom's syndrome (restless legs); Wilson's Disease; Hallerworden-Spatz disease;
- rehabilitation medicine, e.g. to improve rehabilitation after vascular or traumatic brain injury;
- pain in conditions characterized by increased muscular tone, such as fibromyalgia, myofascial syndrome, dystonia, and parkinsonism; as well as
- conditions related to the above that fall within the larger categories but does not meet the criteria of any specific disorder within those categories.
Synthesis
with an aldehyde or ketone, either in the presence of a reducing agent such as sodium cyanoborohydride or sodium triacetoxyborohydride or followed by reduction, e.g. using catalytic hydrogenation, to give a corresponding compound of Formula 1.
where Z is a leaving group like iodide. Other leaving groups besides iodide may be used on the alkyl group, of course, such as sulfonates, particularly methanesulfonate or toluenesulfonate, bromo and the like. The alkyl intermediate is reacted with the appropriate amine in the presence of any convenient acid scavenger. The usual bases such as alkali metal or alkaline earth metal carbonates, bicarbonates and hydroxides are useful acid scavengers, as are some organic bases such as trialkylamines and trialkanolamines. The reaction is performed in a suitable solvent such as n-butanol by heating at about 50-150° C.
where Z is halide e.g. chloro, bromo, iodo, or sulfonate e. g. —OSO2CF3, or —OSO2F, in the presence of a base and a zerovalent transition metal catalyst such as Pd or Ni, according to known method (Tetrahedron Letters, vol 37, 1996, 4463-4466, J. Org. Chem., vol. 61, 1996, 1133-1135).
wherein Y is, for example, a dialkylborane, dialkenylborane or boronic acid (e.g. BEt2, B(OH)2 (dotted lines can be double bonds)) or a trialkyltin (e.g. SnMe3, SnBu3), and an aryl substituted with a leaving group of Formula 7:
(for definition of Z, see above) in the presence of a base and a zerovalent transition metal catalyst such as Pd or Ni, according to known methods (Chem. Pharm. Bull., vol 33, 1985, 4755-4763, J. Am. Chem. Soc., vol. 109, 1987, 5478-5486., Tetrahedron Lett., vol. 33, 1992, 2199-2202). In addition, Y can also be a zink- or magnesium-halide group (e.g. ZnCl2, ZnBr2, ZnI2, MgBr2, MgI2) according to known methods (Tetrahedron Lett., vol. 33, 1992, 5373-5374, Tetrahedron Lett., vol. 37, 1996, 5491-5494).
in the presence of a base and a zerovalent transition metal catalyst such as Pd or Ni, according known methods discussed in the previous paragraph.
can be prepared by catalytic hydrogenation of the tetrahydropyridine or pyridine from the previous paragraph, using standard methods known in the art, generally with palladium on carbon, PtO2, or Raney nickel as the catalyst. The reaction is performed in an inert solvent, such as ethanol or ethyl acetate, either with or without a protic acid, such as acetic acid or HCl. When the pyridine ring is quaternized with an alkyl group the ring can be partly reduced by NaBH4 or NaCNBH4, yielding the tetrahydropyridine analog which can further be reduced with catalytic hydrogenation.
wherein Z is Cl, Br, or I, with alkyllithium reagents, for example, butyllithium, sec-butyllithium or tert-butyllithium, preferably butyllitium or Mg (grignard reaction) in an inert solvent. Suitable solvents include, for example ether or tetrahydrofuran, preferably tetrahydrofuran. Reaction temperatures range from about −110° C. to about 60° C. The intermediate lithium anions or magnesium anions thus formed may then be further reacted with a suitable electrophile of Formula 12:
wherein A is defined as a protecting group like t-Boc (tert-butoxycarbonyl), Fmoc (fluorenylmethoxycarbonyl), Cbz (benzyloxycarbonyl) or a an alkylgroup like benzyl.
The intermediates of Formula 13:
which are formed require that the hydroxy group be removed so as to result in compounds of Formula 1 (X═CH).
Claims (52)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/693,783 USRE46117E1 (en) | 1999-12-22 | 2000-12-22 | Modulators of dopamine neurotransmission |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9904724 | 1999-12-22 | ||
SE9904724A SE9904724D0 (en) | 1999-12-22 | 1999-12-22 | New modulators of dopamine neurotransmission I |
US16817300A | 2000-12-22 | 2000-12-22 | |
US14/693,783 USRE46117E1 (en) | 1999-12-22 | 2000-12-22 | Modulators of dopamine neurotransmission |
PCT/SE2000/002674 WO2001046145A1 (en) | 1999-12-22 | 2000-12-22 | New modulators of dopamine neurotransmission |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46117E1 true USRE46117E1 (en) | 2016-08-23 |
Family
ID=56683533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/693,783 Expired - Lifetime USRE46117E1 (en) | 1999-12-22 | 2000-12-22 | Modulators of dopamine neurotransmission |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE46117E1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9796673B2 (en) | 2014-12-22 | 2017-10-24 | Teva Pharmaceuticals International Gmbh | L-tartrate salt of pridopidine |
US9814706B2 (en) | 2011-12-08 | 2017-11-14 | Teva Pharmaceuticals International Gmbh | Hydrobromide salt of pridopidine |
US10047049B2 (en) | 2015-07-22 | 2018-08-14 | Teva Pharmaceuticals International Gmbh | Process for preparing pridopidine |
US10130621B2 (en) | 2014-06-30 | 2018-11-20 | Teva Pharmaceutical Industries Ltd. | Analogs of pridopidine, their preparation and use |
WO2019036358A1 (en) | 2017-08-14 | 2019-02-21 | Teva Pharmaceuticals International Gmbh | Method of treating amyotrophic lateral sclerosis with pridopidine |
WO2019046568A1 (en) | 2017-08-30 | 2019-03-07 | Teva Pharmaceuticals International Gmbh | High copncentration dosage forms of pridopidine |
WO2019050775A1 (en) | 2017-09-08 | 2019-03-14 | Teva Pharmaceuticals International Gmbh | Pridopidine for treating drug induced dyskinesias |
US10322119B2 (en) | 2013-06-21 | 2019-06-18 | Prilenia Therapeutics Development Ltd. | Use of pridopidine for treating Huntington's disease |
US10603311B2 (en) | 2015-02-25 | 2020-03-31 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine to improve cognitive function and for treating Alzheimer's disease |
US10799492B2 (en) | 2010-09-03 | 2020-10-13 | Prilenia Neurotherapeutics Ltd. | Deuterated analogs of pridopidine useful as dopaminergic stabilizers |
US11090297B2 (en) | 2013-06-21 | 2021-08-17 | Prilenia Neurotherapeutics Ltd. | Pridopidine for treating huntington's disease |
US11207308B2 (en) | 2012-04-04 | 2021-12-28 | Prilenia Neurotherapeutics Ltd. | Pharmaceutical compositions for combination therapy |
US11207310B2 (en) | 2016-08-24 | 2021-12-28 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine for treating functional decline |
US11234973B2 (en) | 2017-01-20 | 2022-02-01 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine for the treatment of fragile X syndrome |
US11471449B2 (en) | 2015-02-25 | 2022-10-18 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine to improve cognitive function and for treating Alzheimer's disease |
US11738012B2 (en) | 2016-02-24 | 2023-08-29 | Prilenia Neurotherapeutics Ltd. | Treatment of neurodegenerative eye disease using pridopidine |
US12036213B2 (en) | 2017-09-08 | 2024-07-16 | Prilenia Neurotherapeutics Ltd. | Pridopidine for treating drug induced dyskinesias |
US12102627B2 (en) | 2016-09-16 | 2024-10-01 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine for treating rett syndrome |
Citations (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB153977A (en) | 1919-08-21 | 1920-11-22 | Frank Gordon Creswell | Improvements in kettles |
GB850662A (en) | 1956-10-22 | 1960-10-05 | Parke Davis & Co | Substituted piperazines and processes for their production |
NL6510107A (en) * | 1964-08-05 | 1966-02-07 | ||
FR1459013A (en) | 1964-08-05 | 1966-04-29 | Allen & Hanburys Ltd | Process for the preparation of 4-phenyl-piperidine derivatives |
US3326916A (en) | 1964-04-14 | 1967-06-20 | May & Baker Ltd | N-phenylpiperazine compounds |
US3539573A (en) | 1967-03-22 | 1970-11-10 | Jean Schmutz | 11-basic substituted dibenzodiazepines and dibenzothiazepines |
GB1464525A (en) | 1974-01-21 | 1977-02-16 | ||
US4048314A (en) | 1974-12-17 | 1977-09-13 | Delmar Chemicals Limited | Morpholino containing 4-arylpiperidine derivatives |
GB1560271A (en) | 1977-01-14 | 1980-02-06 | Joullie International Sa | Therapeutically useful m-trifluoromethylphenylpiperazine derivatives |
JPS5522690A (en) | 1978-08-01 | 1980-02-18 | Synthelabo | 11phenylpiperazine derivative and its manufacture |
US4202898A (en) | 1978-06-05 | 1980-05-13 | Synthelabo | Method of treating anxiety and depression |
US4267328A (en) | 1978-08-01 | 1981-05-12 | Synthelabo | 1-Phenylpiperazines |
GB2078746A (en) | 1980-06-30 | 1982-01-13 | Taiho Pharmaceutical Co Ltd | Piperazine derivatives for use as analgesics |
GB2083476A (en) | 1980-09-12 | 1982-03-24 | Wyeth John & Brother Ltd | Heterocyclic compounds |
US4333942A (en) | 1979-08-03 | 1982-06-08 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Anti-depressant and analgesic 4-phenoxypiperidines |
EP0060179A1 (en) | 1981-03-11 | 1982-09-15 | Sanofi S.A. | Pharmaceutical compositions having anorectic activity |
US4415736A (en) | 1981-12-28 | 1983-11-15 | E. I. Du Pont De Nemours & Co. | Certain tetrahydropyridine intermediates |
EP0094159A1 (en) | 1982-05-10 | 1983-11-16 | Takeda Chemical Industries, Ltd. | Dihydropyridine derivatives, their production and use |
US4485109A (en) | 1982-05-07 | 1984-11-27 | E. I. Du Pont De Nemours And Company | 4-Aryl-4-piperidinecarbinols |
US4504660A (en) | 1982-07-06 | 1985-03-12 | American Home Products Corporation | Process for the production of 2,6-diaminobenzonitrile derivatives |
US4699910A (en) | 1983-02-28 | 1987-10-13 | Boehringer Ingelheim Kg | N-(3-trifluoromethyl-phenyl)-N'-propargyl-piperazine and salts thereof useful as analgesics |
WO1989005799A1 (en) | 1987-12-14 | 1989-06-29 | Richter Gedeon Vegyészeti Gyár RT | Novel tetrahydropyridine derivatives, pharmaceutical compositions containing them and process for preparing same |
EP0369887A2 (en) | 1988-11-18 | 1990-05-23 | Sanofi | Use of trifluoromethyl phenyl-tetrahydropyridines in the manufacture of a medicament for the treatment of anxio-depressive disorders |
WO1991009594A1 (en) | 1989-12-28 | 1991-07-11 | Virginia Commonwealth University | Sigma receptor ligands and the use thereof |
WO1992018475A2 (en) | 1991-04-17 | 1992-10-29 | The Upjohn Company | Substituted phenylazacycloalkanes as cns agents |
WO1993000313A2 (en) | 1991-06-27 | 1993-01-07 | Virginia Commonwealth University | Sigma receptor ligands and the use thereof |
WO1993004684A1 (en) | 1991-09-11 | 1993-03-18 | Mcneilab, Inc. | Novel 4-arylpiperazines and 4-arylpiperidines |
EP0533266A1 (en) | 1991-09-18 | 1993-03-24 | Glaxo Group Limited | Benzanilide derivatives as 5-HT1D antagonists |
EP0533267A1 (en) | 1991-09-18 | 1993-03-24 | Glaxo Group Limited | Benzanilide derivatives as 5-HT1D antagonists |
EP0533268A1 (en) | 1991-09-18 | 1993-03-24 | Glaxo Group Limited | Benzanilide derivatives as 5-HT1D antagonists |
WO1995011880A1 (en) | 1993-10-27 | 1995-05-04 | Merck Sharp & Dohme Limited | Substituted amides as tachykinin antagonists |
WO1995017385A1 (en) | 1993-12-23 | 1995-06-29 | Ortho Pharmaceutical Corporation | N-oxides of 4-arylpiperazines and 4-arylpiperidines as antipsychotic drugs |
EP0661266A1 (en) | 1993-12-27 | 1995-07-05 | Toa Eiyo Ltd. | Substituted cyclic amine compounds as 5HT2 antagonists |
EP0675118A2 (en) | 1994-03-29 | 1995-10-04 | Eisai Co., Ltd. | Biphenylderivatives, process for their preparation and their use as medicaments |
WO1995033729A1 (en) | 1994-06-08 | 1995-12-14 | H. Lundbeck A/S | Serotonin 5-ht1a and dopamin d2 receptor ligands |
US5502050A (en) | 1993-11-29 | 1996-03-26 | Cornell Research Foundation, Inc. | Blocking utilization of tetrahydrobiopterin to block induction of nitric oxide synthesis |
WO1997003986A1 (en) | 1995-07-19 | 1997-02-06 | Yoshitomi Pharmaceutical Industries, Ltd. | Fused triazole compounds |
WO1997023216A1 (en) | 1995-12-22 | 1997-07-03 | Warner-Lambert Company | 4-substituted piperidine analogs and their use as subtype selective nmda receptor antagonists |
WO1998011068A1 (en) | 1996-09-13 | 1998-03-19 | Merck Patent Gmbh | D4 receptor selectivity piperazine derivatives |
EP0867183A1 (en) | 1996-07-22 | 1998-09-30 | Suntory Limited | Arylpiperidinol and arylpiperidine derivatives and drugs containing the same |
WO1998056787A1 (en) | 1997-06-10 | 1998-12-17 | Synthon B.V. | 4-Phenylpiperidine compounds |
WO1999003470A1 (en) | 1997-07-15 | 1999-01-28 | Ross Nicholas Waters | Medicinal product and method for treatment and prevention of cognitive disorders |
WO2000003713A1 (en) | 1998-07-14 | 2000-01-27 | Nelson Jodi A | Treatment for schizophrenia and other dopamine system dysfunctions |
WO2000003714A1 (en) | 1998-07-15 | 2000-01-27 | A. Carlsson Research Ab | Medicinal product and method for treatment and prevention of dyskinesia |
US6121259A (en) | 1998-11-23 | 2000-09-19 | Sepracor Inc. | Olanzapine-N-oxide compositions and methods |
US6159979A (en) | 1997-04-18 | 2000-12-12 | Smithkline Beecham P.L.C. | Bicyclic aryl or a bicyclic heterocyclic ring containing compounds having a combined 5HT1A, 5HT1B and 5HT1D receptor antagonistic activity |
WO2000078728A1 (en) | 1999-06-22 | 2000-12-28 | Neurosearch A/S | Novel benzimidazole derivatives and pharmaceutical compositions comprising these compounds |
US6175015B1 (en) | 1996-08-12 | 2001-01-16 | Neurogen Corporation | Fused indolecarboxamides: dopamine receptor subtype specific ligands |
WO2001081343A2 (en) | 2000-04-21 | 2001-11-01 | Pharmacia & Upjohn Company | Compounds for treating fibromyalgia and chronic fatigue syndrome |
WO2001096301A1 (en) | 2000-06-14 | 2001-12-20 | Toray Industries, Inc. | Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative |
WO2002005819A1 (en) | 2000-07-15 | 2002-01-24 | Smithkline Beecham Corporation | Compounds and methods |
WO2002013807A2 (en) | 2000-08-16 | 2002-02-21 | Pharmacia & Upjohn Company | Compounds for the treatment of addictive disorders |
WO2002036123A2 (en) | 2000-10-31 | 2002-05-10 | Pharmacia & Upjohn Company | New treatments for restless legs syndrome |
WO2002036071A2 (en) | 2000-11-03 | 2002-05-10 | Pharmacia & Upjohn Company | Method of treating and preventing migraine headaches |
WO2002056745A2 (en) | 2000-10-12 | 2002-07-25 | Pharmacia & Upjohn Company | Method of treating parkinson's disease |
WO2002059108A1 (en) | 2001-01-23 | 2002-08-01 | Eli Lilly And Company | Melanocortin receptor agonists |
US20030004169A1 (en) | 1999-12-22 | 2003-01-02 | Clas Sonesson | Modulators of dopamine neurotransmission |
US20030109532A1 (en) | 1999-12-22 | 2003-06-12 | Clas Sonesson | Modulators of dopamine neurotransmission |
US6670378B2 (en) | 2001-05-08 | 2003-12-30 | Pharmacia & Upjohn Company | Method of treating Parkinson's disease |
WO2004099150A2 (en) | 2003-04-30 | 2004-11-18 | Wyeth | 3-(1-naphthyl)-2-cyanopropanoic acid derivatives as estrogen receptor ligands |
WO2005019215A1 (en) | 2003-08-22 | 2005-03-03 | Warner-Lambert Company Llc | [1,8]naphthyridin-2-ones and related compounds for the treatment of schizophrenia |
WO2005121092A1 (en) | 2004-06-08 | 2005-12-22 | A. Carlsson Research Ab | New substituted piperidines as modulators of dopamine neurotransmission |
WO2006034441A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
US20070149542A1 (en) | 2004-06-08 | 2007-06-28 | Clas Sonesson | Disubstituted phenylpiperidines/piperazines as modulators of dopamine neurotransmission |
WO2007076875A2 (en) | 2006-01-06 | 2007-07-12 | Aarhus Universitet | Compounds acting on the serotonin transporter |
US20070238878A1 (en) | 2004-10-13 | 2007-10-11 | Richard Desmond | Process for the synthesis of 4-(3-sulfonylphenyl)-piperidines |
WO2008075070A1 (en) | 2006-12-21 | 2008-06-26 | Astrazeneca Ab | Sulfonamide derivatives for therapeutic use as fatty acid synthase inhibitors |
WO2008148840A1 (en) | 2007-06-08 | 2008-12-11 | Janssen Pharmaceutica N.V. | Piperidine/piperazine derivatives |
WO2008148851A1 (en) | 2007-06-08 | 2008-12-11 | Janssen Pharmaceutica N.V. | Piperidine/piperazine derivatives |
EP2030619A1 (en) | 2007-06-18 | 2009-03-04 | A.Carlsson Research AB | Use of dopamine stabilizers |
WO2008148868A8 (en) | 2007-06-08 | 2009-03-05 | Janssen Pharmaceutica Nv | Piperidine/piperazine derivatives |
WO2008148849A3 (en) | 2007-06-08 | 2009-04-16 | Janssen Pharmaceutica Nv | Piperidine/piperazine derivatives |
US20100105736A1 (en) | 2007-04-12 | 2010-04-29 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | N-oxide and/or di-n-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles |
US20100197712A1 (en) | 2007-06-18 | 2010-08-05 | Arvid Carlsson | Use of dopamine stabilizers |
US7923459B2 (en) | 2004-10-13 | 2011-04-12 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-N-propyl-piperidine |
US20110206782A1 (en) | 2010-02-24 | 2011-08-25 | Auspex Pharmaceuticals, Inc. | Piperidine modulators of dopamine receptor |
WO2011107583A1 (en) | 2010-03-04 | 2011-09-09 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Substituted 4-phenyl-n-alkyl-piperidines for preventing onset or slowing progression of neurodegenerative disorders |
WO2011145669A1 (en) | 2010-05-19 | 2011-11-24 | 大日本住友製薬株式会社 | Amide derivative |
WO2012028635A1 (en) | 2010-09-03 | 2012-03-08 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Deuterated analogs of pridopidine useful as dopaminergic stabilizers |
WO2012039660A1 (en) | 2010-09-20 | 2012-03-29 | A. Carlsson Research Ab | Phenylpiperidine compounds for the treatment of neurological and psychiatric disorders |
WO2012146936A1 (en) | 2011-04-28 | 2012-11-01 | Cxr Biosciences Limited | Pyrrolnitrin derivatives |
WO2013038259A1 (en) | 2011-09-15 | 2013-03-21 | The University Of Queensland | Benzothiazinone derivatives as anti -tuberculosis agents |
US20130150406A1 (en) | 2011-12-08 | 2013-06-13 | IVAX International GmbH | Hydrobromide salt of pridopidine |
US20130267552A1 (en) | 2012-04-04 | 2013-10-10 | IVAX International GmbH | Pharmaceutical compositions for combination therapy |
US20140088145A1 (en) | 2012-09-27 | 2014-03-27 | Teva Pharmaceutical Industries, Ltd. | Combination of rasagiline and pridopidine for treating neurodegenerative disorders, in particular huntington's disease |
US20140088140A1 (en) | 2012-09-27 | 2014-03-27 | Teva Pharmaceutical Industries, Ltd. | Combination of laquinimod and pridopidine for treating neurodegenerative disorders, in particular huntington's disease |
WO2014134127A1 (en) | 2013-02-26 | 2014-09-04 | Northeastern University | Cannabinergic nitrate esters and related analogs |
WO2014165827A1 (en) | 2013-04-05 | 2014-10-09 | Salk Institute For Biological Studies | Ppar agonists |
US20140315951A1 (en) | 2011-09-07 | 2014-10-23 | IVAX International GmbH | Polymorphic form of pridopidine hydrochloride |
US20140378508A1 (en) | 2013-06-21 | 2014-12-25 | IVAX International GmbH | Use of high dose pridopidine for treating huntington's disease |
US20150202302A1 (en) | 2014-01-22 | 2015-07-23 | IVAX International GmbH | Modified release formulations of pridopidine |
US20150374677A1 (en) | 2014-06-30 | 2015-12-31 | Teva Pharmaceutical Industries Ltd. | Analogs of pridopidine, their preparation and use |
-
2000
- 2000-12-22 US US14/693,783 patent/USRE46117E1/en not_active Expired - Lifetime
Patent Citations (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB153977A (en) | 1919-08-21 | 1920-11-22 | Frank Gordon Creswell | Improvements in kettles |
GB850662A (en) | 1956-10-22 | 1960-10-05 | Parke Davis & Co | Substituted piperazines and processes for their production |
US3326916A (en) | 1964-04-14 | 1967-06-20 | May & Baker Ltd | N-phenylpiperazine compounds |
NL6510107A (en) * | 1964-08-05 | 1966-02-07 | ||
FR1459013A (en) | 1964-08-05 | 1966-04-29 | Allen & Hanburys Ltd | Process for the preparation of 4-phenyl-piperidine derivatives |
GB1060160A (en) | 1964-08-05 | 1967-03-01 | Allen & Hanburys Ltd | 4-phenylpiperidine derivatives |
US3458521A (en) | 1964-08-05 | 1969-07-29 | Allen & Hanburys Ltd | 4-phenylpiperidine derivatives |
US3539573A (en) | 1967-03-22 | 1970-11-10 | Jean Schmutz | 11-basic substituted dibenzodiazepines and dibenzothiazepines |
GB1464525A (en) | 1974-01-21 | 1977-02-16 | ||
US4048314A (en) | 1974-12-17 | 1977-09-13 | Delmar Chemicals Limited | Morpholino containing 4-arylpiperidine derivatives |
GB1560271A (en) | 1977-01-14 | 1980-02-06 | Joullie International Sa | Therapeutically useful m-trifluoromethylphenylpiperazine derivatives |
US4202898A (en) | 1978-06-05 | 1980-05-13 | Synthelabo | Method of treating anxiety and depression |
JPS5522690A (en) | 1978-08-01 | 1980-02-18 | Synthelabo | 11phenylpiperazine derivative and its manufacture |
GB2027703A (en) | 1978-08-01 | 1980-02-27 | Synthelabo | 1-Phenylpiperazine derivatives |
US4267328A (en) | 1978-08-01 | 1981-05-12 | Synthelabo | 1-Phenylpiperazines |
US4333942A (en) | 1979-08-03 | 1982-06-08 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Anti-depressant and analgesic 4-phenoxypiperidines |
GB2078746A (en) | 1980-06-30 | 1982-01-13 | Taiho Pharmaceutical Co Ltd | Piperazine derivatives for use as analgesics |
GB2083476A (en) | 1980-09-12 | 1982-03-24 | Wyeth John & Brother Ltd | Heterocyclic compounds |
EP0060179A1 (en) | 1981-03-11 | 1982-09-15 | Sanofi S.A. | Pharmaceutical compositions having anorectic activity |
US4415736A (en) | 1981-12-28 | 1983-11-15 | E. I. Du Pont De Nemours & Co. | Certain tetrahydropyridine intermediates |
US4485109A (en) | 1982-05-07 | 1984-11-27 | E. I. Du Pont De Nemours And Company | 4-Aryl-4-piperidinecarbinols |
EP0094159A1 (en) | 1982-05-10 | 1983-11-16 | Takeda Chemical Industries, Ltd. | Dihydropyridine derivatives, their production and use |
US4504660A (en) | 1982-07-06 | 1985-03-12 | American Home Products Corporation | Process for the production of 2,6-diaminobenzonitrile derivatives |
US4699910A (en) | 1983-02-28 | 1987-10-13 | Boehringer Ingelheim Kg | N-(3-trifluoromethyl-phenyl)-N'-propargyl-piperazine and salts thereof useful as analgesics |
WO1989005799A1 (en) | 1987-12-14 | 1989-06-29 | Richter Gedeon Vegyészeti Gyár RT | Novel tetrahydropyridine derivatives, pharmaceutical compositions containing them and process for preparing same |
EP0369887A2 (en) | 1988-11-18 | 1990-05-23 | Sanofi | Use of trifluoromethyl phenyl-tetrahydropyridines in the manufacture of a medicament for the treatment of anxio-depressive disorders |
JPH05503517A (en) | 1989-12-18 | 1993-06-10 | バージニア・コモンウェルス・ユニバーシティ | Sigma receptor ligand and its uses |
WO1991009594A1 (en) | 1989-12-28 | 1991-07-11 | Virginia Commonwealth University | Sigma receptor ligands and the use thereof |
US6057371A (en) | 1989-12-28 | 2000-05-02 | Virginia Commonwealth University | Sigma receptor ligands and the use thereof |
US5462947A (en) | 1991-04-17 | 1995-10-31 | The Upjohn Company | Centrally acting substituted phenylazacycloalkanes |
WO1992018475A2 (en) | 1991-04-17 | 1992-10-29 | The Upjohn Company | Substituted phenylazacycloalkanes as cns agents |
WO1993000313A2 (en) | 1991-06-27 | 1993-01-07 | Virginia Commonwealth University | Sigma receptor ligands and the use thereof |
JPH06509069A (en) | 1991-06-27 | 1994-10-13 | バージニア・コモンウェルス・ユニバーシティ | Sigma receptor ligands and their uses |
WO1993004684A1 (en) | 1991-09-11 | 1993-03-18 | Mcneilab, Inc. | Novel 4-arylpiperazines and 4-arylpiperidines |
EP0533266A1 (en) | 1991-09-18 | 1993-03-24 | Glaxo Group Limited | Benzanilide derivatives as 5-HT1D antagonists |
EP0533267A1 (en) | 1991-09-18 | 1993-03-24 | Glaxo Group Limited | Benzanilide derivatives as 5-HT1D antagonists |
EP0533268A1 (en) | 1991-09-18 | 1993-03-24 | Glaxo Group Limited | Benzanilide derivatives as 5-HT1D antagonists |
WO1995011880A1 (en) | 1993-10-27 | 1995-05-04 | Merck Sharp & Dohme Limited | Substituted amides as tachykinin antagonists |
US5502050A (en) | 1993-11-29 | 1996-03-26 | Cornell Research Foundation, Inc. | Blocking utilization of tetrahydrobiopterin to block induction of nitric oxide synthesis |
WO1995017385A1 (en) | 1993-12-23 | 1995-06-29 | Ortho Pharmaceutical Corporation | N-oxides of 4-arylpiperazines and 4-arylpiperidines as antipsychotic drugs |
EP0661266A1 (en) | 1993-12-27 | 1995-07-05 | Toa Eiyo Ltd. | Substituted cyclic amine compounds as 5HT2 antagonists |
EP0675118A2 (en) | 1994-03-29 | 1995-10-04 | Eisai Co., Ltd. | Biphenylderivatives, process for their preparation and their use as medicaments |
WO1995033729A1 (en) | 1994-06-08 | 1995-12-14 | H. Lundbeck A/S | Serotonin 5-ht1a and dopamin d2 receptor ligands |
RU2140920C1 (en) | 1994-06-08 | 1999-11-10 | Х.Лундбекк А/С | Compound of 4-phenylpiperazine, 4-phenylpiperidine and 4-phenyl- -1,2,3,6-tetrahydropyridine and pharmaceutical composition eliciting 5-ht1a- and d2-activity |
WO1997003986A1 (en) | 1995-07-19 | 1997-02-06 | Yoshitomi Pharmaceutical Industries, Ltd. | Fused triazole compounds |
WO1997023216A1 (en) | 1995-12-22 | 1997-07-03 | Warner-Lambert Company | 4-substituted piperidine analogs and their use as subtype selective nmda receptor antagonists |
EP0867183A1 (en) | 1996-07-22 | 1998-09-30 | Suntory Limited | Arylpiperidinol and arylpiperidine derivatives and drugs containing the same |
US6175015B1 (en) | 1996-08-12 | 2001-01-16 | Neurogen Corporation | Fused indolecarboxamides: dopamine receptor subtype specific ligands |
WO1998011068A1 (en) | 1996-09-13 | 1998-03-19 | Merck Patent Gmbh | D4 receptor selectivity piperazine derivatives |
US6159979A (en) | 1997-04-18 | 2000-12-12 | Smithkline Beecham P.L.C. | Bicyclic aryl or a bicyclic heterocyclic ring containing compounds having a combined 5HT1A, 5HT1B and 5HT1D receptor antagonistic activity |
WO1998056787A1 (en) | 1997-06-10 | 1998-12-17 | Synthon B.V. | 4-Phenylpiperidine compounds |
WO1999003470A1 (en) | 1997-07-15 | 1999-01-28 | Ross Nicholas Waters | Medicinal product and method for treatment and prevention of cognitive disorders |
WO2000003713A1 (en) | 1998-07-14 | 2000-01-27 | Nelson Jodi A | Treatment for schizophrenia and other dopamine system dysfunctions |
WO2000003714A1 (en) | 1998-07-15 | 2000-01-27 | A. Carlsson Research Ab | Medicinal product and method for treatment and prevention of dyskinesia |
US6121259A (en) | 1998-11-23 | 2000-09-19 | Sepracor Inc. | Olanzapine-N-oxide compositions and methods |
WO2000078728A1 (en) | 1999-06-22 | 2000-12-28 | Neurosearch A/S | Novel benzimidazole derivatives and pharmaceutical compositions comprising these compounds |
US20030004169A1 (en) | 1999-12-22 | 2003-01-02 | Clas Sonesson | Modulators of dopamine neurotransmission |
USRE41315E1 (en) | 1999-12-22 | 2010-05-04 | Nsab, Filial Af Neurosearch Sweden Ab | Modulators of dopamine neurotransmission |
US7417043B2 (en) | 1999-12-22 | 2008-08-26 | Neurosearch Sweden Ab | Modulators of dopamine neurotransmission |
US6924374B2 (en) | 1999-12-22 | 2005-08-02 | A. Carlsson Research Ab | Modulators of dopamine neurotransmission |
EP1419773A2 (en) | 1999-12-22 | 2004-05-19 | A. Carlsson Research AB | 4-Phenylpiperidine derivatives as modulators of dopamine neurotransmission |
US20030109532A1 (en) | 1999-12-22 | 2003-06-12 | Clas Sonesson | Modulators of dopamine neurotransmission |
WO2001081343A2 (en) | 2000-04-21 | 2001-11-01 | Pharmacia & Upjohn Company | Compounds for treating fibromyalgia and chronic fatigue syndrome |
EP1295873A1 (en) | 2000-06-14 | 2003-03-26 | Toray Industries, Inc. | Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative |
WO2001096301A1 (en) | 2000-06-14 | 2001-12-20 | Toray Industries, Inc. | Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative |
WO2002005819A1 (en) | 2000-07-15 | 2002-01-24 | Smithkline Beecham Corporation | Compounds and methods |
WO2002013807A2 (en) | 2000-08-16 | 2002-02-21 | Pharmacia & Upjohn Company | Compounds for the treatment of addictive disorders |
WO2002056745A2 (en) | 2000-10-12 | 2002-07-25 | Pharmacia & Upjohn Company | Method of treating parkinson's disease |
US6653325B2 (en) | 2000-10-12 | 2003-11-25 | Pharmacia & Upjohn Company | Method of treating parkinson's disease |
WO2002036123A2 (en) | 2000-10-31 | 2002-05-10 | Pharmacia & Upjohn Company | New treatments for restless legs syndrome |
WO2002036071A2 (en) | 2000-11-03 | 2002-05-10 | Pharmacia & Upjohn Company | Method of treating and preventing migraine headaches |
WO2002059108A1 (en) | 2001-01-23 | 2002-08-01 | Eli Lilly And Company | Melanocortin receptor agonists |
US6670378B2 (en) | 2001-05-08 | 2003-12-30 | Pharmacia & Upjohn Company | Method of treating Parkinson's disease |
WO2004099150A2 (en) | 2003-04-30 | 2004-11-18 | Wyeth | 3-(1-naphthyl)-2-cyanopropanoic acid derivatives as estrogen receptor ligands |
WO2005019215A1 (en) | 2003-08-22 | 2005-03-03 | Warner-Lambert Company Llc | [1,8]naphthyridin-2-ones and related compounds for the treatment of schizophrenia |
WO2005121092A1 (en) | 2004-06-08 | 2005-12-22 | A. Carlsson Research Ab | New substituted piperidines as modulators of dopamine neurotransmission |
US20070149542A1 (en) | 2004-06-08 | 2007-06-28 | Clas Sonesson | Disubstituted phenylpiperidines/piperazines as modulators of dopamine neurotransmission |
US7763639B2 (en) | 2004-06-08 | 2010-07-27 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Disubstituted phenylpiperidines/piperazines as modulators of dopamine neurotransmission |
WO2006034441A1 (en) | 2004-09-20 | 2006-03-30 | Xenon Pharmaceuticals Inc. | Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors |
US7923459B2 (en) | 2004-10-13 | 2011-04-12 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-N-propyl-piperidine |
US20070238878A1 (en) | 2004-10-13 | 2007-10-11 | Richard Desmond | Process for the synthesis of 4-(3-sulfonylphenyl)-piperidines |
WO2007076875A2 (en) | 2006-01-06 | 2007-07-12 | Aarhus Universitet | Compounds acting on the serotonin transporter |
WO2008075070A1 (en) | 2006-12-21 | 2008-06-26 | Astrazeneca Ab | Sulfonamide derivatives for therapeutic use as fatty acid synthase inhibitors |
US20100105736A1 (en) | 2007-04-12 | 2010-04-29 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | N-oxide and/or di-n-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles |
US9139525B2 (en) | 2007-04-12 | 2015-09-22 | Teva Pharmaceuticals International Gmbh | N-oxide and/or di-N-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles |
WO2008148868A8 (en) | 2007-06-08 | 2009-03-05 | Janssen Pharmaceutica Nv | Piperidine/piperazine derivatives |
WO2008148849A3 (en) | 2007-06-08 | 2009-04-16 | Janssen Pharmaceutica Nv | Piperidine/piperazine derivatives |
WO2008148851A1 (en) | 2007-06-08 | 2008-12-11 | Janssen Pharmaceutica N.V. | Piperidine/piperazine derivatives |
WO2008148840A1 (en) | 2007-06-08 | 2008-12-11 | Janssen Pharmaceutica N.V. | Piperidine/piperazine derivatives |
US20100197712A1 (en) | 2007-06-18 | 2010-08-05 | Arvid Carlsson | Use of dopamine stabilizers |
EP2030619A1 (en) | 2007-06-18 | 2009-03-04 | A.Carlsson Research AB | Use of dopamine stabilizers |
US20110206782A1 (en) | 2010-02-24 | 2011-08-25 | Auspex Pharmaceuticals, Inc. | Piperidine modulators of dopamine receptor |
WO2011107583A1 (en) | 2010-03-04 | 2011-09-09 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Substituted 4-phenyl-n-alkyl-piperidines for preventing onset or slowing progression of neurodegenerative disorders |
WO2011145669A1 (en) | 2010-05-19 | 2011-11-24 | 大日本住友製薬株式会社 | Amide derivative |
US20130197031A1 (en) | 2010-09-03 | 2013-08-01 | IVAX International GmbH | Deuterated analogs of pridopidine useful as dopaminergic stabilizers |
WO2012028635A1 (en) | 2010-09-03 | 2012-03-08 | Nsab, Filial Af Neurosearch Sweden Ab, Sverige | Deuterated analogs of pridopidine useful as dopaminergic stabilizers |
WO2012039660A1 (en) | 2010-09-20 | 2012-03-29 | A. Carlsson Research Ab | Phenylpiperidine compounds for the treatment of neurological and psychiatric disorders |
WO2012146936A1 (en) | 2011-04-28 | 2012-11-01 | Cxr Biosciences Limited | Pyrrolnitrin derivatives |
US20140315951A1 (en) | 2011-09-07 | 2014-10-23 | IVAX International GmbH | Polymorphic form of pridopidine hydrochloride |
US9006445B2 (en) | 2011-09-07 | 2015-04-14 | IVAX International GmbH | Polymorphic form of pridopidine hydrochloride |
WO2013038259A1 (en) | 2011-09-15 | 2013-03-21 | The University Of Queensland | Benzothiazinone derivatives as anti -tuberculosis agents |
US9012476B2 (en) | 2011-12-08 | 2015-04-21 | IVAX International GmbH | Hydrobromide salt of pridopidine |
US20130150406A1 (en) | 2011-12-08 | 2013-06-13 | IVAX International GmbH | Hydrobromide salt of pridopidine |
US20130267552A1 (en) | 2012-04-04 | 2013-10-10 | IVAX International GmbH | Pharmaceutical compositions for combination therapy |
US20140088140A1 (en) | 2012-09-27 | 2014-03-27 | Teva Pharmaceutical Industries, Ltd. | Combination of laquinimod and pridopidine for treating neurodegenerative disorders, in particular huntington's disease |
US20140088145A1 (en) | 2012-09-27 | 2014-03-27 | Teva Pharmaceutical Industries, Ltd. | Combination of rasagiline and pridopidine for treating neurodegenerative disorders, in particular huntington's disease |
US20150209346A1 (en) | 2012-09-27 | 2015-07-30 | Teva Pharmaceutical Industries, Ltd. | Combination of laquinimod and pridopidine for treating neurodegenerative disorders, in particular huntington's disease |
US20150216850A1 (en) | 2012-09-27 | 2015-08-06 | Michael Hayden | Combination of rasagiline and pridopidine for treating neurodegenerative disorders, in particular huntington's disease |
WO2014134127A1 (en) | 2013-02-26 | 2014-09-04 | Northeastern University | Cannabinergic nitrate esters and related analogs |
WO2014165827A1 (en) | 2013-04-05 | 2014-10-09 | Salk Institute For Biological Studies | Ppar agonists |
US20140378508A1 (en) | 2013-06-21 | 2014-12-25 | IVAX International GmbH | Use of high dose pridopidine for treating huntington's disease |
US20150202302A1 (en) | 2014-01-22 | 2015-07-23 | IVAX International GmbH | Modified release formulations of pridopidine |
US20150374677A1 (en) | 2014-06-30 | 2015-12-31 | Teva Pharmaceutical Industries Ltd. | Analogs of pridopidine, their preparation and use |
Non-Patent Citations (115)
Title |
---|
"Biologic Test Methods", Burger's Medicinal Chemistry, Fourth Edition, Part III, Edited by Manfred E. Wolff, pp. 872-873, John Wiley & Sons, NY, USA. |
Altomare et al., "Quantitative Structure-Metabolism Relationship Analyses of MAO-Mediated Toxication of 1-Methyl-4-phenyl-1, 2,3,6-tetrahydropyridine and Analogues" Chem. Res. Toxicol. 1992, 5, 366-375. |
Amos D. Korczyn: "Parkinson's Disease", Tel Aviv University, Rama Aviv, Israel; Chapter 126; 1995 http://www.acnp.org/94/GN401000142/Default.htm. |
Apr. 12, 2013 Office. Action in connection with Japanese Patent Application No. 2011-116406 (including English language translation). |
Apr. 23, 2008 Response to Oct. 23, 2007 Office Action issued in connection with Canadian Patent No. 2,394,602. |
Apr. 7, 2006 Response to Dec. 7, 2005 Office Action in connection with U.S. Appl. No. 11/016,967. |
Aug. 23, 2005 Response to Jul. 26, 2005 Office Action in connection with U.S. Appl. No. 11/016,967. |
Aug. 26, 2013 Office Action in connection with Japanese Patent Application No. 2011-116406 (including English language translation). |
Aug. 31, 2009 Office Action issued in connection with Bulgarian Patent Application No. 110211 (including English language translation). |
Aug. 9, 2007 Office Action in connection with U.S. Appl. No. 11/016,967. |
Aug. 9, 2013 Response to Apr. 12, 2013 Office Action in connection with Japanese Patent Application No. 2011-116406. |
Berberian, et al., "Comparison of Sohistosomicidal Activity of Xanthenones adn 4-Methyl-3-chloroanilines and Their Hydroxymethyl Analogs in Swiss Mice and Syrian Hamsters Infected with Schistosoma mansoni", Jpurnal of Medicinal Chemistry, Jul. 1969, pp. 607-610, vol. 12, No. 4, American Chemical Society, Washington, DC. |
Bergel et al., 1944, pp. 261 to 264. Beilstein Registry No. 183878 and 206256; Beilstein Institute for Organic Chemistry, Germany. |
Beugelmans, et al., "Synthèsse d'heterocycles à 5 et 6 chaînons par une stratégie combinant des réactions SNAr et SRN1", Bull Soc Chim Fr., 1995, pp. 306-313, vol. 132, Elsevier, Paris, FR. |
Birgtta Johansson, Arvid Carlssonal, Maria L. Carlsson, Magdalen Karlsson, Marie K.L. Nilsson, Elisabeth Nordquist-Brandt and Lars Rönnbäck, Placebo-controlled cross-over study of the monoaminergic stabiliser (-)-OSU6162 in mental fatigue following stroke or traumatic brain injury, Acta Neuropsychiatrica / vol. 24 / Issue 05 / Oct. 2012, pp. 266-274 (abstract). |
Birgtta Johansson, Arvid Carlssonal, Maria L. Carlsson, Magdalen Karlsson, Marie K.L. Nilsson, Elisabeth Nordquist-Brandt and Lars Rönnbäck, Placebo-controlled cross-over study of the monoaminergic stabiliser (−)-OSU6162 in mental fatigue following stroke or traumatic brain injury, Acta Neuropsychiatrica / vol. 24 / Issue 05 / Oct. 2012, pp. 266-274 (abstract). |
Bloom et al. (Editors), "Psychopharmacology-The Fourth Generatic of Progress", Chapter 149, Pharmacotherapy of Alcoholism, pp. 1745-1752, Chapter 25, pp. 283, 292, Chapter 120, pp. 1417, 1420, chapter 123, pp. 1447, 1452, 1455-1457, chapter 142, pp. 1653, 1661, chapter 141, pp. 1643, 1649, 1650, chapter 54, pp. 743. |
Bloom et al. (Editors), "Psychopharmacology-The Fourth Generation of Progress", Chapter 21, pp. 227, 237, Chapter 22, pp. 245, 254, Chapter 25, pp. 283, 292, Chapter 26, pp. 295-301, Chapter 66, pp. 759-760, 1725, 744-746, Chapter 68, pp. 787, 793-795, Chapter 80, pp. 921-925, 927-928, Chapter 101, pp. 1205, 1207-1209, Chapter 111, pp. 1311, 1317, 1318, 1320, Chapter 126, pp. 1479-1482, Chapter 137, pp. 1591, 1600, Chapter 138, pp. 1609-1610, 1612, (1995), Raven Press, New York, New York, USA. |
Bray, George A.; "Obesity, Fat Intake, and Chronic Disease"; Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana; Chapter 137; 1995 http://www.acnp.org/g4/GN401000154/Default.htm. |
Bunney et al., "Schizophrenia and Glutamate"; Department of Pharmacology, University of Goteborg, Goteborg, Sweden; Chapter 101, 1995 http://www.acnp.org/g4/GN401000116/Default.htm. |
Calligaro et al. "The synthesis and biological activity of some known and putative metabolites of the atypical antipsychotic agent olanzapine," Bioorganic and Medicinal Chemistry Letters, vol. 7, No. 1, Jan. 7, 1997 , pp. 25-30(6). |
Carlsson et al., "Interactions Between Glutamatergic and Monoaminergic Systems within the Basal Ganglia-Implications for Schizophrenia and Parkinson's Disease", TINS, (1990), pp. 272-276, vol. 13, No. 7, Elsevier Science Publishers Ltd., United Kingdom. |
Chemical Abstract CA 116:250000. "Quantitative structure-metabolism relationship analyses of MAO-medicated toxication of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine and analogs." Altomare et al., Chemical Research in Toxicology (1992), 5(3), pp. 366-375. |
Chemical Abstract CA 116:250000. "Quantitative structure-metabolism relationship analysis of MAO-medicated toxication of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine and analogs." Cosimo et al., Chemical Research in Toxicology (1992), 5(3), pp. 366-375. |
Chemical Abstract CA 132:35590. "Synthesis of piperidine analogos of 1-(3-cholrophenyl)piperazine, a well known serotonin ligand." Radl et al., Journal of Heterocyclic Chemistry (1999), 36(4), pp. 1017-1022. |
Chemical Abstract CA 132:35590. "Synthesis of piperidine analogs of 1-(3-cholrophenyl)piperazine, a well known serotonin ligand." Radl et al., Journal of Heterocyclic Chemistry (1999), 36(4), pp. 1017-1022. |
Citation of Prior Art under 37 C.F.R. §1.501, including Jul. 12, 2006 Korean Official Action issued in Korean Application No. 2005-7024520. |
Dec. 13, 2013 Office Action in connection with Japanese Patent Application No. 2011-116406 (including English language translation). |
Dec. 2, 2008 Response to Sep. 30, 2008 Office Action issued in connection with Croatian Patent Application No. P 2005 0784A. |
Dec. 7, 2005 Office Action in connection with U.S. Appl. No. 11/016,967. |
DN 65:38471 Feb. 1966 (also cited as NL 6510107, published Feb. 1966). |
Dorwald "Side Reaction in Organic Synthesis" p. ix (2005). |
Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, Christophersen P, Waters N., The dopaminergic stabilizers pridopidine (ACR16) and (-)-0SU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol. Feb. 25, 2010;628(1-3):19-26 (abstract). |
Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, Christophersen P, Waters N., The dopaminergic stabilizers pridopidine (ACR16) and (−)-0SU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol. Feb. 25, 2010;628(1-3):19-26 (abstract). |
Egawa, et al., "A New Synthesis of 7H-Pyrido[1,2,3-de][1,4]benzoxazine Derivatives Including an Antibacterial Agent, Ofloxacin1", Chemical & Pharmaceutical Bulletin, Oct. 1986, pp. 4098-4102, vol. 34, No. 10, Pharmaceutical Society of Japan, Tokyo, JP. |
Elslager, et al., "Folate Antagonists. 3. 2,4-Diamino-6-(heterocyclic)quinazolines, a Novel Class of Antimetabolites with Potent Antimalarial and Antibacterial Activity", Journal of Medicinal Chemistry, 1972, pp. 827-836, vol. 15, No. 8, American Chemical Society, Washington, DC. |
English language translation of Apr. 8, 2009 Office Action issued in connection with Bulgarian Patent Application No. 106841. |
English language translation of First Office Action issued in connection with Brazilian Patent Application No. PI0016611-1, received Apr. 16, 2010. |
European Search Report for European Patent Application No. 03027034.2 (European Publication No. 1419773 A3). |
Feb. 21, 2012 Response to Oct. 19, 2011 Office Action in connection with Japanese Patent Application No. 2001-547056. |
Feb. 3, 2009 Office Action issued by the Russian Patent Office in connection with Russian Patent Application No. 2005117612. |
Feldman et al. (Editors) "Principles of Neuropsychopharmacology", Chapter 17-Mind Altering Drugs, (1997), pp. 731, 762, 763, Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA. |
Feldman et al. (Editors), "Principles of Neuropsychopharmacology", Chapter 17-Mind Altering Drugs, (1997), pp. 731, 762, 763, Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA. |
Gesner et al., J Med Chem. Mar. 1985;28(3):311-7. Synthesis and dihydropteridine reductase inhibitory effects of potential metabolites of the neurotoxin 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine. |
Geyer et al., "Animal Models of Psychiatric Disorders" Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California; Chapter 68, 1995.1. |
Gressner et al. "Synthesis and Dihydropteridine Reductase Inhibitory Effects of Potential Metabolites of the Neurotoxin I-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine" J. Med. Chem. 1985, 28, 311-317. |
Grunblatt et al (PubMed Abstract 10335493) J Neural Transm Suppl. 1999; 55:57-70. "Potent neuroprotective and antioxidant activity of apomorphine in MPTP and 6-hydroxydopamine induced neurotoxicity." |
Grunblatt et al (PubMed Abstract 10863545) Ann N Y Acad Sci. 2000;899:262-73. "Neuroprotective strategies in Parkinson's disease using the models of 6-hydroxydopamine and MPTP." |
Grunblatt et al(PubMed Abstract 10335493). * |
Grunblatt et al(PubMed Abstract 10863545). * |
Halmi, Katherine A. "Basic Biological Overview of Eating Disorders"; Cornell Medical Center-Westchester Division, White Plains, New York; Chapter 138; 1995 http://www.acnp.org/g4/GB401000155/Default.htm. |
Henry, "A Facile Synthesis of Piperazines from Primary Amines (1)", Journal of Heterocyclic Chemistry, 1966, pp. 503-511, vol. 3, No. 4, Heterocorporation, USA. |
International Preliminary Examination Report including an International Search of the International Preliminary Examining Authority, completed Mar. 21, 2002, in connection with PCT International Application No. PCT/SE00/02674, filed Dec. 22, 2000. |
Jan. 11, 2011 Response to Nov. 5, 2010 Official Action issued by the Mexican Patent Office in connection with Mexican Patent Application No. PA/A/2005011920. |
Jan. 13, 2010 Official Action issued by the European Patent Office in connection with European Patent Application No. 03027033.4. |
Jan. 9, 2008 Response to Aug. 9, 2007 Office Action in connection with U.S. Appl. No. 11/016,967. |
Joseph Coyle et al. Alzheimer's Disease: A Disorder of Cortical Cholinergic Innervation Science vol. 219 Mar. 11, 1983: 1184-1190. |
Joseph T. Coyle et al, Science vol. 219, 1184-1190(1983). * |
Jul. 26, 2005 Office Action in connection with U.S. Appl. No. 11/016,967. |
Jun. 18, 2010 Response to First Office Action issued in connection with Brazilian Patent Application No. PI0016611-1. |
Jun. 2, 2009 Search Report issued by the European Patent Office in connection with European Patent Application No. 03027033.4. |
Jun. 25, 2009 Response to Apr. 8, 2009 Office Action issued connection with Bulgarian Patent Application No. 106841. |
Jun. 28, 2006 Office Action in connection with U.S. Appl. No. 11/016,967. |
Katritzky et al. (1971) Abstract "Conformational Analysis of Saturated Heterocycles" CA75:48309 (1971). |
Klaubert, et al., "N-(Aminophenyl)oxamic Acids and Esters a Potent, Orally Active Antiallergy Agent", J. Med. Chem., 1981, p. 742-748, vol. 24, American Chemical Society, Washington, DC. |
Koob, George F. "Animal Models of Drug Addiction"; Department of Neuropharmacology, The Scripps Research Institute, Lo Jolla, California; Chapter 66, pp. 759, 745-746, 760, 744 and 1725, 1995 http://www.acnp.org/g4/GN401000072/Default.htm. |
Manoury, et al., "Synthesis and Analgesic Activities of Some (4-Substituted phenyl-1-piperazinyl)alkyl 2-Aminobenzoates and 2-Aminocotinates", Journal of Medicinal Chemistry, 1979, pp. 554-559, vol. 22, No. 5, American Chemical Society, Washington, DC. |
Mar. 12, 2015 Response to Dec. 13, 2013 Office Action in connection with Japanese Patent Application No. 2011-116406. |
May 7, 2010 Response to Jan. 13, 2010 Official Action issued by the European Patent Office in connection with European Patent Application No. 03027033.4. |
Meal, Michel Le, "Mesocorticolimbic Dopaminergic Neurons Functional and Regulatory Roles"; Universite de Bordeaux, Bordeaux, France; Chapter 25, pp. 283 and 292, 1995, http://www.acnp.org/g4/GN401000025/Default.htm. |
Moore et al., "Dopaminergic Neuronal Systems in the Hypothalamus"; Department of Pharmacology and Toxicology, Michigan State University, East Lansing,Michigan; Chapter 22; 1995. http://www.acnp.org/g4/GN401000022/CH.html. |
Morita, et al., "Practical Application of the Palladium-catalyzed Amination in Phenylpiperazine Synthesis: An Efficient Synthesis of a Metabolite of the Antipsychotic Agent Aripiprazole", Tetrahedron, May 7, 1998, pp. 4811-4818, vol. 54, No. 19, Pergamon, Elsevier Science Ltd., Oxford, England & NY, US. |
Nacci et al. "Antiblastic Substances, LII. Tylophorine Analogs. 1. Synthesis and Cytostotic and Cytoxic Activity of 3-(3,4-dimethoxyphenyl)piperidine", Farmaco, Edizone Scientifica, vol. 328, No. 5, 1973, pp. 399-419. |
Nov. 27, 2013 Response to Aug. 26, 2013 Office Action in connection with Japanese Patent Application No. 2011-116406. |
Nov. 5, 2010 Official Action issued by the Mexican Patent Office in connection with Mexican Patent Application No. PA/A/2005011920. |
Nov. 6, 2003 response to Office Action issued Apr. 28, 2003 in connection with European Patent Application No. 00 989162.3-2101. |
Oct. 19, 2011 Office Action in connection with Japanese Patent Application No. 2001-547056 (including English language translation). |
Oct. 23, 2007 Office Action issued in connection with Canadian Patent No. 2,394,602. |
Office Action in connection with Japanese Patent Application No. 2001-547056 with response initially due May 24, 2011 (including English language translation). |
Office Action issued Apr. 28, 2003 in connection with European Patent Application No. 00 989162.3-2101. |
Office Action issued Oct. 18, 2004 in connection with European Patent Application No. 00 989162.3-2101. |
Oshiro, Yasou et al., "Novel Antisychotic Agents with Dopamine Autoreceptor Agonist Properties: Synthesis and Pharmacology of 7-[4-(4-Phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1H)-quinolinone Derivatives", J. Med. Chem., 1998, pp. 658-667, vol. 41, American Chemical Society, Washington, DC. |
Ponten et al. "In vivo pharmacology of the dopaminergic stabilizer pridopidine" Eur J Pharmacol, Oct. 10, 2010;644(1-3):88-95). |
Price et al., "Pharmacological Challenges in Anxiety Disorders"; University of Florida College of Medicine, Gainesville, Florida; Chapter 111; 1995 http://www.acnp.org/g4/GN401000126/Default.htm. |
Rajsner et al., "4,4-Bis(4-Fluorophenyl)Butylamines and Their Cyclic Analogues; an Efficient synthesis of the Neuroleptic Penfluridol," Collection of Czechoslovak Chemical Communications, 1978, 43(7), pp. 1760-1777. |
Response to Feb. 3, 2009 Office Action issued by the Russian Patent Office in connection with Russian Patent Application No. 2005117612. |
Rosenfeld et al., "Gas chromatographic method for analysis of butyrophenones based on the Hofmann degradation reaction" STN Accession No. 1977:60610, Abstract of Journal of Chromatography (1976), 129. |
Roth et al., "Biochemical Pharmacology of Midbrain Dopamine Neurons"; Chapter 21; Yale University of Medicine; New Haven, CT; 1995. http://www.acnp.org/g4/GN401000021/Default.htm. |
Rung et al. "Effects of the dopamine stabilizers (S)-(-)-OSU6162 and ACR16 on prolactin secretion in drug-naive and monoamine depleted rats." Naunyn Schmiedebergs Arch Pharmacol. Jul. 2011; 384(1):39-45 (abstract). |
Rung et al. "Effects of the dopamine stabilizers (S)-(−)-OSU6162 and ACR16 on prolactin secretion in drug-naive and monoamine depleted rats." Naunyn Schmiedebergs Arch Pharmacol. Jul. 2011; 384(1):39-45 (abstract). |
Rung, Johan P., et al. The dopaminergic stabilizers (-)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats. Prog Neuropsychopharmacol Biol Psychiatry. Jun. 2005; 29(5):833-9. |
Rung, Johan P., et al. The dopaminergic stabilizers (−)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats. Prog Neuropsychopharmacol Biol Psychiatry. Jun. 2005; 29(5):833-9. |
Sahlholm K, Århem P, Fuxe K, Marcellino D., The dopamine stabilizers ACR16 and (-)-0SU6162 display nanomolar affinities at the sigma-1 receptor. Mol Psychiatry. Jan. 2013;18(1):12-4. |
Sahlholm K, Århem P, Fuxe K, Marcellino D., The dopamine stabilizers ACR16 and (−)-0SU6162 display nanomolar affinities at the σ-1 receptor. Mol Psychiatry. Jan. 2013;18(1):12-4. |
Sanner "Selective dopamine D4 receptor antagonists" Exp. Opino Ther. Patents vol. 8(4) p. 383-393 (1998). |
Seeman, Philip, "Dopamine Receptors Clinical Correlates"; Departmants of Pharmacology and Psychiatry, University of Toronto, Toronto, Ontario, Canada; Chapter 26, pp. 295-301, 1995. http://www.acnp.org/g4/GN401000027/Default.htm. |
Self, et al., "cine and tele Substitutions in the Reaction of 2,3-Dinitroaniline with Secondary Amines", J.C.S. Chem. Comm., 1980, pp. 281-282, Royal Society of Chemistry, UK. |
Sep. 27, 2006 Response to Jun. 28, 2006 Office Action in connection with U.S. Appl. No. 11/016,967. |
Sep. 30, 2008 Office Action issued in connection with Croatian Patent Application No. P 2005 0784A (including English language translation). |
Smaill, et al., "Mono- and difunctional nitrogen mustadr analogues of the DNA minor groove binder pibenzimol. Synthesis, cytotxicity and interaction with DNA", Anti-Cancer Drug Design, 1998, pp. 221-242, vol. 13, Oxford University Press. |
Sonesson et al., "Substituted (S)-Phenylpiperidines and Rigid Congeners as Preferential Dopamine Autoreceptor Antagonists: Synthesis and Structure-Activity Relationships"; Journal of Medicinal Chemistry, 1994 American Chemical Society; pp. 2735-2752. |
Substances in GB 1464525 (De 2502119). |
Takai, et al., "Reaction of Spiro[4H-3,1-benzoxazine-4,4′-piperdin]-2(1H)-one Derivatives and Related Compounds with Phosphorus Oxychloride", Chemical & Pharmaceutical Bulletin., May 1986, pp. 1901-1906, vol. 34, No. 5, Pharmaceutical Society of Japan, Tokyo, JP. |
Takai, et al., "Reaction of Spiro[4H-3,1-benzoxazine-4,4'-piperdin]-2(1H)-one Derivatives and Related Compounds with Phosphorus Oxychloride", Chemical & Pharmaceutical Bulletin., May 1986, pp. 1901-1906, vol. 34, No. 5, Pharmaceutical Society of Japan, Tokyo, JP. |
Tedroff J, Ekesbo A, Sonesson C, Waters N, Carlsson A., Long-lasting improvement following (-)-OSU6162 in a patient with Huntington's disease. Neurology. Oct. 22, 1999;53(7):1605-6. |
Tedroff J, Ekesbo A, Sonesson C, Waters N, Carlsson A., Long-lasting improvement following (−)-OSU6162 in a patient with Huntington's disease. Neurology. Oct. 22, 1999;53(7):1605-6. |
U.S. Appl. No. 10/168,297, filed Nov. 20, 2002. * |
U.S. Appl. No. 10/168,297, Sonesson et al. |
U.S. Appl. No. 14/975,248, Unpublished, Raeann Wu et al. |
U.S. Appl. No. 15/052,368, Unpublished, Michal Geva et al. |
Weber et al., "1,3-Di(2-[5-3H]tolyl)guanidine: A selective ligand that labels sigma-type receptors for psychotomimetic opiates and antipsychotic drugs" Proc. Natl. Acad. Sci. USA vol. 83, pp. 8784-8788, Nov. 1986 Neurobiology. |
Weber et al., "1,3-Di(2-[5-3H]tolyl)guanidine: A selective ligand that labels σ-type receptors for psychotomimetic opiates and antipsychotic drugs" Proc. Natl. Acad. Sci. USA vol. 83, pp. 8784-8788, Nov. 1986 Neurobiology. |
Willner, Paul "Dopaminergic Mechanisms in Depression and Mania"; Department of Psychology, University College of Swansea, Wales, United Kingdom; Chapter 80; 1995 http://www.acnp.org/g4/GB401000093/Default.htm. |
Yasou Oshiro et al., "Novel Antipsychotic Agents with Dopamine Auroreceptor Agonist Properties: Synthesis and Pharmacology of 7-[4-(4-Phenyl-1-piperazinly)butoxy]-3,4-dihydro-2(1H)-quinolinone Derivatives" J. Med. Chem. 1995, 41, 658-667. |
Zhang, et al., "Studies on antimalarials. III. Synthesis and antimalarial effects of some derivatives of 2,4-diamino-6-substituted piperazinylquinazolines", Acta Pharmaceutica Sinica, Jun. 1981, pp. 415-424, vol. 16, No. 6, Shanghai Inst. Pharm. Ind. Res., Shanghai, Peop, Rep. of China. |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10799492B2 (en) | 2010-09-03 | 2020-10-13 | Prilenia Neurotherapeutics Ltd. | Deuterated analogs of pridopidine useful as dopaminergic stabilizers |
US9814706B2 (en) | 2011-12-08 | 2017-11-14 | Teva Pharmaceuticals International Gmbh | Hydrobromide salt of pridopidine |
US11207308B2 (en) | 2012-04-04 | 2021-12-28 | Prilenia Neurotherapeutics Ltd. | Pharmaceutical compositions for combination therapy |
US11090297B2 (en) | 2013-06-21 | 2021-08-17 | Prilenia Neurotherapeutics Ltd. | Pridopidine for treating huntington's disease |
US10322119B2 (en) | 2013-06-21 | 2019-06-18 | Prilenia Therapeutics Development Ltd. | Use of pridopidine for treating Huntington's disease |
US10130621B2 (en) | 2014-06-30 | 2018-11-20 | Teva Pharmaceutical Industries Ltd. | Analogs of pridopidine, their preparation and use |
US11141412B2 (en) | 2014-06-30 | 2021-10-12 | Prilenia Neurotherapeutics Ltd. | Analogs of pridopidine, their preparation and use |
US10406145B2 (en) | 2014-06-30 | 2019-09-10 | Prilenia Neurotherapeutics Ltd. | Analogs of pridopidine, their preparation and use |
US9796673B2 (en) | 2014-12-22 | 2017-10-24 | Teva Pharmaceuticals International Gmbh | L-tartrate salt of pridopidine |
US11471449B2 (en) | 2015-02-25 | 2022-10-18 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine to improve cognitive function and for treating Alzheimer's disease |
US10603311B2 (en) | 2015-02-25 | 2020-03-31 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine to improve cognitive function and for treating Alzheimer's disease |
US10047049B2 (en) | 2015-07-22 | 2018-08-14 | Teva Pharmaceuticals International Gmbh | Process for preparing pridopidine |
US11738012B2 (en) | 2016-02-24 | 2023-08-29 | Prilenia Neurotherapeutics Ltd. | Treatment of neurodegenerative eye disease using pridopidine |
US11207310B2 (en) | 2016-08-24 | 2021-12-28 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine for treating functional decline |
US12102627B2 (en) | 2016-09-16 | 2024-10-01 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine for treating rett syndrome |
US11234973B2 (en) | 2017-01-20 | 2022-02-01 | Prilenia Neurotherapeutics Ltd. | Use of pridopidine for the treatment of fragile X syndrome |
US11406625B2 (en) | 2017-08-14 | 2022-08-09 | Prilenia Neurotherapeutics Ltd. | Method of treating amyotrophic lateral sclerosis with pridopidine |
EP4154882A1 (en) | 2017-08-14 | 2023-03-29 | Prilenia Neurotherapeutics Ltd. | Treating amyotrophic lateral sclerosis with pridopidine |
WO2019036358A1 (en) | 2017-08-14 | 2019-02-21 | Teva Pharmaceuticals International Gmbh | Method of treating amyotrophic lateral sclerosis with pridopidine |
US11452694B2 (en) | 2017-08-30 | 2022-09-27 | Prilenia Neurotherapeutics Ltd. | High concentration dosage forms of pridopidine |
WO2019046568A1 (en) | 2017-08-30 | 2019-03-07 | Teva Pharmaceuticals International Gmbh | High copncentration dosage forms of pridopidine |
WO2019050775A1 (en) | 2017-09-08 | 2019-03-14 | Teva Pharmaceuticals International Gmbh | Pridopidine for treating drug induced dyskinesias |
US12036213B2 (en) | 2017-09-08 | 2024-07-16 | Prilenia Neurotherapeutics Ltd. | Pridopidine for treating drug induced dyskinesias |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6903120B2 (en) | Modulators of dopamine neurotransmission | |
USRE41315E1 (en) | Modulators of dopamine neurotransmission | |
USRE46117E1 (en) | Modulators of dopamine neurotransmission | |
AU2005200729B2 (en) | New modulators of dopamine neurotransmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: PRILENIA THERAPEUTICS DEVELOPMENT LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEVA PHARMACEUTICALS INTERNATIONAL GMBH;REEL/FRAME:047716/0148 Effective date: 20180907 |
|
AS | Assignment |
Owner name: PRILENIA NEUROTHERAPEUTICS LTD., ISRAEL Free format text: CHANGE OF NAME;ASSIGNOR:PRILENIA THERAPEUTICS DEVELOPMENT LTD.;REEL/FRAME:049827/0527 Effective date: 20190502 |