Connect public, paid and private patent data with Google Patents Public Datasets

Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices

Download PDF

Info

Publication number
USRE44823E1
USRE44823E1 US13367666 US201213367666A USRE44823E US RE44823 E1 USRE44823 E1 US RE44823E1 US 13367666 US13367666 US 13367666 US 201213367666 A US201213367666 A US 201213367666A US RE44823 E USRE44823 E US RE44823E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
probe
bandage
fig
disposable
reusable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13367666
Inventor
Brent Parker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Masimo Corp
Original Assignee
Masimo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus

Abstract

A system and method of standardizing modular probe housings so that the standardized probe housings may be incorporated into probes adapted to work with at least one of a multiplicity of manufacturers' oximeters. The probe housings are adapted to matingly engage at least a disposable bandage apparatus and a reusable finger attachment device.A sensor system for sensing a physiological parameter of a patient. A reusable probe sensor comprises a first housing element and a second housing element. The first housing element comprises at least one light emitter and the second housing element comprises at least one light detector. The first and second housing elements are movably coupled and configured to receive a disposable sensor shield. A disposable sensor shield comprises a first liner portion having a first aperture and a second liner portion having a second aperture. The first and second liner portions are configured to receive an appendage. The first and second apertures are configured to be aligned to allow light from the at least one light emitter to pass through the first aperture, the appendage, and the second aperture, to the at least one light detector during use. The disposable sensor shield is configured to engage the reusable probe sensor.

Description

REFERENCE TO RELATED APPLICATIONS

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,721,585. The reissue applications are application Ser. No. 11/404,123, filed Apr. 13, 2006, application Ser. No. 12/573,851, filed Oct. 5, 2009, which is a continuation reissue application of the application Ser. No. 11/404,123 and claims the benefit thereof, and the present application, which is a division reissue application of the application Ser. No. 12/573,851 and claims the benefit of both of the prior reissue applications, all three of which are broadening reissues of U.S. Pat. No. 6,721,585.

This applicationU.S. Pat. No. 6,721,585 is a continuation-in-part of application Ser. No. 09/417,898, filed Oct. 14, 1999, entitled REUSABLE PULSESPULSE OXIMETER PROBE AND DISPOSABLE BANDAGE APPARATUS, now U.S. Pat. No. 6,343,224, which in turn is a continuation-in-part of application Ser. No. 09/289,647, filed Apr. 12, 1999, entitled REUSABLE PULSE OXIMETER PROBE AND DISPOSABLE BANDAGE APPARATUS and, now issued as U.S. Pat. No. 6,144,868,; and is a continuation-in-part of application of Ser. No. 09/679,828, filed Oct. 5, 2000, entitled REUSABLE PULSE OXIMETER PROBE AND DISPOSABLE BANDAGE APPARATUS, now U.S. Pat No. 6,519,487; and is a CiP continuation-in-part of application Ser. No. 09/352,144, filed Jul. 13, 1999 and is CiP of, entitled REUSABLE PULSE OXIMETER PROBE WITH DISPOSABLE LINER, now U.S. Pat. No. 6,321,100; and is a continuation-in-part of application Ser. No 09/758,038, filed Jan. 11, 2001, entitled REUSABLE PULSE OXIMETER PROBE AND DISPOSABLE BANDAGE METHOD, now U.S. Pat. No. 6,684,091; each of which is incorporated herein by reference. This application claims benefit of U.S. provisonal provisional application No. 60/104,332, filed Oct. 15, 1998.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method of making and affixing a reusable probe to a patient by means of disposable bandage apparatus so that there is no contact between the costly, reusable portion of the probe and the patient. The contaminated bandage apparatus, which is relatively inexpensive, can then be discarded after single patient use and the probe can be re-used with a new bandage apparatus.

2. Description of the Related Art

Heretofore the use of pulse oximeter probes has been limited to the use of a costly, reusable probe, which is contaminated by use on a patient, or cheaper, single-use probes, which, in the aggregate, amount to a considerable expenditure for a healthcare institution.

Others have attempted to convert single-use probes into multi-use probes through a lamination process. In that process, the original adhesive material is removed from the original manufacturer's sensor. The sensor is then laminated in a plastic sheath and the entire sheath is then inserted into a transparent, adhesive-backed sleeve, which is then adhered to a patient. After use, the probe can then be extracted from the sleeve and inserted into a new sleeve for use on another patient.

There are certain disadvantages to this method. Firstly, it is difficult to insert the flexible laminated sensor into a long sleeve. Secondly, the thickness of a laminated sensor inside of a sleeve makes it difficult to bend around, and to stick properly to, a human appendage. Thirdly, transmission and reception of infrared light can be affected by extraneous light entering from the sides of the sleeve. And, fourthly, there is some dispute as to the affect on infrared light transmission when passing through the sleeve and the adhesive material coupled thereto.

One of the problems with pulse oximetry, and the continuity of monitoring a patient, is the vast array of different monitors used in different hospital departments. Many times a patient will start out in the emergency room (ER) where the hospital utilizes one particular brand of monitor. If a disposable probe is affixed to the patient, and the patient is then admitted to intensive care, the disposable probe that was affixed in the ER will only work if the pulse oximeter used in intensive care is of the same make as the one in the ER. If that same patient is once again taken to radiology, or to have an MRI done, once again these different departments may have different pulse oximeter monitors. What happens many times is that the disposable probes affixed in one department are thrown away and new ones are affixed in other departments. Obviously, this creates additional expense in providing pulse oximetry monitoring.

SUMMARY OF THE INVENTION

The current applicant, in his U.S. Pat. No. 6,144,868, and subsequent continuations-in-part, has described a reusable pulse oximeter probe to be used with a disposable bandage apparatus. With this device, the costly reusable portion of the probe is isolated from the patient by means of an inexpensive bandage apparatus. This allows the caregiver to dispose of the inexpensive bandage apparatus while retaining the more costly, reusable portion of the probe. The reusable probe can then be used in conjunction with another disposable bandage apparatus on another patient.

One embodiment of the present invention is directed to improving the form and affixation method of a reusable pulse oximeter sensor. It comprises a reusable pulse oximeter probe with at least one light emitting diode and one photocell detector wherein said emitter and detector are enclosed in plastic housings, one housing having an aperture or radiation transparent window aligned with said emitter, and the other housing having an aperture or radiation transparent window aligned with said detector. Also included is a disposable bandage apparatus which is at least one bandage strip having adhesive on at least a portion of at least one face thereof and at least two plastic receptacles mounted thereon, each receptacle having at least one aperture or radiation transparent window located therein. The probe housings can matedly engage said bandage receptacles and transmit and receive light through the apertures or radiation transparent windows of said mated housings and receptacles, and through the appendage of a patient. The housings of the reusable pulse oximeter probe may also be made of a material selected from plastic, rubber, metal, wood, or other composite material. The receptacles of the disposable bandage apparatus may also be made of a material selected from plastic, rubber, metal, wood, or other composite material. Additionally, the apertures of said receptacles are large enough to accept the tubular protrusions of the housings for the purpose of concentric location and alignment of the housings to the receptacles and the proper transmission and reception of light therethrough. Sandwiched between the adhesive strip and the receptacles attached thereto, are translucent silicone windows or windows of another radiation transparent material for isolation of the reusable probe assembly from the patient. The bandage apparatus may be discarded after single patient use and the reusable probe may be used again on another patient in conjunction with another bandage apparatus. Additionally, the receptacles of the bandage apparatus may have a concave surface on one side thereof in order to seat conformably on a human digit, or they may have a flat surface on at least one side thereof in order to attach conformably to a human foot, nose, or ear. The housings and receptacles also contain “mushroom hook” type hook and loop material for the purpose of adhering and detaching said housings to and from said receptacles. Additionally, the housings and receptacles have recessed areas for adhesion of the “mushroom hook” hook and loop material.

In another embodiment of the invention, the receptacle of the disposable bandage apparatus may be the mushroom hook material itself which may be attached directly to the adhesive strip for the selective engagement of the housings of the probe assembly.

In another embodiment of the invention, the housings of the pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “ring and groove” type snap-on connector.

In yet another embodiment of the invention, the housings of the reusable pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “twist and lock” type connector.

In a further embodiment of the invention, the housings of the pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “threaded flange” type of connector.

In a preferred embodiment of the invention, the light emitting diode and photocell detector of the probe assembly may be mounted in modular housings with locking levers which can engage an indentation or slot in the receptacles of the disposable bandage apparatus and securely lock the housings into proper position within the receptacles, thus allowing the transmission and reception of infrared light through the mated housings and receptacles and through the appendage of a patient.

In another variation of this preferred embodiment of the invention, the levers and indentations are reversed, and the light emitting diode and photocell detector of the probe assembly may be mounted in modular housings having indentations therein, and the receptacles of the disposable bandage apparatus may have the locking lever located on them. In such an embodiment, the locking levers of the bandage receptacles lockingly engage the slots or indentations in the probe housings, thus locking them into place within the receptacles and allowing the transmission and reception of infrared light through the mated probe housings and bandage receptacles, and through the appendage of a patient.

In these modular housing and receptacle embodiments, the radiation transparent windows may be of hard plastic and may be mounted against the skin of a patient, thus being used to secure the receptacles on the opposite side of the bandage strip. This is accomplished by the incorporation of locking levers on the radiation transparent windows which are pushed through holes or slots in the bandage and engage holes in the receptacles mounted on the opposite side of the bandage, thus sandwiching the bandage in between. A foam strip with holes in it may also be adhered to said radiation transparent windows in order for them to rest comfortably on a patient's appendage.

In another variation of the above, the bandage receptacles may be secured to the bandage through the use of small plastic protrusions or “heat stakes” mounted on the receptacles themselves. These protrusions can be pushed through slots in the bandage and can be melted on the other side of the bandage strip by means of an ultrasonic welding machine, thus locking the receptacles into position on the bandage strip. In this embodiment a radiation transparent window may then be adhered to the underside of the bandage strip and the heat stakes and radiation transparent windows may then be overlaid with a foam pad with holes in it, the purpose of which is to allow for the transmission and reception of infrared light through the holes while aiding in patient comfort.

In some embodiments, one object is to provide a method of facilitating the intra-departmental or inter-institutional transport of a patient or patients requiring the pulse oximeter monitoring, and wherein said pulse oximeters used for monitoring said patient may be of different manufacturers. The method comprises affixing to said patient a bandage apparatus having a modular emitter and detector receptacles incorporated thereon, providing each said different manufacturers' pulse oximeter probe with modular housings adapted to matedly engage and/or disengage with receptacles of the disposable bandage apparatus, thus enabling said patient to be monitored by pulse oximeters of different manufacturers without changing the affixed bandage apparatus.

With some embodiments of the present invention, intra-departmental or inter-institutional transport is greatly facilitated by having a bandage device which will accept probes of various manufacturers, as long as those probes contain housings that will matedly engage the receptacles of the disposable bandage apparatus.

Another embodiment of the present invention relates to a method of making and affixing a reusable finger probe to a patient by means of a finger clip apparatus with a disposable liner insert so that there is no contact between the costly, reusable portion of the probe and the patient. The contaminated liner, which is relatively inexpensive, can then be discarded after single patient use and the probe and finger clip can be re-used with a new liner. Additionally, such disposable inserts may be provided of different sizes and would greatly enhance the fit and function of the finger clip on the patient. This is important for several reasons. Firstly, a fitted finger clip would be much more comfortable to wear than conventional finger clips. Secondly, a fitted finger clip would allow the transmission and reception of infrared light from the LEDs of the probe without interference from extraneous light sources around the front and edges of the finger, and thirdly, a fitted finger clip would evenly distribute the pressure from the spring of the finger clip and would be much less likely to restrict blood flow to the digit and thereby cause erroneous oxygen saturation readings.

Another embodiment of the present invention comprises a method for improving the reusability, fit, and cleanliness of a reusable pulse oximeter finger sensor. It comprises a reusable pulse oximeter probe with at least one light emitting diode and one photocell detector wherein said emitter and detector are mounted in respective finger clip housing arms having apertures therein, one housing arm having an aperture aligned with said emitter, and the other housing arm having an aperture aligned with said detector. Incorporated into each opposing side of the finger clip is a T-shaped channel or slot with a locking protrusion or detent at the entrance of each of the channels. Also included is a disposable foam liner which is an initially, substantially planar, foam strip, having plastic backing on at least a part thereof and two T-shaped protrusions mounted in the lateral plane of said plastic backing. At opposing ends of the foam strip, and incorporated into the T-shaped protrusions, are notched levers for locking the foam strip into position in the T-shaped channel of the finger clip. In the center of the foam strip, the plastic backing is of a thickness that will allow it to bend into a “U” shape for insertion into the finger clip. Alternatively, the plastic backing may be entirely absent and the inherent flexibility of the foam itself will allow it to bend into the desired shape. Additionally, the foam strip contains two apertures located centrally therein containing silicone windows, or windows of another radiation transparent material, that will allow for the transmission and reception of infrared light. Additionally, the foam may also contain an adhesive for helping to adhere the finger clip to the patient.

In another preferred embodiment of the invention, the finger clip may be of scaled down design and would allow for the insertion of different sizes of molded foam that would conform in size to the digit on which the finger clip is to be used. In such an application, the foam itself would be intended to substantially envelop the finger and the finger clip would be a mechanism for pinching or biasing the two foam halves together.

Despite the cost and safety advantages of the reusable probe and disposable bandage apparatus over disposable probes, an increasing number of institutions are beginning to utilize reusable finger clip probes because of the cost savings associated with a completely reusable product. Despite the discomfort of these devices and the risk of spreading infection from patient to patient, the trend toward reusable probes continues to strengthen.

However, in all institutions there is always the need for some disposable probes. Patients who have compromised immune systems, surgical patients, where sterility is important, and neonatal and pediatric patients, where the size of the appendage to be monitored is too small for finger clips, require the use of disposable probes or a disposable bandage apparatus.

Clearly, it would be advantageous to offer a universal, modular, reusable probe that could be used in conjunction with either a reusable finger attachment device or a disposable bandage apparatus, each having receptacles into which the reusable probe could be lockingly engaged and disengaged. In addition, probes from all the different oximeter manufacturers could be standardized so that they could be used in conjunction with these same patient attachment devices.

THE PRESENT INVENTION

TheOne embodiment of the present invention is directed to a system and a method of standardization of a pulse oximeter probe wherein the probe comprises at least one light emitting diode and at least one photocell detector wherein said emitter and detector are incorporated into modular plastic housings, at least one housing having an aperture or radiation transparent window aligned with said emitter, and at least said second housing having an aperture or radiation transparent window aligned with said detector; wherein said housings can lockingly engage and disengage receptacles mounted on at least either:

    • (a) a reusable finger attachment device, or
    • (b) a disposable bandage apparatus,
      and transmit and receive light through the appendage of a patient when either of the above devices are attached to a patient and when the housings of said probe are matedly engaged with the receptacles of the attached device.

The receptacles of the disposable bandage apparatus or the reusable finger attachment device may have locking levers for lockingly engaging and disengaging the modular probe housings.

The probe housings may have indentations or detentes for lockingly engaging and disengaging the levers of the receptacles of the disposable bandage apparatus or reusable finger attachment device.

The disposable bandage apparatus may have radiation transparent windows for the isolation of the probe housings from the patient.

The probe housings may be standardized in size so that probes to fit at least one of a multiplicity of manufacturers' oximeters will incorporate housings that can be matedly engaged with either a reusable finger attachment device or a disposable bandage apparatus.

WhatAccording to one embodiment, what is disclosed is thea method of supplying pulse oximeter probes compatible with at least one of a multiplicity of manufacturers' oximeters, said probe or probes incorporating standardized probe housings, which can be matedly engaged with at least either a reusable finger attachment device or a disposable bandage apparatus.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other advantages of the invention will become more clear when considered with the following specifications and accompanying drawings wherein:

FIG. 1 is an exploded view of the reusable pulse oximeter probe and disposable bandage apparatus incorporating one embodiment of the invention;

FIG. 2 is a view of the reusable pulse oximeter probe and disposable bandage apparatus shown individually as components of the one embodiment of the invention;

FIG. 3 illustrates one embodiment of the invention in use on a human finger or digit;

FIG. 4 illustrates an exploded view of another embodiment of the invention in which the “mushroom hook” material itself is used as the receptacle of the disposable bandage apparatus;

FIG. 5 illustrates an assembled view of a preferred embodiment of the reusable pulse oximeter sensor in which the light-emitting diode and photocell detector of the reusable probe are mounted in modular housings with locking levers;

FIG. 6 illustrates an exploded view of a preferred embodiment of the reusable pulse oximeter sensor;

FIG. 7 illustrates an exploded view of a preferred embodiment of a bandage apparatus in which the receptacle tops incorporate a slot for engaging the locking levers of modular probe housings, and wherein radiation transparent windows are mounted on the opposite side of the bandage strip, thus sandwiching and securing the bandage in between the two receptacle halves by means of locking levers;

FIG. 8 illustrates a preferred embodiment of the invention as it would appear ready for use on a human digit;

FIG. 9 is a patient flow diagram showing the intra-departmental or inter-institutional transport of a patient;

FIG. 10 is a schematic illustration of how probe housings can utilize fiberoptic cable connecting a light emitter and detector to a disposable bandage according to one embodiment of the invention;

FIG. 11 illustrates an assembled view of another embodiment of the invention in which the housings of the pulse oximeter probe are affixed to the receptacles of the disposable bandage apparatus by means of ring and groove type, snap-on connectors;

FIG. 12 illustrates an assembled view of another embodiment of the invention in which the housings of the pulse oximeter probe are affixed to the receptacles of the disposable bandage apparatus by means of “twist and lock” type connectors;

FIG. 13 illustrates an assembled view of another embodiment of the invention in which the housings of the of the pulse oximeter probe are affixed to the receptacles of the disposable bandage apparatus by means of a “threaded flange” type of connector;

FIG. 14 illustrates an exploded view of a preferred embodiment of the reusable pulse oximeter probe in which the light emitting diode and photocell detector of the probe are encased in housings having a radiation transparent window therein and locking levers for affixing the reusable pulse oximeter probe to the disposable bandage apparatus;

FIG. 15 illustrates an exploded view of a preferred embodiment of the disposable bandage apparatus in which the receptacle tops incorporate a slot for engaging the locking levers of the modular probe housings, and wherein the radiation transparent windows are mounted on the opposite side of the bandage strip, thus sandwiching and securing the bandage in between the two receptacle halves by means of locking tabs or heat stakes that can be ultrasonically welded;

FIG. 16 illustrates a preferred embodiment of the invention as it would appear ready for use on a human digit;

FIG. 17 illustrates an exploded view of another preferred embodiment of the invention in which the probe housings have a slot or indentation incorporated therein and the bandage receptacles have a locking lever for securing the housings to the receptacles;

FIG. 18 illustrates an assembled view of one embodiment of the invention in which the probe housings have a slot or indentation incorporated therein and the bandage receptacles have a locking lever for securing the housings to the receptacles;

FIG. 19 is an exploded view of a standard pulse oximeter probe and finger clip with disposable liner;

FIG. 20 is an exploded view of one preferred embodiment of the invention incorporating two disposable liners having finger conformance;

FIG. 1 21 is a exploded view of a pulse oximeter probe incorporating modular plastic housings,;

FIG. 2 22 is an exploded view of a disposable bandage apparatus incorporating modular plastic receptacles,;

FIG. 3 23 is a view of the disposable bandage apparatus with the probe engaged and in use on the appendage of a patient,;

FIG. 4 24 is an exploded view of a reusable finger attachment device incorporating modular plastic receptacles,; and

FIG. 5 25 illustrates the reusable finger attachment device, with the probe engaged, and in use on a human appendage.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reusable Pulse Oximeter Probe and Disposable Bandage Apparatuses and Methods

Description of a Reusable Pulse Oximeter Sensor

The reusable pulse oximeter sensor constitutes a “Y” style pulse oximeter probe shown in FIG. 1, Item F. The probe incorporates two plastic housings shown as FIG. 1, Items G. The housings contain apertures or radiation transparent windows L therein. One housing contains the light-emitting diode of the probe, FIG. 1, Item H, and other contains the photocell detector, FIG. 1, Item I. The emitter and detectors are aligned with the apertures or windows L of the housings in order to transmit and receive light through a human appendage.

Seated within a recessed area of each housing, and attached permanently thereto, is a “mushroom hook” adhesive-backed pad, FIG. 1, Item K. The purpose of these pads is to selectively engage the “mushroom hook” pads, FIG. 1, Items J, attached permanently to the plastic discs, FIG. 1, Items D, and to attach the reusable probe assembly to the Disposable Bandage Apparatus. The reusable pulse oximeter sensor is shown assembled as FIG. 2, Item A.

In one preferred embodiment of the reusable pulse oximeter sensor, the light-emitting diode (FIG. 5, Item A) and photocell detector (FIG. 5, Item B) of the probe assembly are housed in modular receptacles (FIG. 5, Items C) having locking levers (FIG. 5, Items D) for engaging the receptacles of the disposable bandage apparatus, and locking them into place. In this embodiment, the light-emitting diode (FIG. 6, Item A) and the photocell detector (FIG. 6, Item B) are sandwiched between interlocking receptacle halves, the bottom halves of which (FIG. 6, Items C) are made of a radiation transparent material.

In another embodiment of the invention the light emitting diode and photocell detector of the reusable pulse oximeter sensor are enclosed in housings (FIG. 11, Items A) having a groove on the inner diameter of the housings that is designed to matedly engage rings (FIG. 11, Items B) located on the outer diameter of the disposable bandage apparatus, thus securing and locking the sensor housings to the bandage receptacles.

In another embodiment of the invention the light emitting diode and photocell detector of the reusable pulse oximeter sensor are enclosed in housings (FIG. 12, Items A) which are designed to enter the bandage receptacles (FIG. 12, Items B) and to twist 90 degrees thus locking the sensor housings to the bandage receptacles.

In yet another embodiment of the invention, the light emitting diode and photocell detector of the reusable pulse oximeter sensor are enclosed in housings (FIG. 13, Items A) having a threaded flange (FIG. 13, Items B) that threadedly engages the bandage receptacles, (FIG. 13, Items C) thus securing and locking the sensor housings to the bandage receptacles.

In the one preferred embodiment of the Reusable Pulse Oximeter Sensor, the light emitting diode (FIG. 14, Item A) and photocell detector (FIG. 14, Item B) of the probe assembly are housed in modular receptacles (FIG. 14, Items C) having locking levers, (FIG. 14, Items D) for engaging the receptacles (FIG. 15, Items A) of the disposable bandage apparatus, and locking them into place.

In the another preferred embodiment of the Reusable Pulse Oximeter Sensor, the light emitting diode (FIG. 17, Item A) and the photocell detector (FIG. 17, Item B) are encased in modular housings having a radiation transparent bottom (FIG. 17, Items C) and having opaque housing tops (FIG. 17, Items D). These housing tops and bottoms are ultrasonically welded together thus encapsulating the light emitting diode and photocell detector of the probe assembly. The housing tops incorporate indentations or slots (FIG. 17, Items E) designed to matedly engage a protrusion on the locking levers of the bandage receptacles thus snapping into place and securing the probe housings within the bandage receptacles.

According to one embodiment of the present invention, intra-departmental or inter-institutional transport is greatly facilitated by having a bandage device which will accept probes of various manufacturers, as long as those probes contain housings that will matedly engage the receptacles of the disposable bandage apparatus.

Description of a Disposable Bandage Apparatus

The components of the apparatus include an adhesive-backed strip, shown as FIG. 1, Item A, the strip A incorporating two oval protrusions B centered thereon and shown as FIG. 1. The strip also incorporates two apertures, centrally located within the oval protrusions, each aperture C having a diameter sufficient in size to accommodate the transmission and reception of light from a light-emitting diode and photocell detector of a pulse oximeter probe.

On top of the apertures C are seated two plastic discs, FIG. 1, Item D, each having a concave base designed to conform to the radius of a human digit, and an aperture of slightly larger diameter than the apertures in the adhesive backed planar strip. The plastic discs are affixed to the adhesive planar strip by means of a permanent adhesive.

Seated in a recessed area on top of each plastic disc is a “mushroom hook”, adhesive backed pad shown as FIG. 1, Item J. The purpose of the “mushroom hook” pads is to selectively engage the “mushroom hook” pads attached to the probe, FIG. 1, Items K, and to attach the probe to the disposable bandage apparatus. Sandwiched between the two plastic discs and the planar adhesive strip are two translucent silicone windows, FIG. 1, Item E. The windows are designed to permit the passage of infrared light and yet prevent contact between probe and patient, and consequently, contamination of the reusable probe itself.

The above items constitute the disposable bandage apparatus according to one embodiment of the invention, the apparatus being shown assembled as FIG. 2, Item B.

In another embodiment of the invention, the disposable bandage apparatus may be configured as in FIG. 4 of the drawings. FIG. 4 is an exploded view of the apparatus in which the “mushroom hook” pads of the bandage apparatus, FIG. 4, Items J, are bonded directly to the adhesive planar strip, FIG. 4, Item A, for the selective engagement of the “mushroom hook” pads of the probe, FIG. 4, Items K, the pads being attached permanently to the housings of the probe, FIG. 4, Items G.

In one preferred embodiment of the disposable bandage apparatus, the bandage strip (FIG. 7, Item A) is sandwiched between interlocking receptacle halves. The top halves of the receptacles (FIG. 7, Items B) contain locking levers (FIG. 7, Items C) that are pushed through slots cut in the bandage strip (FIG. 7, Items D) and lockingly engage indentations (FIG. 7, Items E) in the bottom halves of the receptacles (FIG. 7, Items F), thus sandwiching and locking the bandage in between. The bandage strip contains two apertures (FIG. 7, Items G) for the transmission and reception of light from the light-emitting diode and photocell detector of the pulse oximeter sensor which are encased in modular housings having locking levers (FIG. 5, Items D) wherein the levers engage slots in the receptacles (FIG. 7, Items H) thereby locking the housings into place within the receptacles. In addition, the bottom halves of the receptacles (FIG. 7, Items F) are of a radiation transparent material, thus allowing the light-emitting diode and photocell detector contained in the probe housings, when engaged in the bandage receptacles, to transmit and receive light through the apertures of the bandage strip and through the radiation transparent material of the bottom halves of the receptacles, and through the appendage of a patient. The complete reusable pulse oximeter probe and bandage assembly is shown assembled and ready for use on a human digit in FIG. 8.

In other embodiments of the disposable bandage apparatus, the bandage may have mounted thereon receptacles having means of matedly engaging the housings of the reusable pulse oximeter sensor by way of “ring and groove”snap-on type connectors (FIG. 11, Items B); “Twist and Lock” type connectors (FIG. 12, Items B); or “threaded flange” type connectors (FIG. 13, Items C).

In one preferred embodiment of the Disposable Bandage Apparatus, the bandage strip (FIG. 15, Item B) is sandwiched between interlocking receptacle halves. The top halves of the receptacles (FIG. 15, Items A) each contain 4 holes (FIG. 15, Items C) that are designed to matingly engage locking tabs (FIG. 15, Items D) on the bottom half of the receptacles (FIG. 15, Items E) that are pushed through slots cut in the bandage strip (FIG. 15, Items F) thus securing and locking the bandage in between.

The bandage strip contains two apertures or radiation transparent windows (FIG. 15, Items G) allowing for the transmission and reception of light from the light emitting diode and photocell detector of the pulse oximeter sensor which are encased in modular housings having locking levers (FIG. 14, Items D) wherein said levers engage slots in the receptacles (FIG. 15, Items H) thereby locking the housings into place within the receptacles. In addition, the bottom halves of the receptacles (FIG. 15, Items E) can be of a radiation transparent material, or may contain apertures (FIG. 15, Items I) thus allowing the light emitting diode and photocell detector contained in the probe housings, when engaged in the bandage receptacles, to transmit and receive light through the apertures of the bandage strip and through the radiation transparent material, or apertures, of the bottom halves of the receptacles, and through the appendage of a patient. The disposable bandage apparatus may also incorporate a foam strip (FIG. 15, Item J) in order to cushion a patient's appendage from any discomfort caused by the bottom half of the bandage receptacles. The complete Reusable Pulse Oximeter Sensor, engaged in the disposable Bandage Apparatus, and ready for use on a human appendage, is shown in FIG. 16.

In another preferred embodiment of the disposable bandage apparatus, the bandage receptacles (FIG. 17, Items G) are secured to the bandage (FIG. 17, Item K) by means of four protrusions or “heat stakes” (FIG. 17, Items H) which are pushed through slots (FIG. 17, Items J) on the bandage (FIG. 17, Item K) and are ultrasonically welded on the other side, thus securing the receptacles to the bandage. A radiation transparent window (FIG. 17, Item M) is then adhered to the underside of the bandage and the radiation transparent windows and melted heat stakes are then overlaid by a foam pad (FIG. 17, Item L) to aid in patient comfort. This foam pad also incorporates two holes which are in alignment with the two holes on the bandage itself, and when the foam pad is overlaid on the underside of the bandage, the radiation transparent windows are sandwiched in between.

The probe housings are designed to matedly engage the bandage receptacles (FIG. 17, Items G) and are held in place within the receptacles by means of protrusions (FIG. 17, Items F) on the locking levers (FIG. 17, Items I) which snap into place when the probe housings are pushed into the bandage receptacles. When the probe housings are locked into place within the bandage receptacles the light emitting diode and photocell detector are in alignment with the holes in the bandage and the foam overlay, and the probe is then able to transmit and receive light through the mated housings and receptacles, through the holes contained in the bandage and foam overlay, and through the appendage of a patient. The complete assembled Reusable Pulse Oximeter Sensor engaged within the Disposable Bandage Apparatus, as it would appear ready for use on a patient, is shown in FIG. 18.

Other Fastening Means

As can be appreciated, there are many ways of fabricating the above components of the invention. The above description describes attachment of the reusable pulse oximeter sensor to the disposable bandage apparatus by way of a “mushroom hook” type hook and loop material and by the use of telephone type modular connectors and receptacles. In addition to this means, a number of other methods may be used including standard hook and loop material, “ring and groove” type snap-on connectors, “push and twist” type Luerlock connectors, and threaded flange type connectors. While these means are fairly comprehensive, they should in no way be considered exhaustive.

Method of Use

According to one method for use on an individual patient, the probe is affixed in the following manner:

Firstly, the backing is removed from the adhesive strip of the disposable bandage apparatus. One of the apertures of the apparatus is visually positioned on the center of the nail bed of the patient's appendage and one side of the adhesive strip and the oval protrusions are adhered to the patient's digit. The rest of the strip is then looped over the end of the patient's appendage, and the plastic disc is aligned so as to exactly oppose the plastic disc already attached to the other side of the digit. Once the disposable bandage apparatus has been properly adhered to the patient, the plastic housings of the probe assembly can be easily snapped into place on opposing sides of the digit. The entire assembled probe is shown as it would appear in use on a patient in FIG. 3.

According to one method for use with the “ring and groove” type snap-on connectors, “twist and lock”, and “threaded flange” connectors, the backing is firstly removed from the adhesive strip. The strip is then folded in half where indicated on the bandage and the bandage apparatus is adhered to either side of the human digit. Once the bandage apparatus is in place the probe housings are simply snapped, twisted or screwed into place.

According to one method for use with a patient, the modular probe and bandage assembly, which is one preferred embodiment of the invention, would be attached as follows:

Firstly, the backing is removed from the adhesive strip. The strip is then folded where indicated on the bandage and the strip is then adhered to opposing sides of the human digit. Once the bandage apparatus is in place, the housings of the probe are pushed into the receptacles and locked in place by means of the locking levers. When the patient is moved between different service areas of a hospital, the probes can be removed and the patient transported to a new service area where that area's oximeter probes are pushed into the receptacles for further oximeter readings.

As shown in FIG. 9, one embodiment of the invention is easily adaptable to different manufacturers' oximeters being used in different departments or institutions when the patient is to be transported between the departments or institutions. As shown in FIG. 9, at the admissions area AD, when the patient is admitted to the hospital or facility, an oximeter bandage is initially applied. Then the patient may go through another testing area or department D1 where various serological, pathological tests may be run. Then the patient is shown as being transported to a radiology area such as where X-ray and magnetic resonance images (MRI) scans are made. Other departments may have the patient transported thereto such as a surgery department DS and a recovery room RR and the patient's room PR where, in each instance, a different manufacturer or different oximeter probes may be attached where, according to the invention, the receptacles on the bandages are able to receive and retain housings on the emitter and detector elements of the probe.

An example of the flexibility of the system of this invention is illustrated in FIG. 10. In this pictorial embodiment, a magnetic resonance image system or an MRI machine is shown as being positioned in one room with the patient and having applicant's disposable bandage apparatus attached to the finger of a patient. In this case, the patient is in the MRI facility where the patient is just having MRI work done. The probe housings are shown attached at the ends of fiberoptic cable connected to a connector which has the light-emitting diode and the light detector incorporated therein with a connector or plug for plugging into a pulse oximeter PO. The light-emitting and light-receiving ends of the fiberoptic cable are directed or oriented in the modular housings to emit IR light into the finger and receive IR light transmitted through the finger. It will be noted that since in the MRI application no ferrous materials are allowed, the LED's are placed in a room many feet away (up to fifty or more feet away) and (the oximeter device is in optical communication with the applicant's bandage apparatus. Thus, in situations where non-ferrous materials are required, the probe has non-ferrous housings and materials designed to matedly engage with the receptacles of applicant's disposable bandage apparatus. The housings of the probe are in fiberoptic communication with the LED's which would be at the other end of the probe near the pulse oximeter.

As shown above, in case of magnetic resonance imaging (MRI) situations where the presence of any metal in the environment can effect the MRI readings, the probe and emitter elements are situated remotely from the MRI machine and fiberoptic cable conveys light to and from the patient's finger. In this case, the oximeter probe housings are the termination ends of the fiberoptic cable and the modular housings are therefore able to be inserted into the bandage receptacles and the oximeter readings taken in this fashion from a remote area.

In some embodiments of the invention, when the probe is no longer required on the patient, the housings of the reusable probe are simply unsnapped from the disposable bandage apparatus, the bandage apparatus is thrown away, and the probe can then be reused on a new patient in conjunction with a new bandage apparatus.

Advantages of Some Embodiments

Current reusable pulse oximeter probes are either “clam shell” type clamping devices which can restrict circuit or “Y” type probes which are taped directly to the patient. Both types also come in direct contact with the patient's skin and bodily fluids and need sterilization after use. Because of the fact that these devices incorporate many surfaces and at times, porous materials, proper sterilization is very difficult. With some embodiments of the present invention there is no contact between the reusable probe and the skin or bodily fluids of the patient.

Disposable probes are very costly because of the fact that the cable, connectors and photodiodes are all disposed of after use. Some embodiments of the present invention accomplishe the same goals as a disposable probe from a cleanliness standpoint, but since only the attachment apparatus is discarded after use, the cost is much less to a healthcare institution.

One embodiment of the present invention, with the concave shape of the plastic discs of the bandage apparatus, when backed by the adhesive strip, is extremely effective in preventing the entrance of extraneous light from the sides of the patient s digit. Current probes on the market, whether disposable or reusable, because of the nature of their shape and affixation means, have problems in dealing with extraneous light reception.

One embodiment of the present invention utilizes an easy snap-on, snap-off, or modular connector attachment means for attaching the probe to the disposable bandage apparatus. Probe-shield type devices available in the past not only required the modification of the original manufacturer's probe, but required the difficult procedure of inserting a flexible laminated probe into a sheath for each patient.

Probe-shield devices, because of the lamination process involved, raised some concern over the transmission and reception of infrared light through the laminating material. One embodiment of the present invention uses a silicone window for the isolation of the probe from the patient. Infrared light transmission and reception is not affected by passage through translucent silicone.

In these days of environmental consciousness, the annual waste generated from tens of millions of disposable probes is enormous. Some embodiments of the present invention, if used in considerable numbers, would greatly reduce the amount of environmental waste generated by disposable pulse oximeter probes.

In some embodiments, intra-departmental or inter-institutional transport is greatly facilitated by having a bandage device which will accept probes of various manufacturers, as long as those probes contain housings that will matedly engage the receptacles of the disposable bandage apparatus.

Reusable Pulse Oximeter Probe with Disposable Liner

Description of a Reusable Pulse Oximeter Probe

According to one embodiment, the Reusable Pulse Oximeter Sensor constitutes a finger clip style pulse oximeter probe shown as FIG. 19, Item A. The probe incorporates two plastic housing arms, each housing arm containing apertures therein, said apertures shown as FIG. 19, Items C. One housing (HAE) contains the light emitting diode of the probe, and the other (HAD) contains the photocell detector. The emitter and detectors are aligned with the apertures of said housings in order to transmit and receive light through a human appendage. The housings are held together by a pin incorporating a spring, FIG. 19, item B, which inclines the two housings toward each other and clamps the apparatus on a human digit.

Within each housing is a “T” shaped channel, FIG. 19, item D, with a locking notch at the entrance thereof, said notch shown as FIG. 19, items E. The purpose of the channel and notch is to slidably engage the disposable liner of the finger clip and to lock it into its appropriate position within the finger clip. The probe is attached to a pulse oximeter through a connector, FIG. 19, item K. The above description constitutes the Reusable Pulse Oximeter Probe component of the invention.

Description of a Disposable Liner or Shield

According to one embodiment, the components of the disposable liner or shield include an initially planar foam strip shown as FIG. 19, item F, incorporating two apertures, centrally located within the strip, and shown as FIG. 19, Items I, Each aperture has a diameter sufficient in size to accommodate the transmission and reception of light from a light emitting diode and photocell detector of the reusable pulse oximeter probe. Each aperture has a silicone window, or window of another material, which will allow for the transmission and reception of infrared light therethrough.

On either end of the foam strip there is a thin plastic backing, FIG. 19, items G, having a “T” shaped protrusion mounted in the lateral plane thereof and shown as FIG. 19, item H. The purpose of the “T” shaped protrusion is to slidably engage the “T” shaped channel of the reusable sensor, FIG. 19, item D, and to lock into place by means of the locking levers, FIG. 19, items J, a releasable detent.

In one preferred embodiment of the invention, there are two disposable foam liners, with finger-shaped indentations therein, said indentations varying in size depending on the size of the patient's digit on which they are intended to be used. In this embodiment, the foam liners, FIG. 20, items F, have a plastic backing, FIG. 20, items G. The plastic backings have “T” shaped protrusions mounted thereon, FIG. 20, items H, which slidably engage the “T” shaped channel of the finger clip, FIG. 20, items D, the locking levers, FIG. 20, items J, engaging the locking notches of the finger clip, FIG. 20, items E, and securing the foam into place.

Other Fastening Means

As can be appreciated there are many ways of attaching the Disposable Liner or Shield to the Reusable Pulse Oximeter Probe. The above description describes attachment of the Disposable Liner to the Reusable Pulse Oximeter Probe by way of a modular type sliding connector. In addition to this means a number of other methods may be used including, hook and loop material, snap-on connectors, and removable adhesive.

DESCRIPTION OF THE MODULAR PULSE OXIMETER PROBE

Universal Modular Pulse Oximeter Probe for Use with Reusable and Disposable Patient Attachment Devices

Description of a Modular Pulse Oximeter Probe

TheAccording to one embodiment, the Modular Pulse Oximeter Probe consists of a “Y” type probe assembly in which the Light Emitting Diode (FIG. 1 21, Item A) and the Photocell Detector (FIG. 1 21, Item B) are incorporated into modular plastic housings. Said housings have an aperture or radiation transparent window incorporated therein so that said emitter and detector may be in communication with each other when said windows are in alignment with each other. In this preferred embodiment the modular housings consist of two half shells which encapsulate each the emitter and detector, one side of said shells (FIG. 1 21, Items C) being fabricated of an opaque plastic material and the other half of said shells (FIG. 1 21, Items D) being fabricated of a radiation transparent plastic material. The housings are designed in order to accommodate at least one of a possible multiplicity of manufacturers' light emitting diodes and photocell detectors. The housings may also contain an indentation (FIG. 1 21, Items E) into which a locking lever of the receptacles of the disposable bandage apparatus or reusable finger attachment device may lodge in order to secure the probe housings to the receptacles of the preferred attachment device. The cable (FIG. 1 21, Item F) and the connector (FIG. 1 21, Item G) of the probe may also be interchanged in order to be compatible with a multiplicity of different manufacturers' oximeters.

DESCRIPTION OF THE DISPOSABLE BANDAGE APPARATUS

Description of a Disposable Bandage Apparatus

TheAccording to one embodiment, the disposable bandage apparatus consists of at least one adhesive bandage strip (FIG. 222, Item A) wherein at least two receptacles (FIG. 222, Items B) are mounted on said strip. Said receptacles are mounted over apertures in the strip (FIG. 222, Items C) so that these apertures may diametrically oppose each other when the bandage strip is wrapped over the end of a patient's appendage. The Receptacles of the Disposable Bandage Apparatus may also incorporate locking levers (FIG. 222, Items D) that are intended to engage the indentations in the housings of the probe (FIG. 121, Items E) thus securing the probe housings within the bandage receptacles. The apparatus may also contain a radiation transparent window (FIG. 222, Items E) for isolation of the probe housings from the patient and may also incorporate an additional foam strip (FIG. 222, Item F) with apertures (FIG. 222, Items G) for cushioning the patient's appendage from the radiation transparent windows. FIG. 323 illustrates the disposable bandage apparatus with an engaged probe as it would appear in use on a human appendage.

DESCRIPTION OF THE REUSABLE FINGER ATTACHMENT DEVICE

Description of a Reusable Finger Attachment Device

TheOne preferred embodiment of the Reusable Finger Attachment Device comprises a flexible plastic or foam strip (FIG. 424, Item A) with two receptacles (FIG. 424, Items B) mounted thereon. Said receptacles are mounted over apertures in the strip (FIG. 424, Items C) so that these apertures may diametrically oppose each other when the bandage strip is wrapped over the end of a patient's appendage. The strip also incorporates two perforated tabs (FIG. 424, Items D) and two additional tabs with molded knobs (FIG. 424, Items E) so that when the strip is looped over a human digit, the tabs with the perforations overlay the tabs with the knobs and these, when pressed together, can adjustably and removably interlock with each other for securing the device to a human digit. The Receptacles of the Reusable Finger Attachment Device may also incorporate locking levers (FIG. 424, Items F) that are intended to engage the indentations in the housings of the probe (FIG. 121, Items E) thus securing the probe housings within the bandage receptacles. FIG. 525 illustrates the device as it would appear in use on a patient with the probe housings engaged in the Reusable Finger Attachment Device.

Other Fastening Means

As can be appreciated there are many means of fabricating either the Disposable Bandage Apparatus and the Reusable Finger Attachment Device using modular receptacles into which a universal modular probe housing could be lockingly engaged. While these devices may offer the most efficient method fabrication and/or user friendliness, they are by no means exhaustive.

Method of Use

Whether using the Disposable Bandage Apparatus or the Reusable Finger Attachment Device, the methods of use are essentially the same. With either apparatus, the end of the human appendage is wrapped by the device and, in the case of the Disposable Bandage Apparatus, the adhesive strip simply sticks to the skin of the patient. With the Reusable Finger Attachment Device, the tabs containing the perforations and knobs are simply overlaid and pushed together thus securing the device to the digit. With either device the probe housings are pushed into the receptacles of the device and are locked into place by the locking levers that engage the indentations in the probe housings. When the monitoring of the patient is complete, the locking levers of the receptacles of either device are lifted in order to release the probe housings and the probe is removed from the device. In the event that a Disposable Bandage Apparatus is in use, it is then thrown away after the probe has been removed. When a Reusable Finger Attachment Device is in use, it may be removed, washed, and reused on another patient.

ADVANTAGES OF THE PRESENT INVENTION

Advantages of Some Embodiments

1. The standardization of probes within a hospital whereby a multiplicity of manufacturers' oximeters could utilize probes having housings of the same size for engaging either reusable or disposable attachment devices is very favorable.

2. Finger attachment devices on the market today are hard wired to the probes, and when breakage occurs on the finger clip, the entire probe must be repaired or thrown away. With some embodiments of the present invention, when breakage occurs in either the finger attachment device or the probe itself, only the broken component has to be replaced.

3. A big problem exists with maintaining the cleanliness of reusable finger clips because the electronics are not removable from the finger clip and the device cannot be immersed or cleaned. With some embodiments of the present invention, the Reusable Finger Attachment Device can be removed from the probe and cleaned or sterilized.

While the invention has been described in relation to preferred embodiments of the invention, it will be appreciated that other embodiments, adaptations and modifications of the invention will be apparent to those skilled in the art.

Claims (32)

What is claimed is:
1. A pulse oximeter probe system comprising a probe having at least one light emitting diode and at least one photocell detector wherein said emitter and detector are incorporated into modular plastic housings, at least one housing having an aperture or radiation transparent window aligned with said diode, and at least a second housing having an aperture or radiation transparent window aligned with said detector; a selected one of:
(a) a reusable finger attachment device having a first modular receptacle pair mounted thereon, or
(b) a disposable bandage device having a second modular receptacle pair mounted thereon;
wherein respective ones of said housings can lockingly engage and disengage respective ones of said modular receptacles and transmit and receive light through the appendage of a patient when the selected one of the above devices (a) or (b) is attached to a patient and when the the respective receptacles of the attached device; and the receptacles of the disposable bandage device or the reusable finger attachment device have locking levers for lockingly engaging and disengaging said modular probe housings, respectively.
2. The probe system of claim 1 in which said housings have indentations for lockingly engaging and disengaging the levers of receptacles of a disposable bandage apparatus or reusable finger attachment device.
3. The probe system of claim 1 wherein said disposable bandage apparatus incorporates radiation transparent windows for the isolation of the probe housings from the patient.
4. The probe system of claim 1 in which the probe housings of probes to be used on a multiplicity of manufacturers' oximeters are adapted to be matedly engaged with a selected reusable finger attachment device or a disposable bandage apparatus having receptacles designed to mate with said probe housings.
5. A reusable finger attachment device for use with a pulse oximeter probe incorporating modular housings, comprising said attachment device incorporating modular receptacles for matingly engaging said modular probe housings; wherein the receptacles of the reusable finger attachment device have locking levers for lockingly engaging and disengaging said modular probe housings.
6. The reusable finger attachment device of claim 5 which said modular probe housings are adapted to be removed from said reusable finger attachment device in order to clean or sterilize said reusable finger attachment device.
7. A method of standardizing probes comprising designing probe housings to be matingly engageable with modular receptacles of a disposable bandage apparatus and a reusable finger attachment device and further constructing said probe housings to be incorporated into probes adapted to work with at least one of a multiplicity of manufacturers' oximeters.
8. A sensor system for sensing a physiological parameter of a patient, the system comprising:
a reusable probe sensor comprising a first housing element and a second housing element, wherein the first housing element comprises at least one light emitter and the second housing element comprises at least one light detector, wherein the first and second housing elements are movably coupled and configured to receive a disposable sensor shield, wherein each of the first and second housing elements comprises a modular connector for engaging respective modular connectors of a disposable sensor shield;
a disposable sensor shield comprising a first liner portion having a first aperture and a second liner portion having a second aperture, wherein the first and second liner portions are configured to receive an appendage, wherein the first and second apertures are configured to be aligned to allow light from the at least one light emitter to pass through the first aperture, the appendage, and the second aperture, to the at least one light detector during use, wherein the disposable sensor shield is configured to engage the reusable probe sensor, and wherein each of the first and second liner portions comprises a modular connector for engaging respective modular connectors of the first and second housing elements, wherein at least one of the modular connectors comprises a locking member.
9. The system of claim 8, comprising a connector configured to couple the reusable probe sensor to a pulse oximeter system.
10. The system of claim 8, wherein the reusable probe sensor is a clip-type sensor.
11. The system of claim 8, comprising a portable monitor configured to be coupled to the reusable probe sensor.
12. The system of claim 8, wherein the reusable probe sensor comprises a hinge portion coupling the first and second housing elements.
13. The system of claim 8, wherein the reusable probe sensor comprises a spring.
14. The system of claim 8, wherein the disposable sensor shield forms a cavity for receiving the appendage.
15. The system of claim 8, wherein the disposable sensor shield is configured to slidably engage the reusable probe sensor.
16. The system of claim 8, wherein each of the first and second liner portions comprises an adhesive.
17. The system of claim 8, wherein the disposable sensor shield comprises snap-on connectors.
18. The system of claim 8, wherein at least one of the first and second apertures comprises a window.
19. The system of claim 8, wherein the modular connectors of the first and second housing elements comprise slots.
20. The system of claim 8, wherein the modular connectors of the first and second liner portions comprise slot engaging members.
21. A device for use with a reusable probe sensor in a system for sensing a physiological parameter of a patient, the device comprising:
a disposable sensor shield comprising a first liner portion having a first aperture and a second liner portion having a second aperture, wherein the first and second liner portions are configured to receive an appendage, wherein the first and second apertures are configured to be aligned to allow light from a light emitter of a reusable probe sensor to pass through the first aperture, the appendage, and the second aperture, to a light detector of a reusable probe sensor, and wherein the disposable sensor shield is configured to be coupled to a reusable probe sensor to shield the reusable probe sensor from contact with the appendage, wherein each of the first and second liner portions comprises a modular connector for engaging respective modular connectors of the reusable probe sensor, wherein at least one of the modular connectors comprises a locking member.
22. The device of claim 21, comprising one or more securing features configured to interact with one or more corresponding features of the reusable probe sensor to releasably secure the disposable sensor shield with the reusable probe sensor.
23. The device of claim 21, wherein the disposable sensor shield forms a cavity for receiving the appendage.
24. The device of claim 21, wherein the disposable sensor shield is configured to slidably engage a reusable probe sensor.
25. The device of claim 21, wherein each of the first and second liner portions comprises an adhesive.
26. The device of claim 21, wherein the disposable sensor shield comprises one or more locking features selected from the group consisting of a fastener, a hook-and-loop type material, a snap-on connector, a ring, a groove, a notch, a twistable connector, a contoured portion of a receptacle, a threaded connector, a flange, a tab, an indentation and a slot.
27. The device of claim 21, wherein the first liner portion is attached to the second liner portion.
28. The device of claim 21, wherein the first liner portion is separate from the second liner portion.
29. The device of claim 21, wherein at least one of the first and second apertures comprises a window.
30. A method of preparing a system for sensing a physiological parameter of a patent, the method comprising:
providing a reusable probe sensor comprising a first housing element and a second housing element, wherein the first housing element comprises at least one light emitter and the second housing element comprises at least one light detector, wherein the first and second housing elements are movably coupled and configured to receive a disposable sensor shield, wherein each of the first and second housing elements comprises a modular connector for engaging respective modular connectors of a disposable sensor shield;
providing a disposable sensor shield comprising a first liner portion having a first aperture and a second liner portion having a second aperture, wherein the first and second liner portions are configured to receive an appendage, wherein the first and second apertures are configured to be aligned to allow light from the at least one light emitter to pass through the first aperture, the appendage, and the second aperture, to the at least one light detector during use, wherein the disposable sensor shield is configured to engage the reusable probe sensor, and wherein each of the first and second liner portions comprises a modular connector for engaging respective modular connectors of the first and second housing elements, wherein at least one of the modular connectors comprises a locking member;
coupling the disposable sensor shield to an appendage; and
coupling the disposable sensor shield to the reusable probe sensor.
31. The method of claim 30, comprising:
transmitting light through the appendage; and
sensing a physiological parameter of the patent.
32. The method of claim 30, comprising:
uncoupling the disposable sensor shield from the reusable probe sensor; and
uncoupling the disposable sensor shield from the appendage.
US13367666 1998-10-15 2012-02-07 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices Active USRE44823E1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10433298 true 1998-10-15 1998-10-15
US09289647 US6144868A (en) 1998-10-15 1999-04-12 Reusable pulse oximeter probe and disposable bandage apparatus
US09352144 US6321100B1 (en) 1999-07-13 1999-07-13 Reusable pulse oximeter probe with disposable liner
US09417898 US6343224B1 (en) 1998-10-15 1999-10-14 Reusable pulse oximeter probe and disposable bandage apparatus
US09679828 US6519487B1 (en) 1998-10-15 2000-10-05 Reusable pulse oximeter probe and disposable bandage apparatus
US09758038 US6684091B2 (en) 1998-10-15 2001-01-11 Reusable pulse oximeter probe and disposable bandage method
US09931273 US6721585B1 (en) 1998-10-15 2001-08-17 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US11404123 USRE41317E1 (en) 1998-10-15 2006-04-13 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US12573851 USRE43169E1 (en) 1998-10-15 2009-10-05 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US13367666 USRE44823E1 (en) 1998-10-15 2012-02-07 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13367666 USRE44823E1 (en) 1998-10-15 2012-02-07 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09931273 Reissue US6721585B1 (en) 1998-10-15 2001-08-17 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices

Publications (1)

Publication Number Publication Date
USRE44823E1 true USRE44823E1 (en) 2014-04-01

Family

ID=32046161

Family Applications (4)

Application Number Title Priority Date Filing Date
US09931273 Active 2019-06-28 US6721585B1 (en) 1998-10-15 2001-08-17 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US11404123 Active USRE41317E1 (en) 1998-10-15 2006-04-13 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US12573851 Active USRE43169E1 (en) 1998-10-15 2009-10-05 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US13367666 Active USRE44823E1 (en) 1998-10-15 2012-02-07 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09931273 Active 2019-06-28 US6721585B1 (en) 1998-10-15 2001-08-17 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US11404123 Active USRE41317E1 (en) 1998-10-15 2006-04-13 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US12573851 Active USRE43169E1 (en) 1998-10-15 2009-10-05 Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices

Country Status (1)

Country Link
US (4) US6721585B1 (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279284A1 (en) * 2005-05-06 2006-12-14 Vaughan J T Wirelessly coupled magnetic resonance coil
US20110172498A1 (en) * 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US8870792B2 (en) 2009-10-15 2014-10-28 Masimo Corporation Physiological acoustic monitoring system
US8911377B2 (en) 2008-09-15 2014-12-16 Masimo Corporation Patient monitor including multi-parameter graphical display
US8948835B2 (en) 2002-12-04 2015-02-03 Cercacor Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US9028429B2 (en) 2008-12-30 2015-05-12 Masimo Corporation Acoustic sensor assembly
US9037207B2 (en) 2009-05-20 2015-05-19 Masimo Corporation Hemoglobin display and patient treatment
US9060721B2 (en) 2008-03-04 2015-06-23 Glt Acquisition Corp. Flowometry in optical coherence tomography for analyte level estimation
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US9078560B2 (en) 2004-08-11 2015-07-14 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based physiological monitor
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US9113832B2 (en) 2002-03-25 2015-08-25 Masimo Corporation Wrist-mounted physiological measurement device
US9119595B2 (en) 2008-10-13 2015-09-01 Masimo Corporation Reflection-detector sensor position indicator
US9131882B2 (en) 2005-03-01 2015-09-15 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9142117B2 (en) 2007-10-12 2015-09-22 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US9138182B2 (en) 2006-11-29 2015-09-22 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US9153121B2 (en) 2008-07-29 2015-10-06 Masimo Corporation Alarm suspend system
US9161713B2 (en) 2004-03-04 2015-10-20 Masimo Corporation Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US9186102B2 (en) 2009-09-03 2015-11-17 Cercacor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US9211072B2 (en) 2007-06-28 2015-12-15 Masimo Corporation Disposable active pulse sensor
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US9226696B2 (en) 2010-10-20 2016-01-05 Masimo Corporation Patient safety system with automatically adjusting bed
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US9277880B2 (en) 2008-07-03 2016-03-08 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US9295421B2 (en) 2009-07-29 2016-03-29 Masimo Corporation Non-invasive physiological sensor cover
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
US9351673B2 (en) 1997-04-14 2016-05-31 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US9386953B2 (en) 1999-12-09 2016-07-12 Masimo Corporation Method of sterilizing a reusable portion of a noninvasive optical probe
US9386961B2 (en) 2009-10-15 2016-07-12 Masimo Corporation Physiological acoustic monitoring system
US9397448B2 (en) 2006-09-20 2016-07-19 Masimo Corporation Shielded connector assembly
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US9492110B2 (en) 1998-06-03 2016-11-15 Masimo Corporation Physiological monitor
US9510779B2 (en) 2009-09-17 2016-12-06 Masimo Corporation Analyte monitoring using one or more accelerometers
US9517024B2 (en) 2009-09-17 2016-12-13 Masimo Corporation Optical-based physiological monitoring system
US9538949B2 (en) 2010-09-28 2017-01-10 Masimo Corporation Depth of consciousness monitor including oximeter
US9538980B2 (en) 2009-10-15 2017-01-10 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9560998B2 (en) 2006-10-12 2017-02-07 Masimo Corporation System and method for monitoring the life of a physiological sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US9591975B2 (en) 2008-07-03 2017-03-14 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
USD788312S1 (en) 2012-02-09 2017-05-30 Masimo Corporation Wireless patient monitoring device
US9675286B2 (en) 1998-12-30 2017-06-13 Masimo Corporation Plethysmograph pulse recognition processor
US9687160B2 (en) 2006-09-20 2017-06-27 Masimo Corporation Congenital heart disease monitor
US9693719B2 (en) 2003-01-24 2017-07-04 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9724024B2 (en) 2010-03-01 2017-08-08 Masimo Corporation Adaptive alarm system
US9724016B1 (en) 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9730640B2 (en) 1999-03-25 2017-08-15 Masimo Corporation Pulse oximeter probe-off detector
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9775546B2 (en) 2012-04-17 2017-10-03 Masimo Corporation Hypersaturation index
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9782110B2 (en) 2010-06-02 2017-10-10 Masimo Corporation Opticoustic sensor
US9795310B2 (en) 2010-05-06 2017-10-24 Masimo Corporation Patient monitor for determining microcirculation state
US9801588B2 (en) 2003-07-08 2017-10-31 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
US9801556B2 (en) 2011-02-25 2017-10-31 Masimo Corporation Patient monitor for monitoring microcirculation
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9814418B2 (en) 2001-06-29 2017-11-14 Masimo Corporation Sine saturation transform
US9839379B2 (en) 2013-10-07 2017-12-12 Masimo Corporation Regional oximetry pod
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US9848806B2 (en) 2001-07-02 2017-12-26 Masimo Corporation Low power pulse oximeter
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US9891079B2 (en) 2014-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328053B1 (en) * 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
US5638818A (en) * 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6027452A (en) * 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US6018673A (en) * 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6770028B1 (en) * 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
DK1309270T3 (en) * 2000-08-18 2009-08-03 Masimo Corp Pulse oximeter with two modes
US20020140675A1 (en) * 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US6515273B2 (en) * 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
WO2001078593A9 (en) 2000-04-17 2002-12-12 Nellcor Puritan Bennett Inc Pulse oximeter sensor with piece-wise function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US6430525B1 (en) * 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6640116B2 (en) * 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6822564B2 (en) * 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US7509494B2 (en) * 2002-03-01 2009-03-24 Masimo Corporation Interface cable
US7096054B2 (en) * 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US7142901B2 (en) * 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
DE60334007D1 (en) 2002-10-01 2010-10-14 Nellcor Puritan Bennett Inc Use of a headband to the voltage display and system of oximeter and headband
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US7190986B1 (en) 2002-10-18 2007-03-13 Nellcor Puritan Bennett Inc. Non-adhesive oximeter sensor for sensitive skin
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
EP1722676B1 (en) * 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
US9341565B2 (en) * 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7343186B2 (en) * 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US20060189871A1 (en) * 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
US7937129B2 (en) * 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US20070073116A1 (en) * 2005-08-17 2007-03-29 Kiani Massi E Patient identification using physiological sensor
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8092379B2 (en) 2005-09-29 2012-01-10 Nellcor Puritan Bennett Llc Method and system for determining when to reposition a physiological sensor
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8062221B2 (en) 2005-09-30 2011-11-22 Nellcor Puritan Bennett Llc Sensor for tissue gas detection and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7499739B2 (en) 2005-10-27 2009-03-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US7486977B2 (en) 2005-10-27 2009-02-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US8233955B2 (en) * 2005-11-29 2012-07-31 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
WO2007065015A3 (en) * 2005-12-03 2008-02-14 Masimo Corp Physiological alarm notification system
US7990382B2 (en) * 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US20070244377A1 (en) * 2006-03-14 2007-10-18 Cozad Jenny L Pulse oximeter sleeve
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8998809B2 (en) 2006-05-15 2015-04-07 Cercacor Laboratories, Inc. Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US20080064965A1 (en) * 2006-09-08 2008-03-13 Jay Gregory D Devices and methods for measuring pulsus paradoxus
US8315683B2 (en) * 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US20080103375A1 (en) * 2006-09-22 2008-05-01 Kiani Massi E Patient monitor user interface
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7476131B2 (en) 2006-09-29 2009-01-13 Nellcor Puritan Bennett Llc Device for reducing crosstalk
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US20080094228A1 (en) * 2006-10-12 2008-04-24 Welch James P Patient monitor using radio frequency identification tags
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
JP5441707B2 (en) * 2006-12-09 2014-03-12 マシモ コーポレイション Plethysmograph variability processor
US7791155B2 (en) * 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) * 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US20090093687A1 (en) * 2007-03-08 2009-04-09 Telfort Valery G Systems and methods for determining a physiological condition using an acoustic monitor
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8781544B2 (en) 2007-03-27 2014-07-15 Cercacor Laboratories, Inc. Multiple wavelength optical sensor
US7919713B2 (en) * 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US9642565B2 (en) * 2007-06-27 2017-05-09 Covidien Lp Deformable physiological sensor
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
US8355766B2 (en) * 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
WO2009049254A9 (en) 2007-10-12 2010-11-18 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
USD609193S1 (en) 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
US9636057B2 (en) * 2007-11-09 2017-05-02 Covidien Lp Conformable physiological sensor
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8092993B2 (en) 2007-12-31 2012-01-10 Nellcor Puritan Bennett Llc Hydrogel thin film for use as a biosensor
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8070508B2 (en) 2007-12-31 2011-12-06 Nellcor Puritan Bennett Llc Method and apparatus for aligning and securing a cable strain relief
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8364224B2 (en) * 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
JP5575752B2 (en) * 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
US20100210930A1 (en) * 2009-02-13 2010-08-19 Saylor Stephen D Physiological Blood Gas Detection Apparatus and Method
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US20100234718A1 (en) * 2009-03-12 2010-09-16 Anand Sampath Open architecture medical communication system
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8897847B2 (en) 2009-03-23 2014-11-25 Masimo Corporation Digit gauge for noninvasive optical sensor
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8221319B2 (en) 2009-03-25 2012-07-17 Nellcor Puritan Bennett Llc Medical device for assessing intravascular blood volume and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
WO2010135373A1 (en) 2009-05-19 2010-11-25 Masimo Corporation Disposable components for reusable physiological sensor
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8670811B2 (en) * 2009-06-30 2014-03-11 Masimo Corporation Pulse oximetry system for adjusting medical ventilation
US9010634B2 (en) 2009-06-30 2015-04-21 Covidien Lp System and method for linking patient data to a patient and providing sensor quality assurance
US8505821B2 (en) 2009-06-30 2013-08-13 Covidien Lp System and method for providing sensor quality assurance
US8636667B2 (en) * 2009-07-06 2014-01-28 Nellcor Puritan Bennett Ireland Systems and methods for processing physiological signals in wavelet space
US8391941B2 (en) 2009-07-17 2013-03-05 Covidien Lp System and method for memory switching for multiple configuration medical sensor
US20110040197A1 (en) * 2009-07-20 2011-02-17 Masimo Corporation Wireless patient monitoring system
US20110208015A1 (en) * 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US20110028806A1 (en) * 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
US20110028809A1 (en) * 2009-07-29 2011-02-03 Masimo Corporation Patient monitor ambient display device
US20110087081A1 (en) * 2009-08-03 2011-04-14 Kiani Massi Joe E Personalized physiological monitor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US8571618B1 (en) 2009-09-28 2013-10-29 Cercacor Laboratories, Inc. Adaptive calibration system for spectrophotometric measurements
US20110082711A1 (en) * 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US9106038B2 (en) 2009-10-15 2015-08-11 Masimo Corporation Pulse oximetry system with low noise cable hub
US8821415B2 (en) 2009-10-15 2014-09-02 Masimo Corporation Physiological acoustic monitoring system
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
US20110230733A1 (en) * 2010-01-19 2011-09-22 Masimo Corporation Wellness analysis system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US8712494B1 (en) 2010-05-03 2014-04-29 Masimo Corporation Reflective non-invasive sensor
WO2011160130A3 (en) 2010-06-18 2012-04-05 Sionyx, Inc High speed photosensitive devices and associated methods
US8740792B1 (en) 2010-07-12 2014-06-03 Masimo Corporation Patient monitor capable of accounting for environmental conditions
US8830449B1 (en) 2011-04-18 2014-09-09 Cercacor Laboratories, Inc. Blood analysis system
US9095316B2 (en) 2011-04-20 2015-08-04 Masimo Corporation System for generating alarms based on alarm patterns
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
WO2013148605A1 (en) 2012-03-25 2013-10-03 Masimo Corporation Physiological monitor touchscreen interface
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
EP2767232A1 (en) * 2013-02-15 2014-08-20 Koninklijke Philips N.V. System and method for determining a vital sign of a subject
KR20150130303A (en) 2013-02-15 2015-11-23 사이오닉스, 아이엔씨. High dynamic range cmos image sensor having anti-blooming properties and associated methods
US9474474B2 (en) 2013-03-14 2016-10-25 Masimo Corporation Patient monitor as a minimally invasive glucometer
WO2014209421A1 (en) 2013-06-29 2014-12-31 Sionyx, Inc. Shallow trench textured regions and associated methods

Citations (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184521B2 (en)
US3463142A (en) 1966-07-05 1969-08-26 Trw Inc Blood content monitor
US3647299A (en) 1970-04-20 1972-03-07 American Optical Corp Oximeter
US3740570A (en) 1971-09-27 1973-06-19 Litton Systems Inc Driving circuits for light emitting diodes
US3799672A (en) 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
US4086915A (en) 1975-04-30 1978-05-02 Harvey I. Kofsky Ear oximetry process and apparatus
US4169976A (en) 1976-02-27 1979-10-02 Valfivre S.P.A. Process for cutting or shaping of a substrate by laser
US4182977A (en) 1978-06-01 1980-01-08 Trw Inc. Constant output light emitting device
US4308456A (en) 1979-11-19 1981-12-29 Versatile Integrated Modules Method and apparatus for measuring the frequency of radiation
US4346590A (en) 1980-09-02 1982-08-31 Texaco Inc. Gain stabilization for radioactivity well logging apparatus
US4407290A (en) 1981-04-01 1983-10-04 Biox Technology, Inc. Blood constituent measuring device and method
EP0019278B1 (en) 1979-05-15 1984-03-14 Nec Corporation Electrooptic light deflector
US4449821A (en) 1982-07-14 1984-05-22 E. I. Du Pont De Nemours And Company Process colorimeter
US4480886A (en) 1982-03-02 1984-11-06 Zetronic S.P.A. Quick connector for a multi-conductor circuit
US4580867A (en) 1985-02-12 1986-04-08 Molex Incorporated Method and apparatus for terminating a reciprocable connector
US4621643A (en) 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
US4685464A (en) 1985-07-05 1987-08-11 Nellcor Incorporated Durable sensor for detecting optical pulses
US4700708A (en) 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
US4770179A (en) 1982-09-02 1988-09-13 Nellcor Incorporated Calibrated optical oximeter probe
US4830014A (en) 1983-05-11 1989-05-16 Nellcor Incorporated Sensor having cutaneous conformance
US4848901A (en) 1987-10-08 1989-07-18 Critikon, Inc. Pulse oximeter sensor control system
US4865038A (en) 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
US4877322A (en) 1987-04-30 1989-10-31 Eyedentify, Inc. Method and apparatus for measuring blood oxygen levels in selected areas of the eye fundus
EP0104772B1 (en) 1982-09-02 1990-03-21 Nellcor Incorporated Calibrated optical oximeter probe
US4913150A (en) 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4942877A (en) 1986-09-05 1990-07-24 Minolta Camera Kabushiki Kaisha Device for measuring oxygen saturation degree in arterial blood
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US4974591A (en) 1987-11-02 1990-12-04 Sumitomo Electric Industries, Ltd. Bio-photosensor
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
US5058588A (en) 1989-09-19 1991-10-22 Hewlett-Packard Company Oximeter and medical sensor therefor
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US5090410A (en) 1989-06-28 1992-02-25 Datascope Investment Corp. Fastener for attaching sensor to the body
US5094240A (en) 1988-03-18 1992-03-10 Nicolay Gmbh Pulse/oxygen sensor and method of making
US5113862A (en) 1990-09-25 1992-05-19 Siemens Pacesetter, Inc. Blood oxygen sensor having leakage compensation
US5140228A (en) 1990-02-23 1992-08-18 Stocker & Yale, Inc. Apparatus for regulating the intensity of light emitted by a lamp
US5158323A (en) 1990-09-05 1992-10-27 Nissan Motor Co., Ltd. Airbag restraint system for motor vehicle
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
US5170786A (en) 1990-09-28 1992-12-15 Novametrix Medical Systems, Inc. Reusable probe system
US5209230A (en) 1990-10-19 1993-05-11 Nellcor Incorporated Adhesive pulse oximeter sensor with reusable portion
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5249576A (en) 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5267562A (en) 1992-05-28 1993-12-07 Nihon Kohden Corporation Pulse oximeter with probe difference compensation
US5273041A (en) 1992-04-30 1993-12-28 General Electric Company Fiber optic photoplethysmograph for a magnetic resonance imaging system
US5279295A (en) 1989-11-23 1994-01-18 U.S. Philips Corporation Non-invasive oximeter arrangement
US5287853A (en) 1992-12-11 1994-02-22 Hewlett-Packard Company Adapter cable for connecting a pulsoximetry sensor unit to a medical measuring device
US5308919A (en) 1992-04-27 1994-05-03 Minnich Thomas E Method and apparatus for monitoring the arteriovenous oxygen difference from the ocular fundus
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5339810A (en) 1993-05-03 1994-08-23 Marquette Electronics, Inc. Pulse oximetry sensor
US5341805A (en) 1993-04-06 1994-08-30 Cedars-Sinai Medical Center Glucose fluorescence monitor and method
EP0313238B1 (en) 1987-10-08 1994-09-21 Critikon, Inc. Pulse oximeter sensor
US5365937A (en) 1992-09-09 1994-11-22 Mcg International, Inc. Disposable sensing device with contaneous conformance
US5377676A (en) 1991-04-03 1995-01-03 Cedars-Sinai Medical Center Method for determining the biodistribution of substances using fluorescence spectroscopy
US5397247A (en) 1993-01-25 1995-03-14 Yazaki Corporation Connector construction
US5422632A (en) 1992-10-28 1995-06-06 Intellitouch 2000, Inc. Electronic security system
US5431170A (en) 1990-05-26 1995-07-11 Mathews; Geoffrey R. Pulse responsive device
US5437275A (en) 1994-02-02 1995-08-01 Biochem International Inc. Pulse oximetry sensor
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5456252A (en) 1993-09-30 1995-10-10 Cedars-Sinai Medical Center Induced fluorescence spectroscopy blood perfusion and pH monitor and method
US5460182A (en) 1992-09-14 1995-10-24 Sextant Medical Corporation Tissue penetrating apparatus and methods
US5479934A (en) 1991-11-08 1996-01-02 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
US5482036A (en) 1991-03-07 1996-01-09 Masimo Corporation Signal processing apparatus and method
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
US5507286A (en) 1993-12-23 1996-04-16 Medical Taping Systems, Inc. Method and apparatus for improving the durability of a sensor
US5515169A (en) 1993-10-13 1996-05-07 Labintelligence Inc. Spectral wavelength discrimination system and method for using
US5520177A (en) 1993-03-26 1996-05-28 Nihon Kohden Corporation Oximeter probe
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
US5561275A (en) 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
US5562002A (en) 1995-02-03 1996-10-08 Sensidyne Inc. Positive displacement piston flow meter with damping assembly
US5570002A (en) 1994-02-18 1996-10-29 Ergo Mechanical Systems, Incorporated Universal power-supply connection system for multiple electronic devices
US5579373A (en) 1992-11-05 1996-11-26 Samsung Electronics Co., Ltd. Transmission power control method in cellular radiotelephone system
US5590649A (en) 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5602924A (en) 1992-12-07 1997-02-11 Theratechnologies Inc. Electronic stethescope
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US5660567A (en) 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US5786592A (en) 1996-01-30 1998-07-28 Hok Instrument Ab Pulse oximetry sensor with fiberoptic signal transmission
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5810734A (en) 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5817010A (en) 1997-03-25 1998-10-06 Ohmeda Inc. Disposable sensor holder
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US5830129A (en) 1991-09-26 1998-11-03 Baer; Hans Process and apparatus for measuring blood flow through an organ or other biological tissue
US5879373A (en) 1994-12-24 1999-03-09 Boehringer Mannheim Gmbh System and method for the determination of tissue properties
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US5904654A (en) 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
US5919133A (en) 1996-04-26 1999-07-06 Ohmeda Inc. Conformal wrap for pulse oximeter sensor
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US5991648A (en) 1998-03-30 1999-11-23 Palco Labs, Inc. Adjustable pulse oximetry sensor for pediatric use
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US5999834A (en) 1998-06-18 1999-12-07 Ntc Technology, Inc. Disposable adhesive wrap for use with reusable pulse oximetry sensor and method of making
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6014576A (en) 1998-02-27 2000-01-11 Datex-Ohmeda, Inc. Segmented photoplethysmographic sensor with universal probe-end
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US6061584A (en) 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
US6128521A (en) 1998-07-10 2000-10-03 Physiometrix, Inc. Self adjusting headgear appliance using reservoir electrodes
US6129675A (en) 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6232609B1 (en) 1995-12-01 2001-05-15 Cedars-Sinai Medical Center Glucose monitoring apparatus and method using laser-induced emission spectroscopy
US6241683B1 (en) 1998-02-20 2001-06-05 INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) Phonospirometry for non-invasive monitoring of respiration
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
EP0745348B1 (en) 1995-06-02 2001-07-18 Datex-Ohmeda, Inc. Instrumented laser diode probe connector
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
US20010029325A1 (en) 1998-10-15 2001-10-11 Brent Parker Reusable pulse oximeter probe and disposable bandage method
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6317627B1 (en) 1999-11-02 2001-11-13 Physiometrix, Inc. Anesthesia monitoring system based on electroencephalographic signals
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
US6321000B1 (en) 1998-12-01 2001-11-20 Nortel Networks Limited Optical equalizer
US6334065B1 (en) 1998-06-03 2001-12-25 Masimo Corporation Stereo pulse oximeter
US6343224B1 (en) 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6368283B1 (en) 2000-09-08 2002-04-09 Institut De Recherches Cliniques De Montreal Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
US6371921B1 (en) 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6381489B1 (en) 1995-10-31 2002-04-30 Kyoto Daiichi Kagaku Co., Ltd. Measuring condition setting jig, measuring condition setting method and biological information measuring instrument
US6388240B2 (en) 1999-08-26 2002-05-14 Masimo Corporation Shielded optical probe and method having a longevity indication
US6430437B1 (en) 1999-10-27 2002-08-06 Physiometrix, Inc. Module for acquiring electroencephalograph signals from a patient
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6505059B1 (en) 1998-04-06 2003-01-07 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US20030009092A1 (en) 1998-10-15 2003-01-09 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6519484B1 (en) 2000-11-01 2003-02-11 Ge Medical Systems Information Technologies, Inc. Pulse oximetry sensor
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US6526300B1 (en) 1999-06-18 2003-02-25 Masimo Corporation Pulse oximeter probe-off detection system
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US6542764B1 (en) 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6571113B1 (en) 2000-09-21 2003-05-27 Mallinckrodt, Inc. Oximeter sensor adapter with coding element
US6580948B2 (en) 2000-04-25 2003-06-17 Medtronic, Inc. Interface devices for instruments in communication with implantable medical devices
US6584336B1 (en) 1999-01-25 2003-06-24 Masimo Corporation Universal/upgrading pulse oximeter
US6597932B2 (en) 2000-02-18 2003-07-22 Argose, Inc. Generation of spatially-averaged excitation-emission map in heterogeneous tissue
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US6600940B1 (en) 2000-08-31 2003-07-29 Mallinckrodt Inc. Oximeter sensor with digital memory
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6639668B1 (en) 1999-11-03 2003-10-28 Argose, Inc. Asynchronous fluorescence scan
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6650917B2 (en) 1991-03-07 2003-11-18 Masimo Corporation Signal processing apparatus
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
US6671532B1 (en) 2001-09-17 2003-12-30 Respironics Novametrix, Inc. Pulse oximetry sensor and dispensing method
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6721582B2 (en) 1999-04-06 2004-04-13 Argose, Inc. Non-invasive tissue glucose level monitoring
US6728560B2 (en) 1998-04-06 2004-04-27 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US6839583B1 (en) 1999-06-03 2005-01-04 Hutchinson Technology Corporation Disposable tissue probe tip
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US6943348B1 (en) 1999-10-19 2005-09-13 Masimo Corporation System for detecting injection holding material
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6961598B2 (en) 2002-02-22 2005-11-01 Masimo Corporation Pulse and active pulse spectraphotometry
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US6985764B2 (en) 2001-05-03 2006-01-10 Masimo Corporation Flex circuit shielded optical sensor
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7015451B2 (en) 2002-01-25 2006-03-21 Masimo Corporation Power supply rail controller
US7027849B2 (en) 2002-11-22 2006-04-11 Masimo Laboratories, Inc. Blood parameter measurement system
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US20070123763A1 (en) 2005-11-29 2007-05-31 Ammar Al-Ali Optical sensor including disposable and reusable elements
US7239905B2 (en) 1995-06-07 2007-07-03 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US20070219437A1 (en) 2006-03-17 2007-09-20 Glucolight Corporation System and method for creating a stable optical interface
US7274955B2 (en) 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7289835B2 (en) 2000-02-18 2007-10-30 Masimo Laboratories, Inc. Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
USD554263S1 (en) 2005-02-18 2007-10-30 Masimo Corporation Portable patient monitor
US7292883B2 (en) 2004-03-31 2007-11-06 Masimo Corporation Physiological assessment system
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7356365B2 (en) 2003-07-09 2008-04-08 Glucolight Corporation Method and apparatus for tissue oximetry
USD566282S1 (en) 2005-02-18 2008-04-08 Masimo Corporation Stand for a portable patient monitor
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
US7376453B1 (en) 1993-10-06 2008-05-20 Masimo Corporation Signal processing apparatus
US7377794B2 (en) 2005-03-01 2008-05-27 Masimo Corporation Multiple wavelength sensor interconnect
US7415297B2 (en) 2004-03-08 2008-08-19 Masimo Corporation Physiological parameter system
US7428432B2 (en) 1999-01-25 2008-09-23 Masimo Corporation Systems and methods for acquiring calibration data usable in a pulse oximeter
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
US20080262324A1 (en) 2004-05-11 2008-10-23 Koninklijke Philips Electronics, N.V. Measurement Head For Non-Invasive Blood Analysis
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
USD587657S1 (en) 2007-10-12 2009-03-03 Masimo Corporation Connector assembly
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7509494B2 (en) 2002-03-01 2009-03-24 Masimo Corporation Interface cable
US7510849B2 (en) 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
USD606659S1 (en) 2008-08-25 2009-12-22 Masimo Laboratories, Inc. Patient monitor
USD609193S1 (en) 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
US7706853B2 (en) 2005-02-10 2010-04-27 Terumo Cardiovascular Systems Corporation Near infrared spectroscopy device with reusable portion
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US7899518B2 (en) 1998-04-06 2011-03-01 Masimo Laboratories, Inc. Non-invasive tissue glucose level monitoring
US7909772B2 (en) 2004-04-16 2011-03-22 Masimo Corporation Non-invasive measurement of second heart sound components
US7919713B2 (en) 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US7937129B2 (en) 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8008088B2 (en) 2003-12-24 2011-08-30 Masimo Laboratories, Inc. SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
US8118620B2 (en) 2007-10-12 2012-02-21 Masimo Corporation Connector assembly with reduced unshielded area
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US8274360B2 (en) 2007-10-12 2012-09-25 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US8315683B2 (en) 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
JP5275746B2 (en) 2008-10-22 2013-08-28 株式会社日立製作所 Piezoelectric element

Patent Citations (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184521B2 (en)
US3463142A (en) 1966-07-05 1969-08-26 Trw Inc Blood content monitor
US3647299A (en) 1970-04-20 1972-03-07 American Optical Corp Oximeter
US3740570A (en) 1971-09-27 1973-06-19 Litton Systems Inc Driving circuits for light emitting diodes
US3799672A (en) 1972-09-15 1974-03-26 Us Health Education & Welfare Oximeter for monitoring oxygen saturation in blood
US4086915A (en) 1975-04-30 1978-05-02 Harvey I. Kofsky Ear oximetry process and apparatus
US4169976A (en) 1976-02-27 1979-10-02 Valfivre S.P.A. Process for cutting or shaping of a substrate by laser
US4182977A (en) 1978-06-01 1980-01-08 Trw Inc. Constant output light emitting device
EP0019278B1 (en) 1979-05-15 1984-03-14 Nec Corporation Electrooptic light deflector
US4308456A (en) 1979-11-19 1981-12-29 Versatile Integrated Modules Method and apparatus for measuring the frequency of radiation
US4346590A (en) 1980-09-02 1982-08-31 Texaco Inc. Gain stabilization for radioactivity well logging apparatus
US4407290B1 (en) 1981-04-01 1986-10-14
US4407290A (en) 1981-04-01 1983-10-04 Biox Technology, Inc. Blood constituent measuring device and method
US4480886A (en) 1982-03-02 1984-11-06 Zetronic S.P.A. Quick connector for a multi-conductor circuit
US4449821A (en) 1982-07-14 1984-05-22 E. I. Du Pont De Nemours And Company Process colorimeter
US4700708A (en) 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
US4621643A (en) 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4770179A (en) 1982-09-02 1988-09-13 Nellcor Incorporated Calibrated optical oximeter probe
EP0104772B1 (en) 1982-09-02 1990-03-21 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
US4653498B1 (en) 1982-09-13 1989-04-18
US4830014A (en) 1983-05-11 1989-05-16 Nellcor Incorporated Sensor having cutaneous conformance
US4580867A (en) 1985-02-12 1986-04-08 Molex Incorporated Method and apparatus for terminating a reciprocable connector
US4685464A (en) 1985-07-05 1987-08-11 Nellcor Incorporated Durable sensor for detecting optical pulses
US4913150A (en) 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4942877A (en) 1986-09-05 1990-07-24 Minolta Camera Kabushiki Kaisha Device for measuring oxygen saturation degree in arterial blood
US4865038A (en) 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
US4877322A (en) 1987-04-30 1989-10-31 Eyedentify, Inc. Method and apparatus for measuring blood oxygen levels in selected areas of the eye fundus
US4848901A (en) 1987-10-08 1989-07-18 Critikon, Inc. Pulse oximeter sensor control system
EP0313238B1 (en) 1987-10-08 1994-09-21 Critikon, Inc. Pulse oximeter sensor
US4974591A (en) 1987-11-02 1990-12-04 Sumitomo Electric Industries, Ltd. Bio-photosensor
US5094240A (en) 1988-03-18 1992-03-10 Nicolay Gmbh Pulse/oxygen sensor and method of making
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
US5090410A (en) 1989-06-28 1992-02-25 Datascope Investment Corp. Fastener for attaching sensor to the body
US5058588A (en) 1989-09-19 1991-10-22 Hewlett-Packard Company Oximeter and medical sensor therefor
US5279295A (en) 1989-11-23 1994-01-18 U.S. Philips Corporation Non-invasive oximeter arrangement
US5140228A (en) 1990-02-23 1992-08-18 Stocker & Yale, Inc. Apparatus for regulating the intensity of light emitted by a lamp
US5431170A (en) 1990-05-26 1995-07-11 Mathews; Geoffrey R. Pulse responsive device
US5158323A (en) 1990-09-05 1992-10-27 Nissan Motor Co., Ltd. Airbag restraint system for motor vehicle
US5113862A (en) 1990-09-25 1992-05-19 Siemens Pacesetter, Inc. Blood oxygen sensor having leakage compensation
US5170786A (en) 1990-09-28 1992-12-15 Novametrix Medical Systems, Inc. Reusable probe system
US5209230A (en) 1990-10-19 1993-05-11 Nellcor Incorporated Adhesive pulse oximeter sensor with reusable portion
USRE36000E (en) 1990-10-19 1998-12-22 Nellcor Puritan Bennett Incorporated Adhesive pulse oximeter sensor with reusable portion
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US7469157B2 (en) 1991-03-07 2008-12-23 Masimo Corporation Signal processing apparatus
US7937130B2 (en) 1991-03-07 2011-05-03 Masimo Corporation Signal processing apparatus
US8036728B2 (en) 1991-03-07 2011-10-11 Masimo Corporation Signal processing apparatus
US6650917B2 (en) 1991-03-07 2003-11-18 Masimo Corporation Signal processing apparatus
US8046041B2 (en) 1991-03-07 2011-10-25 Masimo Corporation Signal processing apparatus
US7215984B2 (en) 1991-03-07 2007-05-08 Masimo Corporation Signal processing apparatus
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US5685299A (en) 1991-03-07 1997-11-11 Masimo Corporation Signal processing apparatus
US8046042B2 (en) 1991-03-07 2011-10-25 Masimo Corporation Signal processing apparatus
USRE38476E1 (en) 1991-03-07 2004-03-30 Masimo Corporation Signal processing apparatus
USRE38492E1 (en) 1991-03-07 2004-04-06 Masimo Corporation Signal processing apparatus and method
US6036642A (en) 1991-03-07 2000-03-14 Masimo Corporation Signal processing apparatus and method
US6081735A (en) 1991-03-07 2000-06-27 Masimo Corporation Signal processing apparatus
US6745060B2 (en) 1991-03-07 2004-06-01 Masimo Corporation Signal processing apparatus
US6501975B2 (en) 1991-03-07 2002-12-31 Masimo Corporation Signal processing apparatus and method
US8128572B2 (en) 1991-03-07 2012-03-06 Masimo Corporation Signal processing apparatus
US6236872B1 (en) 1991-03-07 2001-05-22 Masimo Corporation Signal processing apparatus
US5769785A (en) 1991-03-07 1998-06-23 Masimo Corporation Signal processing apparatus and method
US7962190B1 (en) 1991-03-07 2011-06-14 Masimo Corporation Signal processing apparatus
US7383070B2 (en) 1991-03-07 2008-06-03 Masimo Corporation Signal processing apparatus
US7215986B2 (en) 1991-03-07 2007-05-08 Masimo Corporation Signal processing apparatus
US6826419B2 (en) 1991-03-07 2004-11-30 Masimo Corporation Signal processing apparatus and method
US7530955B2 (en) 1991-03-07 2009-05-12 Masimo Corporation Signal processing apparatus
US7454240B2 (en) 1991-03-07 2008-11-18 Masimo Corporation Signal processing apparatus
US6157850A (en) 1991-03-07 2000-12-05 Masimo Corporation Signal processing apparatus
US6206830B1 (en) 1991-03-07 2001-03-27 Masimo Corporation Signal processing apparatus and method
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US7254433B2 (en) 1991-03-07 2007-08-07 Masimo Corporation Signal processing apparatus
US7509154B2 (en) 1991-03-07 2009-03-24 Masimo Corporation Signal processing apparatus
US7496393B2 (en) 1991-03-07 2009-02-24 Masimo Corporation Signal processing apparatus
US6263222B1 (en) 1991-03-07 2001-07-17 Masimo Corporation Signal processing apparatus
US5482036A (en) 1991-03-07 1996-01-09 Masimo Corporation Signal processing apparatus and method
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
US7132641B2 (en) 1991-03-21 2006-11-07 Masimo Corporation Shielded optical probe having an electrical connector
US7483730B2 (en) 1991-03-21 2009-01-27 Masimo Corporation Low-noise optical probes for reducing ambient noise
US8229533B2 (en) 1991-03-21 2012-07-24 Masimo Corporation Low-noise optical probes for reducing ambient noise
US6813511B2 (en) 1991-03-21 2004-11-02 Masimo Corporation Low-noise optical probes for reducing ambient noise
US6792300B1 (en) 1991-03-21 2004-09-14 Masimo Corporation Low-noise optical probes for reducing light piping
US5782757A (en) 1991-03-21 1998-07-21 Masimo Corporation Low-noise optical probes
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US6088607A (en) 1991-03-21 2000-07-11 Masimo Corporation Low noise optical probe
US6256523B1 (en) 1991-03-21 2001-07-03 Masimo Corporation Low-noise optical probes
US5377676A (en) 1991-04-03 1995-01-03 Cedars-Sinai Medical Center Method for determining the biodistribution of substances using fluorescence spectroscopy
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5678544A (en) 1991-08-28 1997-10-21 Nellcor Puritan Bennett Incorporated Disposable pulse oximeter sensor
US5830129A (en) 1991-09-26 1998-11-03 Baer; Hans Process and apparatus for measuring blood flow through an organ or other biological tissue
US5387122A (en) 1991-10-24 1995-02-07 Ohmeda Inc. Pulse oximeter probe connector
US5249576A (en) 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5479934A (en) 1991-11-08 1996-01-02 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
US5308919A (en) 1992-04-27 1994-05-03 Minnich Thomas E Method and apparatus for monitoring the arteriovenous oxygen difference from the ocular fundus
US5273041A (en) 1992-04-30 1993-12-28 General Electric Company Fiber optic photoplethysmograph for a magnetic resonance imaging system
US5267562A (en) 1992-05-28 1993-12-07 Nihon Kohden Corporation Pulse oximeter with probe difference compensation
US5365937A (en) 1992-09-09 1994-11-22 Mcg International, Inc. Disposable sensing device with contaneous conformance
US5460182A (en) 1992-09-14 1995-10-24 Sextant Medical Corporation Tissue penetrating apparatus and methods
US5422632A (en) 1992-10-28 1995-06-06 Intellitouch 2000, Inc. Electronic security system
US5579373A (en) 1992-11-05 1996-11-26 Samsung Electronics Co., Ltd. Transmission power control method in cellular radiotelephone system
US5602924A (en) 1992-12-07 1997-02-11 Theratechnologies Inc. Electronic stethescope
US5287853A (en) 1992-12-11 1994-02-22 Hewlett-Packard Company Adapter cable for connecting a pulsoximetry sensor unit to a medical measuring device
US5397247A (en) 1993-01-25 1995-03-14 Yazaki Corporation Connector construction
US5520177A (en) 1993-03-26 1996-05-28 Nihon Kohden Corporation Oximeter probe
US5341805A (en) 1993-04-06 1994-08-30 Cedars-Sinai Medical Center Glucose fluorescence monitor and method
US5339810A (en) 1993-05-03 1994-08-23 Marquette Electronics, Inc. Pulse oximetry sensor
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
USD353195S (en) 1993-05-28 1994-12-06 Electronic stethoscope housing
USD353196S (en) 1993-05-28 1994-12-06 Stethoscope head
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5456252A (en) 1993-09-30 1995-10-10 Cedars-Sinai Medical Center Induced fluorescence spectroscopy blood perfusion and pH monitor and method
US7328053B1 (en) 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus
US7376453B1 (en) 1993-10-06 2008-05-20 Masimo Corporation Signal processing apparatus
US5515169A (en) 1993-10-13 1996-05-07 Labintelligence Inc. Spectral wavelength discrimination system and method for using
US5507286A (en) 1993-12-23 1996-04-16 Medical Taping Systems, Inc. Method and apparatus for improving the durability of a sensor
US5910108A (en) 1993-12-23 1999-06-08 Nellcor Puritan Bennett Incorporated Method and apparatus for improving the durability of a sensor
US5673693A (en) 1993-12-23 1997-10-07 Medical Taping Systems, Inc. Method and apparatus for improving the durability of a sensor
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
USD359546S (en) 1994-01-27 1995-06-20 The Ratechnologies Inc. Housing for a dental unit disinfecting device
US5437275A (en) 1994-02-02 1995-08-01 Biochem International Inc. Pulse oximetry sensor
US5570002A (en) 1994-02-18 1996-10-29 Ergo Mechanical Systems, Incorporated Universal power-supply connection system for multiple electronic devices
US5590649A (en) 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5833618A (en) 1994-04-15 1998-11-10 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US6371921B1 (en) 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US6852083B2 (en) 1994-04-15 2005-02-08 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US6045509A (en) 1994-04-15 2000-04-04 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5810734A (en) 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5830131A (en) 1994-04-15 1998-11-03 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system
USD362063S (en) 1994-04-21 1995-09-05 Stethoscope headset
USD363120S (en) 1994-04-21 1995-10-10 Stethoscope ear tip
USD361840S (en) 1994-04-21 1995-08-29 Stethoscope head
US5561275A (en) 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
US8126528B2 (en) 1994-10-07 2012-02-28 Masimo Corporation Signal processing apparatus
US5879373A (en) 1994-12-24 1999-03-09 Boehringer Mannheim Gmbh System and method for the determination of tissue properties
US5562002A (en) 1995-02-03 1996-10-08 Sensidyne Inc. Positive displacement piston flow meter with damping assembly
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
EP0745348B1 (en) 1995-06-02 2001-07-18 Datex-Ohmeda, Inc. Instrumented laser diode probe connector
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5823950A (en) 1995-06-07 1998-10-20 Masimo Corporation Manual and automatic probe calibration
US20040147824A1 (en) 1995-06-07 2004-07-29 Diab Mohamed Kheir Manual and automatic probe calibration
US6151516A (en) 1995-06-07 2000-11-21 Masimo Laboratories Active pulse blood constituent monitoring
US8145287B2 (en) 1995-06-07 2012-03-27 Masimo Corporation Manual and automatic probe calibration
US5860919A (en) 1995-06-07 1999-01-19 Masimo Corporation Active pulse blood constituent monitoring method
US7526328B2 (en) 1995-06-07 2009-04-28 Masimo Corporation Manual and automatic probe calibration
US6110522A (en) 1995-06-07 2000-08-29 Masimo Laboratories Blood glucose monitoring system
US6011986A (en) 1995-06-07 2000-01-04 Masimo Corporation Manual and automatic probe calibration
US6278522B1 (en) 1995-06-07 2001-08-21 Masimo Laboratories Optical filter for spectroscopic measurement and method of producing the optical filter
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US7496391B2 (en) 1995-06-07 2009-02-24 Masimo Corporation Manual and automatic probe calibration
US7239905B2 (en) 1995-06-07 2007-07-03 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
USRE42753E1 (en) 1995-06-07 2011-09-27 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US5940182A (en) 1995-06-07 1999-08-17 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US6397091B2 (en) 1995-06-07 2002-05-28 Masimo Corporation Manual and automatic probe calibration
US6678543B2 (en) 1995-06-07 2004-01-13 Masimo Corporation Optical probe and positioning wrap
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6280213B1 (en) 1995-10-16 2001-08-28 Masimo Corporation Patient cable connector
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
USD393830S (en) 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
US5934925A (en) 1995-10-16 1999-08-10 Masimo Corporation Patient cable connector
US5904654A (en) 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
US6381489B1 (en) 1995-10-31 2002-04-30 Kyoto Daiichi Kagaku Co., Ltd. Measuring condition setting jig, measuring condition setting method and biological information measuring instrument
US5660567A (en) 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US6232609B1 (en) 1995-12-01 2001-05-15 Cedars-Sinai Medical Center Glucose monitoring apparatus and method using laser-induced emission spectroscopy
US5786592A (en) 1996-01-30 1998-07-28 Hok Instrument Ab Pulse oximetry sensor with fiberoptic signal transmission
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
US5919133A (en) 1996-04-26 1999-07-06 Ohmeda Inc. Conformal wrap for pulse oximeter sensor
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US7951086B2 (en) 1996-06-26 2011-05-31 Masimo Corporation Rapid non-invasive blood pressure measuring device
US6632181B2 (en) 1996-06-26 2003-10-14 Masimo Corporation Rapid non-invasive blood pressure measuring device
US7618375B2 (en) 1996-06-26 2009-11-17 Masimo Corporation Rapid non-invasive blood pressure measuring device
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US7041060B2 (en) 1996-06-26 2006-05-09 Masimo Corporation Rapid non-invasive blood pressure measuring device
US6939305B2 (en) 1996-06-26 2005-09-06 Masimo Corporation Rapid non-invasive blood pressure measuring device
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US5817010A (en) 1997-03-25 1998-10-06 Ohmeda Inc. Disposable sensor holder
US8150487B2 (en) 1997-04-14 2012-04-03 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US7003339B2 (en) 1997-04-14 2006-02-21 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US7471971B2 (en) 1997-04-14 2008-12-30 Masimo Corporation Signal processing apparatus and method
US7489958B2 (en) 1997-04-14 2009-02-10 Masimo Corporation Signal processing apparatus and method
US6067462A (en) 1997-04-14 2000-05-23 Masimo Corporation Signal processing apparatus and method
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US7499741B2 (en) 1997-04-14 2009-03-03 Masimo Corporation Signal processing apparatus and method
US8190227B2 (en) 1997-04-14 2012-05-29 Masimo Corporation Signal processing apparatus and method
US8185180B2 (en) 1997-04-14 2012-05-22 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6643530B2 (en) 1997-04-14 2003-11-04 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6699194B1 (en) 1997-04-14 2004-03-02 Masimo Corporation Signal processing apparatus and method
US8180420B2 (en) 1997-04-14 2012-05-15 Masimo Corporation Signal processing apparatus and method
US7221971B2 (en) 1997-04-14 2007-05-22 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
USRE39672E1 (en) 1997-07-07 2007-06-05 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
US6697657B1 (en) 1997-07-07 2004-02-24 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy (LIFAS)
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6993371B2 (en) 1998-02-11 2006-01-31 Masimo Corporation Pulse oximetry sensor adaptor
US6597933B2 (en) 1998-02-11 2003-07-22 Masimo Corporation Pulse oximetry sensor adapter
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US7844313B2 (en) 1998-02-11 2010-11-30 Masimo Corporation Pulse oximetry sensor adapter
US6349228B1 (en) 1998-02-11 2002-02-19 Masimo Corporation Pulse oximetry sensor adapter
US6241683B1 (en) 1998-02-20 2001-06-05 INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) Phonospirometry for non-invasive monitoring of respiration
US6014576A (en) 1998-02-27 2000-01-11 Datex-Ohmeda, Inc. Segmented photoplethysmographic sensor with universal probe-end
US6830711B2 (en) 1998-03-10 2004-12-14 Masimo Corporation Mold tool for an optoelectronic element
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US7332784B2 (en) 1998-03-10 2008-02-19 Masimo Corporation Method of providing an optoelectronic element with a non-protruding lens
US7067893B2 (en) 1998-03-10 2006-06-27 Masimo Corporation Optoelectronic element with a non-protruding lens
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US5991648A (en) 1998-03-30 1999-11-23 Palco Labs, Inc. Adjustable pulse oximetry sensor for pediatric use
US7899518B2 (en) 1998-04-06 2011-03-01 Masimo Laboratories, Inc. Non-invasive tissue glucose level monitoring
US6728560B2 (en) 1998-04-06 2004-04-27 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US6505059B1 (en) 1998-04-06 2003-01-07 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US6714804B2 (en) 1998-06-03 2004-03-30 Masimo Corporation Stereo pulse oximeter
US8255028B2 (en) 1998-06-03 2012-08-28 Masimo Corporation, Inc. Physiological monitor
US7894868B2 (en) 1998-06-03 2011-02-22 Masimo Corporation Physiological monitor
US6334065B1 (en) 1998-06-03 2001-12-25 Masimo Corporation Stereo pulse oximeter
US6898452B2 (en) 1998-06-03 2005-05-24 Masimo Corporation Stereo pulse oximeter
US7891355B2 (en) 1998-06-03 2011-02-22 Masimo Corporation Physiological monitor
US7761128B2 (en) 1998-06-03 2010-07-20 Masimo Corporation Physiological monitor
US7899507B2 (en) 1998-06-03 2011-03-01 Masimo Corporation Physiological monitor
US5999834A (en) 1998-06-18 1999-12-07 Ntc Technology, Inc. Disposable adhesive wrap for use with reusable pulse oximetry sensor and method of making
US6128521A (en) 1998-07-10 2000-10-03 Physiometrix, Inc. Self adjusting headgear appliance using reservoir electrodes
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6129675A (en) 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
US6325761B1 (en) 1998-09-11 2001-12-04 Gregory D. Jay Device and method for measuring pulsus paradoxus
EP1683478B1 (en) 1998-10-15 2007-11-28 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
EP1121049B1 (en) 1998-10-15 2006-05-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6343224B1 (en) 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6519487B1 (en) 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
USRE41317E1 (en) 1998-10-15 2010-05-04 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
CA2346639C (en) 1998-10-15 2008-08-12 Brent Parker Reusable pulse oximeter probe and disposable bandage apparatus
US6684091B2 (en) 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US20010029325A1 (en) 1998-10-15 2001-10-11 Brent Parker Reusable pulse oximeter probe and disposable bandage method
US6735459B2 (en) 1998-10-15 2004-05-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
USRE43860E1 (en) 1998-10-15 2012-12-11 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US20030009092A1 (en) 1998-10-15 2003-01-09 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
JP4614537B2 (en) 1998-10-15 2011-01-19 マシモ・コーポレイション Reusable pulse oximeter probe and disposable band device
USRE43169E1 (en) 1998-10-15 2012-02-07 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6061584A (en) 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6321000B1 (en) 1998-12-01 2001-11-20 Nortel Networks Limited Optical equalizer
US6816741B2 (en) 1998-12-30 2004-11-09 Masimo Corporation Plethysmograph pulse recognition processor
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US7988637B2 (en) 1998-12-30 2011-08-02 Masimo Corporation Plethysmograph pulse recognition processor
US7044918B2 (en) 1998-12-30 2006-05-16 Masimo Corporation Plethysmograph pulse recognition processor
US6996427B2 (en) 1999-01-07 2006-02-07 Masimo Corporation Pulse oximetry data confidence indicator
US8046040B2 (en) 1999-01-07 2011-10-25 Masimo Corporation Pulse oximetry data confidence indicator
US7024233B2 (en) 1999-01-07 2006-04-04 Masimo Corporation Pulse oximetry data confidence indicator
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US7991446B2 (en) 1999-01-25 2011-08-02 Masimo Corporation Systems and methods for acquiring calibration data usable in a pulse oximeter
US6584336B1 (en) 1999-01-25 2003-06-24 Masimo Corporation Universal/upgrading pulse oximeter
US7428432B2 (en) 1999-01-25 2008-09-23 Masimo Corporation Systems and methods for acquiring calibration data usable in a pulse oximeter
US7530949B2 (en) 1999-01-25 2009-05-12 Masimo Corporation Dual-mode pulse oximeter
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US7471969B2 (en) 1999-03-25 2008-12-30 Masimo Corporation Pulse oximeter probe-off detector
US6654624B2 (en) 1999-03-25 2003-11-25 Masimo Corporation Pulse oximeter probe-off detector
US6721582B2 (en) 1999-04-06 2004-04-13 Argose, Inc. Non-invasive tissue glucose level monitoring
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US8175672B2 (en) 1999-04-12 2012-05-08 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US20080009691A1 (en) 1999-04-12 2008-01-10 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6839583B1 (en) 1999-06-03 2005-01-04 Hutchinson Technology Corporation Disposable tissue probe tip
US6771994B2 (en) 1999-06-18 2004-08-03 Masimo Corporation Pulse oximeter probe-off detection system
US6526300B1 (en) 1999-06-18 2003-02-25 Masimo Corporation Pulse oximeter probe-off detection system
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
US6388240B2 (en) 1999-08-26 2002-05-14 Masimo Corporation Shielded optical probe and method having a longevity indication
US6861639B2 (en) 1999-08-26 2005-03-01 Masimo Corporation Systems and methods for indicating an amount of use of a sensor
US7910875B2 (en) 1999-08-26 2011-03-22 Masimo Corporation Systems and methods for indicating an amount of use of a sensor
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6979812B2 (en) 1999-08-26 2005-12-27 Masimo Corporation Systems and methods for indicating an amount of use of a sensor
US7186966B2 (en) 1999-08-26 2007-03-06 Masimo Corporation Amount of use tracking device and method for medical product
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US6943348B1 (en) 1999-10-19 2005-09-13 Masimo Corporation System for detecting injection holding material
US6430437B1 (en) 1999-10-27 2002-08-06 Physiometrix, Inc. Module for acquiring electroencephalograph signals from a patient
US6317627B1 (en) 1999-11-02 2001-11-13 Physiometrix, Inc. Anesthesia monitoring system based on electroencephalographic signals
US6639668B1 (en) 1999-11-03 2003-10-28 Argose, Inc. Asynchronous fluorescence scan
US6542764B1 (en) 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US7272425B2 (en) 1999-12-09 2007-09-18 Masimo Corporation Pulse oximetry sensor including stored sensor data
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US8000761B2 (en) 1999-12-09 2011-08-16 Masimo Corporation Resposable pulse oximetry sensor
US6725075B2 (en) 1999-12-09 2004-04-20 Masimo Corporation Resposable pulse oximetry sensor
US7734320B2 (en) 1999-12-09 2010-06-08 Masimo Corporation Sensor isolation
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US7039449B2 (en) 1999-12-09 2006-05-02 Masimo Corporation Resposable pulse oximetry sensor
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6597932B2 (en) 2000-02-18 2003-07-22 Argose, Inc. Generation of spatially-averaged excitation-emission map in heterogeneous tissue
US7289835B2 (en) 2000-02-18 2007-10-30 Masimo Laboratories, Inc. Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
US6580948B2 (en) 2000-04-25 2003-06-17 Medtronic, Inc. Interface devices for instruments in communication with implantable medical devices
US7873497B2 (en) 2000-06-05 2011-01-18 Masimo Corporation Variable indication estimator
US7499835B2 (en) 2000-06-05 2009-03-03 Masimo Corporation Variable indication estimator
US6999904B2 (en) 2000-06-05 2006-02-14 Masimo Corporation Variable indication estimator
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US8260577B2 (en) 2000-06-05 2012-09-04 Masimo Corporation Variable indication estimator
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US7801581B2 (en) 2000-08-18 2010-09-21 Masimo Laboratories, Inc. Optical spectroscopy pathlength measurement system
US7149561B2 (en) 2000-08-18 2006-12-12 Masimo Corporation Optical spectroscopy pathlength measurement system
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6600940B1 (en) 2000-08-31 2003-07-29 Mallinckrodt Inc. Oximeter sensor with digital memory
US6368283B1 (en) 2000-09-08 2002-04-09 Institut De Recherches Cliniques De Montreal Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
US6571113B1 (en) 2000-09-21 2003-05-27 Mallinckrodt, Inc. Oximeter sensor adapter with coding element
US6519484B1 (en) 2000-11-01 2003-02-11 Ge Medical Systems Information Technologies, Inc. Pulse oximetry sensor
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
JP3981271B2 (en) 2001-01-11 2007-09-26 マシモ・コーポレイション Optical fiber cable with a modular housing
CA2366493C (en) 2001-01-11 2012-01-03 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
EP1222894B1 (en) 2001-01-11 2011-01-26 Masimo Corporation Reusable pulse oximeter probe and disposable bandage
US6985764B2 (en) 2001-05-03 2006-01-10 Masimo Corporation Flex circuit shielded optical sensor
US7340287B2 (en) 2001-05-03 2008-03-04 Masimo Corporation Flex circuit shielded optical sensor
US7377899B2 (en) 2001-06-29 2008-05-27 Masimo Corporation Sine saturation transform
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US7904132B2 (en) 2001-06-29 2011-03-08 Masimo Corporation Sine saturation transform
US7373194B2 (en) 2001-06-29 2008-05-13 Masimo Corporation Signal component processor
US7467002B2 (en) 2001-06-29 2008-12-16 Masimo Corporation Sine saturation transform
US7295866B2 (en) 2001-07-02 2007-11-13 Masimo Corporation Low power pulse oximeter
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US6671532B1 (en) 2001-09-17 2003-12-30 Respironics Novametrix, Inc. Pulse oximetry sensor and dispensing method
US6941162B2 (en) 2001-09-17 2005-09-06 Respironics Novametrix, Inc. Pulse oximetry sensor and dispensing method
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US7030749B2 (en) 2002-01-24 2006-04-18 Masimo Corporation Parallel measurement alarm processor
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US7190261B2 (en) 2002-01-24 2007-03-13 Masimo Corporation Arrhythmia alarm processor
US8228181B2 (en) 2002-01-24 2012-07-24 Masimo Corporation Physiological trend monitor
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US7880606B2 (en) 2002-01-24 2011-02-01 Masimo Corporation Physiological trend monitor
US7015451B2 (en) 2002-01-25 2006-03-21 Masimo Corporation Power supply rail controller
US6961598B2 (en) 2002-02-22 2005-11-01 Masimo Corporation Pulse and active pulse spectraphotometry
US7509494B2 (en) 2002-03-01 2009-03-24 Masimo Corporation Interface cable
US7844314B2 (en) 2002-03-25 2010-11-30 Masimo Corporation Physiological measurement communications adapter
US7844315B2 (en) 2002-03-25 2010-11-30 Masimo Corporation Physiological measurement communications adapter
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7274955B2 (en) 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
US7027849B2 (en) 2002-11-22 2006-04-11 Masimo Laboratories, Inc. Blood parameter measurement system
US7440787B2 (en) 2002-12-04 2008-10-21 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US20070244378A1 (en) 2003-01-24 2007-10-18 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US20050245797A1 (en) 2003-01-24 2005-11-03 Ammar Al-Ali Optical sensor including disposable and reusable elements
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7225007B2 (en) 2003-01-24 2007-05-29 Masimo Corporation Optical sensor including disposable and reusable elements
US7865222B2 (en) 2003-07-08 2011-01-04 Masimo Laboratories Method and apparatus for reducing coupling between signals in a measurement system
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7356365B2 (en) 2003-07-09 2008-04-08 Glucolight Corporation Method and apparatus for tissue oximetry
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
US8029765B2 (en) 2003-12-24 2011-10-04 Masimo Laboratories, Inc. SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors
US8008088B2 (en) 2003-12-24 2011-08-30 Masimo Laboratories, Inc. SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7510849B2 (en) 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
US8337403B2 (en) 2004-03-04 2012-12-25 Masimo Corporation Patient monitor having context-based sensitivity adjustments
US7415297B2 (en) 2004-03-08 2008-08-19 Masimo Corporation Physiological parameter system
US7292883B2 (en) 2004-03-31 2007-11-06 Masimo Corporation Physiological assessment system
US7909772B2 (en) 2004-04-16 2011-03-22 Masimo Corporation Non-invasive measurement of second heart sound components
US20080262324A1 (en) 2004-05-11 2008-10-23 Koninklijke Philips Electronics, N.V. Measurement Head For Non-Invasive Blood Analysis
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
US7706853B2 (en) 2005-02-10 2010-04-27 Terumo Cardiovascular Systems Corporation Near infrared spectroscopy device with reusable portion
USD554263S1 (en) 2005-02-18 2007-10-30 Masimo Corporation Portable patient monitor
USD566282S1 (en) 2005-02-18 2008-04-08 Masimo Corporation Stand for a portable patient monitor
US7563110B2 (en) 2005-03-01 2009-07-21 Masimo Laboratories, Inc. Multiple wavelength sensor interconnect
US7764982B2 (en) 2005-03-01 2010-07-27 Masimo Laboratories, Inc. Multiple wavelength sensor emitters
US7761127B2 (en) 2005-03-01 2010-07-20 Masimo Laboratories, Inc. Multiple wavelength sensor substrate
US7596398B2 (en) 2005-03-01 2009-09-29 Masimo Laboratories, Inc. Multiple wavelength sensor attachment
US7647083B2 (en) 2005-03-01 2010-01-12 Masimo Laboratories, Inc. Multiple wavelength sensor equalization
US8224411B2 (en) 2005-03-01 2012-07-17 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7377794B2 (en) 2005-03-01 2008-05-27 Masimo Corporation Multiple wavelength sensor interconnect
US7729733B2 (en) 2005-03-01 2010-06-01 Masimo Laboratories, Inc. Configurable physiological measurement system
US8050728B2 (en) 2005-03-01 2011-11-01 Masimo Laboratories, Inc. Multiple wavelength sensor drivers
US8190223B2 (en) 2005-03-01 2012-05-29 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7957780B2 (en) 2005-03-01 2011-06-07 Masimo Laboratories, Inc. Physiological parameter confidence measure
US8130105B2 (en) 2005-03-01 2012-03-06 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7937129B2 (en) 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
US20070123763A1 (en) 2005-11-29 2007-05-31 Ammar Al-Ali Optical sensor including disposable and reusable elements
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US20070219437A1 (en) 2006-03-17 2007-09-20 Glucolight Corporation System and method for creating a stable optical interface
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US8315683B2 (en) 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US7919713B2 (en) 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
USD609193S1 (en) 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
USD587657S1 (en) 2007-10-12 2009-03-03 Masimo Corporation Connector assembly
US8274360B2 (en) 2007-10-12 2012-09-25 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
US8118620B2 (en) 2007-10-12 2012-02-21 Masimo Corporation Connector assembly with reduced unshielded area
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
USD606659S1 (en) 2008-08-25 2009-12-22 Masimo Laboratories, Inc. Patient monitor
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
JP5275746B2 (en) 2008-10-22 2013-08-28 株式会社日立製作所 Piezoelectric element

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Co-pending U.S. Appl. No. 12/917,433, filed Nov. 1, 2010, and pending claims.
Copending U.S. Appl. No. 13/465,952, filed May 7, 2012, and pending claims.
Copending U.S. Appl. No. 13/710,287, filed Dec. 10, 2012, and pending claims.
de Kock, J.P., et al., "The Effect of Varying LED Intensity on Pulse Oximeter Accuracy," Journal of Medical Engineering & Technology, vol. 15, No. 3.
Office Action and translation thereto, received in corresponding Japanese Patent Application No. 2000-575417, mailed Feb. 23, 2010, 6 pages.
PCT International Search Report and Written Opinion, Application No. PCT/US2006/046176, Application Date Nov. 29, 2006 in 10 pages.
Reynolds, K.J., et al., "Temperature Dependence of LED and Its Theoretical Effect on Pulse Oximetry," British Journal & Anesthesia, 1991, vol. 67, pp. 638-643.
Schmitt, Joseph M., "Simple Photon Diffusion Analysis of the Effects of Multiple Scattering on Pulse Oximetry," IEEE Transactions on Biomedical Engineering, vol. 38, No. 12, Dec. 1991, pp. 1194-1203.

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9351673B2 (en) 1997-04-14 2016-05-31 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US9492110B2 (en) 1998-06-03 2016-11-15 Masimo Corporation Physiological monitor
US9675286B2 (en) 1998-12-30 2017-06-13 Masimo Corporation Plethysmograph pulse recognition processor
US9730640B2 (en) 1999-03-25 2017-08-15 Masimo Corporation Pulse oximeter probe-off detector
US9386953B2 (en) 1999-12-09 2016-07-12 Masimo Corporation Method of sterilizing a reusable portion of a noninvasive optical probe
US9814418B2 (en) 2001-06-29 2017-11-14 Masimo Corporation Sine saturation transform
US9848806B2 (en) 2001-07-02 2017-12-26 Masimo Corporation Low power pulse oximeter
US9113832B2 (en) 2002-03-25 2015-08-25 Masimo Corporation Wrist-mounted physiological measurement device
US9788735B2 (en) 2002-03-25 2017-10-17 Masimo Corporation Body worn mobile medical patient monitor
US9795300B2 (en) 2002-03-25 2017-10-24 Masimo Corporation Wearable portable patient monitor
US9872623B2 (en) 2002-03-25 2018-01-23 Masimo Corporation Arm mountable portable patient monitor
US9113831B2 (en) 2002-03-25 2015-08-25 Masimo Corporation Physiological measurement communications adapter
US8948835B2 (en) 2002-12-04 2015-02-03 Cercacor Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US9622693B2 (en) 2002-12-04 2017-04-18 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
US9693719B2 (en) 2003-01-24 2017-07-04 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US9801588B2 (en) 2003-07-08 2017-10-31 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
US9161713B2 (en) 2004-03-04 2015-10-20 Masimo Corporation Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation
US9668679B2 (en) 2004-08-11 2017-06-06 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
US9078560B2 (en) 2004-08-11 2015-07-14 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based physiological monitor
US9351675B2 (en) 2005-03-01 2016-05-31 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9750443B2 (en) 2005-03-01 2017-09-05 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US9241662B2 (en) 2005-03-01 2016-01-26 Cercacor Laboratories, Inc. Configurable physiological measurement system
US9131882B2 (en) 2005-03-01 2015-09-15 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9549696B2 (en) 2005-03-01 2017-01-24 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US20060279284A1 (en) * 2005-05-06 2006-12-14 Vaughan J T Wirelessly coupled magnetic resonance coil
US9568572B2 (en) * 2005-05-06 2017-02-14 Regents Of The University Of Minnesota Bandage or garment combined with a wirelessly coupled magnetic resonance coil
US9687160B2 (en) 2006-09-20 2017-06-27 Masimo Corporation Congenital heart disease monitor
US9397448B2 (en) 2006-09-20 2016-07-19 Masimo Corporation Shielded connector assembly
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US9560998B2 (en) 2006-10-12 2017-02-07 Masimo Corporation System and method for monitoring the life of a physiological sensor
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US9861304B2 (en) 2006-11-29 2018-01-09 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US9138182B2 (en) 2006-11-29 2015-09-22 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US9211072B2 (en) 2007-06-28 2015-12-15 Masimo Corporation Disposable active pulse sensor
US9142117B2 (en) 2007-10-12 2015-09-22 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US9060721B2 (en) 2008-03-04 2015-06-23 Glt Acquisition Corp. Flowometry in optical coherence tomography for analyte level estimation
US9833180B2 (en) 2008-03-04 2017-12-05 Masimo Corporation Multispot monitoring for use in optical coherence tomography
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US9277880B2 (en) 2008-07-03 2016-03-08 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US9717425B2 (en) 2008-07-03 2017-08-01 Masimo Corporation Noise shielding for a noninvaise device
US9591975B2 (en) 2008-07-03 2017-03-14 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
US9153121B2 (en) 2008-07-29 2015-10-06 Masimo Corporation Alarm suspend system
US8911377B2 (en) 2008-09-15 2014-12-16 Masimo Corporation Patient monitor including multi-parameter graphical display
US9119595B2 (en) 2008-10-13 2015-09-01 Masimo Corporation Reflection-detector sensor position indicator
US9795358B2 (en) 2008-12-30 2017-10-24 Masimo Corporation Acoustic sensor assembly
US9131917B2 (en) 2008-12-30 2015-09-15 Masimo Corporation Acoustic sensor assembly
US9028429B2 (en) 2008-12-30 2015-05-12 Masimo Corporation Acoustic sensor assembly
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US9037207B2 (en) 2009-05-20 2015-05-19 Masimo Corporation Hemoglobin display and patient treatment
US9370325B2 (en) 2009-05-20 2016-06-21 Masimo Corporation Hemoglobin display and patient treatment
US9795739B2 (en) 2009-05-20 2017-10-24 Masimo Corporation Hemoglobin display and patient treatment
US9295421B2 (en) 2009-07-29 2016-03-29 Masimo Corporation Non-invasive physiological sensor cover
US9668680B2 (en) 2009-09-03 2017-06-06 Masimo Corporation Emitter driver for noninvasive patient monitor
US9186102B2 (en) 2009-09-03 2015-11-17 Cercacor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US20110172498A1 (en) * 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US9833152B2 (en) 2009-09-17 2017-12-05 Masimo Corporation Optical-based physiological monitoring system
US9517024B2 (en) 2009-09-17 2016-12-13 Masimo Corporation Optical-based physiological monitoring system
US9510779B2 (en) 2009-09-17 2016-12-06 Masimo Corporation Analyte monitoring using one or more accelerometers
US8870792B2 (en) 2009-10-15 2014-10-28 Masimo Corporation Physiological acoustic monitoring system
US9538980B2 (en) 2009-10-15 2017-01-10 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US9867578B2 (en) 2009-10-15 2018-01-16 Masimo Corporation Physiological acoustic monitoring system
US9370335B2 (en) 2009-10-15 2016-06-21 Masimo Corporation Physiological acoustic monitoring system
US9877686B2 (en) 2009-10-15 2018-01-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US9386961B2 (en) 2009-10-15 2016-07-12 Masimo Corporation Physiological acoustic monitoring system
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US9724016B1 (en) 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9847002B2 (en) 2009-12-21 2017-12-19 Masimo Corporation Modular patient monitor
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US9724024B2 (en) 2010-03-01 2017-08-08 Masimo Corporation Adaptive alarm system
US9775570B2 (en) 2010-03-01 2017-10-03 Masimo Corporation Adaptive alarm system
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US9876320B2 (en) 2010-05-03 2018-01-23 Masimo Corporation Sensor adapter cable
US9795310B2 (en) 2010-05-06 2017-10-24 Masimo Corporation Patient monitor for determining microcirculation state
US9782110B2 (en) 2010-06-02 2017-10-10 Masimo Corporation Opticoustic sensor
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
US9538949B2 (en) 2010-09-28 2017-01-10 Masimo Corporation Depth of consciousness monitor including oximeter
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US9693737B2 (en) 2010-10-13 2017-07-04 Masimo Corporation Physiological measurement logic engine
US9226696B2 (en) 2010-10-20 2016-01-05 Masimo Corporation Patient safety system with automatically adjusting bed
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US9801556B2 (en) 2011-02-25 2017-10-31 Masimo Corporation Patient monitor for monitoring microcirculation
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
USD788312S1 (en) 2012-02-09 2017-05-30 Masimo Corporation Wireless patient monitoring device
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US9775546B2 (en) 2012-04-17 2017-10-03 Masimo Corporation Hypersaturation index
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9839379B2 (en) 2013-10-07 2017-12-12 Masimo Corporation Regional oximetry pod
US9891079B2 (en) 2014-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor

Also Published As

Publication number Publication date Type
USRE43169E1 (en) 2012-02-07 grant
USRE41317E1 (en) 2010-05-04 grant
US6721585B1 (en) 2004-04-13 grant

Similar Documents

Publication Publication Date Title
US7341559B2 (en) Pulse oximetry ear sensor
US5080098A (en) Non-invasive sensor
US7164938B2 (en) Optical noninvasive vital sign monitor
US7190987B2 (en) Neonatal bootie wrap
EP0127947B1 (en) Sensor having cutaneous conformance
US5584078A (en) Detachable/disposable face shield for surgical mask
US8700112B2 (en) Secondary-emitter sensor position indicator
US6144867A (en) Self-piercing pulse oximeter sensor assembly
US20040019288A1 (en) Patient-worn medical monitoring device
US6725075B2 (en) Resposable pulse oximetry sensor
US8244325B2 (en) Noninvasive oximetry optical sensor including disposable and reusable elements
US6255951B1 (en) Electronic identification bracelet
US20050131440A1 (en) Lancet
US5991648A (en) Adjustable pulse oximetry sensor for pediatric use
US20070100219A1 (en) Single use pulse oximeter
US5913819A (en) Injection molded, heat-sealed housing and half-etched lead frame for oximeter sensor
US20070032715A1 (en) Compliant diaphragm medical sensor and technique for using the same
US5413102A (en) Medical sensor
US20070032711A1 (en) Medical sensor and technique for using the same
US20070100218A1 (en) Single use pulse oximeter
US6117086A (en) Pressure transducer apparatus with disposable dome
US20100234706A1 (en) Medical Monitoring Device With Flexible Circuitry
US5893712A (en) Gripping handle for diagnostic instrument
US20080076995A1 (en) Medical sensor for reducing signal artifacts and technique for using the same
US20070073125A1 (en) Medical sensor for reducing motion artifacts and technique for using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SENSIDYNE, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARKER, BRENT;REEL/FRAME:027690/0086

Effective date: 20040412

Owner name: MASIMO CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SENSIDYNE, INC.;REEL/FRAME:027690/0045

Effective date: 20051108

AS Assignment

Owner name: SENSIDYNE, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARKER, BRENT;REEL/FRAME:027986/0383

Effective date: 20040412

FPAY Fee payment

Year of fee payment: 12