USRE44768E1 - Rapamycin hydroxyesters - Google Patents
Rapamycin hydroxyesters Download PDFInfo
- Publication number
- USRE44768E1 USRE44768E1 US13/931,400 US201313931400A USRE44768E US RE44768 E1 USRE44768 E1 US RE44768E1 US 201313931400 A US201313931400 A US 201313931400A US RE44768 E USRE44768 E US RE44768E
- Authority
- US
- United States
- Prior art keywords
- carbon atoms
- alkyl
- hydrogen
- alkynyl
- alkenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 [1*]O[C@@H]1CC[C@@H](C[C@@H](C)[C@@H]2CC(=O)[C@H](C)/C=C(\C)[C@@H](O[2*])C(C)C(=O)[C@H](C)C[C@H](C)/C=C/C=C/C=C(\C)[C@@H](OC)C[C@@H]3CC[C@@H](C)[C@@](O)(O3)C(=O)C(=O)N3CCCC[C@H]3C(=O)O2)C[C@H]1OC Chemical compound [1*]O[C@@H]1CC[C@@H](C[C@@H](C)[C@@H]2CC(=O)[C@H](C)/C=C(\C)[C@@H](O[2*])C(C)C(=O)[C@H](C)C[C@H](C)/C=C/C=C/C=C(\C)[C@@H](OC)C[C@@H]3CC[C@@H](C)[C@@](O)(O3)C(=O)C(=O)N3CCCC[C@H]3C(=O)O2)C[C@H]1OC 0.000 description 12
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D498/18—Bridged systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- This invention relates to hydroxyesters of rapamycin and a method for using them for inducing immunosuppression, and in the treatment of transplantation rejection, graft vs. host disease, autoimmune diseases, diseases of inflammation, adult T-cell leukemia/lymphoma, solid tumors, fungal infections, and hyperproliferative vascular disorders.
- Rapamycin is a macrocyclic triene antibiotic produced by Streptomyces hygroscopicus, which was found to have antifungal activity, particularly against Candida albicans, both in vitro and in vivo [C. Vezina et al., J. Antibiot. 28, 721 (1975); S. N. Sehgal et al., J. Antibiot 28, 727 (1975); H. A. Baker et al., J. Antibiot. 31,539 (1978); U.S. Pat. Nos. 3,929,992; and 3,993,749].
- Rapamycin alone (U.S. Pat. No. 4,885,171) or in combination with picibanil (U.S. Pat. No. 4,401,653) has been shown to have antitumor activity.
- R. Martel et al [Can. J. Physiol. Pharmacol. 55, 48 (1977)] disclosed that rapamycin is effective in the experimental allergic encephalomyelitis model, a model for multiple sclerosis; in the adjuvant arthritis model, a model for rheumatoid arthritis; and effectively inhibited the formation of IgE-like antibodies.
- Rapamycin has also been shown to be useful in preventing or treating systemic lupus erythematosus [U.S. Pat. No. 5,078,999], pulmonary inflammation [U.S. Pat. No. 5,080,899], insulin dependent diabetes mellitus [Fifth Int. Conf. Inflamm. Res. Assoc. 121 (Abstract), (1990)], smooth muscle cell proliferation and intimal thickening following vascular injury [Morris, R. J. Heart Lung Transplant 11 (pt. 2): 197 (1992)], adult T-cell leukemia/lymphoma [European Patent Application 525,960 A1], and ocular inflammation [European Patent Application 532,862 A1].
- Mono- and diacylated derivatives of rapamycin (esterified at the 28 and 43 positions) have been shown to be useful as antifungal agents (U.S. Pat. No. 4,316,885) and used to make water soluble aminoacyl prodrugs of rapamycin (U.S. Pat. No. 4,650,803).
- the numbering convention for rapamycin has been changed; therefore according to Chemical Abstracts nomenclature, the esters described above would be at the 31- and 42- positions.
- This invention provides derivatives of rapamycin which are useful as immunosuppressive, antiinflammatory, antifungal, antiproliferative, and antitumor agents having the structure
- the pharmaceutically acceptable salts are those derived from such inorganic cations such as sodium, potassium, and the like; and organic bases such as: mono-, di-, and trialkyl amines of 1-6 carbon atoms, per alkyl group and mono-, di-, and trihydroxyalkyl amines of 1-6 carbon atoms per alkyl group, and the like.
- alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, and alkynyl of 2-7 carbon atoms include both straight chain as well as branched carbon chains.
- R 3 , R 4 , f, and R 10 can be the same or different.
- R 3 , R 4 , f, and R 10 can be the same or different.
- preferred compounds include those in which the alkyl group of X, if present, is methyl and the cycloalkyl group of X, if present, is cyclohexyl.
- R 10 is not hydrogen, alkyl, alkenyl, or alkynyl
- R 10 is a group that can serve as an alcohol protecting group.
- these groups are intermediates of free hydroxylated compounds, as well as being biologically active in their own right.
- R 10 covers tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, and tetrahydropyranyl groups.
- Other alcohol protecting groups are known by one skilled in the an and are also considered pan of this invention.
- Compounds of this invention having the ester group —CO(CR 3 R 4 ) b CR 5 R 6 ) d (CR 7 R 8 R 9 ) e at the 42- or 31,42-positions can be prepared by acylation of rapamycin using protected hydroxy and polyhydroxy acids, alkoxy or polyalkoxy carboxylic acids that have been activated, followed by removal of the alcohol protecting groups, if so desired.
- carboxylate activation are known in the art, but the preferred methods utilize carbodiimides, mixed anhydrides, or acid chlorides.
- an appropriately substituted carboxylic acid can be activated as a mixed anhydride, with an acylating group such as 2,4,6-trichlorobenzoyl chloride.
- rapamycin Treatment of rapamycin with the mixed anhydride under mildly basic condition provides the desired compounds.
- the acylation reaction can be accomplished with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and dimethylaminopyridine. Mixtures of 42- and 31,42-esters can be separated by chromatography.
- the 31-ester-42-hydroxy compounds of this invention can be prepared by protecting the 42-alcohol of rapamycin with a protecting group, such as with a tert-butyl dimethylsilyl group, followed by esterification of the 31-position by the procedures described above.
- a protecting group such as with a tert-butyl dimethylsilyl group
- the preparation of rapamycin 42-silyl ethers is described in U.S. Pat. No. B1 5,120,842, which is hereby incorporated by reference. Removal of the protecting group provides the 31-esterified compounds.
- deprotection can be accomplished under mildly acidic conditions, such as acetic acid/water/THF.
- the deprotection procedure is described in Example 15 of U.S. Pat. No. 5,118,678, which is hereby incorporated by reference.
- the 42-position can be esterified using a different acylating agent than was reacted with the 31-alcohol, to give compounds having different esters at the 31- and 42- positions.
- the 42-esterified compounds, prepared as described above can be reacted with a different acylating agent to provide compounds having different esters at the 31-and 42-positions.
- This invention also covers analogous hydroxy esters of other rapamycins such as, but not limited to, 29-demethoxyrapamycin, [U.S. Pat. No. 4,375,464, 32-demethoxyrapamycin under C.A. nomenclature]; rapamycin derivatives in which the double bonds in the 1-, 3-, and/or 5-positions have been reduced [U.S. Pat. No. 5,023,262]; 29-desmethylrapamycin [U.S. Pat. No. 5,093,339, 32-desmethylrapamycin under C.A. nomenclature]; 7,29-bisdesmethylrapamycin [U.S. Pat. No. 5,093,338, 7,32-desmethylrapamycin under C.A. nomenclature]; and 15-hydroxyrapamycin [U.S. Pat. No. 5,102,876].
- the disclosures in the above cited U.S. Patents are hereby incorporated by reference.
- Immunosuppressive activity for representative compounds of this invention was evaluated in an in vitro standard pharmacological test procedure to measure the inhibition of lymphocyte proliferation (LAF) and in two in vivo standard pharmacological test procedures.
- the pinch skin graft test procedure measures the immunosuppressive activity of the compound tested as well as the ability of the compound tested to inhibit or treat transplant rejection.
- the adjuvant arthritis standard pharmacological test procedure which measures the ability of the compound tested to inhibit immune mediated inflammation.
- the adjuvant arthritis test procedure is a standard pharmacological test procedure for rheumatoid arthritis. The procedures for these standard pharmacological test procedures are provided below.
- the comitogen-induced thymocyte proliferation procedure was used as an in vitro measure of the immunosuppressive effects of representative compounds. Briefly, cells from the thymus of normal BALB/c mice are cultured for 72 hours with PHA and IL-1 and pulsed with tritiated thymidine during the last six hours. Cells are cultured with and without various concentrations of rapamycin, cyclosporin A, or test compound. Cells are harvested and incorporated radio-activity is determined. Inhibition of lymphoproliferation is assessed as percent change in counts per minute from nondrug treated controls. For each compound evaluated, rapamycin was also evaluated for the purpose of comparison. An IC 50 was obtained for each test compound as well as for rapamycin.
- rapamycin When evaluated as a comparator for the representative compounds of this invention, rapamycin had an IC 50 ranging from 0.6-1.5 nM. The results obtained are provided as an IC 50 and as the percent inhibition of T-cell proliferation at 0.1 ⁇ M. The results obtained for the representative compounds of this invention were also expressed as a ratio compared with rapamycin. A positive ratio indicates immunosuppressive activity. A ratio of greater than 1 indicates that the test compound inhibited thymocyte proliferation to a greater extent than rapamycin. Calculation of the ratio is shown below.
- Representative compounds of this invention were also evaluated in an in vivo test procedure designed to determine the survival time of pinch skin graft from male BALB/c donors transplanted to male C 3 H(H-2K) recipients.
- the method is adapted from Billingham R. E. and Medawar P. B., J. Exp. Biol. 28:385-402, (1951). Briefly, as pinch skin graft from the donor was grafted on the dorsum of the recipient as a allograft, and an isograft was used as control in the same region.
- the recipients were treated with either varying concentrations of test compounds intraperitoneally or orally. Rapamycin was used as a test control. Untreated recipients serve as rejection control.
- the graft was monitored daily and observations were recorded until the graft became dry and formed a blackened scab. This was considered as the rejection day.
- the mean graft survival time (number of days ⁇ S.D.) of the drug treatment group was compared with the control group. The following table shows the results that were obtained. Results are expressed as the mean survival time in days. Untreated (control) pinch skin grafts are usually rejected within 6-7 days. Compounds were tested using a dose of 4 mg/kg.
- the adjuvant arthritis standard pharmacological test procedure measures the ability of test compounds to prevent immune mediated inflammation and inhibit or treat rheumatoid arthritis.
- a group of rats male inbread Wistar Lewis rats
- FCA Freud's Complete Adjuvant
- the rats are then orally dosed on a Monday, Wednesday, Friday schedule from day 0-14 for a total of doses.
- Both hind paws are measured on days 16, 23, and 30.
- the difference in paw volume (mL) from day 16 to day 0 is determined and a percent change from control is obtained.
- the left hind paw (uninjected paw) inflammation is caused by T-cell mediated inflammation and is recorded in the above table (% change from control).
- the right hind paw inflammation is caused by non-specific inflammation.
- Compounds were tested at a dose of 5 mg/kg. The results are expressed as the percent change in the uninjected paw at day 16 versus control; the more negative the percent change, the more potent the compound. Rapamycin provided between ⁇ 70% mid ⁇ 90% change versus control, indicating that rapamycin treated rats had between 70-90% less immune induced inflammation than control rats.
- results of these standard pharmacological test procedures demonstrate immunosuppressive activity both in vitro and in vivo for the compounds of this invention.
- the results obtained in the LAF test procedure indicates suppression of T-cell proliferation, thereby demonstrating the immunosuppressive activity of the compounds of this invention.
- Further demonstration of the utility of the compounds of this invention as immunosuppressive agents was shown by the results obtained in the skin graft and adjuvant arthritis standard pharmacological test procedures. Additionally, the results obtained in the skin graft test procedure further demonstrates the ability of the compounds of this invention to treat or inhibit transplantation rejection.
- results obtained in the adjuvant arthritis standard pharmacological test procedure further demonstrate the ability of the compounds of this invention to treat or inhibit rheumatoid arthritis.
- the compounds are useful in the treatment or inhibition of transplantation rejection such as kidney, heart, liver, lung, bone marrow, pancreas (islet cells), cornea, small bowel, and skin allografts, and heart valve xenografts; in the treatment or inhibition of autoimmune diseases such as lupus, rheumatoid arthritis, diabetes mellitus, myasthenia gravis, and multiple sclerosis; and diseases of inflammation such as psoriasis, dermatitis, eczema, seborrhea, inflammatory bowel disease, pulmonary inflammation (including asthma, chronic obstructive pulmonary disease, emphysema, acute respiratory distress syndrome, bronchitis, and the like), and eye uveitis.
- transplantation rejection such as kidney, heart, liver, lung, bone marrow, pancreas (islet cells), cornea, small bowel, and skin allografts, and heart valve xenografts
- autoimmune diseases such
- the compounds of this invention also are considered to have antitumor, antifungal activities, and antiproliferative activities.
- the compounds of this invention therefore also useful in treating solid tumors, adult T-cell leukemia/lymphoma, fungal infections, and hyperproliferative vascular diseases such as restenosis and atherosclerosis.
- restenosis it is preferred that the compounds of this invention are used to treat restenosis that occurs following an angioplasty procedure.
- the compounds of this invention can be administered prior to the procedure, during the procedure, subsequent to the procedure, or any combination of the above.
- the compounds of this invention can be administered to a mammal orally, parenterally, intranasally, intrabronchially, transdermally, topically, intravaginally, or rectally.
- the compounds of this invention when used as an immunosuppressive or antiinflammatory agent, they can be administered in conjunction with one or more other immunoregulatory agents.
- immunoregulatory agents include, but are not limited to azathioprine, corticosteroids, such as prednisone and methylprednisolone, cyclophosphamide, rapamycin, cyclosporin A, FK-506, OKT-3, and ATG.
- the compounds of this invention can be formulated neat or with a pharmaceutical carrier to a mammal in need thereof.
- the pharmaceutical carrier may be solid or liquid.
- a solid carrier can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material.
- the carrier is a finely divided solid which is in admixture with the finely divided active ingredient.
- the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions ,and compacted in the shape and size desired.
- the powders and tablets preferably contain up to 99% of the active ingredient.
- Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
- Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions.
- the active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats.
- the liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
- suitable examples of liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g.
- cellulose derivatives preferably sodium carboxymethyl cellulose solution
- alcohols including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil).
- the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate.
- Sterile liquid carders are useful in sterile liquid form compositions for parenteral administration.
- the liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellant.
- Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. The compound can also be administered orally either in liquid or solid composition form.
- the compounds of this invention may be administered rectally in the form of a conventional suppository.
- the compounds of this invention may be formulated into an aqueous or partially aqueous solution, which can then be utilized in the form of an aerosol.
- the compounds of this invention may also be administered transdermally through the use of a transdermal patch containing the active compound and a carrier that is inert to the active compound, is non toxic to the skin, and allows delivery of the agent for systemic absorption into the blood stream via the skin.
- the carrier may take any number of forms such as creams and ointments, pastes, gels, and occlusive devices.
- the creams and ointments may be viscous liquid or semi-solid emulsions of either the oil-in-water or water-in-oil type.
- Pastes comprised of absorptive powders dispersed in petroleum or hydrophilic petroleum containing the active ingredient may also be suitable.
- a variety of occlusive devices may be used to release the active ingredient into the blood stream such as a semipermiable membrane covering a reservoir containing the active ingredient with or without a carrier, or a matrix containing the active ingredient. Other occlusive devices are known in the literature.
- the compounds of this invention may be employed as a solution, cream, or lotion by formulation with pharmaceutically acceptable vehicles containing 0.1-5 percent, preferably 2%, of active compound which may be administered to a fungally affected area.
- the dosage requirements vary with the particular compositions employed, the route of administration, the severity of the symptoms presented and the particular subject being treated. Based on the results obtained in the standard pharmacological test procedures, projected daily dosages of active compound would be 0.1 ⁇ g/kg-100 mg/kg, preferably between 0.001-25 mg/kg, and more preferably between 0.01-5 mg/kg. Treatment will generally be initiated with small dosages less than the optimum dose of the compound. Thereafter the dosage is increased until the optimum effect under the circumstances is reached; precise dosages for oral, parenteral, nasal, or intrabronchial administration will be determined by the administering physician based on experience with the individual subject treated.
- the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules.
- the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient;
- the unit dosage forms can be packaged compositions, for example., packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids.
- the unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.
- 2,4,6-Trichlorobenzoyl chloride (0.55 mL, 3.51 mmol) was added via syringe to a solution of the glycolic acid THP-ether (0.562 g, 3.51 mmol) and triethylamine (0.49 mL, 3.51 mmol) in 10 mL THF at 0° C. under nitrogen. The mixture was stirred for 4 h at room temperature, and a white precipitate formed. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath.
- Rapamycin 42-ester with 2,2-dimethyl[1,3]dioxalane-4-carboxylic acid (Ex. 5)
- 2,4,6-Trichlorobenzoyl chloride (0.56 mL, 3.61 mmol) was added via syringe to a solution of the 2,3-dihydroxypropionic acid isopropylidene ketal (0.527 g, 3.61 mmol) and triethylamine (0.50 mL, 3.61 mmol) in 10 mL THF at 0° C. under nitrogen. The mixture was stirred 4 h at room temperature. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath.
- 2,4,6-Trichlorobenzoyl chloride (0.98 mL, 6.27 mmol) was added via syringe to a solution of the 2-(hydroxymethyl)-3-hydroxypropionic acid isopropylidene ketal (1.000 g, 6.24 mmol) and triethylamine (0.90 mL, 6.46 mmol) in 20 mL, THF at 0° C. under nitrogen. The mixture was stirred for 4 h at room temperature, and a white precipitate formed. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath.
- 2,4,6-Trichlorobenzoyl chloride (0.14 mL, 0.86 mmol) was added via syringe to a solution of the 2,2-bis(hydroxymethyl)-2-(2-trimethylsilylethoxy)propionic acid isopropylidene ketal (0.250 g, 0.86 mmol) and triethylamine (0.12 mL, 0.86 mmol) in 2 mL THF at 0° C. under nitrogen.
- the mixture was stirred for 4 h at room temperature, and a white precipitate formed. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath.
- 2,4,6-Trichlorobenzoyl chloride (0.16 mL, 1.0 mmol) was added via syringe to a solution of the 2,3-dihydroxypropionic acid cyclohexylidene ketal (0.214 g, 1.0 mmol) and triethylamine (0.14 mL, 1.0 mmol) in 2.5 mL THF at 0 ° C. under nitrogen. The mixture was stirred 4 h at room temperature. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Rheumatology (AREA)
- Transplantation (AREA)
- Urology & Nephrology (AREA)
- Pain & Pain Management (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Domestic Plumbing Installations (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
A compound of the structure
- wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9;
- R3 and R4 are each, independently, hydrogen, alkyl, alkenyl, alkynyl, trifluoromethyl, or —F;
- R5 and R6 are each, independently, hydrogen, alkyl, alkenyl, alkynyl, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
- R7 is hydrogen, alkyl, alkenyl, alkynyl, —(CR3R4-)fOR10, —CF3, —F, or CO2R11;
- R8 and R9 are each, independently, hydrogen, alkyl, alkenyl, alkynyl, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring that is optionally mono-, di-, or tri-substituted with —(CR3R4-)fOR10;
- R10 is hydrogen, alkyl, alkenyl, alkynyl, tri-(alkyl)silyl, tri-(alkyl)silylethyl, triphenylmethyl, benzyl, alkoxymethyl, tri-(alkyl)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
- R11 is hydrogen, alkyl, alkenyl, alkynyl, or phenylalkyl;
- X is 5-(2,2-dialkyl)[1,3]dioxanyl, 5-(2,2-dicycloalkyl)[1,3]dioxanyl, 4-(2,2-dialkyl)[1,3]dioxanyl, 4-(2,2-dicycloalkyl)[1,3]dioxanyl, 4-(2,2dialkyl)[1,3]dioxalanyl, or 4-(2,2-dicycloalkyl)[1,3]dioxalanyl;
- b=0-6;
- d=0-6; and
- f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl group, or a pharmaceutically acceptable salt thereof which is useful as an immunosuppressive, antiinflammatory, antifungal, antiproliferative, and antitumor agent.
Description
This application is a reissue application of U.S. Pat. No. 5,362,718, issued Nov. 8, 1994, which issued from U.S. application Ser. No. 08/229,261, filed Apr. 18, 1994.
This invention relates to hydroxyesters of rapamycin and a method for using them for inducing immunosuppression, and in the treatment of transplantation rejection, graft vs. host disease, autoimmune diseases, diseases of inflammation, adult T-cell leukemia/lymphoma, solid tumors, fungal infections, and hyperproliferative vascular disorders.
Rapamycin is a macrocyclic triene antibiotic produced by Streptomyces hygroscopicus, which was found to have antifungal activity, particularly against Candida albicans, both in vitro and in vivo [C. Vezina et al., J. Antibiot. 28, 721 (1975); S. N. Sehgal et al., J. Antibiot 28, 727 (1975); H. A. Baker et al., J. Antibiot. 31,539 (1978); U.S. Pat. Nos. 3,929,992; and 3,993,749].
Rapamycin alone (U.S. Pat. No. 4,885,171) or in combination with picibanil (U.S. Pat. No. 4,401,653) has been shown to have antitumor activity. R. Martel et al, [Can. J. Physiol. Pharmacol. 55, 48 (1977)] disclosed that rapamycin is effective in the experimental allergic encephalomyelitis model, a model for multiple sclerosis; in the adjuvant arthritis model, a model for rheumatoid arthritis; and effectively inhibited the formation of IgE-like antibodies.
The immunosuppressive effects of rapamycin have been disclosed in FASEB 3, 3411 (1989). Cyclosporin A and FK-506, other macrocyclic molecules, also have been shown to be effective as immunosuppressive agents, therefore useful in preventing transplant rejection [FASEB 3, 3411 (1989); FASEB 3, 5256 (1989); R. Y. Calne et al., Lancet 1183 (1978); and U.S. Pat. No. 5,100,899].
Rapamycin has also been shown to be useful in preventing or treating systemic lupus erythematosus [U.S. Pat. No. 5,078,999], pulmonary inflammation [U.S. Pat. No. 5,080,899], insulin dependent diabetes mellitus [Fifth Int. Conf. Inflamm. Res. Assoc. 121 (Abstract), (1990)], smooth muscle cell proliferation and intimal thickening following vascular injury [Morris, R. J. Heart Lung Transplant 11 (pt. 2): 197 (1992)], adult T-cell leukemia/lymphoma [European Patent Application 525,960 A1], and ocular inflammation [European Patent Application 532,862 A1].
Mono- and diacylated derivatives of rapamycin (esterified at the 28 and 43 positions) have been shown to be useful as antifungal agents (U.S. Pat. No. 4,316,885) and used to make water soluble aminoacyl prodrugs of rapamycin (U.S. Pat. No. 4,650,803). Recently, the numbering convention for rapamycin has been changed; therefore according to Chemical Abstracts nomenclature, the esters described above would be at the 31- and 42- positions.
This invention provides derivatives of rapamycin which are useful as immunosuppressive, antiinflammatory, antifungal, antiproliferative, and antitumor agents having the structure
- wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)CR7R8R9;
- R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
- R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
- R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
- R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
- R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
- R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
- X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
- b=0-6;
- d=0-6; and
- f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)OR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
The pharmaceutically acceptable salts are those derived from such inorganic cations such as sodium, potassium, and the like; and organic bases such as: mono-, di-, and trialkyl amines of 1-6 carbon atoms, per alkyl group and mono-, di-, and trihydroxyalkyl amines of 1-6 carbon atoms per alkyl group, and the like.
The terms alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, and alkynyl of 2-7 carbon atoms, include both straight chain as well as branched carbon chains. As the compounds of this invention can contain more than one —(CR3R4)fOR10 group, R3, R4, f, and R10 can be the same or different. Similarly, when other generic substituent descriptions are repeated in the same structure, they can be the same or different.
For a compound in which R1 contains R8 and R9 taken together to form X, where X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, the alkyl group of X contains 1 carbon atom, and d=0, R1 would have the following structure.
Similarly, for a compound in which R1 contains R8 and R9 taken together to form X, where X is 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, the cycloalkyl group of X contains 6 carbon atom, and d=0, R1 would have the following structure.
For compounds containing X, preferred compounds include those in which the alkyl group of X, if present, is methyl and the cycloalkyl group of X, if present, is cyclohexyl.
When R10 is not hydrogen, alkyl, alkenyl, or alkynyl, it is intended that R10 is a group that can serve as an alcohol protecting group. Thus, these groups are intermediates of free hydroxylated compounds, as well as being biologically active in their own right. R10 covers tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, and tetrahydropyranyl groups. Other alcohol protecting groups are known by one skilled in the an and are also considered pan of this invention.
Of the compounds of this invention preferred members are those in which R2 is hydrogen; those in which R2 is hydrogen, b=0, and d=0; those in which R2 is hydrogen, b=0, d=0, and R8 and R9 are each, independently hydrogen, alkyl, or —(CR3R4)fOR10, or are taken together to form X.
Compounds of this invention having the ester group —CO(CR3R4)bCR5R6)d(CR7R8R9)e at the 42- or 31,42-positions can be prepared by acylation of rapamycin using protected hydroxy and polyhydroxy acids, alkoxy or polyalkoxy carboxylic acids that have been activated, followed by removal of the alcohol protecting groups, if so desired. Several procedures for carboxylate activation are known in the art, but the preferred methods utilize carbodiimides, mixed anhydrides, or acid chlorides. For example, an appropriately substituted carboxylic acid can be activated as a mixed anhydride, with an acylating group such as 2,4,6-trichlorobenzoyl chloride. Treatment of rapamycin with the mixed anhydride under mildly basic condition provides the desired compounds. Alternatively, the acylation reaction can be accomplished with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and dimethylaminopyridine. Mixtures of 42- and 31,42-esters can be separated by chromatography.
The 31-ester-42-hydroxy compounds of this invention can be prepared by protecting the 42-alcohol of rapamycin with a protecting group, such as with a tert-butyl dimethylsilyl group, followed by esterification of the 31-position by the procedures described above. The preparation of rapamycin 42-silyl ethers is described in U.S. Pat. No. B1 5,120,842, which is hereby incorporated by reference. Removal of the protecting group provides the 31-esterified compounds. In the case of the tert-butyl dimethylsilyl protecting group, deprotection can be accomplished under mildly acidic conditions, such as acetic acid/water/THF. The deprotection procedure is described in Example 15 of U.S. Pat. No. 5,118,678, which is hereby incorporated by reference.
Having the 31-position esterified and the 42-position deprotected, the 42-position can be esterified using a different acylating agent than was reacted with the 31-alcohol, to give compounds having different esters at the 31- and 42- positions. Alternatively, the 42-esterified compounds, prepared as described above, can be reacted with a different acylating agent to provide compounds having different esters at the 31-and 42-positions.
This invention also covers analogous hydroxy esters of other rapamycins such as, but not limited to, 29-demethoxyrapamycin, [U.S. Pat. No. 4,375,464, 32-demethoxyrapamycin under C.A. nomenclature]; rapamycin derivatives in which the double bonds in the 1-, 3-, and/or 5-positions have been reduced [U.S. Pat. No. 5,023,262]; 29-desmethylrapamycin [U.S. Pat. No. 5,093,339, 32-desmethylrapamycin under C.A. nomenclature]; 7,29-bisdesmethylrapamycin [U.S. Pat. No. 5,093,338, 7,32-desmethylrapamycin under C.A. nomenclature]; and 15-hydroxyrapamycin [U.S. Pat. No. 5,102,876]. The disclosures in the above cited U.S. Patents are hereby incorporated by reference.
Immunosuppressive activity for representative compounds of this invention was evaluated in an in vitro standard pharmacological test procedure to measure the inhibition of lymphocyte proliferation (LAF) and in two in vivo standard pharmacological test procedures. The pinch skin graft test procedure measures the immunosuppressive activity of the compound tested as well as the ability of the compound tested to inhibit or treat transplant rejection. The adjuvant arthritis standard pharmacological test procedure, which measures the ability of the compound tested to inhibit immune mediated inflammation. The adjuvant arthritis test procedure is a standard pharmacological test procedure for rheumatoid arthritis. The procedures for these standard pharmacological test procedures are provided below.
The comitogen-induced thymocyte proliferation procedure (LAF) was used as an in vitro measure of the immunosuppressive effects of representative compounds. Briefly, cells from the thymus of normal BALB/c mice are cultured for 72 hours with PHA and IL-1 and pulsed with tritiated thymidine during the last six hours. Cells are cultured with and without various concentrations of rapamycin, cyclosporin A, or test compound. Cells are harvested and incorporated radio-activity is determined. Inhibition of lymphoproliferation is assessed as percent change in counts per minute from nondrug treated controls. For each compound evaluated, rapamycin was also evaluated for the purpose of comparison. An IC50 was obtained for each test compound as well as for rapamycin. When evaluated as a comparator for the representative compounds of this invention, rapamycin had an IC50 ranging from 0.6-1.5 nM. The results obtained are provided as an IC50 and as the percent inhibition of T-cell proliferation at 0.1 μM. The results obtained for the representative compounds of this invention were also expressed as a ratio compared with rapamycin. A positive ratio indicates immunosuppressive activity. A ratio of greater than 1 indicates that the test compound inhibited thymocyte proliferation to a greater extent than rapamycin. Calculation of the ratio is shown below.
Representative compounds of this invention were also evaluated in an in vivo test procedure designed to determine the survival time of pinch skin graft from male BALB/c donors transplanted to male C3H(H-2K) recipients. The method is adapted from Billingham R. E. and Medawar P. B., J. Exp. Biol. 28:385-402, (1951). Briefly, as pinch skin graft from the donor was grafted on the dorsum of the recipient as a allograft, and an isograft was used as control in the same region. The recipients were treated with either varying concentrations of test compounds intraperitoneally or orally. Rapamycin was used as a test control. Untreated recipients serve as rejection control. The graft was monitored daily and observations were recorded until the graft became dry and formed a blackened scab. This was considered as the rejection day. The mean graft survival time (number of days±S.D.) of the drug treatment group was compared with the control group. The following table shows the results that were obtained. Results are expressed as the mean survival time in days. Untreated (control) pinch skin grafts are usually rejected within 6-7 days. Compounds were tested using a dose of 4 mg/kg.
The adjuvant arthritis standard pharmacological test procedure measures the ability of test compounds to prevent immune mediated inflammation and inhibit or treat rheumatoid arthritis. The following briefly describes the test procedure used. A group of rats (male inbread Wistar Lewis rats) are pre-treated with the compound to be tested (1 h prior to antigen) and then injected with Freud's Complete Adjuvant (FCA) in the right hind paw to induce arthritis. The rats are then orally dosed on a Monday, Wednesday, Friday schedule from day 0-14 for a total of doses. Both hind paws are measured on days 16, 23, and 30. The difference in paw volume (mL) from day 16 to day 0 is determined and a percent change from control is obtained. The left hind paw (uninjected paw) inflammation is caused by T-cell mediated inflammation and is recorded in the above table (% change from control). The right hind paw inflammation, on the other hand, is caused by non-specific inflammation. Compounds were tested at a dose of 5 mg/kg. The results are expressed as the percent change in the uninjected paw at day 16 versus control; the more negative the percent change, the more potent the compound. Rapamycin provided between −70% mid −90% change versus control, indicating that rapamycin treated rats had between 70-90% less immune induced inflammation than control rats.
The results obtained in these standard pharmacological test procedures are provided following the procedure for making the specific compounds that were tested.
The results of these standard pharmacological test procedures demonstrate immunosuppressive activity both in vitro and in vivo for the compounds of this invention. The results obtained in the LAF test procedure indicates suppression of T-cell proliferation, thereby demonstrating the immunosuppressive activity of the compounds of this invention. Further demonstration of the utility of the compounds of this invention as immunosuppressive agents was shown by the results obtained in the skin graft and adjuvant arthritis standard pharmacological test procedures. Additionally, the results obtained in the skin graft test procedure further demonstrates the ability of the compounds of this invention to treat or inhibit transplantation rejection. The results obtained in the adjuvant arthritis standard pharmacological test procedure further demonstrate the ability of the compounds of this invention to treat or inhibit rheumatoid arthritis.
Based on the results of these standard pharmacological test procedures, the compounds are useful in the treatment or inhibition of transplantation rejection such as kidney, heart, liver, lung, bone marrow, pancreas (islet cells), cornea, small bowel, and skin allografts, and heart valve xenografts; in the treatment or inhibition of autoimmune diseases such as lupus, rheumatoid arthritis, diabetes mellitus, myasthenia gravis, and multiple sclerosis; and diseases of inflammation such as psoriasis, dermatitis, eczema, seborrhea, inflammatory bowel disease, pulmonary inflammation (including asthma, chronic obstructive pulmonary disease, emphysema, acute respiratory distress syndrome, bronchitis, and the like), and eye uveitis.
Because of the activity profile obtained, the compounds of this invention also are considered to have antitumor, antifungal activities, and antiproliferative activities. The compounds of this invention therefore also useful in treating solid tumors, adult T-cell leukemia/lymphoma, fungal infections, and hyperproliferative vascular diseases such as restenosis and atherosclerosis. When used for restenosis, it is preferred that the compounds of this invention are used to treat restenosis that occurs following an angioplasty procedure. When used for this purpose, the compounds of this invention can be administered prior to the procedure, during the procedure, subsequent to the procedure, or any combination of the above.
When administered for the treatment or inhibition of the above disease states, the compounds of this invention can be administered to a mammal orally, parenterally, intranasally, intrabronchially, transdermally, topically, intravaginally, or rectally.
It is contemplated that when the compounds of this invention are used as an immunosuppressive or antiinflammatory agent, they can be administered in conjunction with one or more other immunoregulatory agents. Such other immunoregulatory agents include, but are not limited to azathioprine, corticosteroids, such as prednisone and methylprednisolone, cyclophosphamide, rapamycin, cyclosporin A, FK-506, OKT-3, and ATG. By combining the compounds of this invention with such other drugs or agents for inducing immunosuppression or treating inflammatory conditions, the lesser amounts of each of the agents are required to achieve the desired effect. The basis for such combination therapy was established by Stepkowski whose results showed that the use of a combination of rapamycin and cyclosporin A at subtherapeutic doses significantly prolonged heart allograft survival time. [Transplantation Proc. 23: 507 (1991)].
The compounds of this invention can be formulated neat or with a pharmaceutical carrier to a mammal in need thereof. The pharmaceutical carrier may be solid or liquid. When formulated orally, it has been found that 0.01% Tween 80 in PHOSAL PG-50 (phospholipid concentrate with 1,2-propylene glycol, A. Nattermann & Cie, GmbH) provides an acceptable oral formulation.
A solid carrier can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions ,and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration, the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carders are useful in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellant.
Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. The compound can also be administered orally either in liquid or solid composition form.
The compounds of this invention may be administered rectally in the form of a conventional suppository. For administration by intranasal or intrabronchial inhalation or insufflation, the compounds of this invention may be formulated into an aqueous or partially aqueous solution, which can then be utilized in the form of an aerosol. The compounds of this invention may also be administered transdermally through the use of a transdermal patch containing the active compound and a carrier that is inert to the active compound, is non toxic to the skin, and allows delivery of the agent for systemic absorption into the blood stream via the skin. The carrier may take any number of forms such as creams and ointments, pastes, gels, and occlusive devices. The creams and ointments may be viscous liquid or semi-solid emulsions of either the oil-in-water or water-in-oil type. Pastes comprised of absorptive powders dispersed in petroleum or hydrophilic petroleum containing the active ingredient may also be suitable. A variety of occlusive devices may be used to release the active ingredient into the blood stream such as a semipermiable membrane covering a reservoir containing the active ingredient with or without a carrier, or a matrix containing the active ingredient. Other occlusive devices are known in the literature.
In addition, the compounds of this invention may be employed as a solution, cream, or lotion by formulation with pharmaceutically acceptable vehicles containing 0.1-5 percent, preferably 2%, of active compound which may be administered to a fungally affected area.
The dosage requirements vary with the particular compositions employed, the route of administration, the severity of the symptoms presented and the particular subject being treated. Based on the results obtained in the standard pharmacological test procedures, projected daily dosages of active compound would be 0.1 μg/kg-100 mg/kg, preferably between 0.001-25 mg/kg, and more preferably between 0.01-5 mg/kg. Treatment will generally be initiated with small dosages less than the optimum dose of the compound. Thereafter the dosage is increased until the optimum effect under the circumstances is reached; precise dosages for oral, parenteral, nasal, or intrabronchial administration will be determined by the administering physician based on experience with the individual subject treated. Preferably, the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example., packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.
The following examples illustrate the preparation and biological activities of representative compounds of this invention.
2,4,6-Trichlorobenzoyl chloride (0.55 mL, 3.51 mmol) was added via syringe to a solution of the glycolic acid THP-ether (0.562 g, 3.51 mmol) and triethylamine (0.49 mL, 3.51 mmol) in 10 mL THF at 0° C. under nitrogen. The mixture was stirred for 4 h at room temperature, and a white precipitate formed. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath. The residue was dissolved in 10 mL benzene, then rapamycin (2.92 g, 3.19 mmol) and DMAP (0.429 g, 3.51 mmol) were added and the mixture was stirred overnight at room temperature. The mixture was diluted with EtOAc, washed with cold 1N HCl (aq), saturated NaHCO3 (aq) and brine, dried over MgSO4, filtered and concentrated to an oily yellow solid. Flash chromatography (2X with 65% EtOAc-hexane) afforded the title compound (1.114 g, 33%) as a white solid.
(−)FAB-MS m/z 1055.5 (M−), 590.3 (southern fragment), 463.2 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.60 (m, 1 H, C(42)H), 4.66 (m, 1H), 4.14 (s, 2H), 3.73 (m, 1H), 3.42 (m, 1H). 13C NMR (100.6 MHz, d-6 DMSO) δ 169.2, 97.4, 63.5, 61.2, 29.7, 24.8, 18.8.
p-Toluenesulfonic acid (10 mg) was added to a solution of the product of Example 1 (306 mg, 0.29 mmol) in 10 mL CH3OH at 0° C. The solution was stirred 2 h at room temperature, then quenched with saturated NaHCO3 solution. The aqueous phase was extracted 3X with EtOAc and the combined organic phases were washed with brine, dried over MgSO4, filtered and concentrated to a white solid. Purification by flash chromatography (2X with EtOAc) afforded the title compound (145 mg, 51%) as a white solid.
(−) FAB-MS m/z 971.3 (M−), 590 (southern fragment), 379.1 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.60 (m, 1H, C(42)H), 3.98 (s, 2H). 13C NMR (100.6 MHz, d-6 DMSO) δ 172.1, 59.7.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 1.80 nM
- LAF ratio: 0.83
- Percent change in adjuvant arthritis versus control: −88%
To a solution of the 2,2-dimethyl-3-hydroxypropionic acid THP-ether (0.319 g, 1.58 mmol) and triethylamine (0.22 mL, 1.58 mmol) in 5 mL dry THF at 0° C. under nitrogen was added 2,4,6-trichlorobenzoyl chloride (0.25 mL, 1.58 mmol) dropwise via syringe. The mixture was stirred 4.5 h at room temperature. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and a warm water bath. The residue was dissolved in 5 mL benzene, then rapamycin (1.31 g, 1.43 mmol) and DMAP (0.193 g, 1.58 mmol) were added. The mixture was stirred overnight at room temperature, diluted with EtOAc, washed with 1N HCl (aq), saturated NaHCO3 (aq), H2O and brine, dried over MgSO4, filtered and concentrated to a yellow oily solid. Flash chromatography (1X with 60% EtOAc-hexane, 1X with 55% EtOAc-hexane) afforded the title compound (0.356 g, 23%), as a white solid.
(−)FAB-MS m/z 1097.7 (M−), 590.4 (southern fragment), 505.3 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.55 (m, 1H, C(42H), 4.55 (m, 1H), 3.69 (m, 1H), 3.60 (m, 2H), 3.42 (m, 1H), 1.13 (s, 3H), 1.11 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 175.0, 98.0, 73.8, 60.7, 42.6, 30.0, 24.9, 22.0, 21.6, 18.7.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 7.10 nM
- LAF ratio: 0.34
p-Toluenesulfonic acid (10 mg) was added to a solution of the product of Example 3 (250 mg, 0.23 mmol) in 10 mL CH3OH at 0° C. The solution was stirred 2 hours at room temperature, then quenched with saturated NaHCO3 solution. The aqueous phase was extracted 3X with EtOAc and the combined organic phases were washed with brine, dried over MgSO4, filtered and concentrated to a white solid. Purification by flash chromatography (2X with 75% EtOAc-hexane) afforded the title compound (103 mg, 45%) as a white solid.
(−) FAB-MS m/z 1013.3 (M31), 590.2 (southern fragment), 421.1 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.48 (m, 1H, C(42)H), 3.39 (d, 2H), 106 (s, 6H). 13C NMR (100.6 MHz, d-6 DMSO) δ 175.5, 68.0, 44.1, 21.7.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50:0.80 nM
- LAF ratio: 1.25
- Skin graft survival time: 10.7±0.5 days
2,4,6-Trichlorobenzoyl chloride (0.56 mL, 3.61 mmol) was added via syringe to a solution of the 2,3-dihydroxypropionic acid isopropylidene ketal (0.527 g, 3.61 mmol) and triethylamine (0.50 mL, 3.61 mmol) in 10 mL THF at 0° C. under nitrogen. The mixture was stirred 4 h at room temperature. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath. The residue was dissolved in 15 mL benzene and rapamycin (3.00 g, 3.28 mmol), then DMAP (0.441 g, 3.61 mmol) were added and the mixture was stirred overnight at room temperature. The mixture was diluted with EtOAc, washed with cold 1N HCl (aq), saturated NaHCO3 (aq) and brine, dried over MgSO4, filtered and concentrated to a yellow foam. Flash chromatography on silica gel (gradient elution: 50-60-7-5-100% EtOAc-hexane, 4X with 65% EtOAc-hexane) afforded the title compounds. The less polar 31,42-diester (0.415 g) eluted first and the more polar 42-monoester (0.601 g, 16%) eluted second, and were isolated as white solids.
(−)FAB-MS m/z 1041.4 (M−), 590.3 (southern fragment), 449.2 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.6 (m, 1H, C(42)H), 4.6 (m, 1H), 4.20 (dd, 1H), 3.96 (m, 1H), 1.36 (s, 3H), 1.30 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 170.5, 110.2, 73.4, 66.6, 25.7, 25,4.
(−)FAB-MS m/z 1169.6 (M−). 1H NMR (400 MHz, d-6 DMSO) δ 5.3 (m, 1H, C(31)H), 4.6 (m, 1H, C(42)H), 4.6 (m, 2H), 4.19 (t, 1H), 4.13 (t, 1H), 3.9 (m, 2H), 1.36 (s, 3H), 1.33 (s, 3H), 1.30 (s, 3H), 1.28 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 170.5, 169.2, 110.3, 110.2, 73.4, 66.6, 66.5, 25.8, 25.7, 25.4, 25.1.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 1.20 nM
- LAF ratio: 0.74
-
- LAF IC50: 1.30 nM
- LAF ratio: 0.5
A solution of the product of Example 5 (351 mg, 0.34 mmol) in 10 mL THE and 10 mL 1N HCl was stirred at room temperature for 6 h. The mixture was diluted with EtOAc, washed with saturated NaHCO3 solution and brine, dried over MgSO4, filtered and concentrated to an oil. Flash chromatography (1X with EtOAc, 1X with 10% MeOH-CH2Cl2, 1X with 5% MeOH-EtOAc) afforded the title compound (78 mg, 23%) as a white solid.
(−)FAB-MS m/z 1001.2 (M−), 590.2 (southern fragment), 409.1 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 5 4.5 (m, 1H, C(42)H), 3.60 (m, 1H), 3.45 (m, 2H).
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 1.4 nM
- LAF ratio: 0.40
2,4,6-Trichlorobenzoyl chloride (0.98 mL, 6.27 mmol) was added via syringe to a solution of the 2-(hydroxymethyl)-3-hydroxypropionic acid isopropylidene ketal (1.000 g, 6.24 mmol) and triethylamine (0.90 mL, 6.46 mmol) in 20 mL, THF at 0° C. under nitrogen. The mixture was stirred for 4 h at room temperature, and a white precipitate formed. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath. The residue was dissolved in 20 mL benzene, then rapamycin (5.70 g, 6.24 mmol) and DMAP (0.762 g, 6.24 mmol) were added and the mixture was stirred overnight at room temperature. The mixture was diluted with EtOAc, washed with H2O and brine, dried over MgSO4, filtered and concentrated to a yellow solid. Flash chromatography (75% EtOAc-hexane) afforded the title compound (4.17 g, 63%) as a white solid.
(−)FAB-MS m/z, 1055.8 (M−), 590.5 (southern fragment), 463.4 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.55 (m, 1H, C(42)H), 3.95 (m, 4H), 1.30 (s, 6H). 13C NMR (100.6 MHz, d-6 DMSO) δ 170.1, 97.4, 59.5, 24.8, 22.5.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 0.76 nM
- LAF ratio: 0.45
A solution of the product of Example 8 (3.30 g, 3.12 mmol) in 50 mL THF and 25 mL 1N HCl was stirred 2 h at room temperature. The solution was diluted with saturated NaHCO3 solution and extracted with EtOAc (3X). The combined organic phases were washed with saturated NaCl (aq), dried over MgSO4, filtered and concentrated to a yellow foam. Purification by flash chromatography (1X with EtOAc; 2X with 5% EtOH-EtOAc) afforded the title compound (1.68 g, 53%) as a white solid.
(−) FAB-MS m/z 1015.5 (M−), 590.3 (southern fragment), 423.3 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.6 (br s, 2H), 4.55 (m, 1H, C(42)H), 3.55 (m, 4H), 2.57-2.53 (m, 1H). 13C NMR (100.6 MHz, d-6 DMSO) δ 172.2, 59,3, 51.5.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 0.84 nM
- LAF ratio: 0.57
To a solution of the 2,2-bis(hydroxymethyl)propionic acid isopropylidene ketal (1.041 g, 5.98 mmol) (prepared according to the procedure of Bruice, J. Am. Chem. Soc. 89:3568 (1967)) and triethylamine (0.83 mL, 5.98 mmol) in 20 mL anhydrous THE at 0° C. under nitrogen was added 2,4,6-trichlorobenzoyl chloride (0.93 mL, 5.98 mmol) and the resultant white suspension was stirred 5 h at room temperature. The precipitate was removed by vacuum filtration, rinsing the flask and filter cake with an additional 10 mL dry THF. The filtrate was concentrated by rotary evaporation to a white solid. The residue was dissolved in 20 mL dry benzene, then rapamycin (5.47 g, 5.98 mmol) and DMAP (0.731 g, 5.98 retool) were added. After stirring overnight at room temperature, the mixture was diluted with EtOAc, washed with H2O and saturated NaCl (aq), dried over MgSO4, filtered and evaporated to a yellow oil, Flash chromatography (5X with 60% EtOAc-hexane) afforded the title compound (2.2 g, 34%) as a white solid.
(−)FAB-MS m/z 1069.5 (M−), 590.3 (southern fragment), 477.2 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.57 (m, 1H, C(42)H, 4.02 (d, 2H), 3.60 (d, 2H), 1.34 (s, 3H), 1.24 (s, 3H), 1.06 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 173.2, 99.0, 65.0, 22.2, 18.1.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 4.90 nM
- LAF ratio: 0.41
- Skin graft survival time: 11.0±1.3 days
A solution of the product of Example 10 (2.8 g, 2.65 mmol) in 50 mL THF and 25 mL 1N HCl was stirred at room temperature for 4 h. The mixture was diluted with water and extracted three times with EtOAc. The combined organic phases were washed with saturated NaHCO3 solution, saturated NaCl solution, dried over MgSO4, filtered and evaporated to a yellow oily solid. Purification by flash chromatography (3X with EtOAc) afforded the title compound (1.6 g, 59%).
(−)FAB-MS m/z 1029.6 (M−), 590.4 (southern fragment), 437.3 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.5 (m, 1H, C(42)H), 3.45 (s, 4H), 1.04 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 174.2, 63.7, 63.6, 49.9, 16.8.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 0.80 and 1.80 nM
- LAF ratio: 1.00 and 0.44
- Skin graft survival time: 11.4±1.5 and 12.0±1.1 days
- Percent change in adjuvant arthritis versus control: <88%
-
- Rapamycin 42-ester with 2,2-dimethyl-5-(2-trimethylsilanylethoxymethyl)[1,3]dioxane-5-carboxylic acid
2,4,6-Trichlorobenzoyl chloride (0.14 mL, 0.86 mmol) was added via syringe to a solution of the 2,2-bis(hydroxymethyl)-2-(2-trimethylsilylethoxy)propionic acid isopropylidene ketal (0.250 g, 0.86 mmol) and triethylamine (0.12 mL, 0.86 mmol) in 2 mL THF at 0° C. under nitrogen. The mixture was stirred for 4 h at room temperature, and a white precipitate formed. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath. The residue was dissolved in 2 mL benzene, then rapamycin (0.786 g, 0.86 mmol) and DMAP (0.105 g, 0.86 mmol) were added and the mixture was stirred overnight, at room temperature. The mixture was diluted with EtOAc, washed with H2O and brine, dried over MgSO4, filtered and concentrated to a yellow solid. Flash chromatography (gradient elution: 40-60-80-100% EtOAc-hexane) afforded the title compound (0.559 g, 54%) as a white solid.
(−)FAB-MS m/z 1185.2 (M−), 590.1 (southern fragment), 593 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.55 (m, 1H, C(42)H), 3.73 (m, 4H), 3.57 (s, 2 H), 3.43 (t, 2H), 1.29 (s, 6H), 0.79 (t, 2H), −0.04 (s, 9H). 13C NMR (100.6 MHz, d-6 DMSO) δ 171.1, 97.7, 70.2, 68.1, 61.3, 46.0, 24.6, 22.1, 14.6, −1.3.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 7.20 nM
- LAF ratio: 0.05
2,4,6-Trichlorobenzoyl chloride (0.16 mL, 1.0 mmol) was added via syringe to a solution of the 2,3-dihydroxypropionic acid cyclohexylidene ketal (0.214 g, 1.0 mmol) and triethylamine (0.14 mL, 1.0 mmol) in 2.5 mL THF at 0 ° C. under nitrogen. The mixture was stirred 4 h at room temperature. The white precipitate was removed by vacuum filtration and the filtrate was concentrated with a stream of nitrogen and warm water bath. The residue was dissolved in 3 mL benzene and rapamycin (0.457 g, 0.5 mmol), then DMAP (0.061 g, 0.5 mmol) were added and the mixture was stirred overnight at room temperature. The mixture was diluted with EtOAc, washed with cold 1N HCl (aq), saturated NaHCO3(aq) and brine, dried over MgSO4, filtered and concentrated to a yellow foam. Flash chromatography on silica gel (45-50% EtOAc-hexane) afforded the title compounds. The 31,42-diester (0.168 g, 26%) eluted first and the more polar 42-monoester (0.301 g, 52%) eluted second, and the products were isolated as white solids.
(−)FAB-MS m/z 1109.5 (M−), 590.3 (southern fragment), 517.3 (northern fragment). 1H NMR (400 MHz, d-6 DMSO) δ 4.55 (m, 1H, C(42)H), 3.61 (t, 4H), 1.04 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 173.3, 97.2, 64.2.
(−)FAB-MS m/z 1305.6 (M−). 1H NMR (400 MHz, d-6 DMSO) δ 5.25 (m, 1H, C(31)H), 4.55 (m, 1H, C(42)H), 3.64-3.54 (m, 8H), 1.05 (s, 3H), 0.97 (s, 3H). 13C NMR (100.6 MHz, d-6 DMSO) δ 173.2, 172.1, 97.3, 97.2, 64.3, 64.2, 63.9.
Results obtained in standard pharmacological test procedures:
-
- LAF IC50: 0.6 nM
- LAF ratio: 2.00
LAF: inhibited T-cell proliferation by 43% at 0.1 μM
Claims (26)
1. A compound of the structure
wherein R1 and R2are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9;
R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2--7 carbon atoms, —(CR3R4)fOR10, —CF3—F, or—CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms,
tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d=0-6 ; and
f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1 , wherein R2 is hydrogen or a pharmaceutically acceptable salt thereof.
3. The compound of claim 2 , wherein b=0 and d=0 or a pharmaceutically acceptable salt thereof.
4. The compound of claim 3 , wherein R8 and R9 are each, independently hydrogen, alkyl, or —(CR3R4−)fOR10, or are taken together to form X or a pharmaceutically acceptable salt thereof.
5. The compound of claim 1 which is rapamycin 42-ester with (tetrahydropyran-2-yloxy)acetic acid or a pharmaceutically acceptable salt thereof.
6. The compound of claim 1 which is rapamycin 42-ester with hydroxyacetic acid or a pharmaceutically acceptable salt thereof.
7. The compound of claim 1 which is rapamycin 42-ester with 2,2-dimethyl-3-(tetrahydropyran-2-yloxy)propionic acid or a pharmaceutically acceptable salt thereof.
8. The compound of claim 1 which is rapamycin 42-ester with 3-hydroxy-2,2-dimethylpropionic acid or a pharmaceutically acceptable salt thereof.
9. The compound of claim 1 which is rapamycin 42-ester with 2,2-dimethyl[1,3]dioxalane-4-carboxylic acid or a pharmaceutically acceptable salt thereof.
10. The compound of claim 1 which is rapamycin 31,42-diester with 2,2-dimethyl[1,3]dioxalane-4-carboxylic acid or a pharmaceutically acceptable salt thereof.
11. The compound of claim 1 which is rapamycin 42-ester with 2,3-dihydroxypropionic acid or a pharmaceutically acceptable salt thereof.
12. The compound of claim 1 which is rapamycin 42-ester with 2,2-dimethyl[1,3]dioxane-5-carboxylic acid or a pharmaceutically acceptable salt thereof.
13. The compound of claim 1 which is rapamycin 42-ester with 3-hydroxy-2-hydroxymethylpropionic acid or a pharmaceutically acceptable salt thereof.
14. The compound of claim 1 which is rapamycin 42-ester with 2,2,5-trimethyl[1,3]dioxane-5-carboxylic acid or a pharmaceutically acceptable salt thereof.
15. The compound of claim 1 which is rapamycin 42-ester with 2,2-bis(hydroxymethyl)propionic acid or a pharmaceutically acceptable salt thereof.
16. The compound of claim 1 Which is rapamycin 42-ester with 2,2-dimethyl-5-(2-trimethylsilanylethoxymethyl)[1,3]-dioxane-5-carboxylic acid or a pharmaceutically acceptable salt thereof.
17. The compound of claim 1 which is rapamycin 42-ester with 3-methyl-1,5-dioxa-spiro[5.5]undecane 3-carboxylic acid or a pharmaceutically acceptable salt thereof.
18. The compound of claim 1 which is rapamycin 31,42-diester with 3-methyl-1,5-dioxa-spiro[5.5]undecane 3-carboxylic acid or a pharmaceutically acceptable salt thereof.
19. A method of treating transplantation rejection or graft vs. host disease in a mammal in need thereof, which comprises administering to said mammal an antirejection effective amount of a compound of the structure
wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9;
R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR 10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d=0-6 ; and
f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
20. A method of treating a fungal infection in a mammal in need thereof, which comprises administering to said mammal an antifungal effective amount of a compound of the structure
wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9;
R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR1−0,—CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, or —F, —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d=0-6; and
d=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
21. A method of treating rheumatoid arthritis in a mammal in need thereof, which comprises administering to said mammal an antiarthritis effective amount of a compound of the structure
wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9;
R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4))fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d=0-6; and
f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
22. A method of treating restenosis in a mammal in need thereof, which comprises administering to said mammal an antiproliferative effective amount of a compound of the structure
wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)bCR5R6)dCR7R8R9;
R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d=0-6; and
f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
23. A method of treating pulmonary inflammation in a mammal in need thereof, which comprises administering to said mammal an antiinflammatory effective amount of a compound of the structure
wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9;
R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d=0-6; and
f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof.
24. A pharmaceutical composition which comprises a compound of the structure
wherein R1 and R2 are each, independently, hydrogen or —CO(CR3R4)b(CR5R6)dCR7R8R9; R3 and R4 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, trifluoromethyl, or —F;
R5 and R6 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11, or R5 and R6 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R7 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3, —F, or —CO2R11;
R8 and R9 are each, independently, hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, —(CR3R4)fOR10, —CF3—F, or —CO2R11, or R8 and R9 may be taken together to form X or a cycloalkyl ring of 3-8 carbon atoms that is optionally mono-, di-, or tri-substituted with —(CR3R4)fOR10;
R10 is hydrogen, alkyl of 1-6 carbon, atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silyl, tri-(alkyl of 1-6 carbon atoms)silylethyl, triphenylmethyl, benzyl, alkoxymethyl of 2-7 carbon atoms, tri-(alkyl of 1-6 carbon atoms)silylethoxymethyl, chloroethyl, or tetrahydropyranyl;
R11 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, alkynyl of 2-7 carbon atoms, or phenylalkyl of 7-10 carbon atoms;
X is 5-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 5-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxanyl, 4-(2,2-di-(alkyl of 1-6 carbon atoms))[1,3]dioxalanyl, or 4-(2,2-di-(cycloalkyl of 3-8 carbon atoms))[1,3]dioxalanyl;
b=0-6;
d =0-6; and
f=0-6
with the proviso that R1 and R2 are both not hydrogen and further provided that either R1 or R2 contains at least one —(CR3R4)fOR10, X, or —(CR3R4)fOR10 substituted cycloalkyl of 3-8 carbon atoms group, or a pharmaceutically acceptable salt thereof, and a pharmaceutical carrier.
26. The pharmaceutical composition of claim 24, wherein
R1 is —CO(CR3R4)b(CR5R6)dCR7R8R9;
b=0;
d=0;
R7 is methyl;
R8 is —(CR3R4)fOR10;
R9 is —(CR3R4)fOR10;
each R3 is hydrogen;
each R4 is hydrogen;
each R10 is hydrogen;
each f=1; and
R2 is hydrogen.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/931,400 USRE44768E1 (en) | 1994-04-18 | 2013-06-28 | Rapamycin hydroxyesters |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/229,261 US5362718A (en) | 1994-04-18 | 1994-04-18 | Rapamycin hydroxyesters |
| US13/931,400 USRE44768E1 (en) | 1994-04-18 | 2013-06-28 | Rapamycin hydroxyesters |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/229,261 Reissue US5362718A (en) | 1994-04-18 | 1994-04-18 | Rapamycin hydroxyesters |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE44768E1 true USRE44768E1 (en) | 2014-02-18 |
Family
ID=22860462
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/229,261 Ceased US5362718A (en) | 1994-04-18 | 1994-04-18 | Rapamycin hydroxyesters |
| US13/931,400 Expired - Lifetime USRE44768E1 (en) | 1994-04-18 | 2013-06-28 | Rapamycin hydroxyesters |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/229,261 Ceased US5362718A (en) | 1994-04-18 | 1994-04-18 | Rapamycin hydroxyesters |
Country Status (30)
| Country | Link |
|---|---|
| US (2) | US5362718A (en) |
| EP (3) | EP1760083B1 (en) |
| JP (1) | JP3725901B2 (en) |
| KR (1) | KR100330800B1 (en) |
| CN (1) | CN1059905C (en) |
| AT (3) | ATE537176T1 (en) |
| BR (1) | BR9507323A (en) |
| CA (1) | CA2187024C (en) |
| CY (2) | CY2378B1 (en) |
| CZ (1) | CZ284567B6 (en) |
| DE (3) | DE122008000023I1 (en) |
| DK (2) | DK0763039T3 (en) |
| ES (3) | ES2375730T3 (en) |
| FR (1) | FR08C0018I2 (en) |
| HK (1) | HK1048816B (en) |
| HU (1) | HU225915B1 (en) |
| IL (1) | IL113179A (en) |
| LU (1) | LU91438I2 (en) |
| LV (1) | LV13038B (en) |
| MX (1) | MX9604694A (en) |
| NL (1) | NL300348I2 (en) |
| NZ (1) | NZ283988A (en) |
| PL (1) | PL183178B1 (en) |
| PT (2) | PT763039E (en) |
| RU (1) | RU2134267C1 (en) |
| SI (2) | SI1266899T1 (en) |
| SK (1) | SK281787B6 (en) |
| TW (1) | TW275631B (en) |
| WO (1) | WO1995028406A1 (en) |
| ZA (1) | ZA953090B (en) |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015073644A1 (en) | 2013-11-13 | 2015-05-21 | Novartis Ag | Mtor inhibitors for enhancing the immune response |
| WO2015090230A1 (en) | 2013-12-19 | 2015-06-25 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
| WO2015090229A1 (en) | 2013-12-20 | 2015-06-25 | Novartis Ag | Regulatable chimeric antigen receptor |
| WO2015142661A1 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Regulatable chimeric antigen receptor |
| WO2015142675A2 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
| WO2015157252A1 (en) | 2014-04-07 | 2015-10-15 | BROGDON, Jennifer | Treatment of cancer using anti-cd19 chimeric antigen receptor |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
| WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| WO2016057705A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
| WO2016098078A2 (en) | 2014-12-19 | 2016-06-23 | Novartis Ag | Dimerization switches and uses thereof |
| WO2016164580A1 (en) | 2015-04-07 | 2016-10-13 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
| WO2016168595A1 (en) | 2015-04-17 | 2016-10-20 | Barrett David Maxwell | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
| WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| WO2016185443A1 (en) | 2015-05-20 | 2016-11-24 | Novartis Ag | Pharmaceutical combination of everolimus with dactolisib |
| WO2017081624A1 (en) | 2015-11-11 | 2017-05-18 | Novartis Ag | Uses of myostatin antagonists, combinations containing them and uses thereof |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| WO2018096402A1 (en) | 2016-11-23 | 2018-05-31 | Novartis Ag | Methods of enhancing immune response with everolimus, dactolisib or both |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
| US10596165B2 (en) | 2018-02-12 | 2020-03-24 | resTORbio, Inc. | Combination therapies |
| EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
| US10765665B2 (en) | 2015-11-24 | 2020-09-08 | Melin Jeffrey | Composition comprising combination of rapamycin and an activator of AMP kinase and use thereof for treating diseases |
| EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
Families Citing this family (308)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5811447A (en) | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US6515009B1 (en) | 1991-09-27 | 2003-02-04 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US6491938B2 (en) | 1993-05-13 | 2002-12-10 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
| US6281015B1 (en) | 1994-12-16 | 2001-08-28 | Children's Medical Center Corp. | Localized delivery of factors enhancing survival of transplanted cells |
| US6187757B1 (en) | 1995-06-07 | 2001-02-13 | Ariad Pharmaceuticals, Inc. | Regulation of biological events using novel compounds |
| US5780462A (en) * | 1995-12-27 | 1998-07-14 | American Home Products Corporation | Water soluble rapamycin esters |
| GB9606452D0 (en) * | 1996-03-27 | 1996-06-05 | Sandoz Ltd | Organic compounds |
| US5922730A (en) * | 1996-09-09 | 1999-07-13 | American Home Products Corporation | Alkylated rapamycin derivatives |
| US8790391B2 (en) | 1997-04-18 | 2014-07-29 | Cordis Corporation | Methods and devices for delivering therapeutic agents to target vessels |
| US6273913B1 (en) * | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
| US6984635B1 (en) * | 1998-02-13 | 2006-01-10 | Board Of Trustees Of The Leland Stanford Jr. University | Dimerizing agents, their production and use |
| US6015809A (en) * | 1998-08-17 | 2000-01-18 | American Home Products Corporation | Photocyclized rapamycin |
| US6331547B1 (en) | 1999-08-18 | 2001-12-18 | American Home Products Corporation | Water soluble SDZ RAD esters |
| TWI256395B (en) * | 1999-09-29 | 2006-06-11 | Wyeth Corp | Regioselective synthesis of rapamycin derivatives |
| US6277983B1 (en) | 2000-09-27 | 2001-08-21 | American Home Products Corporation | Regioselective synthesis of rapamycin derivatives |
| US8236048B2 (en) | 2000-05-12 | 2012-08-07 | Cordis Corporation | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US6670355B2 (en) | 2000-06-16 | 2003-12-30 | Wyeth | Method of treating cardiovascular disease |
| ATE278421T1 (en) | 2000-08-11 | 2004-10-15 | Wyeth Corp | METHOD FOR TREATING ESTROGEN RECEPTOR POSITIVE CARCINOMA |
| EP1319008B1 (en) * | 2000-09-19 | 2008-10-15 | Wyeth | Water soluble rapamycin esters |
| US6399625B1 (en) | 2000-09-27 | 2002-06-04 | Wyeth | 1-oxorapamycins |
| US20070276476A1 (en) * | 2000-09-29 | 2007-11-29 | Llanos Gerard H | Medical Devices, Drug Coatings and Methods for Maintaining the Drug Coatings Thereon |
| US20060222756A1 (en) * | 2000-09-29 | 2006-10-05 | Cordis Corporation | Medical devices, drug coatings and methods of maintaining the drug coatings thereon |
| WO2002026139A1 (en) | 2000-09-29 | 2002-04-04 | Cordis Corporation | Coated medical devices |
| US6399626B1 (en) | 2000-10-02 | 2002-06-04 | Wyeth | Hydroxyesters of 7-desmethylrapamycin |
| US6440991B1 (en) | 2000-10-02 | 2002-08-27 | Wyeth | Ethers of 7-desmethlrapamycin |
| TWI286074B (en) * | 2000-11-15 | 2007-09-01 | Wyeth Corp | Pharmaceutical composition containing CCI-779 as an antineoplastic agent |
| EP2316976A1 (en) * | 2000-11-28 | 2011-05-04 | Wyeth LLC | Expression analysis of FKBP nucleic acids and polypeptides useful in the diagnosis and treatment of prostate cancer |
| US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
| EP3351246B8 (en) | 2001-02-19 | 2019-09-18 | Novartis Pharma AG | Rapamycin derivative for the treatment of a solid tumor associated with deregulated angiogenesis |
| TWI296196B (en) * | 2001-04-06 | 2008-05-01 | Wyeth Corp | Antineoplastic combinations |
| TWI233359B (en) * | 2001-04-06 | 2005-06-01 | Wyeth Corp | Pharmaceutical composition for treating neoplasm |
| SG152906A1 (en) * | 2001-04-06 | 2009-06-29 | Wyeth Corp | Antineoplastic combinations such as rapamycin together with gemcitabine or fluorouracil |
| US6613083B2 (en) | 2001-05-02 | 2003-09-02 | Eckhard Alt | Stent device and method |
| US20020198137A1 (en) * | 2001-06-01 | 2002-12-26 | Wyeth | Antineoplastic combinations |
| UA77200C2 (en) | 2001-08-07 | 2006-11-15 | Wyeth Corp | Antineoplastic combination of cci-779 and bkb-569 |
| CA2455311A1 (en) * | 2001-08-22 | 2003-03-06 | Wyeth | Rapamycin dialdehydes |
| EP1419154B1 (en) | 2001-08-22 | 2005-10-05 | Wyeth | Rapamycin 29-enols |
| US6939376B2 (en) * | 2001-11-05 | 2005-09-06 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
| US7682387B2 (en) * | 2002-04-24 | 2010-03-23 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
| AU2003202495B2 (en) * | 2002-01-11 | 2006-07-20 | Sankyo Company, Limited | Amino alcohol derivative or phosphonic acid derivative and medicinal composition containing these |
| DK1478648T3 (en) | 2002-02-01 | 2014-07-28 | Ariad Pharma Inc | PHOSPHORUS RELATIONS AND APPLICATIONS THEREOF |
| SI1485127T1 (en) * | 2002-02-25 | 2011-09-30 | Elan Pharm Inc | Administration of agents for the treatment of inflammation |
| US20040024450A1 (en) * | 2002-04-24 | 2004-02-05 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
| JP5227492B2 (en) | 2002-05-16 | 2013-07-03 | ノバルティス アーゲー | Use of EDG receptor binding agents in cancer |
| NZ554740A (en) * | 2002-05-24 | 2009-01-31 | Schering Corp | Neutralizing human anti-IGFR antibody |
| CA2486853A1 (en) | 2002-05-27 | 2003-12-04 | Novartis Ag | Bis-aromatic alkanols |
| WO2003106622A2 (en) * | 2002-05-30 | 2003-12-24 | The Children's Hospital Of Philadelphia | Methods for treatment of acute lymphocytic leukemia |
| US7300942B2 (en) | 2002-07-16 | 2007-11-27 | Biotica Technology Limited | Production of polyketides and other natural products |
| AR040693A1 (en) | 2002-07-30 | 2005-04-13 | Wyeth Corp | PARENTERAL FORMULATIONS |
| WO2004014222A2 (en) * | 2002-08-12 | 2004-02-19 | The Regents Of The University Of Michigan | Diagnosis and treatment of tuberous sclerosis |
| KR20050084559A (en) * | 2002-09-17 | 2005-08-26 | 와이어쓰 | Oral formulations |
| AU2003275190A1 (en) * | 2002-09-18 | 2004-04-08 | Medtronic Vascular, Inc. | Controllable drug releasing gradient coatings for medical devices |
| CN1708293A (en) | 2002-09-24 | 2005-12-14 | 诺瓦提斯公司 | Sphingosine-1-phosphate receptor agonists for the treatment of demyelinating diseases |
| WO2004060283A2 (en) | 2002-12-16 | 2004-07-22 | Nitromed, Inc. | Nitrosated and nitrosylated rapamycin compounds, compositions and methods of use |
| EP2517730A3 (en) * | 2003-01-27 | 2013-01-02 | Endocyte, Inc. | Vitamin receptor binding drug delivery conjugates |
| AR042938A1 (en) * | 2003-02-06 | 2005-07-06 | Wyeth Corp | USE OF CCI-779 IN THE TREATMENT OF HEPATIC FIBROSIS |
| UA83484C2 (en) * | 2003-03-05 | 2008-07-25 | Уайт | Method for treating breast cancer using combination of rapamycin derivative and aromatase inhibitor, pharmaceutical composition |
| UA80756C2 (en) * | 2003-04-22 | 2007-10-25 | Wyeth Corp | Antineoplastic combinations of rapomicine and interferon alfa (?) in the treatment of neoplasms |
| BRPI0409681A (en) * | 2003-04-23 | 2006-04-18 | Wyeth Corp | water soluble wortmannin derivatives |
| US7160867B2 (en) * | 2003-05-16 | 2007-01-09 | Isotechnika, Inc. | Rapamycin carbohydrate derivatives |
| ES2467160T3 (en) | 2003-05-19 | 2014-06-12 | Irm Llc | Immunosuppressive compounds and compositions |
| MY150088A (en) | 2003-05-19 | 2013-11-29 | Irm Llc | Immunosuppressant compounds and compositions |
| TW200500065A (en) * | 2003-05-21 | 2005-01-01 | Wyeth Corp | Antiarthritic combinations |
| CA2526120A1 (en) | 2003-06-03 | 2005-02-24 | Cell Genesys, Inc. | Compositions and methods for enhanced expression of recombinant polypeptides from a single vector using a peptide cleavage site |
| US20050136035A1 (en) * | 2003-06-03 | 2005-06-23 | Derek Ko | Cell specific replication-competent viral vectors comprising a self processing peptide cleavage site |
| CA2528173A1 (en) * | 2003-07-16 | 2005-02-03 | Wyeth | Cci-779 isomer c |
| JP2007500191A (en) * | 2003-07-25 | 2007-01-11 | ワイス | Freeze-dried formulation of CCI-779 |
| ATE365169T1 (en) * | 2003-08-07 | 2007-07-15 | Wyeth Corp | REGIOSELECTIVE SYNTHESIS OF CCI-779 |
| KR20060090803A (en) * | 2003-09-03 | 2006-08-16 | 와이어쓰 | Amorphous rapamycin 42-ester with 3-hydroxy-2- (hydroxymethyl) -2-methylpropionic acid and pharmaceutical composition containing the same |
| AR046194A1 (en) | 2003-11-04 | 2005-11-30 | Mayo Foundation | TREATMENT METHOD OF MANTO CELL LYMPHOMA |
| US7220755B2 (en) | 2003-11-12 | 2007-05-22 | Biosensors International Group, Ltd. | 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same |
| TW200526684A (en) * | 2003-11-21 | 2005-08-16 | Schering Corp | Anti-IGFR1 antibody therapeutic combinations |
| EP1701698B1 (en) * | 2004-01-08 | 2008-01-16 | Wyeth a Corporation of the State of Delaware | Directly compressible pharmaceutical composition for the oral admimistration of cci-779 |
| AR047988A1 (en) * | 2004-03-11 | 2006-03-15 | Wyeth Corp | ANTI -OPLASTIC COMBINATIONS OF CCI-779 AND RITUXIMAB |
| BRPI0509580A (en) * | 2004-03-30 | 2007-11-27 | Pfizer Prod Inc | signal transduction inhibitor combinations |
| WO2005105811A1 (en) * | 2004-04-14 | 2005-11-10 | Wyeth | Regiospecific synthesis of rapamycin 42-ester derivatives |
| BRPI0509854A (en) | 2004-04-14 | 2007-10-23 | Wyeth Corp | compound, methods for the regiospecific preparation of a rapamycin 42-ester or proline rapamycin 42-ester and for the preparation of a proline rapamycin 42-ester, composition, and, product |
| CA2562962A1 (en) * | 2004-04-14 | 2005-11-10 | Wyeth | Process for preparing rapamycin 42-esters and fk-506 32-esters with dicarboxylic acid, precursors for rapamycin conjugates and antibodies |
| AU2005238493A1 (en) * | 2004-04-27 | 2005-11-10 | Wyeth | Labeling of rapamycin using rapamycin-specific methylases |
| US20110104186A1 (en) | 2004-06-24 | 2011-05-05 | Nicholas Valiante | Small molecule immunopotentiators and assays for their detection |
| EP1765846A4 (en) * | 2004-07-13 | 2010-02-17 | Cell Genesys Inc | Aav vector compositions and methods for enhanced expression of immunoglobulins using the same |
| CN101098854B (en) | 2004-07-23 | 2012-12-05 | 恩多塞特公司 | Bivalent linkers and conjugates thereof |
| MX2007001676A (en) * | 2004-08-10 | 2007-04-12 | Wyeth Corp | Cci-779 derivatives and methods of making same. |
| GB0417852D0 (en) | 2004-08-11 | 2004-09-15 | Biotica Tech Ltd | Production of polyketides and other natural products |
| US7901451B2 (en) | 2004-09-24 | 2011-03-08 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
| MX2007003789A (en) * | 2004-10-04 | 2007-07-20 | Qlt Usa Inc | Ocular delivery of polymeric delivery formulations. |
| US8313763B2 (en) * | 2004-10-04 | 2012-11-20 | Tolmar Therapeutics, Inc. | Sustained delivery formulations of rapamycin compounds |
| MX2007005153A (en) * | 2004-10-28 | 2007-06-26 | Wyeth Corp | Use of an mtor inhibitor in treatment of uterine leiomyoma. |
| US20080221660A1 (en) * | 2004-10-28 | 2008-09-11 | Medtronic Vascular, Inc. | Platelet Gel for Treatment of Aneurysms |
| US8021849B2 (en) * | 2004-11-05 | 2011-09-20 | Siemens Healthcare Diagnostics Inc. | Methods and kits for the determination of sirolimus in a sample |
| CN113952338A (en) * | 2005-02-03 | 2022-01-21 | 综合医院公司 | Methods of treating gefitinib resistant cancers |
| CA2595766A1 (en) * | 2005-02-09 | 2006-08-17 | Wyeth | Cci-779 polymorph and use thereof |
| EP1855656A2 (en) * | 2005-02-15 | 2007-11-21 | Wyeth | Orally bioavailable cci-779 tablet formulations |
| GB0503936D0 (en) * | 2005-02-25 | 2005-04-06 | San Raffaele Centro Fond | Method |
| US7384953B2 (en) * | 2005-03-02 | 2008-06-10 | Wyeth | Purification of rapamycin |
| CN101133066A (en) * | 2005-03-02 | 2008-02-27 | 惠氏公司 | Recovery of CCI-779 from Mother Liquor |
| GB0504544D0 (en) | 2005-03-04 | 2005-04-13 | Novartis Ag | Organic compounds |
| GB0504994D0 (en) * | 2005-03-11 | 2005-04-20 | Biotica Tech Ltd | Novel compounds |
| WO2006095173A2 (en) | 2005-03-11 | 2006-09-14 | Biotica Technology Limited | Medical uses of 39-desmethoxyrapamycin and analogues thereof |
| US20100061994A1 (en) * | 2005-03-11 | 2010-03-11 | Rose Mary Sheridan | Medical uses of 39-desmethoxyrapamycin and analogues thereof |
| US8044200B2 (en) * | 2005-03-16 | 2011-10-25 | Endocyte, Inc. | Synthesis and purification of pteroic acid and conjugates thereof |
| NZ561648A (en) * | 2005-04-15 | 2009-11-27 | Schering Corp | Methods and composition of IGF1R inhibitors for treating or preventing cancer |
| US7189582B2 (en) * | 2005-04-27 | 2007-03-13 | Dade Behring Inc. | Compositions and methods for detection of sirolimus |
| US20070004767A1 (en) * | 2005-06-30 | 2007-01-04 | Gutmann David H | Methods for treating neurofibromatosis 1 |
| US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
| WO2007011707A2 (en) | 2005-07-15 | 2007-01-25 | Micell Technologies, Inc. | Polymer coatings containing drug powder of controlled morphology |
| US7632509B2 (en) * | 2005-07-19 | 2009-12-15 | Biosante Pharmaceuticals, Inc. | Methods to express recombinant proteins from lentiviral vectors |
| EP2586798A3 (en) | 2005-07-25 | 2013-08-07 | Emergent Product Development Seattle, LLC | B-cell reduction using CD37-specific and CD20-specific binding molecules |
| AU2006279304A1 (en) | 2005-08-19 | 2007-02-22 | Endocyte, Inc. | Multi-drug ligand conjugates |
| EP1933845A2 (en) | 2005-08-25 | 2008-06-25 | Medtronic Vascular, Inc. | Nitric oxide-releasing biodegradable polymers useful as medical devices and coatings therefore |
| EP1919954B1 (en) | 2005-08-30 | 2016-10-19 | University of Miami | Immunomodulating tumor necrosis factor receptor 25 (tnfr25) agonists, antagonists and immunotoxins |
| RU2451524C2 (en) | 2005-11-04 | 2012-05-27 | Вайет | Anti-tumour combinations mtor inhibitors, herceptin and/or hki-272 |
| US7538119B2 (en) * | 2005-11-04 | 2009-05-26 | Wyeth | 41-Methoxy isotope labeled rapamycin 42-ester |
| TW200732342A (en) * | 2005-12-07 | 2007-09-01 | Wyeth Corp | Process for the preparation of purified crystalline CCI-779 |
| TW200804399A (en) * | 2005-12-07 | 2008-01-16 | Wyeth Corp | Scalable process for the preparation of a rapamycin 42-ester from a rapamycin 42-ester boronate |
| AR058283A1 (en) * | 2005-12-07 | 2008-01-30 | Wyeth Corp | METHODS FOR THE PREPARATION OF CRYSTALLINE RAPAMYCIN AND FOR THE MEASUREMENT OF CRYSTALINITY OF RAPAMYCIN COMPOUNDS USING DIFFERENTIAL BARRIDO CALORIMETRY |
| HUE037890T2 (en) * | 2006-02-02 | 2018-09-28 | Novartis Ag | Tuberous sclerosis treatment |
| US20070203169A1 (en) * | 2006-02-28 | 2007-08-30 | Zhao Jonathon Z | Isomers and 42-epimers of rapamycin ester analogs, methods of making and using the same |
| PE20080138A1 (en) * | 2006-03-07 | 2008-03-05 | Wyeth Corp | PROCESSES FOR PREPARING WATER-SOLUBLE POLYETHYLENE GLYCOL CONJUGATES OF MACROLID IMMUNOSUPPRESSORS |
| DE102006011507A1 (en) * | 2006-03-14 | 2007-09-20 | Lts Lohmann Therapie-Systeme Ag | Active substance-loaded nanoparticles based on hydrophilic proteins |
| US20070292922A1 (en) * | 2006-03-31 | 2007-12-20 | Cell Genesys, Inc. | Regulated expression of recombinant proteins from adeno-associated viral vectors |
| EP2944382A1 (en) | 2006-04-26 | 2015-11-18 | Micell Technologies, Inc. | Coatings containing multiple drugs |
| US8241619B2 (en) | 2006-05-15 | 2012-08-14 | Medtronic Vascular, Inc. | Hindered amine nitric oxide donating polymers for coating medical devices |
| GB0609962D0 (en) * | 2006-05-19 | 2006-06-28 | Biotica Tech Ltd | Novel compounds |
| GB0609963D0 (en) * | 2006-05-19 | 2006-06-28 | Biotica Tech Ltd | Novel compounds |
| CA2656112A1 (en) * | 2006-06-30 | 2008-05-08 | Hanje Chen | Bioresponsive polymers |
| US20080207671A1 (en) * | 2006-07-31 | 2008-08-28 | The Regents Of The University Of Michigan | Diagnosis and treatment of diseases arising from defects in the tuberous sclerosis pathway |
| EP2054061A4 (en) * | 2006-08-02 | 2009-09-02 | Ariad Pharma Inc | Combination therapy |
| US20100081681A1 (en) * | 2006-08-16 | 2010-04-01 | Blagosklonny Mikhail V | Methods and compositions for preventing or treating age-related diseases |
| US20080051691A1 (en) * | 2006-08-28 | 2008-02-28 | Wyeth | Implantable shunt or catheter enabling gradual delivery of therapeutic agents |
| EP2431036B1 (en) | 2006-09-13 | 2017-04-12 | Elixir Medical Corporation | Macrocyclic lactone compounds and methods for their use |
| TW200824713A (en) * | 2006-10-18 | 2008-06-16 | Wyeth Corp | Processes for the synthesis of individual isomers of mono-PEG CCI-779 |
| US20080097591A1 (en) * | 2006-10-20 | 2008-04-24 | Biosensors International Group | Drug-delivery endovascular stent and method of use |
| US8067055B2 (en) | 2006-10-20 | 2011-11-29 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method of use |
| US7691402B2 (en) * | 2006-11-06 | 2010-04-06 | Medtronic Vascular, Inc. | Block biodegradable copolymers for medical devices |
| CN101677977A (en) * | 2006-11-10 | 2010-03-24 | 欣达克斯制药公司 | Combination of ER(alpha)+ ligands and histone deacetylase inhibitors for the treatment of cancer |
| US8414525B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
| US9700704B2 (en) | 2006-11-20 | 2017-07-11 | Lutonix, Inc. | Drug releasing coatings for balloon catheters |
| US8414526B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids |
| US9737640B2 (en) | 2006-11-20 | 2017-08-22 | Lutonix, Inc. | Drug releasing coatings for medical devices |
| US8425459B2 (en) | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent |
| US8414910B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
| US20080175887A1 (en) | 2006-11-20 | 2008-07-24 | Lixiao Wang | Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs |
| US20080276935A1 (en) | 2006-11-20 | 2008-11-13 | Lixiao Wang | Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs |
| US8998846B2 (en) | 2006-11-20 | 2015-04-07 | Lutonix, Inc. | Drug releasing coatings for balloon catheters |
| CN101522691B (en) * | 2006-11-27 | 2012-08-22 | 泰尔茂株式会社 | Process for producing o-alkylated rapamycin derivative, and o-alkylated rapamycin derivative |
| US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
| EP2111184B1 (en) | 2007-01-08 | 2018-07-25 | Micell Technologies, Inc. | Stents having biodegradable layers |
| US7753962B2 (en) * | 2007-01-30 | 2010-07-13 | Medtronic Vascular, Inc. | Textured medical devices |
| US20080188461A1 (en) * | 2007-02-01 | 2008-08-07 | Regents Of The University Of Michigan | Compositions and methods for detecting, preventing and treating seizures and seizure related disorders |
| WO2008101231A2 (en) | 2007-02-16 | 2008-08-21 | Endocyte, Inc. | Methods and compositions for treating and diagnosing kidney disease |
| US7815927B2 (en) * | 2007-03-08 | 2010-10-19 | Medtronic Vascular, Inc. | Terpolymers for controlled release of bioactive agents from implantable medical devices |
| US7811600B2 (en) * | 2007-03-08 | 2010-10-12 | Medtronic Vascular, Inc. | Nitric oxide donating medical devices and methods of making same |
| EP2139523B1 (en) | 2007-03-14 | 2014-10-22 | Endocyte, Inc. | Conjugates of folate and tubulysin for targeted drug delivery |
| TW200845960A (en) * | 2007-04-05 | 2008-12-01 | Wyeth Corp | Wortmannin-rapalog conjugate and uses thereof |
| US20080245375A1 (en) * | 2007-04-05 | 2008-10-09 | Medtronic Vascular, Inc. | Benign Prostatic Hyperplasia Treatments |
| TW200901989A (en) | 2007-04-10 | 2009-01-16 | Wyeth Corp | Anti-tumor activity of CCI-779 in papillary renal cell cancer |
| US9433516B2 (en) | 2007-04-17 | 2016-09-06 | Micell Technologies, Inc. | Stents having controlled elution |
| US20080306581A1 (en) * | 2007-06-07 | 2008-12-11 | Medtronic Vascular, Inc. | Streamlined Stents |
| AU2008268432B2 (en) | 2007-06-25 | 2015-01-15 | Endocyte, Inc. | Conjugates containing hydrophilic spacer linkers |
| US9877965B2 (en) | 2007-06-25 | 2018-01-30 | Endocyte, Inc. | Vitamin receptor drug delivery conjugates for treating inflammation |
| US8852620B2 (en) * | 2007-07-20 | 2014-10-07 | Medtronic Vascular, Inc. | Medical devices comprising polymeric drug delivery systems with drug solubility gradients |
| US8273828B2 (en) * | 2007-07-24 | 2012-09-25 | Medtronic Vascular, Inc. | Methods for introducing reactive secondary amines pendant to polymers backbones that are useful for diazeniumdiolation |
| US20090043378A1 (en) * | 2007-08-10 | 2009-02-12 | Medtronic Vascular, Inc. | Biocompatible Polymer System for Extended Drug Release |
| US20090076060A1 (en) * | 2007-09-17 | 2009-03-19 | Protia, Llc | Deuterium-enriched temsirolimus |
| KR100930167B1 (en) * | 2007-09-19 | 2009-12-07 | 삼성전기주식회사 | Ultra wide angle optical system |
| EP2203498B1 (en) | 2007-10-05 | 2017-12-06 | Interface Biologics Inc. | Oligofluorinated cross-linked polymers and uses thereof |
| US8022216B2 (en) | 2007-10-17 | 2011-09-20 | Wyeth Llc | Maleate salts of (E)-N-{4-[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof |
| ES2623456T3 (en) | 2007-10-19 | 2017-07-11 | Interface Biologics Inc. | Self-removing coatings |
| US20090131367A1 (en) * | 2007-11-19 | 2009-05-21 | The Regents Of The University Of Colorado | Combinations of HDAC Inhibitors and Proteasome Inhibitors |
| EP2245165A4 (en) * | 2008-01-11 | 2011-06-01 | Massachusetts Eye & Ear Infirm | Conditional-stop dimerizable caspase transgenic animals |
| US20090222088A1 (en) * | 2008-02-29 | 2009-09-03 | Medtronic Vascular, Inc. | Secondary Amine Containing Nitric Oxide Releasing Polymer Composition |
| US20100048914A1 (en) | 2008-03-14 | 2010-02-25 | Angela Brodie | Novel C-17-Heteroaryl Steroidal Cyp17 Inhibitors/Antiandrogens, In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity |
| US20090232863A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Biodegradable Carbon Diazeniumdiolate Based Nitric Oxide Donating Polymers |
| US20090232868A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Nitric Oxide Releasing Polymer Composition |
| US20090240323A1 (en) * | 2008-03-20 | 2009-09-24 | Medtronic Vascular, Inc. | Controlled Degradation of Magnesium Stents |
| CA2719134C (en) | 2008-03-21 | 2015-06-30 | The University Of Chicago | Treatment with opioid antagonists and mtor inhibitors |
| US20090253733A1 (en) * | 2008-04-02 | 2009-10-08 | Biointeractions, Ltd. | Rapamycin carbonate esters |
| RU2531754C2 (en) | 2008-04-11 | 2014-10-27 | ЭМЕРДЖЕНТ ПРОДАКТ ДИВЕЛОПМЕНТ СИЭТЛ,ЭлЭлСи,US | Immunotherapeutic agent combined with cd37, and its combination with bifunctional chemotherapeutic agent |
| WO2009131631A1 (en) * | 2008-04-14 | 2009-10-29 | Poniard Pharmaceuticals, Inc. | Rapamycin analogs as anti-cancer agents |
| MX350637B (en) | 2008-04-17 | 2017-09-11 | Micell Technologies Inc | Stents having bioabsorbable layers. |
| US20090269480A1 (en) * | 2008-04-24 | 2009-10-29 | Medtronic Vascular, Inc. | Supercritical Fluid Loading of Porous Medical Devices With Bioactive Agents |
| US20090297576A1 (en) * | 2008-06-02 | 2009-12-03 | Medtronic Vascular, Inc. | Local Delivery of PAR-1 Antagonists to Treat Vascular Complications |
| US20090299464A1 (en) * | 2008-06-02 | 2009-12-03 | Medtronic Vascular, Inc. | Reducing Bioabsorbtion Time of Polymer Coated Implantable Medical Devices Using Polymer Blends |
| PL2310011T3 (en) | 2008-06-17 | 2013-12-31 | Wyeth Llc | Antineoplastic combinations containing hki-272 and vinorelbine |
| KR20110020928A (en) | 2008-06-20 | 2011-03-03 | 노파르티스 아게 | Pediatric compositions for treating multiple sclerosis |
| JP2011528275A (en) | 2008-07-17 | 2011-11-17 | ミセル テクノロジーズ,インク. | Drug delivery medical device |
| WO2010024898A2 (en) | 2008-08-29 | 2010-03-04 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters |
| CN101676291B (en) | 2008-09-18 | 2012-05-09 | 上海海和药物研究开发有限公司 | Rapamycin carbonate analog, pharmaceutical composition thereof, and preparation method and uses thereof |
| EP2352459A4 (en) * | 2008-10-03 | 2013-09-25 | Elixir Medical Corp | Macrocyclic lactone compounds and methods for their use |
| US20100092534A1 (en) * | 2008-10-10 | 2010-04-15 | Medtronic Vascular, Inc. | Combination Local Delivery Using a Stent |
| US20100092535A1 (en) * | 2008-10-10 | 2010-04-15 | Medtronic Vascular, Inc. | Nanoporous Drug Delivery System |
| CN104042612A (en) | 2008-11-11 | 2014-09-17 | 得克萨斯大学体系董事会 | Inhibition Of Mammalian Target Of Rapamycin |
| US20100131001A1 (en) * | 2008-11-24 | 2010-05-27 | Medtronic Vascular, Inc. | Targeted Drug Delivery for Aneurysm Treatment |
| US20100131051A1 (en) * | 2008-11-24 | 2010-05-27 | Medtronic Vascular, Inc. | Systems and Methods for Treatment of Aneurysms Using Zinc Chelator(s) |
| US20100152832A1 (en) * | 2008-12-12 | 2010-06-17 | Medtronic Vascular, Inc. | Apparatus and Methods for Treatment of Aneurysms With Fibrin Derived Peptide B-Beta |
| HUE034819T2 (en) | 2008-12-18 | 2018-02-28 | Novartis Ag | Hemifumarate salt of 1-[4-[1-(4-cyclohexyl-3 -trifluoromethyl-benzyloxyimino)-ethyl]-2-ethyl-benzyl]-azetidine-3-carboxylic acid for use in the treatment of lymphocyte mediated diseases |
| ES2531831T3 (en) | 2008-12-18 | 2015-03-20 | Novartis Ag | Polymorphic form of 1- (4- {1 - [(E) -4-cyclohexyl-3-trifluoromethyl-benzyloxyimino] -ethyl} -2-ethyl-benzyl) -azetidine-3-carboxylic acid |
| WO2010080455A1 (en) | 2008-12-18 | 2010-07-15 | Novartis Ag | New salts |
| US8158187B2 (en) * | 2008-12-19 | 2012-04-17 | Medtronic Vascular, Inc. | Dry diazeniumdiolation methods for producing nitric oxide releasing medical devices |
| US20100198338A1 (en) * | 2009-01-30 | 2010-08-05 | Medtronic Vascular, Inc., A Delaware Corporation | Hydrogen Sulfide Donating Polymers |
| EP3023433A1 (en) | 2009-02-05 | 2016-05-25 | Tokai Pharmaceuticals, Inc. | Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens |
| US20100227799A1 (en) * | 2009-03-09 | 2010-09-09 | Medtronic Vascular, Inc. | Simultaneous photodynamic therapy and photo induced polymerization |
| US9981072B2 (en) | 2009-04-01 | 2018-05-29 | Micell Technologies, Inc. | Coated stents |
| US8236341B2 (en) * | 2009-04-02 | 2012-08-07 | Medtronic Vascular, Inc. | Poly(tetrafluoroethylene) polymer with nitric oxide donating surface |
| US20100256728A1 (en) * | 2009-04-07 | 2010-10-07 | Medtronic Vascular, Inc. | Semi-Permiable Biodegradable Stent Graft and Uses Thereof |
| US8709465B2 (en) * | 2009-04-13 | 2014-04-29 | Medtronic Vascular, Inc. | Diazeniumdiolated phosphorylcholine polymers for nitric oxide release |
| CA2758297A1 (en) | 2009-04-16 | 2010-10-21 | Merck Sharp & Dohme Corp. | Compositions and methods for treating cancer |
| WO2010132233A1 (en) | 2009-05-13 | 2010-11-18 | The Trustees Of The University Of Pennsylvania | Combination antineoplastic therapy |
| EP2453834A4 (en) | 2009-07-16 | 2014-04-16 | Micell Technologies Inc | Drug delivery medical device |
| CN102770455B (en) | 2009-08-03 | 2017-02-08 | 迈阿密大学 | Method for expanding regulatory T cells in vivo |
| EP2480557A2 (en) | 2009-09-25 | 2012-08-01 | Cadila Healthcare Limited | Process for the preparation of rapamycin derivatives |
| JP5581390B2 (en) | 2009-10-23 | 2014-08-27 | イーライ リリー アンド カンパニー | AKT inhibitor |
| WO2011053938A1 (en) | 2009-10-30 | 2011-05-05 | Ariad Pharmaceuticals, Inc. | Methods and compositions for treating cancer |
| US9283211B1 (en) | 2009-11-11 | 2016-03-15 | Rapamycin Holdings, Llc | Oral rapamycin preparation and use for stomatitis |
| WO2015161139A1 (en) | 2014-04-16 | 2015-10-22 | Rapamycin Holdings, Llc | Oral rapamycin preparation and use for stomatitis |
| WO2011072398A1 (en) | 2009-12-18 | 2011-06-23 | Interface Biologics, Inc. | Local delivery of drugs from self assembled coatings |
| US8182830B2 (en) * | 2010-01-05 | 2012-05-22 | Medtronic Vascular, Inc. | Hydrogen sulfide generating polymers |
| WO2011092564A2 (en) | 2010-01-28 | 2011-08-04 | Fresenius Kabi Oncology Ltd | Process for the preparation of temsirolimus and its intermediates |
| EP2531140B1 (en) | 2010-02-02 | 2017-11-01 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
| CA2792258A1 (en) | 2010-03-05 | 2011-09-09 | President And Fellows Of Harvard College | Induced dendritic cell compositions and uses thereof |
| WO2011133655A1 (en) | 2010-04-22 | 2011-10-27 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
| MX342590B (en) | 2010-04-27 | 2016-10-05 | Roche Glycart Ag | Combination therapy of an afucosylated cd20 antibody with a mtor inhibitor. |
| AU2011260016B2 (en) | 2010-06-02 | 2013-08-22 | Fresenius Kabi Oncology Ltd. | Stable pharmaceutical compositions of Rapamycin esters |
| EP2593039B1 (en) | 2010-07-16 | 2022-11-30 | Micell Technologies, Inc. | Drug delivery medical device |
| EP2601201B1 (en) * | 2010-08-04 | 2014-09-24 | Meril Life Sciences Pvt. Ltd. | Process for preparation of novel 42-0-(heteroalkoxyalkyl) rapamycin compounds with anti-proliferative properties" |
| US8883801B2 (en) | 2010-08-23 | 2014-11-11 | Merck Sharp & Dohme Corp. | Substituted pyrazolo[1,5-a]pyrimidines as mTOR inhibitors |
| CN103327976A (en) | 2010-11-18 | 2013-09-25 | 辛塔医药品有限公司 | Preselection of subjects for therapeutic treatment based on hypoxic status |
| WO2012068487A1 (en) | 2010-11-18 | 2012-05-24 | Synta Pharmaceuticals Corp. | Preselection of subjects for therapeutic treatment with oxygen sensitive agents based on hypoxic status |
| ES2423798T3 (en) | 2010-11-19 | 2013-09-24 | Universitätsklinikum Freiburg | Dissolvable PEG hydrogels sensitive to biofunctionalized stimuli |
| CN102020662B (en) | 2011-01-07 | 2013-02-13 | 天津市炜杰科技有限公司 | Method for preparing torisel |
| CA2827673C (en) | 2011-02-18 | 2020-10-27 | Novartis Pharma Ag | Mtor/jak inhibitor combination therapy |
| MX2013011412A (en) | 2011-04-01 | 2014-04-30 | Sandoz Ag | Regioselective acylation of rapamycin at the c-42 position. |
| JP2014514321A (en) | 2011-04-21 | 2014-06-19 | メルク・シャープ・アンド・ドーム・コーポレーション | Insulin-like growth factor 1 receptor inhibitor |
| EP2702173A1 (en) | 2011-04-25 | 2014-03-05 | OSI Pharmaceuticals, LLC | Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment |
| WO2012170384A1 (en) | 2011-06-06 | 2012-12-13 | Chevron Phillips Chemical Company Lp | Use of metallocene compounds for cancer treatment |
| EP2532740A1 (en) | 2011-06-11 | 2012-12-12 | Michael Schmück | Antigen-specific CD4+ and CD8+ central-memory T cell preparations for adoptive T cell therapy |
| US10117972B2 (en) | 2011-07-15 | 2018-11-06 | Micell Technologies, Inc. | Drug delivery medical device |
| WO2013013708A1 (en) | 2011-07-26 | 2013-01-31 | Fundació Institut D'investigació Biomèdica De Bellvitge | Treatment of acute rejection in renal transplant |
| US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
| CN102424829B (en) * | 2011-10-26 | 2013-10-16 | 苏州汉酶生物技术有限公司 | Method for synthesizing temsirolimus through enzyme catalysis |
| EP2790723A1 (en) | 2011-12-16 | 2014-10-22 | Pfizer Inc | Combination of inotuzumab ozogamicin and torisel for the treatment of cancer |
| GB201122305D0 (en) | 2011-12-23 | 2012-02-01 | Biotica Tech Ltd | Novel compound |
| WO2013126797A1 (en) | 2012-02-24 | 2013-08-29 | Purdue Research Foundation | Cholecystokinin b receptor targeting for imaging and therapy |
| US20140080175A1 (en) | 2012-03-29 | 2014-03-20 | Endocyte, Inc. | Processes for preparing tubulysin derivatives and conjugates thereof |
| CN102796115B (en) * | 2012-05-25 | 2015-07-15 | 上海现代制药股份有限公司 | Method for preparing temsirolimus |
| US9750728B2 (en) | 2012-09-29 | 2017-09-05 | Targeted Therapeutics, Llc | Method and pharmaceutical composition for inhibiting PI3K/AKT/mTOR signaling pathway |
| CN103705925B (en) | 2012-09-29 | 2018-03-30 | 段磊 | Pharmaceutical composition for inhibiting PI3K/AKT/mTOR signaling pathway |
| CA2926747A1 (en) | 2012-10-12 | 2014-04-17 | Arlan RICHARDSON | Use of mtor inhibitors to treat vascular cognitive impairment |
| MX2015004757A (en) | 2012-10-16 | 2015-07-17 | Endocyte Inc | Drug delivery conjugates containing unnatural amino acids and methods for using. |
| WO2014068070A1 (en) | 2012-10-31 | 2014-05-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for preventing antiphospholipid syndrome (aps) |
| CA2897826C (en) | 2013-01-09 | 2022-09-27 | Taylor H. Schreiber | Compositions and methods for the regulation of t regulatory cells using tl1a-ig fusion protein |
| EP3881868B1 (en) | 2013-02-15 | 2023-09-27 | The Regents Of The University Of California | Chimeric antigen receptor and methods of use thereof |
| JP6330024B2 (en) | 2013-03-12 | 2018-05-23 | マイセル・テクノロジーズ,インコーポレイテッド | Bioabsorbable biomedical implant |
| EP2968281B1 (en) | 2013-03-13 | 2020-08-05 | The Board of Regents of The University of Texas System | Mtor inhibitors for prevention of intestinal polyp growth |
| AU2014236135A1 (en) | 2013-03-14 | 2015-09-10 | Thomas Jefferson University | Androgen receptor down-regulating agents and uses thereof |
| WO2014182635A1 (en) | 2013-05-08 | 2014-11-13 | Baldwin Megan E | Biomarkers for age-related macular degeneration (amd) |
| KR20180059584A (en) | 2013-05-15 | 2018-06-04 | 미셀 테크놀로지즈, 인코포레이티드 | Bioabsorbable biomedical implants |
| CN103421023B (en) * | 2013-07-30 | 2015-09-23 | 福建省微生物研究所 | A kind of synthesis technique of CCI-779 |
| BR112016002970A2 (en) | 2013-08-12 | 2017-09-12 | Tokai Pharmaceuticals Inc | biomarkers for the treatment of neoplastic disorders using androgen-directed therapies |
| EP2878312A1 (en) | 2013-12-02 | 2015-06-03 | Albert-Ludwigs-Universität Freiburg | Reversible PEGylation of nanocarriers |
| US9700544B2 (en) | 2013-12-31 | 2017-07-11 | Neal K Vail | Oral rapamycin nanoparticle preparations |
| CA2933908C (en) | 2013-12-31 | 2024-01-30 | Rapamycin Holdings, Llc | Oral rapamycin nanoparticle preparations and use |
| EP3094314B1 (en) | 2014-01-16 | 2021-06-23 | MUSC Foundation For Research Development | Targeted nanocarriers for the administration of immunosuppressive agents |
| CA2943609A1 (en) | 2014-03-27 | 2015-10-01 | The Brigham And Women's Hospital, Inc. | Metabolically-activated drug conjugates to overcome resistance in cancer therapy |
| JP2017518307A (en) | 2014-06-02 | 2017-07-06 | チルドレンズ メディカル センター コーポレーション | Methods and compositions for immunomodulation |
| CN104086564B (en) * | 2014-07-30 | 2019-02-05 | 江苏奥赛康药业股份有限公司 | A kind of preparation method of high-purity tamiros |
| EP3193902A4 (en) | 2014-09-11 | 2018-03-28 | The Regents of The University of California | mTORC1 INHIBITORS |
| EP2997977A1 (en) | 2014-09-19 | 2016-03-23 | Fundación de la Comunidad Valenciana Centro de Investigación Principe Felipe | Specific mtor inhibitors in the treatment of x-linked adrenoleukodystrophy |
| US10377818B2 (en) | 2015-01-30 | 2019-08-13 | The Board Of Trustees Of The Leland Stanford Junior University | Method of treating glioma |
| US10392607B2 (en) | 2015-06-03 | 2019-08-27 | The Regents Of The University Of California | Cas9 variants and methods of use thereof |
| WO2017029391A1 (en) | 2015-08-20 | 2017-02-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method for treating cancer |
| WO2020047527A2 (en) | 2018-09-02 | 2020-03-05 | F1 Bioventures, Llc | Methods and compositions for genetically modifying lymphocytes in blood or in enriched pbmcs |
| EP3515452B1 (en) | 2016-09-22 | 2023-09-13 | Mercator Medsystems, Inc. | Treatment of restenosis using temsirolimus |
| CN110603038A (en) | 2017-02-10 | 2019-12-20 | 塔姆山治疗公司 | Rapamycin analogs |
| EP3589733A1 (en) | 2017-03-03 | 2020-01-08 | F1 Oncology, Inc. | Methods and compositions for transducing and expanding lymphocytes and regulating the activity thereof |
| EP3624863B1 (en) | 2017-05-15 | 2021-04-14 | C.R. Bard, Inc. | Medical device with drug-eluting coating and intermediate layer |
| CN108948045A (en) * | 2017-05-20 | 2018-12-07 | 鲁南制药集团股份有限公司 | A kind of preparation method of tesirolimus |
| AU2018272061A1 (en) | 2017-05-26 | 2020-01-02 | Mercator Medsystems, Inc. | Combination therapy for treatment of restenosis |
| EP3644997A1 (en) | 2017-06-26 | 2020-05-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of olmsted syndrome |
| JP2020527044A (en) | 2017-07-13 | 2020-09-03 | アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) | Methods for enhancing the growth and immunosuppressive capacity of the CD8 + CD45RCLOW / -Treg population |
| AR112834A1 (en) | 2017-09-26 | 2019-12-18 | Novartis Ag | RAPAMYCIN DERIVATIVES |
| CN212631328U (en) | 2018-03-14 | 2021-03-02 | 墨卡托医疗系统公司 | Medical Devices for Local Drug Delivery |
| EP4234031A3 (en) | 2018-05-01 | 2024-02-28 | Revolution Medicines, Inc. | C40-, c28-, and c-32-linked rapamycin analogs as mtor inhibitors |
| EP3788050B1 (en) | 2018-05-01 | 2024-08-28 | Revolution Medicines, Inc. | C26-linked rapamycin analogs as mtor inhibitors |
| WO2019222843A1 (en) | 2018-05-22 | 2019-11-28 | Interface Biologics, Inc. | Compositions and methods for delivering drugs to a vessel wall |
| JP2022510573A (en) | 2018-07-23 | 2022-01-27 | エンクリアー セラピーズ, インク. | How to treat neuropathy |
| EP3826650A4 (en) | 2018-07-23 | 2022-07-27 | Enclear Therapies, Inc. | METHODS OF TREATING NEUROLOGICAL DISORDERS |
| EP3849545A1 (en) | 2018-09-10 | 2021-07-21 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods for the treatment of neurofibromatosis |
| US20220041687A1 (en) | 2018-10-05 | 2022-02-10 | St. Anna Kinderkrebsforschung | A group of chimeric antigen receptors (cars) |
| EP3632461A1 (en) | 2018-10-05 | 2020-04-08 | St. Anna Kinderkrebsforschung | A group of chimeric antigen receptors (cars) |
| KR20210075117A (en) | 2018-10-05 | 2021-06-22 | 세인트 안나 킨더크렙스포르슝 | Chimeric antigen receptor (CAR) group |
| EP3632460A1 (en) | 2018-10-05 | 2020-04-08 | St. Anna Kinderkrebsforschung | A group of chimeric antigen receptors (cars) |
| EP3880266B1 (en) | 2018-11-14 | 2025-05-07 | Lutonix, Inc. | Medical device with drug-eluting coating on modified device surface |
| SI3898637T1 (en) | 2018-12-18 | 2025-04-30 | Novartis Ag | Rapamycin derivatives |
| AU2019407426A1 (en) | 2018-12-21 | 2021-07-22 | Daiichi Sankyo Company, Limited | Combination of antibody-drug conjugate and kinase inhibitor |
| EP3952937A1 (en) | 2019-04-08 | 2022-02-16 | Bard Peripheral Vascular, Inc. | Medical device with drug-eluting coating on modified device surface |
| KR20220011123A (en) | 2019-04-11 | 2022-01-27 | 엔클리어 테라피스, 인크. | Cerebrospinal fluid improvement method and device and system therefor |
| EP3993785A4 (en) | 2019-07-07 | 2023-08-02 | Olema Pharmaceuticals, Inc. | Regimens of estrogen receptor antagonists |
| CN113372359A (en) * | 2020-03-10 | 2021-09-10 | 鲁南制药集团股份有限公司 | Preparation method of temsirolimus |
| EP4221801A4 (en) | 2020-09-29 | 2024-11-06 | Enclear Therapies, Inc. | METHOD AND SYSTEM FOR MANAGING SUBARACHNOID FLUID |
| WO2022098642A1 (en) | 2020-11-03 | 2022-05-12 | Rdiscovery, LLC | Therapies for treatment of cancer and phagocytosis-deficiency related diseases |
| EP4370160A1 (en) | 2021-07-15 | 2024-05-22 | President And Fellows Of Harvard College | Compositions and methods relating to cells with adhered particles |
| AU2023275778A1 (en) | 2022-05-25 | 2024-12-12 | Revolution Medicines, Inc. | Methods of treating cancer with an mtor inhibitor |
| JP2025521677A (en) | 2022-07-06 | 2025-07-10 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods for Treating Proliferative Glomerulonephritis - Patent application |
| EP4565217A1 (en) | 2022-08-04 | 2025-06-11 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of lymphoproliferative disorders |
| WO2024100236A1 (en) | 2022-11-11 | 2024-05-16 | Astrazeneca Ab | Combination therapies for the treatment of cancer |
Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3929992A (en) | 1972-09-29 | 1975-12-30 | Ayerst Mckenna & Harrison | Rapamycin and process of preparation |
| US3993749A (en) | 1974-04-12 | 1976-11-23 | Ayerst Mckenna And Harrison Ltd. | Rapamycin and process of preparation |
| US4316885A (en) | 1980-08-25 | 1982-02-23 | Ayerst, Mckenna And Harrison, Inc. | Acyl derivatives of rapamycin |
| US4375464A (en) | 1981-11-19 | 1983-03-01 | Ayerst, Mckenna & Harrison Inc. | Antibiotic AY24,668 and process of preparation |
| US4401653A (en) | 1981-03-09 | 1983-08-30 | Ayerst, Mckenna & Harrison Inc. | Combination of rapamycin and picibanil for the treatment of tumors |
| US4650803A (en) | 1985-12-06 | 1987-03-17 | University Of Kansas | Prodrugs of rapamycin |
| US4885171A (en) | 1978-11-03 | 1989-12-05 | American Home Products Corporation | Use of rapamycin in treatment of certain tumors |
| US5023263A (en) | 1990-08-09 | 1991-06-11 | American Home Products Corporation | 42-oxorapamycin |
| US5023262A (en) | 1990-08-14 | 1991-06-11 | American Home Products Corporation | Hydrogenated rapamycin derivatives |
| US5023264A (en) | 1990-07-16 | 1991-06-11 | American Home Products Corporation | Rapamycin oximes |
| US5078999A (en) | 1991-02-22 | 1992-01-07 | American Home Products Corporation | Method of treating systemic lupus erythematosus |
| US5080899A (en) | 1991-02-22 | 1992-01-14 | American Home Products Corporation | Method of treating pulmonary inflammation |
| US5091389A (en) | 1991-04-23 | 1992-02-25 | Merck & Co., Inc. | Lipophilic macrolide useful as an immunosuppressant |
| US5100899A (en) | 1989-06-06 | 1992-03-31 | Roy Calne | Methods of inhibiting transplant rejection in mammals using rapamycin and derivatives and prodrugs thereof |
| US5100883A (en) | 1991-04-08 | 1992-03-31 | American Home Products Corporation | Fluorinated esters of rapamycin |
| WO1992005179A1 (en) | 1990-09-19 | 1992-04-02 | American Home Products Corporation | Carboxylic acid esters of rapamycin |
| US5102876A (en) | 1991-05-07 | 1992-04-07 | American Home Products Corporation | Reduction products of rapamycin |
| US5118677A (en) | 1991-05-20 | 1992-06-02 | American Home Products Corporation | Amide esters of rapamycin |
| US5118678A (en) | 1991-04-17 | 1992-06-02 | American Home Products Corporation | Carbamates of rapamycin |
| US5120842A (en) | 1991-04-01 | 1992-06-09 | American Home Products Corporation | Silyl ethers of rapamycin |
| US5130307A (en) | 1990-09-28 | 1992-07-14 | American Home Products Corporation | Aminoesters of rapamycin |
| US5138051A (en) | 1991-08-07 | 1992-08-11 | American Home Products Corporation | Rapamycin analogs as immunosuppressants and antifungals |
| US5151413A (en) | 1991-11-06 | 1992-09-29 | American Home Products Corporation | Rapamycin acetals as immunosuppressant and antifungal agents |
| EP0507555A1 (en) | 1991-04-03 | 1992-10-07 | American Home Products Corporation | Use of rapamycin for treating diabetes |
| EP0509795A2 (en) | 1991-04-17 | 1992-10-21 | American Home Products Corporation | Carbamates of rapamycin |
| US5169851A (en) | 1991-08-07 | 1992-12-08 | American Home Products Corporation | Rapamycin analog as immunosuppressants and antifungals |
| US5177203A (en) | 1992-03-05 | 1993-01-05 | American Home Products Corporation | Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents |
| US5194447A (en) | 1992-02-18 | 1993-03-16 | American Home Products Corporation | Sulfonylcarbamates of rapamycin |
| US5221670A (en) | 1990-09-19 | 1993-06-22 | American Home Products Corporation | Rapamycin esters |
| US5233036A (en) | 1990-10-16 | 1993-08-03 | American Home Products Corporation | Rapamycin alkoxyesters |
| US5260300A (en) | 1992-11-19 | 1993-11-09 | American Home Products Corporation | Rapamycin carbonate esters as immuno-suppressant agents |
| US5262423A (en) | 1992-10-29 | 1993-11-16 | American Home Products Corporation | Rapamycin arylcarbonyl and alkoxycarbonyl carbamates as immunosuppressive and antifungal agents |
| US5286730A (en) | 1991-09-17 | 1994-02-15 | American Home Products Corporation | Method of treating immunoinflammatory disease |
| US5286731A (en) | 1991-09-17 | 1994-02-15 | American Home Products Corporation | Method of treating immunoinflammatory bowel disease |
| US5302584A (en) | 1992-10-13 | 1994-04-12 | American Home Products Corporation | Carbamates of rapamycin |
| US5378696A (en) | 1990-09-19 | 1995-01-03 | American Home Products Corporation | Rapamycin esters |
| US5385908A (en) | 1993-11-22 | 1995-01-31 | American Home Products Corporation | Hindered esters of rapamycin |
| US20020091137A1 (en) | 2000-11-15 | 2002-07-11 | American Home Products Corporation | Use of CCI-779 as an antineoplastic agent |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE135583T1 (en) | 1991-06-18 | 1996-04-15 | American Home Prod | USE OF RAPAMYCIN TO TREAT T-CELL LYMPHOMA/LEUKEMIA IN ADULTS |
| IL102414A (en) | 1991-07-25 | 1996-08-04 | Univ Louisville Res Found | Pharmaceutical compositions for treating ocular inflammation comprising rapamycin |
-
1994
- 1994-04-18 US US08/229,261 patent/US5362718A/en not_active Ceased
- 1994-11-08 TW TW083110308A patent/TW275631B/zh not_active IP Right Cessation
-
1995
- 1995-03-29 IL IL113179A patent/IL113179A/en not_active IP Right Cessation
- 1995-04-13 ZA ZA953090A patent/ZA953090B/en unknown
- 1995-04-14 HU HU9602893A patent/HU225915B1/en active Protection Beyond IP Right Term
- 1995-04-14 EP EP06026307A patent/EP1760083B1/en not_active Expired - Lifetime
- 1995-04-14 SI SI9530730T patent/SI1266899T1/en unknown
- 1995-04-14 DE DE122008000023C patent/DE122008000023I1/en active Pending
- 1995-04-14 ES ES06026307T patent/ES2375730T3/en not_active Expired - Lifetime
- 1995-04-14 DE DE69535363T patent/DE69535363T2/en not_active Expired - Lifetime
- 1995-04-14 AT AT06026307T patent/ATE537176T1/en active
- 1995-04-14 EP EP95915671.2A patent/EP0763039B3/en not_active Expired - Lifetime
- 1995-04-14 WO PCT/US1995/004603 patent/WO1995028406A1/en active IP Right Grant
- 1995-04-14 ES ES95915671.2T patent/ES2191704T7/en active Active
- 1995-04-14 PT PT95915671T patent/PT763039E/en unknown
- 1995-04-14 MX MX9604694A patent/MX9604694A/en unknown
- 1995-04-14 DK DK95915671T patent/DK0763039T3/en active
- 1995-04-14 DE DE69529897.6T patent/DE69529897T3/en not_active Expired - Lifetime
- 1995-04-14 AT AT02014322T patent/ATE350384T1/en active
- 1995-04-14 ES ES02014322T patent/ES2277975T3/en not_active Expired - Lifetime
- 1995-04-14 CA CA002187024A patent/CA2187024C/en not_active Expired - Lifetime
- 1995-04-14 KR KR1019960705839A patent/KR100330800B1/en not_active Expired - Lifetime
- 1995-04-14 AT AT95915671T patent/ATE234307T1/en active
- 1995-04-14 JP JP52710595A patent/JP3725901B2/en not_active Expired - Lifetime
- 1995-04-14 CZ CZ963052A patent/CZ284567B6/en not_active IP Right Cessation
- 1995-04-14 NZ NZ283988A patent/NZ283988A/en not_active IP Right Cessation
- 1995-04-14 BR BR9507323A patent/BR9507323A/en active IP Right Grant
- 1995-04-14 PT PT02014322T patent/PT1266899E/en unknown
- 1995-04-14 DK DK02014322T patent/DK1266899T3/en active
- 1995-04-14 RU RU96122172A patent/RU2134267C1/en active
- 1995-04-14 PL PL95316948A patent/PL183178B1/en unknown
- 1995-04-14 CN CN95193325A patent/CN1059905C/en not_active Expired - Lifetime
- 1995-04-14 SK SK1330-96A patent/SK281787B6/en not_active IP Right Cessation
- 1995-04-14 EP EP02014322A patent/EP1266899B1/en not_active Expired - Lifetime
- 1995-04-14 SI SI9530648T patent/SI0763039T1/en unknown
-
1998
- 1998-11-24 HK HK03101048.7A patent/HK1048816B/en not_active IP Right Cessation
-
2003
- 2003-05-13 LV LVP-03-47A patent/LV13038B/en unknown
- 2003-09-12 CY CY0300065A patent/CY2378B1/en unknown
-
2008
- 2008-05-15 LU LU91438C patent/LU91438I2/en unknown
- 2008-05-15 NL NL300348C patent/NL300348I2/en unknown
- 2008-05-16 FR FR08C0018C patent/FR08C0018I2/fr active Active
- 2008-05-19 CY CY200800012C patent/CY2008012I1/en unknown
-
2013
- 2013-06-28 US US13/931,400 patent/USRE44768E1/en not_active Expired - Lifetime
Patent Citations (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3929992A (en) | 1972-09-29 | 1975-12-30 | Ayerst Mckenna & Harrison | Rapamycin and process of preparation |
| US3993749A (en) | 1974-04-12 | 1976-11-23 | Ayerst Mckenna And Harrison Ltd. | Rapamycin and process of preparation |
| US4885171A (en) | 1978-11-03 | 1989-12-05 | American Home Products Corporation | Use of rapamycin in treatment of certain tumors |
| US4316885A (en) | 1980-08-25 | 1982-02-23 | Ayerst, Mckenna And Harrison, Inc. | Acyl derivatives of rapamycin |
| US4401653A (en) | 1981-03-09 | 1983-08-30 | Ayerst, Mckenna & Harrison Inc. | Combination of rapamycin and picibanil for the treatment of tumors |
| US4375464A (en) | 1981-11-19 | 1983-03-01 | Ayerst, Mckenna & Harrison Inc. | Antibiotic AY24,668 and process of preparation |
| US4650803A (en) | 1985-12-06 | 1987-03-17 | University Of Kansas | Prodrugs of rapamycin |
| EP0227355A2 (en) | 1985-12-06 | 1987-07-01 | The University Of Kansas | Prodrugs of rapamycin |
| US5100899A (en) | 1989-06-06 | 1992-03-31 | Roy Calne | Methods of inhibiting transplant rejection in mammals using rapamycin and derivatives and prodrugs thereof |
| US5023264A (en) | 1990-07-16 | 1991-06-11 | American Home Products Corporation | Rapamycin oximes |
| US5023263A (en) | 1990-08-09 | 1991-06-11 | American Home Products Corporation | 42-oxorapamycin |
| US5023262A (en) | 1990-08-14 | 1991-06-11 | American Home Products Corporation | Hydrogenated rapamycin derivatives |
| US5378696A (en) | 1990-09-19 | 1995-01-03 | American Home Products Corporation | Rapamycin esters |
| WO1992005179A1 (en) | 1990-09-19 | 1992-04-02 | American Home Products Corporation | Carboxylic acid esters of rapamycin |
| US5221670A (en) | 1990-09-19 | 1993-06-22 | American Home Products Corporation | Rapamycin esters |
| US5130307A (en) | 1990-09-28 | 1992-07-14 | American Home Products Corporation | Aminoesters of rapamycin |
| US5233036A (en) | 1990-10-16 | 1993-08-03 | American Home Products Corporation | Rapamycin alkoxyesters |
| US5078999A (en) | 1991-02-22 | 1992-01-07 | American Home Products Corporation | Method of treating systemic lupus erythematosus |
| US5080899A (en) | 1991-02-22 | 1992-01-14 | American Home Products Corporation | Method of treating pulmonary inflammation |
| US5120842A (en) | 1991-04-01 | 1992-06-09 | American Home Products Corporation | Silyl ethers of rapamycin |
| US5120842B1 (en) | 1991-04-01 | 1993-07-06 | A Failli Amedeo | |
| EP0507555A1 (en) | 1991-04-03 | 1992-10-07 | American Home Products Corporation | Use of rapamycin for treating diabetes |
| EP0507555B1 (en) | 1991-04-03 | 1996-06-12 | American Home Products Corporation | Use of rapamycin for treating diabetes |
| US5100883A (en) | 1991-04-08 | 1992-03-31 | American Home Products Corporation | Fluorinated esters of rapamycin |
| EP0509795A2 (en) | 1991-04-17 | 1992-10-21 | American Home Products Corporation | Carbamates of rapamycin |
| US5118678A (en) | 1991-04-17 | 1992-06-02 | American Home Products Corporation | Carbamates of rapamycin |
| EP0509795A3 (en) | 1991-04-17 | 1994-03-23 | American Home Prod | |
| US5091389A (en) | 1991-04-23 | 1992-02-25 | Merck & Co., Inc. | Lipophilic macrolide useful as an immunosuppressant |
| US5102876A (en) | 1991-05-07 | 1992-04-07 | American Home Products Corporation | Reduction products of rapamycin |
| US5118677A (en) | 1991-05-20 | 1992-06-02 | American Home Products Corporation | Amide esters of rapamycin |
| US5169851A (en) | 1991-08-07 | 1992-12-08 | American Home Products Corporation | Rapamycin analog as immunosuppressants and antifungals |
| US5138051A (en) | 1991-08-07 | 1992-08-11 | American Home Products Corporation | Rapamycin analogs as immunosuppressants and antifungals |
| US5286730A (en) | 1991-09-17 | 1994-02-15 | American Home Products Corporation | Method of treating immunoinflammatory disease |
| US5286731A (en) | 1991-09-17 | 1994-02-15 | American Home Products Corporation | Method of treating immunoinflammatory bowel disease |
| US5151413A (en) | 1991-11-06 | 1992-09-29 | American Home Products Corporation | Rapamycin acetals as immunosuppressant and antifungal agents |
| US5194447A (en) | 1992-02-18 | 1993-03-16 | American Home Products Corporation | Sulfonylcarbamates of rapamycin |
| US5177203A (en) | 1992-03-05 | 1993-01-05 | American Home Products Corporation | Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents |
| US5302584A (en) | 1992-10-13 | 1994-04-12 | American Home Products Corporation | Carbamates of rapamycin |
| US5262423A (en) | 1992-10-29 | 1993-11-16 | American Home Products Corporation | Rapamycin arylcarbonyl and alkoxycarbonyl carbamates as immunosuppressive and antifungal agents |
| US5260300A (en) | 1992-11-19 | 1993-11-09 | American Home Products Corporation | Rapamycin carbonate esters as immuno-suppressant agents |
| US5385908A (en) | 1993-11-22 | 1995-01-31 | American Home Products Corporation | Hindered esters of rapamycin |
| US20020091137A1 (en) | 2000-11-15 | 2002-07-11 | American Home Products Corporation | Use of CCI-779 as an antineoplastic agent |
Non-Patent Citations (64)
| Title |
|---|
| "Temsirolimus: CCI 779, CCI-779, cell cycle inhibitor-779," Drugs in R D, 5(6):363-367 (2004). |
| Adamcyzk et al., "Lipase mediated hydrolysis of rapamycin 42-hemisuccinate benzyl and methyl esters," Tetrahedron Letters, 35(7):1019-1022 (1994). |
| Amended Joint Claim Construction Statement and Chart by Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited. (Belgam, Neal) Modified on Mar. 5, 2013-to make document title text match document filed (rbe). (Entered: Mar. 4, 2013). |
| Answer to 1 Complaint Counterclaim against All Plaintiffs by Astron Research Limited, Intas Pharmaceuticals Limited, Accord Healthcare Limited, Accord Healthcare Inc. USA.(Donimirski, Melissa) (Entered: Mar. 12, 2012). |
| Answer to 1 Complaint, Counterclaim against All Plaintiffs by Sandoz Inc..(Phillips, John) (Entered: Mar. 8, 2012). |
| Answering Brief in Opposition Plaintiffs' Opposition Claim Construction Brief of U.S. Patent No. 5,362,718 filed by Pfizer Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc. Reply Brief due date per Local Rules is Mar. 14, 2013. (Noreika, Maryellen) (Entered: Mar. 4, 2013). |
| Atkins et al., "Randomized Phase II Study of Multiple Dose Levels of CCI-779, a Novel Mammalian Target of Rapamycin Kinase Inhibitor, in Patients With Advanced Refractory Renal Cell Carcinoma," Journal of Clinical Oncology, 22(5):909-918 (Mar. 1, 2004). |
| Baeder et al., "Rapamycin Prevents the Onset of Insulin-Dependent Diabetes Mellitus (IDDM) in NOD Mice," Abstract from 5th International Conference of Inflammation Research Association, 121 (Sep. 23, 1990). |
| Baeder, W. L., Fifth Int. Conf. Inflamm. Res. Assoc. 121 (Abstract) (1990). |
| Baker et al., "Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation," Journal of Antibiotics, 31(6):539-545 (1978). |
| Baker, H. J., Antibiot. 31:539 (1978). |
| Boni et al., "Differential effects of ketoconazole on exposure to temsirolimus following intravenous infusion of temsirolimus," British Journal of Cancer, 98(11):1797-1802 (2008). |
| Boni et al., "Pharmacokinetic profile of temsirolimus with concomitant administration of cytochrome p450-inducing medications," Journal of Clinical Pharmacology, 47(11):1430-1439 (2007). |
| Cai et al., "In vitro metabolic study of temsirolimus: preparation, isolation, and identification of the metabolites," Drug Metabolism and Disposition, 35(9):1554-1563 (2007). |
| Calne et al., "Prolonged survival of pig orthotopic heart grafts treated with cyclosporin A," Lancet, 1(8075):1183-1185 (1978). |
| Calne, R. Y., Lancet 1183 (1978). |
| Chen et al., "Conformational changes of rapamycin and analogs upon complexing with FKBP associated with activity: an application of second derivative CD spectroscopy," Journal of the American Chemical Society, 116(6):2683-2684 (1994). |
| Claim Construction Chart by Accord Healthcare Inc. USA, Accord Healthcare Limited, Intas Pharmaceuticals Limited, Pfizer Inc., Sandoz Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc. (Attachments: # 1 '718 Patent)(Noreika, Maryellen) (Entered: Jan. 7, 2013). |
| Claim Construction Opening Brief filed by Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited. (Belgam, Neal) (Entered: Feb. 8, 2013). |
| Claim Construction Opening Brief filed by Sandoz Inc. (Attachments: # 1 Exhibit A, # 2 Exhibit B, # 3 Exhibit C, # 4 Exhibit D (part 1), # 5 Exhibit D (part 2), # 6 Exhibit E, # 7 Exhibit F, # 8 Exhibit G)(Phillips, John) (Entered: Feb. 8, 2013). |
| Claim Construction Opening Brief of U.S. Patent No. 5,362,718 filed by Pfizer Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc. (Noreika, Maryellen) (Entered: Feb. 8, 2013). |
| Claim Construction Reply Brief re 64 Claim Construction Opening Brief filed by Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited. (Belgam, Neal) (Entered: Mar. 4, 2013). |
| Declaration of Steven J. Brickner, Ph.D. by Pfizer Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc. (Attachments: # 1 Exhibit A)(Noreika, Maryellen) (Entered: Feb. 8, 2013). |
| Declaration re 64 Claim Construction Opening Brief of X.F. Steven Zheng, Ph.D. by Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited. (Attachments: # 1 Exhibit A, # 2 Exhibit B, # 3 Exhibit C)(Belgam, Neal) (Entered: Feb. 8, 2013). |
| Declaration re 79 Answering Brief in Opposition, by Pfizer Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc. (Attachments: # 1 Exhibits B-J)(Noreika, Maryellen) (Entered: Mar. 4, 2013). |
| Detar, "Effects of Alkyl Groups of Rats of SN2 Reactions," Journal of Organic Chemistry, 45:5174-5176 (1980). |
| Dorland's Illustrated Medical Dictionary, 28 Edn., W. B. Saunders Company, p. 1358, definition of Pro-Drug (1994). |
| Dumont et al.,"Rapamycin Blocks the Immunosuppressive Effect of FK506 But not the Cyclosporin A," FASEB Journal, 3(4):5256 (1989). |
| Dumont, F. J., FASEB 3:5256 (1989). |
| Exhibit re 77 Claim Construction Answering Brief Exhibits A and B to Sandoz Inc.'s Responsive Markman Brief by Sandoz Inc. (Phillips, John) (Entered: Mar. 4, 2013). |
| Exhibit re 78 Exhibit to a Document [Corrected] Exhibits A and B to Defendant Sandoz Inc.'s Responsive Markman Brief by Sandoz Inc. (Phillips, John) (Entered: Mar. 5, 2013). |
| Joint Appendix Claim Construction by Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited, Pfizer Inc., Sandoz Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc.. (Attachments: # 1 Tabs 1-10, # 2 Tabs 11-13 Part 1, # 3 Tab 13 Part 2)(Noreika, Maryellen) (Entered: Mar. 4, 2013). |
| Letter to The Honorable Gregory M. Sleet from John C. Phillips, Jr. regarding Defendants' Response to Plaintiffs' Jun. 28, 2013 Letter. (Phillips, John) (Entered: Jul. 8, 2013). |
| Letter to The Honorable Gregory M. Sleet from Maryellen Noreika regarding case status. (Noreika, Maryellen) (Entered: Nov. 12, 2013). |
| Letter to The Honorable Gregory M. Sleet from Maryellen Noreika regarding Reissue Proceedings. (Noreika, Maryellen) (Entered: Jun. 28, 2013). |
| Letter to The Honorable Gregory M. Sleet from Neal Belgam, counsel for Intas Pharamaceuticals Limited, Astron Research Limited, Accord Healthcare Limited and Accord Healthcare, Inc. USA in C.A. No. 11-1253 GMS regarding C.A. No. 11-1253 has settled.. (Belgam, Neal) (Entered: Oct. 21, 2013). |
| Letter to The Honorable Mary Pat Thynge from John C. Phillips, Jr. regarding First Discovery Dispute. (Attachments: # 1 Exhibit A, # 2 Exhibit B, # 3 Exhibit C, # 4 Exhibit D)(Phillips, John) (Entered: Jul. 17, 2013). |
| Letter to The Honorable Mary Pat Thynge from John C. Phillips, Jr. regarding Second Discovery Dispute. (Attachments: # 1 Exhibit A, # 2 Exhibit B, # 3 Exhibit C, # 4 Exhibit D)(Phillips, John) (Entered: Jul. 17, 2013). |
| Letter to The Honorable Mary Pat Thynge from Maryellen Noreika regarding Response to Defendants' Jul. 17, 2013 Letters re Discovery Disputes. (Attachments: # 1 Exhibit 1-3)(Noreika, Maryellen) (Entered: Jul. 18, 2013). |
| Martel et al., "Inhibition of the immune response by rapamycin, a new antifungal antibiotic," Journal Canadien de Physiologie et Pharmacologie, 55(1):48-51 (1977). |
| Martel, R. R., Can. J. Physiol. Pharmacol. 55:48 (1977). |
| Meiser, B. M., J. Heart Lung Transplant, 11 (pt. 2):197 (1992). |
| Morris, "Identification of a new pharmacologic action for an old compound," Medical Science Research, 17:877-878 (1989). |
| Morris, R. E., Med. Sci. Res. 17:877 (1989). |
| Motion to Stay Expert Report Deadlines-filed by Sandoz Inc., Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited. (Attachments: # 1 Text of Proposed Order)Motions referred to Mary Pat Thynge.(Phillips, John) (Entered: Jul. 3, 2013). |
| Objections by Sandoz Inc., Accord Healthcare Inc. USA, Accord Healthcare Limited, Astron Research Limited, Intas Pharmaceuticals Limited to (100 in 1:12-cv-00654-GMS-MPT, 134 in 1:11-cv-01252-GMS-MPT) Order Defendants' Objections to the Magistrate Judge's Jul. 26, 2013 Order Pursuant to Federal Rule of Civil Procedure 72(a). (Attachments: # 1 Exhibit A, # 2 Exhibit B)(Phillips, John) (Entered: Aug. 9, 2013). |
| Official Transcript of Markman Hearing held on Apr. 4, 2013 before Judge Sleet. Court Reporter/Transcriber Maurer. Transcript may be viewed at the court public terminal or purchased through the Court Reporter/Transcriber before the deadline for Release of Transcript Restriction. After that date it may be obtained through Pacer. Redaction Request due May 6, 2013. Redacted Transcript Deadline set for May 16, 2013. Release of Transcript Restriction set for Jul. 15, 2013. (kjm) (Entered: Apr. 15, 2013). |
| Official Transcript of Markman Hrg. held on Apr. 4, 2013 before Judge Sleet. Court Reporter/Transcriber Maurer. Transcript may be viewed at the court public terminal or purchased through the Court Reporter/Transcriber before the deadline for Release of Transcript Restriction. After that date it may be obtained through PACER. Redaction Request due May 6, 2013. Redacted Transcript Deadline set for May 16, 2013. Release of Transcript Restriction set for Jul. 15, 2013. (kjm) (Entered: Apr. 15, 2013). |
| Oral Order: The transcript of the Jul. 22, 2013 teleconference with Judge Thynge shall serve as the Order of the Court in this matter. Signed by Judge Mary Pat Thynge on Jul. 23, 2013. (cak) (Entered: Jul. 23, 2013). |
| Order Construing the Terms of U.S. Patent No. 5,362,718. Signed by Chief Judge Gregory M. Sleet on May 6, 2013. (asw) (Entered: May 6, 2013. |
| Raymond et al., "Safety and Pharmacokinetics of Escalated Doses of Weekly Intravenous Infusion of CCI-779, a Novel mTOR Inhibitor, in Patients With Cancer," Journal of Clinical Oncology, 22(12):2336-2347 (Jun. 15, 2004). |
| Redacted Version of (176 in 1:11-cv-01252-GMS-MPT, 139 in 1:12-cv-00654-GMS-MPT) Proposed Pretrial Order by Pfizer Inc., Sandoz Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc.. (Attachments: # 1 Exhibits 1-13 (Part 1), # 2 Exhibits 13 (Part 2)-15)(Noreika, Maryellen) (Entered: Nov. 15, 2013). |
| Redacted Version of (35 in 1:11-cv-01253-GMS-MPT, 178 in 1:11-cv-01252-GMS-MPT) Proposed Consent Judgment, by Pfizer Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc.. (Noreika, Maryellen) (Entered: Nov. 13, 2013). |
| Redacted Version of 77 Claim Construction Answering Brief by Sandoz Inc.. (Attachments: # 1 Exhibit C)(Phillips, John) (Entered: Mar. 12, 2013). |
| Response to Objections by Pfizer Inc., Wyeth LLC, Wyeth Pharmaceuticals Inc. re (142 in 1:11-cv-01252-GMS-MPT, 106 in 1:12-cv-00654-GMS-MPT) Objections, . (Noreika, Maryellen) (Entered: Aug. 26, 2013). |
| Sehgal et al., "Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization," Journal of Antibiotics, 28(10):727-732 (1975). |
| Sehgal, S. N., J. Antibiot. 28:727 (1975). |
| Staruch et al.,"FK506 and Rapamycin Inhibit Murine T Cell Activation Through Different Mechanisms," FASEB Journal, 3(3):3411 (1989). |
| Staruch, M. J., FASEB 3:3411 (1989). |
| Stepkowski et al., "Prolongation by rapamycin of heart, kidney, pancreas, and small bowel allograft survival in rats," Transplantation Proceedings, 23(1 Pt 1):507-508 (1991). |
| Stepkowski, S. M., Transplantation Proc. 23:507 (1991). |
| Venzina, C., J. Antibiot. 28:721 (1975). |
| Vezina et al., "Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle," Journal of Antibiotics, 28(10):721-726 (1975). |
| Webber letter to Karst, May 29, 2012. |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015073644A1 (en) | 2013-11-13 | 2015-05-21 | Novartis Ag | Mtor inhibitors for enhancing the immune response |
| EP4026909A1 (en) | 2013-12-19 | 2022-07-13 | Novartis AG | Human mesothelin chimeric antigen receptors and uses thereof |
| WO2015090230A1 (en) | 2013-12-19 | 2015-06-25 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
| WO2015090229A1 (en) | 2013-12-20 | 2015-06-25 | Novartis Ag | Regulatable chimeric antigen receptor |
| EP4420663A2 (en) | 2013-12-20 | 2024-08-28 | Novartis AG | Regulatable chimeric antigen receptor |
| WO2015142661A1 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Regulatable chimeric antigen receptor |
| WO2015142675A2 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
| EP3811970A1 (en) | 2014-03-15 | 2021-04-28 | Novartis AG | Regulatable chimeric antigen receptor |
| WO2015157252A1 (en) | 2014-04-07 | 2015-10-15 | BROGDON, Jennifer | Treatment of cancer using anti-cd19 chimeric antigen receptor |
| EP4406610A2 (en) | 2014-04-07 | 2024-07-31 | Novartis AG | Treatment of cancer using anti-cd19 chimeric antigen receptor |
| EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
| WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
| WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
| EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
| EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
| WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
| EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
| WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| EP3967709A1 (en) | 2014-09-17 | 2022-03-16 | Novartis AG | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
| WO2016057705A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
| WO2016098078A2 (en) | 2014-12-19 | 2016-06-23 | Novartis Ag | Dimerization switches and uses thereof |
| WO2016164580A1 (en) | 2015-04-07 | 2016-10-13 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
| EP4234685A2 (en) | 2015-04-17 | 2023-08-30 | Novartis AG | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
| WO2016168595A1 (en) | 2015-04-17 | 2016-10-20 | Barrett David Maxwell | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
| WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
| US10576076B2 (en) | 2015-05-20 | 2020-03-03 | Novartis Ag | Pharmaceutical combination of everolimus with dactolisib |
| WO2016185443A1 (en) | 2015-05-20 | 2016-11-24 | Novartis Ag | Pharmaceutical combination of everolimus with dactolisib |
| WO2017081624A1 (en) | 2015-11-11 | 2017-05-18 | Novartis Ag | Uses of myostatin antagonists, combinations containing them and uses thereof |
| US10765665B2 (en) | 2015-11-24 | 2020-09-08 | Melin Jeffrey | Composition comprising combination of rapamycin and an activator of AMP kinase and use thereof for treating diseases |
| US10925862B2 (en) | 2015-11-24 | 2021-02-23 | Jeffrey M. Melin | Composition comprising combination of rapamycin and an activator of AMP kinase and use thereof for treating diseases |
| US10952994B2 (en) | 2015-11-24 | 2021-03-23 | Jeffrey M. Melin | Composition comprising combination of rapamycin and an activator of AMP kinase and use thereof for treating diseases |
| US12409170B2 (en) | 2015-11-24 | 2025-09-09 | IMM Licensing LLC | Composition comprising combination of rapamycin and metformin and use thereof for treating neurodegenerative diseases |
| US11890274B2 (en) | 2015-11-24 | 2024-02-06 | Jmm Licensing Llc | Composition comprising combination of rapamycin and metformin and use thereof for treating neoplastic diseases |
| US11141409B2 (en) | 2015-11-24 | 2021-10-12 | Jmm Licensing Llc | Composition comprising combination of rapamycin and an activator of AMP kinase and use thereof for treating diseases |
| US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
| WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
| US11045463B2 (en) | 2016-11-23 | 2021-06-29 | Novartis Ag | Methods of enhancing immune response |
| US10993940B2 (en) | 2016-11-23 | 2021-05-04 | Novartis Ag | Methods of enhancing immune response |
| US10441584B2 (en) | 2016-11-23 | 2019-10-15 | Novartis Ag | Methods of enhancing immune response |
| WO2018096402A1 (en) | 2016-11-23 | 2018-05-31 | Novartis Ag | Methods of enhancing immune response with everolimus, dactolisib or both |
| WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
| US10596165B2 (en) | 2018-02-12 | 2020-03-24 | resTORbio, Inc. | Combination therapies |
| WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
| WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE44768E1 (en) | Rapamycin hydroxyesters | |
| US5489680A (en) | Carbamates of rapamycin | |
| MXPA96004694A (en) | Hydroxysteres of rapamycin, process for supreparation and pharmaceutical compositions that loscontie | |
| US5385910A (en) | Gem-distributed esters of rapamycin | |
| US5378696A (en) | Rapamycin esters | |
| US5559122A (en) | Hindered N-oxide esters of rapamycin | |
| US5373014A (en) | Rapamycin oximes | |
| US5455249A (en) | Phosphorylcarbamates of rapamycin and oxime derivatives thereof | |
| EP0765329B1 (en) | Rapamycin amidino carbamates and pharmaceutical compositions containing them | |
| MXPA97004057A (en) | 42-oximas and hydroxylamines of rapamic | |
| AU679854C (en) | Rapamycin hydroxyesters, process for their preparation and pharmaceutical compositions containing them | |
| HK1011352B (en) | 42-rapamycin hydroxyester, process for its preparation and pharmaceutical compositions containing it | |
| HK1011030B (en) | Rapamycin amidino carbamates and pharmaceutical compositions containing them | |
| HK1011355B (en) | Amino alkanoic esters of rapamycin |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| CC | Certificate of correction |










