USRE44219E1 - Adaptive receiving system and method for MIMO - Google Patents

Adaptive receiving system and method for MIMO Download PDF

Info

Publication number
USRE44219E1
USRE44219E1 US12/727,007 US72700710A USRE44219E US RE44219 E1 USRE44219 E1 US RE44219E1 US 72700710 A US72700710 A US 72700710A US RE44219 E USRE44219 E US RE44219E
Authority
US
United States
Prior art keywords
symbol
filter
receive
transmit
equalizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US12/727,007
Inventor
Hee-Jung Yu
Ji-Hoon Choi
Yong-hoon Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute
Original Assignee
Electronics and Telecommunications Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020030073341A priority Critical patent/KR20050038122A/en
Priority to KR10-2003-0073341 priority
Priority to US10/829,909 priority patent/US7346104B2/en
Application filed by Electronics and Telecommunications Research Institute filed Critical Electronics and Telecommunications Research Institute
Priority to US12/727,007 priority patent/USRE44219E1/en
Application granted granted Critical
Publication of USRE44219E1 publication Critical patent/USRE44219E1/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms

Abstract

Disclosed is an adaptive receiving MIMO (multi input and multi output) system and method which decides a symbol detecting order so as to estimate the symbol having the minimum summation of weights of least square errors at the time of estimating the symbol for respective equalizers provided in parallel by the number of transmit antennas, and updates filter tap coefficients based on the RLS algorithm according to the detecting orders. Therefore, the filter tap coefficients are directly updated without tracking channels in the time-varying channel environment, and accordingly, detection performance very similar to those of the channel tracking and conventional V-BLAST scheme is provided with reduced complexity.

Description

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Reissue of Application No. 10/829,909 filed on Apr. 21, 2004, now U.S. Pat. No., 7,346,104 issued on Mar. 18, 2008, and claims the benefit of Korean Patent Application No. 2003-73341 filed on Oct. 21, 2003, in the Korean Intellectual Property Office. The disclosures of Application No. 10/829,909 and Korean Patent Application No. 2003-73341 are incorporated herein by reference in their entirety.

This application claims priority to and the benefit of Korea Patent Application No. 2003-73341 filed on Oct. 21, 2003 in the Korean Intellectual Property Office, the content of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

(a) Field of the Invention

The present invention relates to an adaptive receiving system and method for a MIMO (multi-input multi-output). More specifically, the present invention relates to a system and method for detecting transmit signals when channels are time-varying in wireless communication systems which use multiple transmit and receive antennas for high-speed data transmission.

(b) Description of the Related Art

As industries and personal lives using communication technologies have become activated, the importance of image and data transmission has grown while needs of high-speed data transmission have also increased. Therefore, techniques which increase data rates per bandwidth are required since the bandwidth for high-speed data transmission is insufficient.

MIMO systems for using multiple transmit and receive antennas and transmitting data in parallel have been aggressively studied so as to raise the data rates, and the V-BLAST (Vertical Bell Labs Layered Space Time) scheme has been developed as effective receivers for the MIMO systems.

The V-BLAST scheme increases bandwidth efficiency in proportion to the number of antennas when the number of antennas at a receiver is more than the number of antennas at a transmitter, and a channel is not varied for one packet duration.

However, the actual wireless mobile communication channels are varying, and computational complexity is abruptly increased when the V-BLAST scheme is applied to the channel-varying environment. That is, it is needed to estimate a MIMO channel and calculate a nulling vector corresponding to the MIMO channel in order to perform V-BLAST detection. Calculation of the nulling vector is performed once for each frame when the channel is not varying within the frame, and it is needed to calculate the nulling vector for each symbol when the channel is varying.

Methods for approximately updating the nulling vector and tracking the channel when using a V-BLAST receiver in the time-varying channel have been proposed so as to reduce the computational complexity.

A single frame is divided into several small blocks, the channel tracking is applied to each block, and the nulling vector is updated in the approximation method for updating the nulling vector and tracking the channels.

Since the above-noted method has a tradeoff between complexity and detection performance according to sizes of the blocks divided from the single frame, the detection performance is steeply worsened when the channels are varied quickly.

SUMMARY OF THE INVENTION

It is an advantage of the present invention to provide a MIMO adaptive receiving system and method for reducing complexity compared to the existing V-BLAST scheme, by optimally deciding filter tap coefficients of the equalizer and symbol detecting order in the time-varying channel environment.

To achieve the advantage, the symbol detecting order for the equalizer are determined based on the RLS algorithm, and the filter tap coefficient vectors of the equalizer are updated depending on the detecting order.

In one aspect of the present invention, an adaptive receiving MIMO system for transmitting and receiving transmit and receive symbol vectors through channels between multiple transmit and receive antennas, comprises:

a linear equalizer for canceling interference added when passed through the channel from the receive symbol vectors and extracting transmit symbol vectors by performing an initial detection;

a plurality of parallel decision feedback equalizers for canceling signal interference from the signals detected by the linear equalizer and the receive symbol vectors according to a filter tap coefficient and a symbol detecting order updated for each predetermined period, and detecting the transmit symbol vectors; and

an adaptive block for deciding the symbol detecting order of the linear equalizer and the parallel decision feedback equalizers, and updating the filter tap coefficients based on the RLS (recursive least square) algorithm according to the decided symbol detecting order.

The adaptive receiving system further comprises a reordering unit for reordering the signals sequentially detected through the equalizer according to the symbol detecting order on a plurality of receive symbol vectors decided by the adaptive block.

The linear equalizer comprises: a feedforward filter for receiving the first receive symbol vector from among the receive symbol vectors received through the receive antennas, and filtering error signals; and a decision unit for applying the optimal filter tap coefficient to signals output by the feedforward filter according to a predetermined decision reference, and outputting a decision value.

The parallel decision feedback equalizer comprises:

a feedforward filter for receiving the receive symbol vector from the receive antennas, and performing filtering by using a feedforward filter tap coefficient decided by the adaptive block;

a feedback filter for receiving detected signals from among the receive symbol vectors, and performing filtering by using a feedback filter tap coefficient decided by the adaptive block;

an adder for adding the respective signals output by the feedforward filter and the feedback filter, and outputting added values; and

a decision unit for applying the optimal filter tap coefficient to the added values output by the adder according to a predetermined decision reference, and outputting decision values.

The feedback filter increases by an order by one when a detection on the receive symbol vectors from the second symbol to the last symbol is repeated.

The adaptive block defines the reference for deciding the tap coefficient by errors of between the transmit symbol vector transmitted by the transmit antennas and the output of the equalizer, and defines the optimal filter tap coefficient as a filter coefficient for minimizing the errors.

In another aspect of the present invention, an adaptive receiving method in an adaptive receiving system for a MIMO for allowing an equalizer to detect transmit symbol vectors when the transmit symbol vectors transmitted from multiple transmit antennas are input as receive symbol vectors through multiple receive antennas, comprises:

(a) the equalizer detecting an error signal by allowing the initial receive symbol vector to be passed through a feedforward filter, and detecting the transmit symbol vectors according to a predetermined decision reference, when the receive symbol vectors are input; and

(b) allowing the equalizer to apply an optimal filter tap coefficient to the feedforward filter and a feedback filter, canceling interference from the receive symbol vectors and detected signals according to a predetermined symbol detecting order, and detecting the transmit symbol vectors when (a) is finished.

The step (b) comprises: allowing the feedforward filter and the feedback filter to update the optimal filter tap coefficient based on the RLS algorithm, and deciding the symbol detecting sequence on the equalizer so that a symbol for minimizing the summation of weights of square errors may be estimated.

The optimal filter tap coefficient is a filter coefficient for minimizing errors between the transmit symbol vector transmitted by the transmit antenna and the estimated transmit symbol vector output by the equalizer.

The optimal filter tap coefficient wt,i,(n), i=1, . . . , M is recursively found.

The symbol detecting order ki of the equalizer is decided to detect the symbol for minimizing the summation of weights of square errors.

The step (a) comprises deciding a value {circumflex over (d)}k i (n) on the first transmit symbol vector by using a value {tilde over (d)}k i (n) generated when the receive symbol vector yt,i(n) is input to the feedforward filter and is then output therefrom.

The step (b) comprises:

(i) using the cross correlation vector obtained by crossing a first value and a second value to define a cross correlation matrix G(n), the first value being obtained when the receive symbol vector is passed through the feedforward filter, and the second value being obtained when the detected signal is fed back through the feedback filter;

(ii) calculating the optimal filter tap coefficient of {v1,j(n), j=1, 2, . . . , M} applied to the feedforward filter and the feedback filter when (i) is finished;

(iii) deciding the symbol detecting order of the equalizer, and updating the filter tap coefficients when (ii) is finished; and

(iv) applying the symbol detecting order decided in (iii) and the filter tap coefficient to the next receive symbol vector, detecting the transmit symbol vector, and repeating (iv).

The substep (iii) comprises obtaining the cross correlation vector, calculating the summation of weights of square errors, and deciding the symbol detecting order of each equalizer.

The step (b) comprises deciding the symbol detecting order of the equalizer at intervals of a constant γ.

When inputting the nth receive symbol vector, it comprises:

(i) when ‘n’ is a multiple of the constant γ, obtaining the cross correlation vector zi,j(n), calculating the summation εi,j(n) of weights of square errors, and deciding the symbol detecting order
ki=arg

Figure USRE044219-20130514-P00001
εi,j(n)
of each equalizer; and

(ii) when ‘n’ is not a multiple of the constant γ, updating the filter tap coefficient by use of subsequent equations, and using the previous (n−1) symbol detecting order for the symbol detecting sequence of each equalizer.

The step (b) comprises updating the filter tap coefficient and deciding the symbol detecting order for each symbol time according to the speed of the channel varying during a predetermined period, and deciding the symbol detecting order once with the interval of the constant γ, and updating the filter tap coefficient and maintaining the symbol detecting order during a residual period.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention, and, together with the description, serve to explain the principles of the invention:

FIG. 1 shows a block diagram of an adaptive receiving system for the MIMO according to a preferred embodiment of the present invention;

FIG. 2 shows a detailed schematic diagram for an equalizer included in the configuration of FIG. 1;

FIG. 3 shows a process for updating optimal filter tap coefficients in an adaptive receiving method for the MIMO according to a preferred embodiment of the present invention;

FIG. 4 shows a simplified process for updating optimal filter tap coefficients compared to FIG. 3; and

FIGS. 5 to 7 show graphs for comparing BER performance between the preferred embodiment of the present invention and the existing V-BLAST scheme.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following detailed description, only the preferred embodiment of the invention has been shown and described, simply by way of illustration of the best mode contemplated by the inventor(s) of carrying out the invention. As will be realized, the invention is capable of modification in various obvious respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive.

A MIMO adaptive receiving system according to a preferred embodiment of the present invention will be described in detail with reference to FIG. 1.

FIG. 1 shows a block diagram of an adaptive receiving system for the MIMO according to a preferred embodiment of the present invention.

As shown, the adaptive receiving system comprises an equalizer 100, an adaptive block 200, and a reordering unit 300. The equalizer 100 is classified as a linear equalizer 150, shown in FIG. 2, for detecting the initial transmit symbol vector, and a parallel equalizer for detecting residual transmit symbol vectors.

The equalizer 100 is coupled in parallel by the number of the transmit antennas, and is classified as a linear equalizer and parallel equalizers for ease of description.

The ith equalizer comprises an Nth-order feedforward filter 110, an (i−1)th-order feedback filter 120, an adder 130, and a decision unit 140.

The feedforward filter 110 receives (N×1) receive symbol vectors through N receive antennas and filters error signals, and the feedback filter 120 filters the error signals from the detected signals from among (N×1) receive symbol vectors and feeds results back.

The adder 130 adds respective signals output by the feedforward filter 110 and the feedback filter 120 and outputs an added value, and the decision unit 140 applies the optimal filter tap coefficient to the added value according to a predetermined decision reference and outputs a decision value, that is, a transmit symbol vector.

The adaptive block 200 updates the tap coefficient and the symbol detecting order of the equalizer 100 based on the RLS (recursive least square) algorithm for each symbol, and decides the symbol detecting sequence of the equalizer 100 by using a summation of square errors.

The reordering unit 300 reorders transmit symbol vectors sequentially detected through the equalizer 100 according to a symbol detecting order decided by the adaptive block 200.

The configuration of the adaptive receiving system for the MIMO will now be described.

When using M transmit antennas and N receive antennas, an (M×1) transmit symbol vector d(n)=[d1(n), d2(n), . . . , dM(n)]T is transmitted through the transmit antennas, and an (N×1) receive symbol vector y(n)=[y1(n), y2(n), . . . , yN(n)]T is received through the receive antennas.

When the transmit symbol vector is passed through an (N×M) channel matrix H(n) caused by channel gains between the respective transmit and receive antennas, and the noise vector u(n)=[u1(n), u2(n), . . . , uN(n)]T is added thereto, the receive symbol vector is given as Equation 1.
y(n)=H(n)d(n)+u(n)  Equation 1

The receive symbol vector is input to the equalizer 100, is passed through the feedforward filter 110 which corresponds to the nulling vector of the V-BLAST scheme, interference is cancelled from the receive symbol vector by using detected signals and the feedback filter 120, and is detected.

The symbol detecting order and the filter tap coefficient vector of the equalizer 100 are updated for each symbol time, and the operation for updating the filter tap coefficient is referred to as a time update.

FIG. 2 shows a detailed schematic diagram for an equalizer included in the configuration of FIG. 1.

As shown, the linear equalizer 150 comprises a feedforward filter 110 and a decision unit 140, and the parallel equalizer 100 comprises a feedforward filter 110, a feedback filter 120, a correlator 130, and a decision unit 140.

The first parallel equalizer provided after the linear equalizer 150 has a first-order feedback filter using a detected {circumflex over (d)}k 1 , the second parallel equalizer has a second-order feedback filter using {circumflex over (d)}k 1 and {circumflex over (d)}k 2 , and the last equalizer has an (M−1)th-order feedback filter.

Referring to FIG. 2, {wf,i(n)} is an Nth-order feedforward filter tap coefficient vector, and {wh,i(n)} is an (i−1)th order feedback filter tap coefficient vector.

The concurrently transmitted M transmit symbol vectors are sequentially detected through the equalizer 100, and in further detail, they are detected by the linear equalizer 150 in the first stage, and then are detected by the parallel decision feedback equalizers 100 which increase the order of the feedback filter 120 by one as the detection is repeated.

A set for indicating the symbol detecting order of the transmit symbol vectors d(n) is defined as S={k1, k2, . . . , kM} where s is a set generated by changing the sequence of elements in {1, 2, . . . , M}.

The parallel decision feedback equalizers 100 have a superimposed configuration of equalizers in parallel, the number of the equalizers corresponding to the number of transmit antennas, and the equalizers starting from the top equalizer to the bottom equalizer sequentially detect the transmit symbol vectors according to the symbol detecting order.

The result of detecting the transmit symbol vectors by the decision unit 140, that is, the decision unit is defined to be {circumflex over (d)}(n)=[{circumflex over (d)}k 1 (n), {circumflex over (d)}k 1 (n), . . . , {circumflex over (d)}k i-1 (n)]T.

The adaptive block 200 updates coefficients of the feedforward filter 110 and the feedback filter 120 for each symbol time based on the RLS algorithm, calculates summation of weights of square errors for the respective equalizers 100, and decides the symbol detecting order.

The integrated filter coefficient vector wt,i(n) and the integrated input signal vector yt,i(n) are defined in Equations 2 and 3.

w t , i ( n ) = { w f , i ( n ) , i = 1 [ w f , i T ( n ) , w b , i T ( n ) ] T , i = 2 , , M Equation 2 y t , i ( n ) = { y ( n ) , i = 1 [ y T ( n ) , d ^ k 1 , , d ^ k i - 1 ] T , i = 2 , , M Equation 3

An operation of the MIMO adaptive receiving system according to the preferred embodiment of the present invention will be described with reference to a drawing.

FIG. 3 shows a process for updating optimal filter tap coefficients in an adaptive receiving method for the MIMO according to a preferred embodiment of the present invention.

As shown, it is required to find the optimal filter tap coefficient of the equalizer 100 when the M transmit symbol vectors are input in the adaptive receiving method for the MIMO.

For this, the adaptive block 200 defines a decision reference as an error of between the transmit symbol vector transmitted from the transmit antenna and the equalizer output of the receiver, and defines the filter coefficient for minimizing the error as the optimal filter tap coefficient.

To define the optimal filter tap coefficient, the outputs of the ith equalizer is defined as Equation 4, and the cost function is given in Equation 5.
{tilde over (d)}k i (n)=wt,i H(n−1)yt,i(n)  Equation 4

J i ( n ) = l = 1 n λ n - l d ^ k i ( l ) - w t , i H ( l ) y t , i ( l ) 2 Equation 5

The optimal filter tap coefficient for minimizing Ji(n) is given as Equation 6.
wt,i(n)=Φi −1(n)zi,k i (n)  Equation 6

where Φi(n) is an autocorrelation matrix, and zi,k i (n) is a cross correlation vector, respectively given as Equations 7 and 8.

Φ i ( n ) = l = 1 n λ n - l y t , i ( l ) y t , i H ( l ) Equation 7 z i , j ( n ) = l = 1 n λ n - l y t , i ( l ) d ^ j * ( l ) Equation 8

The optimal filter tap coefficient is found recursively by using the RLS algorithm as given in Equation 9.

q i ( n ) = Φ i - 1 ( n - 1 ) y t , i ( n ) Equation 9 k i ( n ) = λ - 1 q i ( n ) 1 + λ - 1 y t , i H ( n ) q i ( n ) Φ i - 1 ( n ) = λ - 1 Φ i - 1 ( n - 1 ) - λ - 1 k i ( n ) q i H ( n ) w t , i ( n ) = w t , i ( n - 1 ) + k i ( n ) ξ i * ( n )

where ξi(n) is an a priori estimation error which is given in Equation 10.
ξi(n)={circumflex over (d)}k i (n)−wt,i H(n−1)yt,i(n)|  Equation 10

A large amount of calculation of the optimal filter tap coefficient using the RLS algorithm is needed since the RLS algorithm is independently applied to the M equalizer filter tap coefficients wt,i(n), i=1, . . . , M.

When the autocorrelation matrix Φi+1(n) is defined as Equation 11, Φ2 −1(n), . . . , ΦM −1(n) are recursively calculated by using the autocorrelation matrix through Equation 12.

Φ i + 1 ( n ) = [ Φ i ( n ) z i , k i ( n ) z i , k i H ( n ) a k i ( n ) ] Equation 11 Φ i + 1 - 1 ( n ) = [ Φ i - 1 ( n ) + c i ( n ) w t , i ( n ) w t , i H - c i ( n ) w t , i ( n ) - c i ( n ) w t , i H ( n ) c i ( n ) ] Equation 12

where it is given that αj

α j ( n ) = l = 1 n λ n - l d ^ j ( l ) 2 in Equation 11 , and c i ( n ) = 1 α k i ( n ) - z i , k i H ( n ) w t , i ( n ) in Equation 12.

Since it is given that yt,i+1(n)=[yt,i T(n), {circumflex over (d)}k i (n)]T from Equations 11 and 12, qi+1(n) is recursively calculated as expressed in Equation 13 when substituting Equation 12 and an expansion of yt,i+1(n) for qi(n) of Equation 9. Here, note that q1(n)=Φ1 −1(n−1)y(n).

q i + 1 ( n ) = [ q i ( n ) 0 ] + c i ( n - 1 ) ξ i ( n ) [ - w t , i ( n - 1 ) 1 ] Equation 13

Equation 13 is applicable when the symbol detecting order is known.

The symbol detecting order is to be decided after the optimal filter coefficient of the equalizer is calculated.

In general, it is known as the symbol detecting sequence of minimizing the symbol error probability in the V-BLAST scheme to detect the signal which has the largest SNR (signal-to-noise ratio) in each stage. An equivalent SNR is found by using the summation of weights of square errors given as Equation 14 in the RLS algorithm.

ɛ i , j ( n ) = l = 1 n λ n - l d j ( l ) - w t , i H ( l ) y t , i ( l ) 2 Equation 14

The equalizer 100 detects the symbol which minimizes the summation of weights of square errors given as Equation 14 in each detecting stage as given in Equation 15.
ki=arg

Figure USRE044219-20130514-P00001
εi,j(n)  Equation 15

When it is defined that vi,j(n)=Φi −1(n)zi,j(n), vi,j corresponds to Equation 6 considering that ki is changed to j in wi,j(n) of Equation 6. The summation of the square error is given as Equation 16.
εi,j(n)=αj(n)−vi,j H(n)zi,j(n)  Equation 16

For example, when the number of transmit antennas is four, and the symbol detecting sequence at the receiver is given as S={4, 3, 2, 1}, Φi −1 is recursively found using Equation 12, the optimal symbol detecting sequence is decided using Equation 15, and the optimal filter tap coefficient vi,j(n) is found as shown in FIG. 3.

FIG. 4 shows a simplified process for updating the optimal filter tap coefficient compared to FIG. 3.

The method for updating the optimal filter tap coefficient shown in FIG. 4 proposes a method for finding vi,j(n) without updating Φi −1 since the method for updating the optimal filter tap coefficient shown in FIG. 3 requires a relatively large amount of calculation for recursively finding Φi −1 and vi,j(n).

Assuming that the calculation on vi,j(n)=Φi −1(n)zi,j(n) is finished, zi,j(n) is defined as Equation 17 since Equation 12 for calculating Φi+1 −1 and an update equation of zi+1,j(n) are needed to calculate vi+1,j(n)=Φi+1 −1(n)zi+1,j(n).
zi,j(n)=[g1,j(n), . . . , gN,j(n), gN+k 1 ,j(n), . . . , gN+k i−1 ,j(n)]T  Equation 17
Noting that

g i , j ( n ) = { l = 1 n λ n - l y i ( n ) d j * ( n ) , 1 i N l = 1 n λ n - l d i - N ( n ) d j * ( n ) , N + 1 i N + M ,

zi+1,j(n) can be given as an update equation of Equation 18.
zi+1,j(n)=[zi,j T(n), gN+k i ,j(n)]T  Equation 18

Since αj(n) corresponds to gN+j,j(n), the summation of square error can be given as Equation 19.
εi,j(n)=gN+j,j(n)−vi,j H(n)zi,j(n)  Equation 19

Also, an (N+M)×N cross correlation matrix is defined in Equation 20 by using Equation 8 which has defined zi,j(n).

G ( n ) = l = 1 n λ n - l [ y T ( n ) , d ^ T ( n ) ] T d ^ H ( n ) Equation 20

Noting from Equation 20 that gi,j(n) is the (i,j)th element of G(n), zi,j(n) in Equation 18 is obtained through G(n). In addition, a detected transmit symbol vector {circumflex over (d)}(n) is required so as to obtain G(n).

The above-noted (n−1) filter tap coefficient and the symbol detecting order are used as shown in Equations 21 and 22 for the transmit symbol vector {circumflex over (d)}(n).
{tilde over (d)}k i (n)=wt,i H(n−1)yt,i(n)  Equation 21
{circumflex over (d)}k i (n)=decision {{tilde over (d)}k i (n)}  Equation 22

When G(n) is given, Equations 12 and 18 are used to recursively find vi+1,j(n) as Equation 23.

v i + 1 , j ( n ) = Φ i + 1 - 1 ( n ) z i + 1 , j ( n ) = [ v i , j ( n ) 0 ] + g N + k i , j ( n ) - w i , j H ( n ) z i , j ( n ) ɛ i , k i ( n ) [ - w t , i ( n ) 1 ] Equation 23

In Equation 23, note that jεSi+1=Si−{ki}, S1={1, . . . , M}, and v1,j(n)=Φ1 −1(n)z1,j(n), j=1,2, . . . , M is calculated according to the existing method.

The detecting process on the adaptive receiving method for the MIMO is summarized as follows.

<Algorithm 1>

In the first stage, all the parameters are initialized so as to start the detection.
n=1
ki=i, for all i
Φ1 −1(0)=δ−1I, G(0)=0
wf,i(0)=1, wb,i(0)=0, v1,i(0)=0, for all i

where δ is a small positive constant.

In the second stage, the receive symbol vector input through a receive antenna is output through the feedforward filter 110 and the feedback filter 120, and the decision unit 140 outputs a decision value, that is, a transmit symbol vector where i=1, 2, . . . , M.
{tilde over (d)}k i (n)=wt,i H(n−1)yt,i(n)
{circumflex over (d)}k i (n)=decision{{tilde over (d)}k i (n)}
yt,i+1(n)=[yT(n), {circumflex over (d)}k i (n), . . . , {circumflex over (d)}k i (n)]T

In the third stage, the adder 130 uses output values of the feedforward filter 110 and the feedback filter 120 to update the cross correlation matrix.
G(n)=λG(n−1)+[yT(n), {circumflex over (d)}T(n)]T{circumflex over (d)}H(n)

In the fourth stage, the adaptive block 200 updates the filter tap coefficient and the detecting order for each symbol time.

(I) Calculation of {v1,j(n), j=1, 2, . . . , M} by using a time-update of filter tap coefficients
q1(n)=Φ1 −1(n−1)y(n)

k 1 ( n ) = λ - 1 q 1 ( n ) 1 + λ - 1 y H ( n ) q 1 ( n )
Φ1 −1(n)=λ−1Φ1 −1(n−1)−λ−1k1(n)q1 H(n)
v1,j(n)=v1,j(n−1)+k1(n)(dj(n)−v1,j H(n−1)y(n))*

(II) Decision of symbol detecting sequences and update of filter tap coefficients

i) Obtainment of zi,j(n)=[g1,j(n), . . . , gN,j(n), gN+k 1 ,j(n), . . . , gN+k i−1,j (n)]T

ii) Calculation of the summation of the square errors
εi,j(n)=gN+j,i(n)−vi,j H(n)zi,j(n)

iii) Decision of the symbol detecting sequence
ki=arg

Figure USRE044219-20130514-P00001
εi,j(n).
wt,i(n)=vi,k i (n)

v i + 1 , j ( n ) = [ v i , j ( n ) 0 ] + g N + k i , j ( n ) - w t , i H ( n ) z i , j ( n ) ɛ i , k i ( n ) [ - w t , i ( n ) 1 ]

In the fifth stage (n=n+1), the stages starting from the second stage are repeated until all the detections on the M transmit symbol vectors transmitted from the transmit antenna are finished.

In algorithm 1, the second stage can be omitted since previously known data are transmitted during the initial period. When the terminal moves slowly and the channel is varying slowly, it frequently occurs that the symbol detecting order is not changed for each symbol time, and the symbol detecting order used during detecting d(n−1) is not varied while detecting d(n).

In algorithm 2, a constant γ is defined, the symbol detecting order is established for each time with the interval of γ, and the predefined symbol detecting order is maintained in another time without updating the symbol detecting order for each symbol time as shown in algorithm 1.

<Algorithm 2>

Similar to algorithm 1, but (II) of the fourth stage is modified as below.

In (II) for updating the filter tap coefficients of the fourth stage, (II) is performed when ‘n’ is a multiple of γ, and wt,i(n) is calculated by using Equation 24 when ‘n’ is not a multiple of γ.
q1(n)=Φ1 −1(n−1)y(n)  Equation 24

q i + 1 ( n ) = [ q i ( n ) 0 ] + c i ( n - 1 ) ξ i ( n ) [ - w t , i ( n - 1 ) 1 ] k i ( n ) = λ - 1 q i ( n ) 1 + λ - 1 y t , i H ( n ) q i ( n )
wt,i(n)=wt,i(n−1)+ki(n)({circumflex over (d)}k i (n)−wt,i H(n−1)yt,i(n))*

It will be described that how much of the amount of calculation in the adaptive receiving system and method for the MIMO according to the preferred embodiment of the present invention is reduced in the time-varying channel environment compared to the existing V-BLAST method.

It is assumed that the V-BLAST method uses the method of “Modified Decorrelating Decision-Feedback Detection of BLAST Space-Time System,” in Proc. ICC 2002 by Wei Zha and Steven D. Blostein which provides simple calculation, and channel estimation results are tracked by using the conventional RLS method.

Assuming that the number of transmit antennas and that of receive antennas are respectively M, the number of times of multiplication and addition of complex numbers is given as follows according to whether the symbol detecting order is varied.

The number of times of multiplication and addition of complex numbers is given as Table 1 when the symbol detecting order is varied while detecting d(n) and d(n+1).

TABLE 1 Multiplication of Addition of complex numbers complex numbers V-BLAST + RLS channel tracking 7/3 M3 5/3 M3 Proposed MIMO-DFE 4/3 M3 4/3 M3

The number of times of multiplication and addition of complex numbers is given as Table 2 when the symbol detecting order is the same while detecting d(n) and d(n+1).

TABLE 2 Multiplication of Addition of complex numbers complex numbers V-BLAST + RLS channel tracking ⅚ M3 + 5.5 M2 ⅚ M3 + 2 M2 Proposed MIMO-DFE 7.5 M2 4 M2

Table 3 shows operations of the multiplication and addition of complex numbers as number values according to the number of antennas, and shows corresponding decrease information.

TABLE 3 Operations M = N = 4 M = N = 8 M = N = 12 V-BLAST + Multiplication 1139 6646 19656 RLS of complex channel numbers tracking Addition of 704 4736 14976 complex numbers V-BLAST + Multiplication 926 4043 9864 RLS of complex channel numbers tracking Addition of 534 2475 6336 complex numbers Decrease Multiplication 18.7% 39.2% 49.8% rates of complex numbers Addition of 24.2% 47.7% 57.5% complex numbers

FIGS. 5 and 7 show graphs of performance through simulations according to the MIMO adaptive receiving system and method.

A channel model by W. C. Jakes is used for the simulation, and it is assumed that no correlation is provided between the respective transmit and receive antennas, and the number of transmit and receive antennas is four.

A frame includes 160 transmit symbol vectors, 32 top transmit symbol vectors thereof are allocated to the training period to have the signals of the transmit antennas cross each other, and the signals modulated by the QPSK are transmitted to the receive axis (note that λ=0.95).

FIG. 5 shows a graph on the performance of algorithm 1 when the normalized Doppler frequency which is a product of the Doppler frequency fd and the symbol length T, the Doppler frequency being a barometer for indicating varied degrees of channels.

As shown, algorithm 1 with a simpler amount of calculation shows the same performance as that of the V-BLAST scheme.

When comparing the performance of algorithm 1 with the result of applying the V-BLAST scheme assuming that the channel of the lowest performance is completely known in FIG. 5, the performance is reduced by about 2 dB in the case of BER=10-3.

The method for inserting a mid-amble by the ratio of 1/4, and tracking the channel by blocks produces performance lower than that of the preferred embodiment.

FIG. 6 shows performance variations depending on fdT when the ratio of bit power and noise power, which indicating that the above-described trend is not varied when the degrees of channel variation is changed.

FIG. 7 shows performance of algorithm 2 according to the preferred embodiment of the present invention.

As shown, the simulation environment by algorithm 2 corresponds to that of FIG. 5, and the symbol detecting sequence follows variations of the update period γ. The performance is lowered by less than about 1 dB when γ is 12 or 24 in the environment that fdT is 0.0005.

As described, the MIMO adaptive receiving system and method decides the optimal filter tap coefficients and the symbol detecting order in the time-varying channel environment to reduce complexity, provide easy realization, and produce similar performance compared to the conventional V-BLAST scheme, and further, it is applicable to other types of MIMO receivers.

While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (31)

What is claimed is:
1. An adaptive receiving MIMO (multi input and multi output) system for transmitting and receiving transmit and receive symbol vectors through channels between multiple transmit and receive antennas, comprising:
a linear equalizer for canceling interference added when passed through the channel from the receive symbol vectors and extracting transmit symbol vectors by performing an initial detection;
a plurality of parallel decision feedback equalizers for canceling signal interference from the signals detected by the linear equalizer and the receive symbol vectors according to a filter tap coefficient and a symbol detecting order updated for each predetermined period, and detecting the transmit symbol vectors, wherein a cross correlation vector is obtained by crossing a first value and a second value to define a cross correlation matrix, the first value obtained when the receive symbol vector is passed through the feedforward filter, and the second value obtained when the detected signal is fed back through the feedback filter; and
an adaptive block for deciding the symbol detecting orders of the linear equalizer and the parallel decision feedback equalizers, and updating the filter tap coefficients based on the RLS (recursive least square) algorithm according to the decided symbol detecting orders.
2. The adaptive receiving system of claim 1, further comprising a reordering unit for reordering the signals sequentially detected through the equalizer according to the symbol detecting order on a plurality of receive symbol vectors decided by the adaptive block.
3. The adaptive receiving system of claim 1, wherein the linear equalizer comprises:
a feedforward filter for receiving the first receive symbol vector from among the receive symbol vectors received through the receive antennas, and filtering error signals; and
a decision unit for applying the optimal filter tap coefficient to signals output by the feedforward filter according to a predetermined decision reference, and outputting a decision value.
4. The adaptive receiving system of claim 1, wherein the parallel decision feedback equalizer comprises:
a feedforward filter for receiving the receive symbol vector from the receive antennas, and performing filtering by using a feedforward filter tap coefficient decided by the adaptive block;
a feedback filter for receiving detected signals from among the receive symbol vectors, and performing filtering by using a feedback filter tap coefficient decided by the adaptive block;
an adder for adding the respective signals output by the feedforward filter and the feedback filter, and outputting added values; and
a decision unit for applying the optimal filter tap coefficient to the added values output by the adder according to a predetermined decision reference, and outputting decision values.
5. The adaptive receiving system of claim 4, wherein the feedback filter increases by an order by one when a detection on the receive symbol vectors from the second symbol to the last symbol is repeated.
6. The adaptive receiving system of claim 1, wherein the adaptive block defines the reference for deciding the tap coefficient by errors of between the transmit symbol vector transmitted by the transmit antenna and the output of the equalizer, and defines the optimal filter tap coefficient as a filter coefficient for minimizing the errors.
7. An adaptive receiving method in an adaptive receiving system for a MIMO (multi input and multi output) for allowing an equalizer to detect transmit symbol vectors when the transmit symbol vectors transmitted from multiple transmit antennas are input as receive symbol vectors through multiple receive antennas, comprising:
(a) the equalizer detecting an error signal by allowing the initial receive symbol vector to be passed through a feedforward filter, and detecting the transmit symbol vectors according to a predetermined decision reference, when the receive symbol vectors are input; and
(b) allowing the equalizer to apply an optimal filter tap coefficient to the feedforward filter and a feedback filter, canceling interference from the receive symbol vectors and detected signals according to a predetermined symbol detecting order, and detecting the transmit symbol vectors when (a) is finished, and using a cross correlation vector obtained by crossing a first value and a second value to define a cross correlation matrix G(n), the first value being obtained when the receive symbol vector is passed through the feedforward filter, and the second value being obtained when the detected signal is fed back through the feedback filter.
8. The adaptive receiving method of claim 7, wherein (b)comprises: allowing the feedforward filter and the feedback filter to update the optimal filter tap coefficient based on the RLS (recursive least square) algorithm, and deciding the symbol detecting order on the equalizer so that a symbol for minimizing the summation of weights of square errors may be estimated.
9. The adaptive receiving method of claim 8, wherein the optimal filter tap coefficient is a filter coefficient for minimizing error between the transmit symbol vector transmitted by the transmit antenna and the estimated transmit symbol vector output by the equalizer.
10. The adaptive receiving method of claim 8, wherein the optimal filter tap coefficient wtj(n), i=1, . . . , M is recursively found by using subsequent equations:

q1(n)=Φi −1(n−1)yt,i(n)
k i ( n ) = λ - 1 q i ( n ) 1 + λ - 1 y t , i H ( n ) q i ( n )
Φi −1(n)=λ−1Φi −1(n−1)−λ−1k1(n)ql H(n)

wt,l(n)+wt,l(n−1)+kl(n)ξl*(n)
where ξl(n) is an a priori estimation error which is given as

ξl(n)={circumflex over (d)}k i (n)−wl,t H(n−1)yt,l(n).
11. The adaptive receiving method of claim 8, wherein the symbol detecting order ki of the equalizer is decided to detect the symbol for minimizing the summation of weights of square errors:
k i = arg min j ɛ i , j ( n ) and ɛ i , j ( n ) = l = 1 n λ n - 1 d j ( l ) - w t , i H ( l ) y t , i ( l ) 2
where wt,i(n) is an integrated filter coefficient vector of the equalizer, and yt,i(n) is an integrated input signal vector, and d(n) is a transmit symbol vector.
12. The adaptive receiving method of claim 7, wherein (a) comprises deciding a value {circumflex over (d)}(n) on the first transmit symbol vector by using a value {tilde over (d)}k 1 (n) generated when the receive symbol vector yti(n) is input to the feedforward filter and is then output therefrom:

{tilde over (d)}k 1 (n)=wl,t H(n−1)yt,i(n)

{circumflex over (d)}k 1 (n)=decision{{tilde over (d)}k 1 (n)}

yt,i+1(n)=[yt(n),{circumflex over (d)}k 1 (n), . . . , {circumflex over (d)}k 1 (n)]t.
13. The adaptive receiving method of claim 7, wherein (b) comprises:
(i) the cross correlation vector is obtained by an equation:

G(n)=λG(n−1)+[yT(n),{circumflex over (d)}(n)]T{circumflex over (d)}H(n);
(ii) calculating the optimal filter tap coefficient of {v1,j(n), j=1,2, . . . , M} applied to the feedforward filter and the feedback filter when (i) is finished;

q1(n)=Φ1 −1(n−1)y(n)
k 1 ( n ) = λ - 1 q 1 ( n ) 1 + λ - 1 y H ( n ) q 1 ( n )
Φi −1(n)=λ−1Φi −1(n−1)−λ−1k1(n)ql H(n)

v1,l(n)=v1,l(n−1)+k1(n)(dl(n)−v1,l H(n−1)y(n))
(iii) deciding the symbol detecting orders of the equalizer, and updating the filter tap coefficients when (ii) is finished; and
(iv) applying the symbol detecting order decided in (iii) and the filter tap coefficient to the next receive symbol vector, detecting the transmit symbol vector, and repeating (iv).
14. The adaptive receiving method of claim 13, wherein (iii) comprises obtaining the cross correlation vector zij(n), calculating the summation εij(n) of weights of square errors, and deciding the symbol detecting order 30

k1=arg
Figure USRE044219-20130514-P00001
εi,j(n)
of each equalizer:

zi,j(n)=[gl,j(n), . . . gN,j(n),gN+k lj (n)]T

εi,j(n)=gN+J,J(n)zi,j(n)

wl,l(n)=vi,k l (n)
v i + 1 , j ( n ) = [ v i , j ( n ) 0 ] + g N + k i , j ( n ) - w t , i H ( n ) z i , j ( n ) ɛ i , k i ( n ) [ - w t , i ( n ) 1 ]
where wt,i(n) is an integrated filter tap coefficient.
15. The adaptive receiving method of claim 7, wherein (b) comprises deciding the symbol detecting order of the equalizer at intervals of a constant γ.
16. The adaptive receiving method of claim 15, wherein when inputting the nth receive symbol vector, (i) when ‘n’ is a multiple of the constant y, obtaining the cross correlation vector zi,j(n), calculating the summation εij(n) of weights of square errors, and deciding the symbol detecting order 30

k1=arg
Figure USRE044219-20130514-P00001
εi,j(n)
of each equalizer:

zi,j(n)=[gl,j(n), . . . gN,j(n),gN+k lj (nn)]T

εi,j(n)=gN+J,J(n)zi,j(n)

wl,l(n)=vi,k 1 (n)
v i + 1 , j ( n ) = [ v i , j ( n ) 0 ] + g N + k i , j ( n ) - w t , i H ( n ) z i , j ( n ) ɛ i , k i ( n ) [ - w t , i ( n ) 1 ]
where wt,i(n) is an integrated filter tap coefficient; (ii) when ‘n’ is not a multiple of the constant γ, updating the filter tap coefficient by use of subsequent equations, and using the previous (n−1) symbol detecting order for the symbol detecting order of each equalizer:

q1(n)=Φ1 −1(n−1)y(n)
q i + 1 ( n ) = [ q i ( n ) 0 ] + c i ( n - 1 ) ɛ i ( n ) [ - w t , i ( n - 1 ) 1 ] k i ( n ) = λ - 1 q i ( n ) 1 + λ - 1 y t , i H ( n ) q i ( n )
wt,j(n)=wt,j(n−1)+k1(n)({circumflex over (d)}k 1 (n)−wt,j H(n−1)yt,j(n))
17. The adaptive receiving method of claim 7, wherein (b) comprises updating the filter tap coefficient and deciding the symbol detecting order for each symbol time according to the speed of the channel varying during a predetermined period, and deciding the symbol detecting order once with the interval of the constant γ, and updating the filter tap coefficient and maintaining the symbol detecting order during a residual period.
18. A wireless communication device for transmitting and receiving transmit and receive symbol vectors through a communication channel, comprising:
a linear equalizer for canceling interference from the receive symbol vectors and extracting transmit symbol vectors by performing a detection: and
a plurality of feedback equalizers for canceling signal interference from the signals detected by the linear equalizer and the receive symbol vectors according to a filter tap coefficient and a symbol detecting order updated for each predetermined period, and detecting the transmit symbol vectors, wherein a cross correlation vector is obtained by crossing a first value and a second value to define a cross correlation matrix, the first value obtained when the receive symbol vector is passed through a feedforward filter, and the second value obtained when the detected signal is fed back through a feedback filter.
19. An adaptive receiving multi input and multi output method for allowing an equalizer to detect transmit symbol vectors when the transmit symbol vectors transmitted from multiple transmit antennas are input as receive symbol vectors through multiple receive antennas, comprising:
(a) the equalizer detecting an error signal by allowing the initial receive symbol vector to be passed through a feedforward filter, and detecting the transmit symbol vectors, when the receive symbol vectors are input; and
(b) allowing the equalizer to apply an optimal filter tap coefficient to the feedforward filter and a feedback filter, canceling interference from the receive symbol vectors and detected signals according to a predetermined symbol detecting order, and detecting the transmit symbol vectors when (a) is finished, and using a cross correlation vector obtained by crossing a first value and a second value to define a cross correlation matrix G(n), the first value being obtained when the receive symbol vector is passed through the feedforward filter, and the second value being obtained when the detected signal is fed back through the feedback filter.
20. The wireless communication device of claim 18, wherein the transmission and reception of the transmit and receive symbol vectors are performed between multiple transmit and receive antennas.
21. The wireless communication device of claim 20, further comprising:
an adaptive block for deciding the symbol detecting orders of the linear equalizer and the feedback equalizers, and updating the filter tap coefficients according to the decided symbol detecting orders.
22. The wireless communication device of claim 21, wherein the adaptive block updates the filter tap coefficients based on the recursive least square (RLS) algorithm.
23. The wireless communication device of claim 22, further comprising a reordering unit for reordering the signals sequentially detected through the linear equalizer according to the symbol detecting order on a plurality of receive symbol vectors decided by the adaptive block.
24. The adaptive receiving multi input and multi output method of claim 19, wherein the equalizer detecting an error signal comprises:
using the cross correlation vector obtained by crossing a first value and a second value to define a cross correlation matrix G(n).
25. A wireless communication method for transmitting and receiving transmit and receive symbol vectors through a communication channel, comprising:
(a) canceling interference from the receive symbol vectors and extracting transmit symbol vectors by performing a detection; and
(b) canceling signal interference from the detected signals and the receive symbol vectors according to a filter tap coefficient and a symbol detecting order updated for each predetermined period, and detecting the transmit symbol vectors, wherein a cross correlation vector is obtained by crossing a first value and a second value to define a cross correlation matrix, the first value obtained when the receive symbol vector is passed through a feedforward filter, and the second value obtained when the detected signal is fed back through a feedback filter.
26. The wireless communication method of claim 25, wherein the transmission and reception of the transmit and receive symbol vectors are performed between multiple transmit and receive antennas.
27. The wireless communication method of claim 26, further comprising:
deciding the symbol detecting orders of the linear equalizer and the feedback equalizers, and updating the filter tap coefficients according to the decided symbol detecting orders.
28. The wireless communication method of claim 27, wherein the updating of the filter tap coefficients is performed based on the recursive least square (RLS) algorithm.
29. The wireless communication method of claim 28, further comprising:
reordering the signals sequentially detected according to the symbol detecting order on a plurality of receive symbol vectors.
30. A wireless communication device through a communication channel, comprising:
a linear equalizer configured to cancel interference from receive symbol vectors and extract transmit symbol vectors; and
a feedback equalizer configured to cancel signal interference from the signals detected by the linear equalizer and the receive symbol vectors according to a filter tap coefficient and a symbol detecting order, wherein a cross correlation vector is obtained by crossing a first value and a second value, the first value obtained when the receive symbol vector is passed through a feedforward filter, and the second value obtained when the detected signal is fed back through a feedback filter.
31. A wireless communication method through a communication channel, comprising:
canceling interference from receive symbol vectors and extracting transmit symbol vectors ; and
canceling signal interference from the detected signals and the receive symbol vectors according to a filter tap coefficient and a symbol detecting order, wherein a cross correlation vector is obtained by crossing a first value and a second value, the first value obtained when the receive symbol vector is passed through a feedforward filter, and the second value obtained when the detected signal is fed back through a feedback filter.
US12/727,007 2003-10-21 2010-03-18 Adaptive receiving system and method for MIMO Active USRE44219E1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020030073341A KR20050038122A (en) 2003-10-21 2003-10-21 System and method for adaptive receiving of mimo
KR10-2003-0073341 2003-10-21
US10/829,909 US7346104B2 (en) 2003-10-21 2004-04-21 Adaptive receiving system and method for MIMO
US12/727,007 USRE44219E1 (en) 2003-10-21 2010-03-18 Adaptive receiving system and method for MIMO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/727,007 USRE44219E1 (en) 2003-10-21 2010-03-18 Adaptive receiving system and method for MIMO

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/829,909 Reissue US7346104B2 (en) 2003-10-21 2004-04-21 Adaptive receiving system and method for MIMO

Publications (1)

Publication Number Publication Date
USRE44219E1 true USRE44219E1 (en) 2013-05-14

Family

ID=34510975

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/829,909 Active 2026-03-21 US7346104B2 (en) 2003-10-21 2004-04-21 Adaptive receiving system and method for MIMO
US12/727,007 Active USRE44219E1 (en) 2003-10-21 2010-03-18 Adaptive receiving system and method for MIMO

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/829,909 Active 2026-03-21 US7346104B2 (en) 2003-10-21 2004-04-21 Adaptive receiving system and method for MIMO

Country Status (2)

Country Link
US (2) US7346104B2 (en)
KR (1) KR20050038122A (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US7809020B2 (en) * 2003-10-31 2010-10-05 Cisco Technology, Inc. Start of packet detection for multiple receiver combining and multiple input multiple output radio receivers
US7480234B1 (en) 2003-10-31 2009-01-20 Cisco Technology, Inc. Initial timing estimation in a wireless network receiver
US7616695B1 (en) 2004-06-17 2009-11-10 Marvell International Ltd. MIMO equalizer design: an algorithmic perspective
US8041233B2 (en) * 2004-07-14 2011-10-18 Fundación Tarpuy Adaptive equalization in coherent fiber optic communication
KR20060012825A (en) * 2004-08-04 2006-02-09 삼성전자주식회사 Mimo receiver
KR100648472B1 (en) * 2004-10-19 2006-11-28 삼성전자주식회사 Apparatus and method of transmitting and receiving for optimizing of performance of amc in multi-input multi-output system
JP4387282B2 (en) * 2004-10-20 2009-12-16 株式会社エヌ・ティ・ティ・ドコモ Signal separation device and signal separation method
US7978759B1 (en) * 2005-03-24 2011-07-12 Marvell International Ltd. Scalable equalizer for multiple-in-multiple-out (MIMO) wireless transmission
CN101228752A (en) * 2005-07-19 2008-07-23 汤姆森特许公司 Adaptive equalizer tap stepsize
JP4386196B2 (en) * 2005-08-05 2009-12-16 日本電気株式会社 Partial response transmission system and its equalization circuit
US7529296B2 (en) * 2005-09-21 2009-05-05 Intel Corporation Adaptive equalization method and circuit for continuous run-time adaptation
US8009728B2 (en) * 2005-12-09 2011-08-30 Electronics And Telecommunications Research Institute Parallel equalizer for DS-CDMA UWB system and method thereof
US7830987B2 (en) * 2006-08-25 2010-11-09 Broadcom Corporation Electronic dispersion compensation utilizing interleaved architecture and channel identification for assisting timing recovery
WO2008024967A2 (en) * 2006-08-25 2008-02-28 Conexant Systems, Inc. Systems and methods for mimo precoding in an xdsl system
US20080049825A1 (en) * 2006-08-25 2008-02-28 Broadcom Corporation Equalizer with reorder
US8300685B2 (en) * 2006-08-25 2012-10-30 Broadcom Corporation Non-linear decision feedback equalizer
US7961781B2 (en) * 2006-08-25 2011-06-14 Broadcom Corporation Electronic dispersion compensation utilizing interleaved architecture and channel identification for assisting timing recovery
US20080069198A1 (en) * 2006-08-25 2008-03-20 Broadcom Corporation Sequence decision feedback equalizer
US7983352B2 (en) * 2006-09-15 2011-07-19 Futurewei Technologies, Inc. Power allocation in a MIMO system without channel state information feedback
US7864885B2 (en) * 2006-11-15 2011-01-04 Samsung Electronics Co., Ltd. Multiple input multiple output (MIMO) transceiver with pooled adaptive digital filtering
US7724844B2 (en) * 2007-01-31 2010-05-25 Seagate Technology Llc Detection of servo data for a servo system
KR100939919B1 (en) * 2007-09-28 2010-02-03 한국전자통신연구원 Method and Apparatus of Successive interference cancellation for Wireless communication system
KR101375732B1 (en) * 2007-11-21 2014-03-19 연세대학교 산학협력단 Apparatus and method for eliminating frequency synchronization error in relay wireless commnication system
US7978757B1 (en) * 2008-02-08 2011-07-12 Freescale Semiconductor, Inc. Configurable receiver and a method for configuring a receiver
US8374291B1 (en) * 2009-02-04 2013-02-12 Meteorcomm Llc Methods for bit synchronization and symbol detection in multiple-channel radios and multiple-channel radios utilizing the same
KR20110111805A (en) 2010-04-05 2011-10-12 삼성전자주식회사 Equalizer for equalizig vsb signal and equalize method thereof
US8755426B1 (en) * 2012-03-15 2014-06-17 Kandou Labs, S.A. Rank-order equalization
KR101341184B1 (en) * 2012-12-12 2013-12-12 세종대학교산학협력단 Method for detecting signal using hybrid stbc signal and apparatus thereof
US9313054B1 (en) * 2015-02-09 2016-04-12 Xilinx, Inc. Circuits for and methods of filtering inter-symbol interference for SerDes applications
US9742597B1 (en) * 2016-03-29 2017-08-22 Xilinx, Inc. Decision feedback equalizer
US10038575B1 (en) * 2017-08-31 2018-07-31 Stmicroelectronics S.R.L. Decision feedback equalizer with post-cursor non-linearity correction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980013075A (en) 1996-07-01 1998-04-30 에프. 비. 루루디스 The multi-element cheungsik space using an antenna-wire-less communication system with a time frame
US7072392B2 (en) * 2000-11-13 2006-07-04 Micronas Semiconductors, Inc. Equalizer for time domain signal processing
US7113540B2 (en) * 2001-09-18 2006-09-26 Broadcom Corporation Fast computation of multi-input-multi-output decision feedback equalizer coefficients

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980013075A (en) 1996-07-01 1998-04-30 에프. 비. 루루디스 The multi-element cheungsik space using an antenna-wire-less communication system with a time frame
US6097771A (en) 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
US7072392B2 (en) * 2000-11-13 2006-07-04 Micronas Semiconductors, Inc. Equalizer for time domain signal processing
US7113540B2 (en) * 2001-09-18 2006-09-26 Broadcom Corporation Fast computation of multi-input-multi-output decision feedback equalizer coefficients

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Adaptive MIMO Decision Feedback Equalization for Receivers in Time-Varying Channels", J. Choi, et al., The 57th IEEE Semiannual Vehicular Technology Conference, Apr. 22-25, 2003 International Convention Center, Jeju, Korea, 6 pages.
"Blind Adaptive MIMO Decision Feedback Equalization using Givens Rotations", G. Ginis, et al., STARlab, Electrical Engineering Dept., Stanford University.
"Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas", G. Foschini, Bell Labs Technical Journal, Autumn 1996, pp. 41-59.
"Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas", G. Toschini, Bell Labs Technical Journal, Autumn 1996, pp. 41-59.
"On the Relation Between V-Blast and the GDFE", G. Ginis, et al., 2001 IEEE, IEEE Communication Letters, vol. 5, No. 9, Sep. 2001, pp. 364-366.
"On the Relation Between V-Blast and the GDFE", G. Ginis, et al., 2001 IEEE, IEEE Communications Letters, vol. 5, No. 9, Sep. 2001, pp. 364-366.
"Training-Based Channel Estimation for Continuous Flat Fading Blast", Q. Sun, et al., 2002 IEEE, pp. 325-329.
"V-Blast: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel", P. Wolniansky, et al., 1998 IEEE, pp. 295-300.
Blind Adaptive MIMO Desision Feedback Equalization using Givens Rotations, G. Ginis, et al, STARlab, Electrical Engineering Dept., Stanford University.
Korean Science Institute Doctoral Dissertation, "Adaptive equalizer based detecting method for multiple input mulptiple output system and I/Q imbalance compensating method." Ji-Hoon Choi, Nov. 12, 2002.
Korean Science Institute Doctoral Dissertation, "Adaptive equalizer based detecting method for multiple input multiple output system and I/Q imbalance compensating method." Ji-Hoon Choi, Nov. 12, 2002.

Also Published As

Publication number Publication date
US7346104B2 (en) 2008-03-18
US20050084028A1 (en) 2005-04-21
KR20050038122A (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US7221956B2 (en) Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7148845B2 (en) Antenna array including virtual antenna elements
US7991066B2 (en) Transmitter, receiver and method for controlling multiple input multiple output system
EP0712553B1 (en) A method and apparatus for receiving and decoding communication signals in a cdma receiver
ES2449266T3 (en) Apparatus and procedure for beam formation in an environment of variable interference
US20060120486A1 (en) Method of estimating fading coefficients of channels and of receiving symbols and related single or multi-antenna receiver and transmitter
CN100401645C (en) MMSE reception of DS-CDMA with transmit diversity
EP1394963A2 (en) Apparatus and method for transmitting and receiving signals using multi-antennas
JP4361808B2 (en) Signal transmission method and apparatus in mobile communication system
US8619928B2 (en) Multi-stage interference suppression
JP2005524331A (en) Wireless transmission using adaptive transmit antenna array
CN1922789B (en) Multi-user adaptive array receiver and method
EP0966113B1 (en) Method and apparatus for performing equalisation in a radio receiver
US7113540B2 (en) Fast computation of multi-input-multi-output decision feedback equalizer coefficients
JP4043238B2 (en) Time reversal block transmit diversity system and method for channels with intersymbol interference
US20020013164A1 (en) Null deepening for an adaptive antenna based communication station
USRE44092E1 (en) Apparatus and method for adaptively modulating signal by using layered time-space detector used in MIMO system
EP0604208B1 (en) Adaptive equalizer
US6868276B2 (en) Method and apparatus for estimating carrier frequency offset and fading rate using autoregressive channel modeling
KR100972319B1 (en) Transmission mode and rate selection for a wireless communication system
US7634030B2 (en) Data transmission apparatus for DS/CDMA system equipped with MIMO antenna system
US6795392B1 (en) Clustered OFDM with channel estimation
US20050041760A1 (en) Computation of decision feedback equalizer coefficients with constrained feedback tap energy
JP4597170B2 (en) Scheduling system and method in multiple input multiple output system
US7586984B2 (en) Finite-length equalization over multi-input multi-output (MIMO) channels

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY