USRE44124E1 - Regenerable high capacity sorbent for removal of mercury from flue gas - Google Patents
Regenerable high capacity sorbent for removal of mercury from flue gas Download PDFInfo
- Publication number
- USRE44124E1 USRE44124E1 US12/608,123 US60812309A USRE44124E US RE44124 E1 USRE44124 E1 US RE44124E1 US 60812309 A US60812309 A US 60812309A US RE44124 E USRE44124 E US RE44124E
- Authority
- US
- United States
- Prior art keywords
- sorbent
- ion
- mercury
- ions
- polyvalent metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/64—Heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/12—Naturally occurring clays or bleaching earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
- B01D2257/602—Mercury or mercury compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S502/00—Catalyst, solid sorbent, or support therefor: product or process of making
- Y10S502/515—Specific contaminant removal
- Y10S502/516—Metal contaminant removal
Definitions
- This invention relates to a composition for gas treatment and processes and systems for making and using the composition.
- the invention relates to a high capacity regenerable sorbent for removal of mercury from flue gas and processes and systems for making and using the sorbent.
- Mercury and its compounds are a group of chemicals identified in Title III of the 1990 Clean Air Act (CAA) Amendments as air toxic pollutants.
- Mercury is of significant environmental concern because of its toxicity, persistence in the environment, and bioaccumulation in the food chain.
- Mercury is one of the most volatile species of the 189 toxic compounds listed in the Clean Air Act Amendments and is, therefore, released readily into the environment from natural and anthropogenic sources.
- mercury can also be transported regionally through various environmental cycles (Mercury Study Report to Congress, “Volume VIII: An Evaluation of Mercury Control Technologies and Costs,” U.S. Environmental Protection Agency, EPA-452/R-97-010, December, 1997). Atmospheric deposition of mercury is reported to be the primary cause of elevated mercury levels in fish found in water bodies remote from known sources of this heavy metal.
- a coal-fired utility boiler emits several different mercury compounds, primarily elemental mercury, mercuric chloride (HgCl 2 ), and mercuric oxide (HgO)—each in different proportions, depending on the characteristics of the fuel being burned and on the method of combustion. Quantifying the rate and composition of mercury emitted from stationary sources has been the subject of much recent work (e.g., Devito, M. S. et al., “Flue Gas Hg Measurements from Coal-Fired Boilers Equipped with Wet Scrubbers,” 92 nd Annual Meeting Air & Waste Management Association, St. Louis, Mo., Jun. 21-24, 1999; Laudal, D. L.
- Coal-fired combustion flue gas streams are of particular concern because of their composition that includes trace amounts of acid gases, including SO 2 , NO and NO 2 , and HCl. These acid gases have been shown to degrade the performance of activated carbon, the most widely available sorbent for mercury control, and other proposed sorbents, and so present a challenge that is addressed by the invention described herein.
- activated carbon is broadly considered the best available control technology for reduction of mercury emissions from coal-fired power plants that do not have wet scrubbers (about seventy-five percent of all plants).
- Tests of carbon injection, both activated and chemically impregnated, have been reported by several research teams: Miller, S. J., et al., “Laboratory-Scale Investigation of Sorbents for Mercury Control,” paper number 94-RA114A.01, presented at the 87 th Annual Air and Waste Management Meeting, Cincinnati, Ohio, Jun. 19-24, 1994; Sjostrom, S., J.
- Flue gases contain several acid gases including sulfur dioxide (SO 2 ) in the range of a few hundred to a few thousand parts per million (ppm); hydrogen chloride (hydrochloric acid, HCl) up to 100 ppm; and nitrogen oxides (e.g., NO 2 ) in the range of 200 to 2,000 ppm.
- SO 2 sulfur dioxide
- HCl hydrogen chloride
- nitrogen oxides e.g., NO 2
- the purpose of the invention is to provide compositions, processes and systems for removal of heavy metals from gas streams, especially those resulting from the combustion of coal which contain the precursors of acid gases such as SO 2 , NO, NO 2 , and HCl.
- One advantage of the invention is that the compositions (sorbents) disclosed herein have a capacity for mercury that greatly exceeds that of the baseline technology, activated carbon.
- Another advantage is that the disclosed sorbents are unaffected by typical acidic flue gases, which can render background art activated-carbon-based and zeolite-based sorbents virtually useless for this task. Applicants believe that this property is due to the layered structure of the metal sulfide amendments (chalcogenides) used in preferred embodiments of the invention.
- This layered structure has dimensions such that the polar acid gas molecules are excluded from interlayer sites on the amendment, eliminating the potential for degradation of sorbent performance due to the acid gases.
- a further advantage is that the strategy of deploying the sorbents into the flue gases as amendments on an inert support maximizes the efficiency and minimizes the costs of the sorbents by exposing only molecularly thin films to the mercury. As a result, all of the sorbent is presented to the flue gas, on a very inexpensive substrate.
- the sorbents disclosed herein are less expensive than activated carbon and do not, unlike activated carbon, adversely impact the value of the fly ash, for example, by adversely affecting its use as a concrete additive.
- Preferred forms of the sorbents disclosed herein ensures that they are “drop-in” replacements for carbon technology and do not require any additional technologies for injection, or collection.
- the improved capacity and efficiency and the lower costs for the disclosed technology promise to substantially reduce the costs of implementing the EPA's new emissions controls, benefiting both the utility industry and the U.S. public.
- the contact time of a mercury sorbent with a mercury-containing gas is of very brief duration and, therefore, only the surface layers of the sorbent actually perform the sorption.
- the silicate substrate acts an inexpensive support to a thin layer of the polyvalent metal sulfide, ensuring that all of the more expensive metal sulfide engages in the sorption process.
- compositions are able to adsorb mercury at mass ratios of greater than 1:1 under laboratory conditions.
- the sorbent forms a strong chemical bond with mercury at temperatures typically found with flue gas, the compounds can be thermally regenerated at slightly higher temperatures, allowing for reuse of the sorbent and recovery of mercury for recycling or stabilization.
- the disclosed invention is expected to greatly reduce the cost of this mercury control by decreasing the amount of sorbent injected, downsizing sorbent injection equipment, and reducing costs for handling and disposing of spent sorbent.
- regenerating rather than disposing of spent sorbents is expected to further improve process economics.
- the formulation of the sorbents disclosed herein also results in stronger bonding of the mercury to the chemical amendment of the substrate material.
- the mercury present on used sorbent is thus more difficult to remove, resulting in a final waste form that is more stable and less likely to return the captured mercury to the environment via leaching or other natural processes after disposal.
- One object of the invention is to reduce the cost and increase the effectiveness of mercury sorbents and to increase the cost effectiveness of methods and systems for removing mercury from flue gases. Another object of the invention is to prevent contamination of fly ash with activated carbon, thus facilitating its reuse.
- the invention is concerned with a novel mercury sorbent composition.
- phyllosilicates having a first layered structure are amended with metal sulfides (e.g., chalcogenides) having a second layered structure, with the open layers of the second layered structure lined with both metal and sulfur ions.
- metal sulfides e.g., chalcogenides
- the layers of the metal sulfides are held together by weak Van der Waals bonds and thus, mercury can enter into these interlayer openings whereas the acid gases are excluded and cannot interfere with the adsorption of mercury.
- the preferred inter-layer spacing is approximately five nanometers (nm).
- the invention is concerned with a process for preparing a solid sorbent and product prepared therefrom.
- the preferred multi-step process includes the steps of obtaining a layered silicate material; performing an ion exchange between the silicate substrate material and a solution containing one or more polyvalent metals from the transition series (e.g., Sn(II), Sn(IV), Fe(II), Fe(III), Ti, Mn, Zn, Mo); washing the impregnated substrate with water; contacting the impregnated and washed substrate with a gas phase or liquid phase source of sulfide (e.g., Thio-Red®; recovering a sulfided substrate (the exchanged polyvalent metal ions precipitate as an insoluble sulfide and become locked in place within the silicate lattice); spray drying the sulfided substrate; and recovering a high capacity sorbent.
- a gas phase or liquid phase source of sulfide e.g., Thio-Red®
- the high capacity sorbent is preferably employed to capture elemental mercury or oxidized mercury species (mercuric chloride) from flue gas and other gases at temperatures from ambient to 350° F.
- a fixed bed may be employed, or the sorbent may be injected directly into the gas stream.
- the sorbent may be regenerated by heating to approximately 500° F. in a fixed bed or fluidized bed.
- an inert gas e.g., nitrogen
- the metal sulfides of the invention disclosed herein act as very efficient sorbents for heavy metals such as mercury due to their planar crystal lattice structure.
- the crystal lattices of the sorbents of the subject invention are arranged in planar arrays creating open layers, lined with sulfur atoms and/or metal ions.
- the open nature of these layers permits ready access for mercury atoms and ions, but the spacing of the parallel planes is such that acid gases cannot contact the metal sulfide molecules, and therefore do not impact the performance of the sorbent.
- the sulfur atoms have a strong affinity for mercury, which becomes tightly bound within the crystal lattice.
- certain metals such as tin and titanium form amalgams with mercury, further enhancing the binding mechanism.
- tin (II) sulfide for example, the interlayer gaps are lined with alternating rows of tin and sulfide atoms.
- the mercury thus has the potential to bind to every atom of the silicate amendment.
- TMDs transitional metal dichalcogenides
- PVMS polyvalent metal sulfides
- TMDs transitional metal dichalcogenides
- PVMS polyvalent metal sulfides
- These TMD and PVMS compounds have a layered structure with opposing sulfur atoms.
- the gap formed between the layers create an interplanar space, where heavy metals are highly attracted due to the high density of the sulfur atoms.
- the interlayer spacing is such that acid gas molecules are excluded from the space, and thus cannot impact the performance of the sorbent.
- This two-dimensional layered structure creates compounds similar in many ways to graphite. Uptake of metals occurs by insertion of the metal within the two-dimensional layered structure in a phenomenon known as intercalation.
- Intercalation is a chemical insertion reaction by which atoms (generally metals) can be inserted between the layers of two-dimensional layered compounds without altering the basic structure of the host material. Tin and metals in the first few columns of the transition block of the periodic table are capable of forming these layered structures.
- Preferred embodiments of the disclosed compositions also comprise a substrate, preferably a phyllosilicate.
- a substrate preferably a phyllosilicate.
- rings of tetrahedrons are linked by shared oxygens to other rings in a two dimensional plane that produces a sheet-like structure.
- the sheets are then connected to each other by layers of cations. These cation layers are weakly bonded and often have water molecules and other neutral atoms or molecules trapped between the sheets.
- the silicon to oxygen ratio is generally 1:2.5 (or 2:5) because only one oxygen is exclusively bonded to the silicon and the other three are half shared (1.5) to other silicons.
- the symmetry of the members of this group is controlled chiefly by the symmetry of the rings but is usually altered to a lower symmetry by other ions and other layers; but the overlying symmetry of the silicate sheets will usually still be expressed in a higher pseudo-symmetry.
- the typical crystal habit of phyllosilicates is flat, platy, book-like and most all members display good basal cleavage. Although members tend to be soft, they are remarkably resilient. Phyllosilicates are also generally tolerant of high pressures and temperatures.
- Vermiculite i.e., hydrated laminar magnesium-aluminum-ironsilicate that resembles mica in appearance
- Vermiculite is one preferred sorbent substrate, given its ion exchange capacity, commercial availability, and low cost.
- Vermiculite is the name applied to a group of magnesium aluminum iron silicate minerals, with a variable composition that may be summarized thus: (Mg,Ca) 0.7 (Mg,Fe 3+ , Al) 6.0 [(Al,Si) 8 O 20 ](OH) 4 .8H 2 O Flakes of raw vermiculite concentrate are micaceous in appearance and contain interlayers of water in their structure.
- vermiculite is widely used in lightweight plaster and concrete, providing good thermal insulation. For this reason, the addition of vermiculite to fly ash materials is not likely to affect the properties of concrete made with it, unlike the addition of carbon to fly ash.
- Vermiculite is a phyllo-, or layered silicate with a generalized structure similar to that of talc. It has a central, octahedrally coordinated layer of iron and magnesium oxides lying between two inwardly pointing sheets of silica tetrahedra.
- iron and magnesium ions substitute for silicon in the tetrahedral layer and the resulting electrical imbalance is neutralized by loosely bound interlayer ions of calcium, magnesium, or more rarely, sodium.
- the interlayer space also includes two ordered layers of water molecules. The calcium and magnesium ions within the interlayer space can be replaced by other metal ions to give vermiculite a very high ion-exchange capacity. Vermiculite is not described in the literature as an aluminosilicate.
- Montmorillonite is another preferred sorbent substrate.
- Montmorillonite also known as smectite, bentonite, or Fuller's Earth, is a clay weathering product of aluminosilicate minerals. These clays typically develop in semi-arid regions from solutions with high concentrations of magnesium ions and can be made synthetically.
- Montmorillonite is a crypto-crystalline aluminosilicate. Montmorillonite clays are constructed of a single sheet of alumina octahedra, sandwiched between two layers of silica tetrahedra.
- the hydrated interlayer space between the sheets is expansible, that is, the separation between the individual smectite sheets varies depending upon the interlayer cations present. Because the interlayer area is hydrated, cations within the interlayer may easily exchange with cations in an external solution, providing that charge balance is maintained. This leads to very high cation exchange capacities in these materials that may be as high as 80-150 mEq/100 g. The availability of the interlayer areas and the very small particle size lead to these clays having extremely large effective surface areas.
- the typical particulate size of montmorillonite is in the range of a few microns diameter, which makes it easy to inject and suspend in a flue gas stream, where it is exposed to mercury.
- a particle size that is similar to the fly ash thorough mixing of the sorbent material into the gas stream is assured. This in turn minimizes the mass of sorbent that is required to achieve proposed mercury removal levels.
- Its handling and injection into a flue gas stream is similar to that of activated carbon, done with conventional materials handling equipment and requiring residence times for the sorbent on the order of about one second to achieve superior mercury removal from the flue gas stream.
- the silica content of the montmorillonite renders it easily collectable in an electrostatic precipitator. And that same silica content also renders the collected fly ash and sorbent mixture readily salable as a pozzolan material, a clear advantage over activated carbon.
- Allophane is another preferred sorbent substrate.
- Allophane is a synthetic amorphous aluminosilicate with a high cation exchange capacity. Thus, both natural and synthetic amorphous aluminosilicate materials are preferred as sorbent substrates.
- sorbent preparation is a multistep process that includes the exchange of metals and addition of sulfide ions to the phyllosilicate substrate material.
- the first step in the preparation of the sorbent is an ion exchange between the phyllosilicate substrate material and a solution containing one or more of a group of polyvalent metals including tin (both Sn(II) and Sn(IV)), iron (both Fe(II) and Fe(III)), titanium, manganese, zirconium and molybdenum, dissolved as salts, such as the sulfate, chloride or nitrate, or as other soluble forms.
- Ion exchange is preferably performed by suspending or otherwise contacting the phyllosilicate substrate with the solution containing a metal ion for a period of time sufficient to complete the process.
- the solution is stirred or mixed during this time to facilitate the exchange.
- the phyllosilicate substrate material is preferably separated from the solution and may be briefly washed with water. Separation can be accomplished by any number of means, many of which are well established and generally known to those in the field of process engineering. Examples include settling, filtration, and centrifugation.
- the metal solution is reused directly or processed to recover unused metal ions.
- contact between the phyllosilicate substrate and the metal ion solution occurs as a multi-step batch or continuous process in which quantities of substrate and solution are sequentially contacted with each other in stages. This process is preferably performed in either a co-current or counter-current manner.
- the second step in the preparation of the sorbent is the controlled addition of thiocarbonate, sulfide or polysulfide ions to the phyllosilicate substrate as described below. This is preferably accomplished by contacting the exchanged phyllosilicate substrate with a liquid phase source of sulfide.
- Preferable sources of sulfur or sulfide for gas-phase contacting include hydrogen sulfide.
- Preferable sources of sulfur or sulfide for liquid-phase contacting include sodium sulfide (Na 2 S), calcium polysulfide (CaS x ) and the thiocarbonate ion (CS 3 ⁇ 2 ).
- An aqueous solution comprising Thio-Red® is one preferred sulfide source because its pH can be adjusted and still retains its sulfide characteristic.
- Sulfide addition in the liquid phase is preferably accomplished by the incremental addition of a solution containing a sulfide source (e.g., sulfide ions, polysulfide ions and/or thiocarbonate ions, for example, from Thio-Red®) to a liquid containing the phyllosilicate substrate material impregnated with the exchanged polyvalent metal ions.
- a sulfide source e.g., sulfide ions, polysulfide ions and/or thiocarbonate ions, for example, from Thio-Red®
- the pH of the Thio-Red® solution is treated with HCl to reduce its pH from about 11.8 to a pH of about 7 to about 8.
- the pH-adjusted Thio-Red® solution is added to the solution containing the substrate material impregnated with the exchanged polyvalent metal ions until the solution pH is about 7 to about 8.
- the exchanged polyvalent metal ions precipitate as an insoluble sulfide and become locked in place within the phyllosilicate lattice.
- the amended phyllosilicate is then separated from the solution by settling, filtration or centrifuging.
- the separated sorbent is then re-slurried and processed though a spray drier to separate solids, dry the solids and size the sorbent solids.
- the amended phyllosilicate material is dried to less than about five percent moisture such that the material is flowable.
- filtration is used to separate the solids from the sulfidation solution, and the separated solids are then re-slurried with water for feed to the spray dryer for drying and particle sizing. If needed, the spray-dried material is ground in an additional step to achieve the preferred particle size distribution.
- the sorbent disclosed herein is used to absorb elemental mercury or oxidized mercury species such as mercuric chloride from flue gas and other gases at temperatures from ambient to as high as 350° F.
- the operational temperature range for the sorption process operating at near ambient pressure conditions is about 350° F. and less. Sorption processes conducted at higher pressures (e.g., at sixty psi) can be operated at temperatures near 500° F. Applicants believe that 350° F. is a likely practical upper limit for the sorption process at atmospheric pressure. Sorbent performance degrades with increasing temperature, and improves with decreasing temperature.
- the practical lower limit is related to the acid dew point of the gas stream, at which the SO 2 in the gas begins to condense to form sulfurous acid. This can become a major corrosion issue in ductwork of a power plant.
- the acid dew point can be in the range 250-270° F.
- the SO 2 is typically 400 ppm or less, and the acid dew point may be less than 180° F.
- the sorbent is contained within a fixed bed in which it is substantially stationary.
- contact between the gas and sorbent is achieved as the gas flows through the bed. Applicants believe that a few seconds of contact is adequate. The size of the bed is more typically dependent on how often it is to be changed or regenerated.
- an empty bed residence time of less than one second, nominally 0.7 second is provided. Applicants believe that an optimum contact time is 1.5 seconds.
- Another process configuration for sorbent use comprises directly injecting and entraining the sorbent into the gas stream.
- sorbent is preferably injected into the gas stream downstream of the boiler and remains in the gas stream until it is removed along with the flyash using an electrostatic precipitator and/or a baghouse.
- contact is achieved while the sorbent is entrained in the gas and also during the time it is fixed to the separation device.
- an adequate contact time preferably at least one or two seconds is required to ensure proper sorption of the mercury onto or into the sorbent.
- the sorbent when mercury sorption is complete, the sorbent is stabilized and disposed of using any of a variety of conventional techniques, e.g., landfilled along with the collected fly ash or sold along with the fly ash for use as a pozzolan additive in concrete.
- the sorbent may also be regenerated by heating it to about 500° F. and maintaining it at that temperature for a time that is sufficient to desorb the mercury from the sorbent.
- sorbent regeneration occurs in a fixed or fluidized bed. During the regeneration step, an inert gas such as nitrogen is preferably flowed through the bed to sweep desorbed mercury away from the sorbent.
- desorbed mercury is captured for reuse or disposal using any of a variety of conventional techniques, e.g., the mercury can be condensed as the liquid element in a chilled condenser, or captured as mercuric oxide in a chemical wet scrubber.
- the wet scrubber is one disclosed in U.S. Pat. No. 5,833,736 or U.S. Pat. No. 5,893,943 the disclosures of which patents are incorporated by reference as if fully set forth herein.
- desorption from a fixed bed takes about one-half to one times the total sorption time to which the sorbent has been subjected.
- the above description is for a preferred operating mode in which the pressures at which mercury is adsorbed onto and into the sorbent and at which it is desorbed are approximately equal.
- the adsorption and desorption modes are determined primarily by variations in the sorbent temperature.
- the temperatures at which adsorption and desorption occur are essentially equal (and may be very high, e.g., at least 700° F., can be between 500-1000° F.
- the adsorption and desorption modes are determined primarily by variations in the operating pressure.
- This operating mode is referred to as Pressure-Swing-Adsorption (PSA) and is a well-known separation technique.
- PSA Pressure-Swing-Adsorption
- the high-capacity sorbent described herein may be used in either operating mode.
- sorbent is used to remove mercury from a gas stream at a gas pressure of sixty pounds per square inch gauge (psig) and a temperature of 500° F.
- mercury is released from the sorbent when the pressure is reduced by less than ten percent (five psig) while the same sorption temperature is maintained.
- the invention is a sorbent particle comprising: a vermiculite having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a product of a plurality of thiocarbonate ions having chemically reacted with at least some of said polyvalent metal ions (e.g., to form a plurality of metal sulfides and/or metallic polythiocarbonate/sulfides).
- the sorbent has a largest dimension of less than about twenty micrometers and said sorbent particle is operative to capture at least ninety percent of the ionic and elemental mercury present in a flue gas containing acid gases (e.g., SO 2 , NO and NO 2 , and/or HCl) to which it is exposed.
- a flue gas containing acid gases e.g., SO 2 , NO and NO 2 , and/or HCl
- the invention is a sorbent particle comprising: a montmorillonite having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a product of a plurality of thiocarbonate ions chemically having reacted with at least some of said polyvalent metal ions.
- the sorbent particle has a largest dimension of less than about twenty micrometers and said sorbent particle is operative to capture at least some of the ionic and elemental mercury present in a flue gas containing acid gases to which it is exposed.
- the invention is a sorbent particle comprising: a cryptocrystalline phyllosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a product of a plurality of thiocarbonate ions chemically reacted with at least some of said polyvalent metal ions.
- the sorbent particle has a largest dimension of less than about twenty micrometers and said sorbent particle is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed.
- the invention is a sorbent comprising: a phyllosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a product of a plurality of thiocarbonate ions having chemically reacted with at least some of said polyvalent metal ions.
- the sorbent is operative to accomplish sustained removal of the ionic and elemental mercury present in an acidic flue gas to which it is exposed.
- the invention is a sorbent comprising: a non-zeolitic, amorphous aluminosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a product of a plurality of thiocarbonate ions having chemically reacted with at least some of said polyvalent metal ions.
- the sorbent is essentially devoid of copper and polysulfides.
- the invention is a composition of matter consisting essentially of: a hydrated laminar magnesium aluminum ironsilicate having a plurality of ion-exchange sites; a polyvalent metal ion derived from a highly acidic solution exchanged at some of said ion-exchange sites; and a plurality of thiocarbonate ions chemically reacted with some of said polyvalent metal ions.
- the invention is a composition of matter made by combining: phyllosilicate substrate material having a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions derived from a highly acidic solution that are exchanged at some of said ion-exchange sites; and a plurality of thiocarbonate ions which are chemically reactable with some of said polyvalent metal ions.
- the invention is a composition made by combining effective amounts of: means for supporting having a first layered structure and a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions which are reversibly substituted at some of said ion-exchange sites; and a plurality of thiocarbonate ions which are chemically reacted to some of said polyvalent metal ions to produce a second layered structure having an inter-layer spacing of about five nanometers.
- the composition is capable of removing mercury from a gas stream containing trace amounts of acid gases.
- the invention is a composition made by combining effective amounts of: a synthetic montmorillinite having a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions in a highly acidic solution which are reversibly substituted at some of said ion-exchange sites; and a plurality of sulfide ions which are chemically reacted to some of said polyvalent metal ions.
- the composition is essentially devoid of polysulfide ions and is capable of sorbing mercury from a gas.
- the invention is a composition made by combining effective amounts of: a synthetic montmorillinite having a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions in a highly acidic solution which are reversibly substituted at some of said ion-exchange sites; and a plurality of thiocarbonate ions which are chemically reacted to some of said polyvalent metal ions.
- the composition is capable of sorbing mercury from a gas.
- the invention is also a process and apparatus for preparing the sorbent.
- the invention is a process for the preparation of sorbent particles for ionic and elemental mercury comprising: (a) reducing the size of a phyllosilicate support material having cation sites, the material being selected from the class consisting of vermiculites and montmorillonites, to a particle having a largest dimension of less than about twenty micrometers; (b) providing the particle of step (a) with at least one cation capable of forming an insoluble sulfide and selected from the group consisting of antimony arsenic, bismuth, cadmium, cobalt, gold, indium, iron, lead, manganese, molybdenum, mercury, nickel, platinum, silver, tin, tungsten, titanium, vanadium, zinc, zirconium and mixtures thereof; and (c) contacting the cation-containing particle of step (b) with a solution containing a thiocarbonate to produce a
- the invention is a process for the preparation of adsorbent compositions for elemental mercury comprising: providing a support material selected from the class consisting of phyllosilicates with at least one cation capable of forming an insoluble sulfide and selected from the group consisting of antimony arsenic, bismuth, cadmium, cobalt, gold, indium, iron, lead, manganese, molybdenum, mercury, nickel, platinum, silver, tin, tungsten, titanium, vanadium, zinc, zirconium and mixtures thereof; and contacting the cation-containing support material of the foregoing step with a thiocarbonate.
- a support material selected from the class consisting of phyllosilicates with at least one cation capable of forming an insoluble sulfide and selected from the group consisting of antimony arsenic, bismuth, cadmium, cobalt, gold, indium, iron, lead, manganese, molybdenum,
- the invention is a process for producing a sorbent particle comprising: reducing the size of a phyllosilicate material (e.g., by grinding or other conventional means) to produce a phyllosilicate particle having a largest dimension of less than about twenty micrometers; contacting (e.g., in a first reactor) the phyllosilicate particle with a highly acidic solution containing a plurality of polyvalent metal ions other than copper ions to produce an exchanged phyllosilicate particle; separating the exchanged phyllosilicate particle from the solution; contacting (e.g., in a second reactor) the exchanged phyllosilicate particle with a fluid containing a plurality of thiocarbonate ions to produce an amended phyllosilicate particle; and separating the amended phyllosilicate particle from the fluid to produce a sorbent particle that is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed.
- the invention is a process for producing a sorbent particle comprising: reducing the size of a vermiculite material to produce a vermiculite particle having a first layered structure and a largest dimension of less than about twenty micrometers; contacting the vermiculite particle with a solution containing a plurality of polyvalent metal ions to produce an exchanged vermiculite particle; separating the exchanged vermiculite particle from the solution; contacting the exchanged vermiculite particle with a fluid containing a plurality of thiocarbonate ions to produce an amended vermiculite particle containing an amendment having a second layered structure; and separating the amended vermiculite particle from the fluid to produce a sorbent particle that is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed.
- the invention is a process for producing a sorbent particle comprising: reducing the size of a montmorillonite material to produce a montmorillonite particle having a largest dimension of less than about twenty micrometers; contacting the montmorillonite particle with a solution containing a plurality of polyvalent metal ions to produce an exchanged montmorillonite particle; separating the exchanged montmorillonite particle from the solution; contacting the exchanged montmorillonite particle with a fluid containing a plurality of thiocarbonate ions to produce an amended montmorillonite particle; and separating the amended montmorillonite particle from the fluid to produce a sorbent particle that is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed.
- the invention is a process for producing a sorbent comprising: contacting a phyllosilicate substrate material with a solution containing a polyvalent metal ion to produce an exchanged phyllosilicate; separating the exchanged phyllosilicate from the solution; contacting the exchanged phyllosilicate with a fluid containing a thiocarbonate ion to produce an amended phyllosilicate; separating the amended phyllosilicate from the fluid to produce a sorbent.
- the process further comprises washing the exchanged phyllosilicate after it is separated from the solution and/or washing the amended phyllosilicate after it is separated from the fluid and/or drying the amended phyllosilicate after it is washed and/or processing the solution separated from the exchanged phyllosilicate using a technique selected from the group consisting of reusing the solution, and treating the solution to recover unused metal ions.
- the pyllosilicate substrate material is contacted with a solution containing a polyvalent metal ion selected from the group consisting of a bivalent tin ion, a tetravalent tin ion, a bivalent iron ion, a trivalent iron ion, a titanium ion, a manganese ion, a zirconium ion, a vanadium ion, a zinc ion, a nickel ion, a bismuth ion, a cobalt ion, and a molybdenum ion.
- the exchanged phyllosilicate is separated from solution using settling, filtration or centrifuging.
- the phyllosilicate substitute material is contacted with the solution using consisting of batch contacting, co-current contacting, and/or counter-current contacting.
- the exchanged phyllosilicate is contacted with an aqueous solution comprising sodium thiocarbonate and/or potassium thiocarbonate.
- the exchanged phyllosilicate is contacted with a solution containing a mixture that comprises sodium thiocarbonate and/or potassium thiocarbonate.
- the fluid is an aqueous solution and the process further comprises: adjusting the pH of the aqueous solution to a pH of in the range of about 7 to about 8.
- the invention is a sorbent production system comprising: means for contacting a silicate substrate material with a solution containing a polyvalent metal ion other than a copper ion to produce an exchanged silicate; means for separating the exchanged silicate from the solution; means for contacting the exchanged silicate with a fluid containing a thiocarbonate ion being devoid of a polysulfide ion to produce an amended silicate; means for separating the amended silicate from the fluid to produce a sorbent.
- the invention is also a method and system for removing mercury from a gas stream.
- the invention is a method for removing mercury from a gas stream containing an acid gas, the method comprising: injecting and entraining a sorbent particle disclosed herein into the gas stream containing ionic and elemental mercury under conditions wherein at least a portion of said elemental and ionic mercury sorbs onto the sorbent particle during its exposure to the gas stream; and removing the sorbent particle from the gas stream.
- the removing step is accomplished by means of a process selected from the group consisting of filtration, electrostatic precipitation, an inertial method, and wet scrubbing.
- the invention is a method for removing mercury from a gas stream, the method comprising: injecting and entraining a sorbent particle disclosed herein into the gas stream containing ionic and elemental mercury under conditions wherein at least a portion of said elemental and ionic mercury sorbs onto the sorbent particle during its exposure to the gas stream; and removing the sorbent particle from the gas stream by means of a process selected from the group consisting of filtration, electrostatic precipitation, an inertial method, and wet scrubbing.
- the injecting and entraining step involves injecting and entraining the sorbent particle into a flue gas stream containing a plurality acid gases including sulfur dioxide (SO 2 ) in the range of a few hundred to a few thousand parts per million (ppm), hydrogen chloride (hydrochloric acid, HCl) up to 100 ppm, and nitrogen oxides (e.g., NO 2 ) in the range of 200 to 2,000 ppm.
- SO 2 sulfur dioxide
- HCl hydrogen chloride
- nitrogen oxides e.g., NO 2
- the invention is a process for removing mercury from a gas, the process comprising: contacting the gas containing mercury with a sorbent produced using a process disclosed herein.
- the invention is a technique for removing mercury from a gas, the technique comprising: contacting a adsorbent composition disclosed herein with a gas stream containing mercury at a temperature that does not exceed 350 degrees Fahrenheit for at least one second to produce a mercury-laden adsorbent composition comprising adsorbed mercury; removing the mercury-laden composition from the gas stream; and heating the mercury-laden adsorbent composition to a temperature of about 500 degrees Fahrenheit to desorb the adsorbed mercury from the mercury-laden sorbent and produce a regenerated adsorbent composition; and removing the adsorbed mercury from the vicinity of the regenerated adsorbent composition.
- the invention is a method for removing mercury from a gas, the method comprising: flowing the gas containing mercury through a fixed or fluidized bed comprised of a sorbent disclosed herein.
- the invention is a method for removing mercury from a gas, the method comprising: injecting and entraining a composition of matter disclosed herein into a gas stream containing mercury at an operating pressure within about plus or minus 0.5 to 1.0 psig of ambient conditions; and removing the composition of matter from the gas stream to produce a collected composition of matter that remains exposed to the gas stream and that is capable of sorption of mercury, said removing being accomplished by filtration, electrostatic precipitation, inertial methods, and/or wet scrubbing.
- at least a portion of said sorption of mercury occurs onto the collected composition of matter while it remains exposed to the gas stream.
- the invention is a system for removing mercury from a gas, the system comprising: means for flowing the gas containing mercury through a sorbent container having a bed comprising a composition described herein operating at gas temperatures greater than 500 degrees Fahrenheit and pressures greater than ambient conditions; and means for removing the mercury from the composition by reducing the operating pressure of the sorbent container, while maintaining the temperature of the composition at or near the normal operating temperature for the process.
- the invention is a system for removing mercury from a gas, the system comprising: an injector for injecting a sorbent disclosed herein into a flue gas stream; a contactor for contacting the sorbent with the flue gas stream and producing a mercury-laden sorbent; and a separator for separating the mercury-laden sorbent from the flue gas stream.
- the system further comprises: a regenerator for regenerating the mercury-laden sorbent.
- the invention is a system for removing mercury from a flue gas, the system comprising: a source of flue gas that contains an acid gas (e.g., a power plant); means for exposing (e.g., an injection and entrainment system, a fixed bed or a fluidized bed) the flue gas to a sorbent disclosed herein.
- a source of flue gas that contains an acid gas
- means for exposing e.g., an injection and entrainment system, a fixed bed or a fluidized bed
- the system also comprises means for separating the sorbent from the flue gas after the sorbent has contacted the flue gas for a time that is effective for the sorbent to capture mercury present in the flue gas.
- Another preferred embodiment of the invention is a system for removing mercury from a gas, the system comprising: means for injecting a sorbent disclosed herein into a flue gas stream; means for contacting the sorbent with the flue gas stream and producing a mercury-laden sorbent; and means for separating the mercury-laden sorbent from the flue gas stream.
- Another preferred embodiment of the invention is a method for removing mercury from a gas, the method comprising: a step for injecting a sorbent disclosed herein into a flue gas stream; a step for contacting the sorbent with the flue gas stream and producing a mercury-laden sorbent; and a step for separating the mercury-laden sorbent from the flue gas stream.
- Another preferred embodiment of the invention is a facility that produces a flue gas that incorporates a system for removing mercury disclosed herein or a method of operating a facility that produces a flue gas in accordance with a method for removing mercury disclosed herein.
- the invention is a power plant comprising a system disclosed herein or a method for operating a power plant in accordance with a method disclosed herein.
- the invention is a power grid energized at least in part by a power plant comprising a system for removing mercury disclosed herein.
- the invention is an incinerator comprising a system disclosed herein or a method for operating an incinerator in accordance with a method disclosed herein.
- the invention is a concrete additive comprising a fly ash containing a sorbent disclosed herein that has been used to remove mercury from a gas stream and is mercury laden.
- the invention is a method for making a concrete additive that comprises adding to a cement and aggregate mixture a fly ash containing a sorbent disclosed herein that has been used to remove mercury from a gas stream.
- the invention is a concrete made by combining a cement, an aggregate and a fly ash containing a sorbent disclosed herein that has been used to remove mercury from a gas stream.
- the invention is a sorbent particle comprising: a cryptocrystalline phyllosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a plurality of inorganic polysulfide ions chemically reacted to at least some of said polyvalent metal ions; wherein said sorbent particle is essentially devoid of polysulfides said sorbent particle is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed.
- the invention is a sorbent comprising: a non-zeolitic, amorphous aluminosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a plurality of inooganic polysulfide ions chemically reacted to at least some of said polyvalent metal ions; wherein said sorbent is essentially devoid of copper and polysulfides.
- the invention is a composition made by combining effective amounts of: means for supporting having a first layered structure and a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions which are reversibly substituted at some of said ion-exchange sites; and a plurality of polysulfide ions which are chemically reacted to some of said polyvalent metal ions to produce a second layered structure having an inter-layer spacing of about five nanometers; wherein said composition comprises essentially no polysulfides and is capable of removing mercury from a gas stream containing trace amounts of acid gases.
- the invention is a composition made by combining effective amounts of: a montmorillinite having a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions that are other than copper ions in a highly acidic solution which are reversibly substituted at some of said ion-exchange sites; and a plurality of polysulfide ions or thiocarbonate ions which are chemically reacted to some of said polyvalent metal ions; wherein said composition is essentially devoid of polysulfides and is capable of sorbing mercury from a gas.
- the invention is a sorbent particle comprising: a cryptocrystalline phyllosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a plurality of polysulfide ions or thiocarbonate ions chemically reacted to at least some of said polyvalent metal ions; wherein said sorbent particle is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed.
- the invention is a sorbent comprising: a non-zeolitic, amorphous aluminosilicate having a plurality of ion-exchange sites; a plurality of polyvalent metal ions exchanged at some of said ion-exchange sites; and a plurality of polysulfide ions or thiocarbonate ions chemically reacted to at least some of said polyvalent metal ions.
- the invention is a composition made by combining effective amounts of: means for supporting having a first layered structure and a plurality of ion-exchange sites at which cations are exchangeable; a plurality of polyvalent metal ions which are reversibly substituted at some of said ion-exchange sites; and a plurality of sulfide ions, polysulfide ions or thiocarbonate ions which are chemically reacted to some of said polyvalent metal ions to produce a second layered structure; whereby said composition is capable of removing mercury from a gas stream containing trace amounts of acid gases.
- FIG. 1 is a schematic diagram that illustrates the geometry of the capture mechanism of a preferred embodiment of the invention.
- FIG. 2 is a schematic process flow diagram of a preferred embodiment of a counter-current ion exchange step.
- FIG. 3 is a schematic flow diagram of a preferred embodiment of a flue gas or other gas treatment process.
- FIG. 4 is an illustration of the operation of the Pressure Swing Adsorption step of a preferred embodiment of the invention.
- FIG. 5 is a block diagram of a preferred embodiment of the invention.
- sorbent 74 of the disclosed invention is a particle comprising: a phyllosilicate having a plurality of ion-exchange sites (e.g., vermiculite or montmorillinite); a plurality of polyvalent metal ions exchanged at some of the ion-exchange sites; and a product of a plurality of thiocarbonate ions having chemically reacted to at least some of the polyvalent metal ions (e.g., a plurality of sulfide ions).
- a phyllosilicate having a plurality of ion-exchange sites (e.g., vermiculite or montmorillinite); a plurality of polyvalent metal ions exchanged at some of the ion-exchange sites; and a product of a plurality of thiocarbonate ions having chemically reacted to at least some of the polyvalent metal ions (e.g., a plurality of sulfide ions).
- the sorbent particle has a largest dimension of less than about twenty micrometers and is operative to capture at least some of the ionic and elemental mercury present in flue gas to which it is exposed. Specifications and sources of starting materials for preferred embodiments of the invention are presented in Table 1.
- Sulfide amendment 30 with intercalated mercury 16 is shown attached to silicate tetrahedral structure 34 of substrate 48 in FIG. 1 , which applicants' believe schematically illustrates the geometry of the capture mechanism of a preferred embodiment of the invention.
- phyllosilicates having first layered structure 32 are amended with metal sulfides (e.g., chalcogenides) having second layered structure 36 , which comprise open layers of the chalcogenides lined with both metal atoms 12 and sulfur atoms 14 .
- metal sulfides e.g., chalcogenides
- the layers of the tin (Sn) ions or atoms 12 and sulfur (S) ions or atoms 14 are held together by weak Van der Waals bonds and thus, mercury ions or atoms 16 can enter into interlayer openings whereas acid gases are excluded and cannot interfere with the adsorption of mercury ions or atoms 16 .
- the preferred inter-layer spacing is approximately five nanometers (nm).
- sorbent preparation is a multi-step process that includes the exchange of metals and addition of sulfide ions to silicate substrate material 48 .
- the first step in the preparation of the sorbent is an ion exchange step in which an ion exchange occurs between silicate substrate material 48 and a solution containing one or more of a group of polyvalent metals including tin (both Sn(II) and Sn(IV)), iron (both Fe(II) and Fe(III)), titanium, manganese, zirconium and molybdenum, dissolved as salts, such as the sulfate, chloride or nitrate, or as other soluble forms.
- the ion exchange step is preferably performed by suspending or otherwise contacting silicate substrate material 48 with the solution containing a metal ion for a period of time sufficient to complete the process step.
- the solution is stirred or mixed during this time to facilitate the exchange.
- the exchanged silicate substrate material is preferably separated from the solution and briefly washed with water in an exchanged silicate separation and washing step. Separation can be accomplished by any number of means, many of which are well established and generally known to those in the field of process engineering. Examples include settling, filtration, and centrifugation. In a preferred embodiment, the metal solution is reused directly or processed to recover unused metal ions.
- contact between silicate substrate 48 and the metal ion solution occurs as a multi-step process in which quantities of substrate and solution are sequentially contacted with each other in stages. This process is preferably performed in a batch contacting, co-current or counter-current manner. As illustrated in FIG. 2 , when countercurrent contact is utilized, substrate 48 is introduced to counter-current reactor 56 at the same end that depleted solution 58 is withdrawn from counter-current reactor 56 . Ion-exchanged substrate 60 is removed from counter-current reactor 56 at the same end that metal solution 62 is introduced to counter-current reactor 56 .
- the second step in the preparation of the sorbent is a controlled sulfide addition step in which ions from a sulfide source are added to ion-exchanged silicate substrate 60 as described below. This is preferably accomplished by contacting ion-exchanged silicate substrate 60 with a liquid phase source of sulfide.
- Preferable sources for sulfur or sulfide for liquid-phase contacting include sodium sulfide (Na 2 S) or a compound containing sulfur with different oxidation states, e.g., calcium polysulfide (CaS x ), thiourea, sodium thiocarbonate, potassium thiocarbonate, or Thio-Red® compound.
- Thio-Red® compound is manufactured by Water Specialists Technologies, LLC, of Sanford, Fla., and is a basic polythiocarbonate organic compound that forms organo-metallic precipitates. It is a proprietary mixture that comprises sodium and potassium thiocarbonates with the generalized formula: [Na,K] 2 CS 3 .nH 2 O.
- the controlled sulfide addition step is preferably accomplished by the incremental addition of a solution containing a sulfide to a liquid containing ion-exchanged silicate substrate material 60 containing the exchanged polyvalent metal ions.
- the pH of the liquid is monitored and the acidic pH of the exchanged silicate is adjusted by the addition of the alkaline sulfide solution to neutrality during a pH monitoring/adjustment step.
- Step-wise addition of the sulfide solution is complete when a desired quantity of sulfide is added or when the desired pH is obtained.
- the exchanged polyvalent metal ions precipitate as an insoluble sulfide and become locked in place within the silicate lattice.
- An aqueous solution comprising Thio-Red® compound is one preferred sulfide source because its pH can be adjusted and still retains its sulfide characteristic.
- the pH of the Thio-Red® solution is adjusted to minimize the hydrolysis of the metal cations exchanged into the ion-exchanged silicate substrate material 60 (e.g., vermiculite, bentonite, etc.).
- the Thio-Red® solution is treated with HCl to reduce its pH from about pH 11.8 to a pH about 7 to about 8.
- the pH-adjusted Thio-Red® solution is used in a manner similar to a polysulfide solution wherein the sulfide source is added to the ion-exchanged silicate substrate material 60 until the pH is between about 7 and about 8.
- the amended silicate is then separated from the solution using a conventional separation technique and washed with water or other appropriate liquids during an amended silicate separation and washing step.
- the amended silicate material is then dried using a conventional technique in an amended silicate drying step to produce final product or sorbent 74 .
- spray drying is used to separate the finished sorbent material from the sulfiding liquid. This method of separation performs the primary separation, drying, and particle sizing all in one operation. Spray drying could also be used but preferably would not be used to separate sorbent solids from the ion exchange solution(s).
- the air inlet temperature to the spray dryer is about 400° C.
- outlet air temperature is maintained just above 100° C. (about 101 to about 105° C.) to prevent condensation of moisture.
- Slurry feed rate may be adjusted to attain the desired outlet air temperature.
- Dried sorbent is preferably separated from the gas stream using a cyclone followed by a baghouse.
- sorbent 74 is used to absorb elemental mercury or oxidized mercury species such as mercuric chloride from flue gas and other gas 80 during contacting step 82 at temperatures from ambient to as high as 350° F. Absorption takes place while the sorbent is in contact with the gas. This can occur in a number of conventional process configurations.
- the sorbent is contained within a fixed bed in which it is substantially stationary. In this embodiment, contact between the gas and sorbent is achieved as the gas flows through the bed.
- sorbent 74 comprises directly injecting and entraining the sorbent into the gas stream.
- sorbent 74 is preferably injected into the gas stream downstream of the boiler and remain in the gas stream until it is removed along with the flyash using an electrostatic precipitator and/or a baghouse in separation step 84 .
- contact step 82 occurs while sorbent 74 is entrained in gas 80 and also during the time it is fixed to the separation device in separation step 84 .
- an adequate contact time preferably at least one or two seconds
- mercury-laden sorbent 86 when mercury sorption is complete, mercury-laden sorbent 86 is stabilized and disposed of during mercury-laden sorbent stabilization and disposal step 92 using any of a variety of conventional techniques.
- Mercury-laden sorbent 86 may also be regenerated in regeneration step 88 by heating it to about 500° F. and maintaining it at that temperature for a time that is sufficient to desorb mercury 90 from sorbent 74 .
- sorbent regeneration step 88 occurs in a fixed or fluidized bed.
- an inert gas such as nitrogen is preferably flowed through the bed to sweep desorbed mercury 90 away from sorbent 74 .
- desorbed mercury 90 is captured for reuse or disposal using any of a variety of conventional techniques.
- the above description is for a preferred operating mode in which the pressures at which mercury is adsorbed onto and into sorbent 74 and at which it is desorbed are approximately equal.
- the adsorption and desorption modes are determined primarily by variations in the sorbent temperature.
- the temperatures at which adsorption and desorption occur are essentially equal (and may be very high, e.g. 700° F.
- the adsorption and desorption modes are determined primarily by variations in the operating pressure.
- This operating mode is referred to as Pressure-Swing-Adsorption (PSA) and is a well-known separation technique.
- PSA Pressure-Swing-Adsorption
- High-capacity sorbent 74 described herein may be used in either operating mode.
- a gas e.g., gaseous mercury
- a solid surface e.g., of an adsorbent
- PSA Pressure Swing Adsorption
- More adsorbate e.g., gas-phase mercury
- PSA can be run at constant temperature. Compared to temperature swing adsorption, PSA can be cycled more rapidly, and typically requires less energy for regeneration.
- PSA is commonly used for air separation and purification and recovery of hydrogen and hydrocarbons from gas streams (Jasra, R. V. et al., “Separation of Gases by Pressure Swing Adsorption,” Separation Sciences and Technology, 26, 885-930, 1991).
- FIG. 4 depicts how the pressure swing adsorption step is applied in the disclosed invention.
- a gas containing some component X e.g., mercury
- X e.g., mercury
- the amount of X adsorbed is given by q ads2 .
- the absorbent is then regenerated by dropping the pressure to P 1 , holding the temperature constant.
- the new equilibrium capacity is given by q ads1 , where q ads1 ⁇ q ads2 .
- the shape of the isotherm governs the concentration ratio that can be achieved in pressure-swing systems. Ideally, the process step is run in a regime where the isotherm is steep, that is, fairly low adsorbate loadings. In reality, pressure-swing systems are never truly isothermal because of heat of adsorption effects.
- the disclosed amended silicate sorbent 74 is suitable for use in a pressure-swing adsorber designed to remove mercury from the high-temperature, high-pressure conditions found in gases produced in a gasifier. As illustrated in FIG. 4 , in pressure-swing adsorption the contaminant is adsorbed at high pressure, P 2 , on sorbent 74 . System pressure is then reduced to P 1 , holding the temperature constant at T 1 . At P 1 sorbent has a lower capacity for the contaminant (q 1ads ⁇ q 2ads ), and the contaminant desorbs, regenerating the sorbent.
- sorbent 74 is used to remove mercury from the flue gas of power a plant or an incinerator.
- coal 112 is burned in boiler 114 to produce steam that powers generator 116 which produces electricity that energizes power grid 118 .
- Boiler 114 produces flue gas 122 .
- sorbent injection system 124 injects sorbent 74 into flue gas 122 before it is introduced into particulate removal system 126 .
- Particulate removal system 126 may comprise an electrostatic precipitation system, a baghouse and/or a cyclone.
- particulates, including particles of sorbent 74 are removed from flue gas 122 and disposal of at disposal site 128 .
- sorbent injection system 124 injects sorbent 74 into flue gas 122 after it has passed through particulate removal system 126 and before it is introduced into baghouse 130 .
- mercury-laden sorbent 86 captured in baghouse 130 is processed in spent sorbent disposal/mercury recovery system 132 .
- regenerated sorbent 74 is reinjected into flue gas 122 by sorbent injection system 124 . Flue gas 122 that has been treated for mercury removal is discharged from stack 134 .
- Spray drying was used to separate the finished sorbent material from the water slurry in a number of spray dryer tests. Spray dryer tests were performed with 10 percent and 20 percent slurries. The sorbent derived from the 20 percent slurry had higher mercury capacity compared to sorbent from the 10 percent slurry.
- the air inlet temperature to the spray dryer was 400° C. The outlet air temperature was maintained just above 100° C. (101-105° C.) to prevent condensation of moisture.
- the slurry feed rate was adjusted to attain the desired outlet air temperature. Dried sorbent was separated from the gas stream using a cyclone followed by a baghouse.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Geochemistry & Mineralogy (AREA)
- Civil Engineering (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
(Mg,Ca)0.7(Mg,Fe3+, Al)6.0[(Al,Si)8O20](OH)4.8H2O
Flakes of raw vermiculite concentrate are micaceous in appearance and contain interlayers of water in their structure. When the flakes are heated rapidly, or treated with hydrogen peroxide, the flakes expand, or exfoliate, into accordion-like particles. The resulting lightweight material is chemically inert, fire resistant, and odorless. Vermiculite is widely used in lightweight plaster and concrete, providing good thermal insulation. For this reason, the addition of vermiculite to fly ash materials is not likely to affect the properties of concrete made with it, unlike the addition of carbon to fly ash.
TABLE 1 |
Specifications and sources for preferred starting materials |
Input Material | Specifications | Sources |
Vermiculite | see WWW domain: | American Vermiculite |
amverco.com | Corporation | |
Kennesaw, GA | ||
Montmorillonite | Clays: Hectorite/SHCa-1, | Clay Minerals Society |
Na-Montmorillonite/ | Source Clays Reposi- | |
SWy-1 (SWy-2), | tory University of | |
Barasym/SSM-100 Syn-1 | Missouri, Columbia, | |
MO; see WWW do- | ||
main: cms.lanl.gov | ||
Bentonite | Bara-Kade/Standard | Bentonite Performance |
Bentonite Soil Sealing | Minerals, Denver, | |
Grade - 200 mesh | Colorado | |
Thio-Red | Proprietary mixture | Water Specialists |
Technologies, LLC, | ||
Sanford, Florida | ||
Sodium Sulfide | Anhydrous or nanohydrate | Sigma-Aldrich, Mil- |
(Na2S) | Varying purity | waukee, WI Alfa |
Aesar, Ward Hill, MA | ||
Calcium | Cascade Aqueous Solution | Best Sulfur Products |
polysulfide (CaSx) | About 30% CaSx by weight | Fresno, CA |
Tin(II) Chloride | Anhydrous or dehydrate | Sigma-Aldrich, Mil- |
(SnCl2) | Varying purity | waukee, WI Alfa |
Aesar, Ward Hill, MA | ||
Ti(III) Chloride | Aqueous solution, | Sigma-Aldrich, Mil- |
TiCl3 | ca. 10%-20% by weight | waukee, WI Alfa |
Aesar, Ward Hill, MA | ||
Fe(II) Chloride | Anhydrous or hydrated | Sigma-Aldrich, Mil- |
(FeCl2) | Varying purity | waukee, WI Alfa |
Aesar, Ward Hill, MA | ||
Fe(II) Sulfate | Anhydrous or heptahydrate | Sigma-Aldrich, Mil- |
(FeSO4) | Varying purity | waukee, WI Alfa |
Aesar, Ward Hill, MA | ||
Fe(III) Chloride | Anhydrous or hexahydrate | Sigma-Aldrich, Mil- |
FeCl3 | Varying purity | waukee, WI Alfa |
Aesar, Ward Hill, MA | ||
Claims (50)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/608,123 USRE44124E1 (en) | 2001-04-30 | 2009-10-29 | Regenerable high capacity sorbent for removal of mercury from flue gas |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28793901P | 2001-04-30 | 2001-04-30 | |
US10/134,178 US6719828B1 (en) | 2001-04-30 | 2002-04-26 | High capacity regenerable sorbent for removal of mercury from flue gas |
US41699402P | 2002-10-07 | 2002-10-07 | |
US10/681,671 US7048781B1 (en) | 2002-10-07 | 2003-10-07 | Chemically-impregnated silicate agents for mercury control |
US10/783,264 US7288499B1 (en) | 2001-04-30 | 2004-02-19 | Regenerable high capacity sorbent for removal of mercury from flue gas |
US12/608,123 USRE44124E1 (en) | 2001-04-30 | 2009-10-29 | Regenerable high capacity sorbent for removal of mercury from flue gas |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/783,264 Reissue US7288499B1 (en) | 2001-04-30 | 2004-02-19 | Regenerable high capacity sorbent for removal of mercury from flue gas |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE44124E1 true USRE44124E1 (en) | 2013-04-02 |
Family
ID=38623301
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/783,264 Ceased US7288499B1 (en) | 2001-04-30 | 2004-02-19 | Regenerable high capacity sorbent for removal of mercury from flue gas |
US12/608,123 Expired - Fee Related USRE44124E1 (en) | 2001-04-30 | 2009-10-29 | Regenerable high capacity sorbent for removal of mercury from flue gas |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/783,264 Ceased US7288499B1 (en) | 2001-04-30 | 2004-02-19 | Regenerable high capacity sorbent for removal of mercury from flue gas |
Country Status (1)
Country | Link |
---|---|
US (2) | US7288499B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160354766A1 (en) * | 2013-12-11 | 2016-12-08 | Zhejiang University | Catalyst for synergistic control of oxynitride and mercury and method for preparing the same |
US20170341959A1 (en) * | 2015-05-21 | 2017-11-30 | Csir | Water treatment using a cryptocrystalline magnesite - bentonite clay composite |
US10967357B2 (en) | 2015-08-11 | 2021-04-06 | Calgon Carbon Corporation | Enhanced sorbent formulation for removal of mercury from flue gas |
US11857942B2 (en) | 2012-06-11 | 2024-01-02 | Calgon Carbon Corporation | Sorbents for removal of mercury |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7288499B1 (en) * | 2001-04-30 | 2007-10-30 | Ada Technologies, Inc | Regenerable high capacity sorbent for removal of mercury from flue gas |
US20060198777A1 (en) * | 2005-03-03 | 2006-09-07 | Cross Joseph B | Mercury removal sorbent |
FI20050700A0 (en) * | 2005-07-01 | 2005-07-01 | Turun Yliopisto | Process for Improving Vermiculite's Intake of Ammonium Ions, Absorbent Materials, Its Use, and Method for Removing Ammonium from the Environment |
US7771700B2 (en) * | 2005-10-17 | 2010-08-10 | Chemical Products Corp. | Sorbents for removal of mercury from flue gas cross reference to related applications |
US7704920B2 (en) * | 2005-11-30 | 2010-04-27 | Basf Catalysts Llc | Pollutant emission control sorbents and methods of manufacture |
US7578869B2 (en) * | 2005-11-30 | 2009-08-25 | Basf Catalysts Llc | Methods of manufacturing bentonite pollution control sorbents |
US7575629B2 (en) | 2005-11-30 | 2009-08-18 | Basf Catalysts Llc | Pollutant emission control sorbents and methods of manufacture |
US20070265161A1 (en) * | 2006-05-11 | 2007-11-15 | Gadkaree Kishor P | Activated carbon honeycomb catalyst beds and methods for the manufacture of same |
US20080207443A1 (en) * | 2007-02-28 | 2008-08-28 | Kishor Purushottam Gadkaree | Sorbent comprising activated carbon, process for making same and use thereof |
US8741243B2 (en) | 2007-05-14 | 2014-06-03 | Corning Incorporated | Sorbent bodies comprising activated carbon, processes for making them, and their use |
US7998898B2 (en) * | 2007-10-26 | 2011-08-16 | Corning Incorporated | Sorbent comprising activated carbon, process for making same and use thereof |
US7871524B2 (en) * | 2007-06-05 | 2011-01-18 | Amcol International Corporation | Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay |
US7910005B2 (en) * | 2007-06-05 | 2011-03-22 | Amcol International Corporation | Method for removing mercury and/or arsenic from contaminated water using an intimate mixture of organoclay and elemental sulfur |
US8025160B2 (en) * | 2007-06-05 | 2011-09-27 | Amcol International Corporation | Sulfur-impregnated organoclay mercury and/or arsenic ion removal media |
US20080302733A1 (en) * | 2007-06-05 | 2008-12-11 | Amcol International Corporation | Coupling agent-reacted mercury removal media |
US7510992B2 (en) * | 2007-06-05 | 2009-03-31 | Amcol International Corporation | Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media |
US7553792B2 (en) * | 2007-06-05 | 2009-06-30 | Amcol International Corporation | Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media |
EP2205338A2 (en) * | 2007-08-29 | 2010-07-14 | Corning Incorporated | Process for removing toxic metals from a fluid stream |
US8124213B2 (en) * | 2008-05-30 | 2012-02-28 | Corning Incorporated | Flow-through sorbent comprising a metal sulfide |
US20090297885A1 (en) * | 2008-05-30 | 2009-12-03 | Kishor Purushottam Gadkaree | Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide |
US8691722B2 (en) * | 2008-07-03 | 2014-04-08 | Corning Incorporated | Sorbent comprising activated carbon particles, sulfur and metal catalyst |
US8535422B2 (en) | 2009-01-26 | 2013-09-17 | St. Cloud Mining Company | Metal contaminant removal compositions and methods for making and using the same |
US8420561B2 (en) * | 2009-06-16 | 2013-04-16 | Amcol International Corporation | Flue gas scrubbing |
US8268744B2 (en) * | 2009-06-16 | 2012-09-18 | Amcol International Corporation | High shear method for manufacturing a synthetic smectite mineral |
US8025726B1 (en) * | 2010-04-08 | 2011-09-27 | Nalco Company | Sulfur containing silica particle |
US8404026B2 (en) | 2010-07-21 | 2013-03-26 | Corning Incorporated | Flow-through substrates and methods for making and using them |
US20150283500A1 (en) * | 2012-10-16 | 2015-10-08 | Novinda Corp. | Solution-Based Mercury Capture |
WO2014138323A1 (en) * | 2013-03-06 | 2014-09-12 | Novinda Corporation | Control of mercury emissions |
US9034285B1 (en) | 2014-02-28 | 2015-05-19 | Redox Technology Group Llc | Use of ferrous sulfide suspension for the removal of mercury from flue gases |
US9073008B2 (en) | 2013-03-07 | 2015-07-07 | Redox Technology Group, Llc | Use of ferrous sulfide suspension for the removal of mercury from flue gases |
CA2904381C (en) | 2013-03-07 | 2021-02-02 | Redox Technology Group Llc | Use of ferrous sulfide suspension for the removal of mercury from flue gases |
CN103149271A (en) * | 2013-03-18 | 2013-06-12 | 中国环境科学研究院 | Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas |
EP3057683A4 (en) * | 2013-10-14 | 2017-07-12 | Novinda Corp. | Mercury sorbent material |
CN104741074A (en) * | 2015-04-07 | 2015-07-01 | 石河子大学 | Method for preparing expanded vermiculite adsorbent |
WO2016184518A1 (en) | 2015-05-20 | 2016-11-24 | S.A. Lhoist Recherche Et Developpement | Lime-based sorbent composition for mercury removal and its manufacturing process |
TWI640355B (en) | 2015-09-01 | 2018-11-11 | 雷多斯集團有限責任公司 | Use of ferrous sulfide for the removal of selenium from gases |
CN111701622A (en) * | 2020-06-29 | 2020-09-25 | 西安科技大学 | Preparation method of Cu-MOF-Fe fly ash catalyst for denitration and demercuration |
CN114028904A (en) * | 2021-11-05 | 2022-02-11 | 国能国华(北京)电力研究院有限公司 | Flue gas treatment system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4069140A (en) * | 1975-02-10 | 1978-01-17 | Atlantic Richfield Company | Removing contaminant from hydrocarbonaceous fluid |
US4474896A (en) * | 1983-03-31 | 1984-10-02 | Union Carbide Corporation | Adsorbent compositions |
US4902662A (en) * | 1987-05-26 | 1990-02-20 | Institut Francais Du Petrole | Processes for preparing and regenerating a copper containing mercury collecting solid mass |
US5245106A (en) * | 1990-10-30 | 1993-09-14 | Institut Francais Du Petrole | Method of eliminating mercury or arsenic from a fluid in the presence of a mercury and/or arsenic recovery mass |
US5350728A (en) * | 1990-10-30 | 1994-09-27 | Institut Francais Du Petrole And Europeene De Retraitment De Catalyseurs (Eurecat) | Method of preparing a solid mass for mercury recovery |
US6719828B1 (en) * | 2001-04-30 | 2004-04-13 | John S. Lovell | High capacity regenerable sorbent for removal of mercury from flue gas |
US7048781B1 (en) * | 2002-10-07 | 2006-05-23 | Ada Technologies, Inc. | Chemically-impregnated silicate agents for mercury control |
US7183235B2 (en) * | 2002-06-21 | 2007-02-27 | Ada Technologies, Inc. | High capacity regenerable sorbent for removing arsenic and other toxic ions from drinking water |
US7288499B1 (en) * | 2001-04-30 | 2007-10-30 | Ada Technologies, Inc | Regenerable high capacity sorbent for removal of mercury from flue gas |
US7578869B2 (en) * | 2005-11-30 | 2009-08-25 | Basf Catalysts Llc | Methods of manufacturing bentonite pollution control sorbents |
US7771700B2 (en) * | 2005-10-17 | 2010-08-10 | Chemical Products Corp. | Sorbents for removal of mercury from flue gas cross reference to related applications |
-
2004
- 2004-02-19 US US10/783,264 patent/US7288499B1/en not_active Ceased
-
2009
- 2009-10-29 US US12/608,123 patent/USRE44124E1/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4069140A (en) * | 1975-02-10 | 1978-01-17 | Atlantic Richfield Company | Removing contaminant from hydrocarbonaceous fluid |
US4474896A (en) * | 1983-03-31 | 1984-10-02 | Union Carbide Corporation | Adsorbent compositions |
US4902662A (en) * | 1987-05-26 | 1990-02-20 | Institut Francais Du Petrole | Processes for preparing and regenerating a copper containing mercury collecting solid mass |
US5245106A (en) * | 1990-10-30 | 1993-09-14 | Institut Francais Du Petrole | Method of eliminating mercury or arsenic from a fluid in the presence of a mercury and/or arsenic recovery mass |
US5350728A (en) * | 1990-10-30 | 1994-09-27 | Institut Francais Du Petrole And Europeene De Retraitment De Catalyseurs (Eurecat) | Method of preparing a solid mass for mercury recovery |
US6719828B1 (en) * | 2001-04-30 | 2004-04-13 | John S. Lovell | High capacity regenerable sorbent for removal of mercury from flue gas |
US7288499B1 (en) * | 2001-04-30 | 2007-10-30 | Ada Technologies, Inc | Regenerable high capacity sorbent for removal of mercury from flue gas |
US7183235B2 (en) * | 2002-06-21 | 2007-02-27 | Ada Technologies, Inc. | High capacity regenerable sorbent for removing arsenic and other toxic ions from drinking water |
US7326346B2 (en) * | 2002-06-21 | 2008-02-05 | Ada Technologies, Inc. | High capacity regenerable sorbent for removal of arsenic and other toxic ions from drinking water |
US7048781B1 (en) * | 2002-10-07 | 2006-05-23 | Ada Technologies, Inc. | Chemically-impregnated silicate agents for mercury control |
US7771700B2 (en) * | 2005-10-17 | 2010-08-10 | Chemical Products Corp. | Sorbents for removal of mercury from flue gas cross reference to related applications |
US7578869B2 (en) * | 2005-11-30 | 2009-08-25 | Basf Catalysts Llc | Methods of manufacturing bentonite pollution control sorbents |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11857942B2 (en) | 2012-06-11 | 2024-01-02 | Calgon Carbon Corporation | Sorbents for removal of mercury |
US20160354766A1 (en) * | 2013-12-11 | 2016-12-08 | Zhejiang University | Catalyst for synergistic control of oxynitride and mercury and method for preparing the same |
US9802180B2 (en) * | 2013-12-11 | 2017-10-31 | Zhejiang University | Catalyst for synergistic control of oxynitride and mercury and method for preparing the same |
US20170341959A1 (en) * | 2015-05-21 | 2017-11-30 | Csir | Water treatment using a cryptocrystalline magnesite - bentonite clay composite |
US10967357B2 (en) | 2015-08-11 | 2021-04-06 | Calgon Carbon Corporation | Enhanced sorbent formulation for removal of mercury from flue gas |
Also Published As
Publication number | Publication date |
---|---|
US7288499B1 (en) | 2007-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE44124E1 (en) | Regenerable high capacity sorbent for removal of mercury from flue gas | |
US6719828B1 (en) | High capacity regenerable sorbent for removal of mercury from flue gas | |
US7048781B1 (en) | Chemically-impregnated silicate agents for mercury control | |
Liu et al. | Recent developments in novel sorbents for flue gas clean up | |
US7722843B1 (en) | System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems | |
KR100991761B1 (en) | Sorbents and methods for the removal of mercury from combustion gases | |
CA2757309C (en) | Sorbents for the oxidation and removal of mercury | |
US7771700B2 (en) | Sorbents for removal of mercury from flue gas cross reference to related applications | |
US7704920B2 (en) | Pollutant emission control sorbents and methods of manufacture | |
US20070092418A1 (en) | Sorbents for Removal of Mercury from Flue Gas | |
US8480791B2 (en) | Methods of manufacturing mercury sorbents and removing mercury from a gas stream | |
US20090081092A1 (en) | Pollutant Emission Control Sorbents and Methods of Manufacture and Use | |
WO2007149837A2 (en) | Mercury sorbent and method of its manufacture and use | |
MX2013008784A (en) | Flue gas scrubbing. | |
CA2905382C (en) | Multicomponent compositions for mercury removal | |
US7524472B1 (en) | Mercury removal from coal emissions using montmorillonite clay | |
Uffalussy et al. | Novel Capture Technologies: Non‐carbon Sorbents and Photochemical Oxidations | |
Wu et al. | Coal-fired flue-gas mercury control technologies | |
Vidic | Development of novel activated carbon-based adsorbents for the control of mercury emissions from coal-fired power plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVINDA CORP., COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:AMENDED SILICATES, INC.;REEL/FRAME:024103/0628 Effective date: 20091130 |
|
AS | Assignment |
Owner name: ALTIRA TECHNOLOGY FUND V L.P., COLORADO Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:032772/0967 Effective date: 20140428 Owner name: AMCOL INTERNATIONAL CORPORATION, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:032772/0967 Effective date: 20140428 Owner name: NV PARTNERS IV-C LP, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:032772/0967 Effective date: 20140428 Owner name: NV PARTNERS IV LP, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:032772/0967 Effective date: 20140428 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: ALTIRA TECHNOLOGY FUND V L.P., COLORADO Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:037679/0149 Effective date: 20160205 Owner name: NV PARTNERS IV LP, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:037679/0149 Effective date: 20160205 Owner name: NV PARTNERS IV-C LP, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:037679/0149 Effective date: 20160205 |
|
AS | Assignment |
Owner name: NOVINDA HOLDINGS, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVINDA CORP.;REEL/FRAME:048216/0389 Effective date: 20160607 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: ENVIRONMENTAL ENERGY SERVICES, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVINDA HOLDINGS, INC.;REEL/FRAME:050668/0145 Effective date: 20190830 |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |