USRE43526E1 - Rod introduction apparatus - Google Patents
Rod introduction apparatus Download PDFInfo
- Publication number
- USRE43526E1 USRE43526E1 US12/052,465 US5246508A USRE43526E US RE43526 E1 USRE43526 E1 US RE43526E1 US 5246508 A US5246508 A US 5246508A US RE43526 E USRE43526 E US RE43526E
- Authority
- US
- United States
- Prior art keywords
- implant
- longitudinal member
- sleeve
- clamping
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7083—Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
- A61B17/7086—Rod reducers, i.e. devices providing a mechanical advantage to allow a user to force a rod into or onto an anchor head other than by means of a rod-to-bone anchor locking element; rod removers
- A61B17/7088—Rod reducers, i.e. devices providing a mechanical advantage to allow a user to force a rod into or onto an anchor head other than by means of a rod-to-bone anchor locking element; rod removers wherein the rod is moved transverse to the axis of the bone anchor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7091—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for applying, tightening or removing longitudinal element-to-bone anchor locking elements, e.g. caps, set screws, nuts or wedges
Definitions
- the fork handle is moved toward the rod thereby forcing the rod and implant together.
- One problem with this arrangement is that the fork tines must pass between the implant and the bone, which in many cases may be difficult and may result in damage to the bone.
- the connection between the fork tines and the implant is not a secure engagement and may result in the rod introducer slipping during the procedure of forcing the rod into the implant.
- many forceps also provide a locking mechanism to hold the forceps in the gripping position once the implant is gripped.
- a common example is the provision of one half of a ratchet rack on one articulating branch aligned to engage a second half of the ratchet rack on the other articulating branch. Upon movement of the branches towards one another, the separate halves of the ratchet rack come into engagement thereby preventing separation of the articulating branches.
- the articulating branches have sufficient flexibility that they may be flexed with respect to one another, thereby disengaging the ratchet racks.
- the rod may be laterally offset with respect to the implant.
- the implant may have an implant opening for receiving the rod which opens to the side, thereby requiring the rod to be laterally introduced into the implant.
- One such device marketed by Synthes Spine as the Universal Spinal System Rod Introduction Pliers is utilized to urge a laterally offset rod into a side opening implant.
- the Rod Introduction Pliers are used in conjunction with a Hook or Screw Holder device threadedly engaging the implant.
- One branch of the pliers consists of a barrel while the opposing branch defines a rod engaging surface.
- Still a further form of the present invention contemplates a multiple action insertion apparatus for engaging a longitudinal member and an implant, comprising a device for attaching to an implant having an opening for receiving a rod, a device for lateral approximation of a longitudinal member laterally offset from the implant rod opening, the device for lateral approximation interconnected with the device for attaching, and a device for vertical reduction of a longitudinal member vertically offset from the implant, the device for vertical reduction interconnected with the device for attaching, wherein the device for lateral approximation laterally aligns the longitudinal member over the implant and the device for vertical reduction vertically aligns the longitudinal member with the implant.
- an implant holder for holding an implant adapted to receive a fastener, comprising a device for gripping the implant, the device for gripping including a gripping end and a handle defining a longitudinal cannula having a distal end adjacent the gripping end, the cannula adapted to receive a fastener cooperable with the implant.
- the invention includes a method for for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of providing an introduction apparatus having an attachment mechanism with a cannula and a vertical reduction mechanism, attaching the introduction apparatus to the implant, operating the vertical reduction mechanism to force the longitudinal member into alignment with the implant, inserting a fastener through the cannula, interconnecting the fastener and the implant, wherein the longitudinal member is securely attached to the implant, and removing the introduction apparatus.
- Still a further object of the present invention is to provide a multiple action insertion apparatus that is capable of gripping an implant, approximating the implant and an laterally offset longitudinal member, and reducing the vertical distance between the implant and the longitudinal member.
- FIG. 1 is a perspective view of the rod introduction apparatus according to the present invention.
- FIG. 3 is a bottom plan view of the rod introduction apparatus of FIG. 1 .
- FIG. 5 is a top view of the rod introduction sleeve.
- FIG. 11(b) is a cross-sectional view of the rod introduction clamp shaft showing a threaded plug and driving member extending through the cannula.
- FIG. 12 is a perspective view of the rod introduction speed nut.
- FIG. 15 is an alterative embodiment of a rod reduction apparatus according to the present invention.
- FIG. 16 is a front view of the clamp shaft of the embodiment of FIG. 15 .
- FIG. 17 is a front view of the outer sleeve of the embodiment of FIG. 16 .
- FIG. 18 is a side view of the outer sleeve of FIG. 17 .
- FIG. 19 is a side view of the clamp shaft of FIG. 16 .
- outer sleeve 14 includes on its proximal end a shoulder 46 extending around the entire circumference of the outer sleeve. Pivot pins 24 and 25 project from opposite sides of the outer sleeve.
- the distal end of outer sleeve 14 is the rod engagement end 40 , which defines a pair of diametrically opposed rod engagement arms 62 and 63 . As shown in FIG. 6 , these arms have a substantially reduced width 52 in comparison to diameter of outer sleeve 14 , as they extend towards the rod engagement end 40 .
- Disposed on the distal tip of rod engagement arm 62 is a concave recess 54 having a curvature substantially equivalent to the outside diameter of a rod.
- clamp shaft 18 is sized to be slidingly received within the interior channel of outer sleeve 14 .
- Clamp shaft 18 includes gripping nose 22 having a portion extendable beyond the distal end of outer sleeve 14 .
- Gripping nose 22 includes a first clamping branch 36 and a second clamping branch separated by space 76 . The distance between first clamping branch 36 and second clamping branch 76 changes as the clamping branches are moved from there insertion position, with ramped sidewall portion extending outside outer sleeve 14 , to a clamping position with ramped sidewall portions 72 and 73 engaging bearing surfaces 60 and 61 respectively.
- clamping branches 36 and 38 have an area of reduced wall thickness defining a void 78 adjacent their attachment points to the remainder of clamping shaft 18 . This area of reduced wall thickness tends to experience the greatest amount of deflection when the clamping branches are in the clamping position. While the preferred embodiment relies on the resiliency of the clamping branches themselves to assume the insertion position, it is contemplated that a mechanical means cooperable with the clamping branches may be utilized to move the clamping branches between the insertion and clamping positions.
- Each clamping branch includes a series of projections 42 a and 42 b to engage corresponding recesses 44 a and 44 b on implant 26 . While FIGS. 2 and 3 show implant 26 as a spinal hook, it is contemplated that the clamping branches may be adapted to engage a variety of implants, with or without the use of interengaging projections and recesses. In the preferred embodiment, each branch includes two projections 42 a and 42 b to engage a corresponding two recesses 44 a and 44 b on implant 26 . However, it is contemplated that the number of projections on each clamping branch can vary, depending on the number of mating recesses disposed on implant 26 . Moreover, it is contemplated that implant 26 may contain a series of projections while clamping branches may have corresponding recesses.
- T-handle 20 Disposed on the opposite end of clamp shaft 18 is T-handle 20 .
- T-handle 20 Adjacent T-handle 20 and spaced by a smooth cylindrical shank portion 35 , are external threads 26 adapted to engage an internally threaded nut.
- a shoulder 86 disposed between the treads 26 and the gripping nose 22 .
- clamp shaft 18 has a substantially uniform width when viewed from this side, with the exception of a reduced width portion disposed between shoulder 86 and gripping end 22 .
- the reduced width area is defined by sidewalls 70 and 71 and continues at a reduced width until it begins to increase at ramped portions 72 and 73 .
- Ramp portions terminate in sidewalls 74 and 75 , having the same width as the remainder of the clamp shaft 18 .
- the walls also include reduced thickness sidewalls 80 and 82 . This area of reduced thickness creates void 78 .
- clamp shaft 18 has a central cannula 84 extending throughout the entire length of the shaft.
- Cannula 84 has a uniform diameter throughout and is adapted to receive a fastener for placement onto an implant.
- the internal passage for delivery of the fastening member to the implant provides an important advantage to the surgeon when the rod is being held in alignment with the implant because external passages to the implant may be obstructed or have limited clearance because of the presence of the rod reduction apparatus.
- an externally threaded plug 88 FIG. 11(b) may be placed into the cannula and urged into engagement with an internally threaded opening in hook 26 .
- An elongated driving member 89 is then inserted through cannula 84 and engaged with threaded plug 88 to threadedly insert the plug into a corresponding threaded opening in the implant.
- threaded plug 88 an externally threaded plug is shown in this embodiment, it is contemplated that an internally threaded nut could be passed through cannula 84 to engage an externally threaded portion of a hook or a screw. The internally threaded nut could then be tightened by engagement of projections on a tightening tool with corresponding recesses in the nut.
- Speed nut 16 of the present invention is of conventional design ( FIGS. 12 and 13 ) and is rotatably mounted on outer sleeve 14 .
- Speed nut 16 includes a central threaded opening 65 sized to freely slide over smooth shank portion 35 of clamping shaft 18 .
- Threads 17 are adapted to engage cooperable threads 28 on clamping shaft 18 .
- Bearing surface 58 surrounds threaded opening 65 and forms an internal bearing surface for bearing against outer sleeve 14 .
- Extending through the sidewall of the nut 16 are a series of openings 56 and 57 (and a third opening not shown), each adapted to receive a retaining pin.
- speed nut 16 has a series of projections 66 on its outer surface for ease of gripping during the turning process.
- the rod insertion apparatus of the present invention includes a lateral approximator mechanism to bring an implant into alignment with a laterally offset longitudinal member.
- the lateral approximator mechanism is a lateral approximator lever 12 pivotally attached to outer sleeve 14 ( FIG. 1 ).
- Lateral approximator lever 12 defines a pair of keyways 13 and 15 ( FIG. 3 ) adapted to selectively engage a pair of pivot pins 24 and 24 on outer sleeve 14 .
- the proximal end 31 of lever 12 is configured to be a handle for manually manipulating the lever to urge a laterally offset rod and implant into alignment.
- the rod engaging end 30 of lever 12 is bifurcated into a first lever arm 29 and a second lever arm 33 .
- Each arm freely passes over the outer surface of outer sleeve 14 .
- First lever arm 29 has a rod engaging hook 32 disposed at its distal end.
- second lever arm 33 has a corresponding rod engaging hook 34 disposed at its distal end and in alignment with engaging hook 32 permitting both hooks to contact a rod simultaneously. It is contemplated that the extent of lever arm extending distally beyond hooks 32 and 34 should be minimized in order to limit contact with surrounding anatomical structures during the lateral approximation procedure and the vertical reduction procedure if performed.
- T-handle 20 having a central opening aligned with cannula 84 is added for ease of manipulation of clamp shaft 18 within outer sleeve 14 .
- T-handle 20 is welded onto clamp shaft 18 , although it is contemplated that other means such as brazing or threading may be used to attach T-handle 20 . It is contemplated that a separate handle is not required, instead, the surface of clamp shaft 18 may be roughened for easy gripping by the surgeon or the shaft may be machined to define an enlarged area for gripping.
- lateral rod approximator lever slides about the outer surface of outer sleeve 14 to pass key way 13 and corresponding key way 15 on the opposite side of lever 12 over pivot pins 24 and 25 , respectively.
- lateral approximator lever 12 can be selectively interconnected with the outer sleeve, thus permitting the lever to be added or removed at the user's discretion.
- a lateral approximator lever 90 having rod engaging end 91 with rod hook 94 could be pivotally attached to outer sleeve 14 in a non-removable fashion.
- lever 90 is pivotally attached to outer sleeve 14 by a pivot pin 92 and a similar pivot pin (not shown) disposed on the opposite side of outer sleeve 14 .
- lever 90 is provided with a mechanical means to urge the rod and implant into lateral alignment.
- the mechanical mechanism extends through oblong opening 93 in lever 90 .
- a threaded shaft 95 is pivotally connected to outer sleeve 14 by a pin 96 .
- An enlarged finger nut 97 is threaded onto threaded shaft 95 to urge lever 90 into the desired position.
- the rod introduction apparatus of the present invention may be utilized to both laterally approximate a spinal rod to an implant having an opening for receiving a rod and to vertically reduce the rod into the opening of the implant.
- clamp shaft 18 is free to slide within outer sleeve 14 when threads 28 are not engaged with speed nut 16 .
- clamp shaft 18 In a first area of freedom of movement, clamp shaft 18 is free to move the length of smooth shank portion 35 disposed between threads 28 and T-handle 20 .
- gripping nose 22 may be extended a substantial distance beyond the rod engagement end 40 of outer sleeve 14 into the insertion position in preparation for securely clamping an implant.
- implant 26 may be secured to rod 50 by any number of means, which include a threaded plug or blocking sleeve.
- clamp shaft 18 includes a cannula 84 extending therethrough. Once the rod has been positioned within the opening 27 of implant 26 , a threaded plug 88 is passed through cannula 84 until it seats into the correspondingly threaded opening in implant 26 . A driving member extending through cannula 84 is used to tighten the plug in the implant. Threaded plug 88 securely holds the rod in the implant opening.
- rod adjustability lever 12 is rotated away from engagement with outer sleeve 14 , thereby releasing the rod 50 . Further, speed nut 16 is rotated to urge gripping nose 22 out of outer sleeve 14 and thereby separate rod engagement end 40 from rod 50 . Speed nut 16 is continued to be rotated until it no longer engages threads 28 , which thereby allows clamp shaft 18 to slide within outer sleeve until handle 20 engages speed nut 16 . This movement permits clamping branches 36 and 38 to assume the insertion position and thereby release the implant. Once released, the rod introduction apparatus of the present invention may then be withdrawn.
- an alternative embodiment of the rod introduction apparatus includes outer sleeve 110 , clamping shaft 118 , and lateral approximator lever 112 . Similar to the first described embodiment, rod reduction apparatus 101 is capable of gripping an implant, engaging a laterally offset longitudinal member and aligning the implant and offset longitudinal member and reducing the vertical distance between the implant and longitudinal member.
- Articulating movement of branches 142 and 143 moves clamping branches 136 and 138 between an insertion position with clamping branches spaced by a first larger distance and a clamping position with clamping branches spaced by a second smaller distance.
- the branches are held in the clamping position by retaining cap 140 pivotally connected to branch 143 and selectively engaging branch 142 .
- Articulating branch 142 further includes a rack 117 disposed on its outer surface.
- outer sleeve 110 with interconnected lever 112 and pinion 116 is slid over clamping shaft 118 with pinion 116 aligned with rack 117 and is urged downwardly until pinion 116 engages rack 117 .
- Lever 112 is then positioned to engage rod 150 .
- Lever 112 is moved to bring rod 150 into lateral alignment with screw 126 .
- Pinion 116 is then rotated to urge outer sleeve 110 towards screw 126 thereby urging engaged rod 150 into vertical alignment with screw 126 .
- screw 126 is a variable angle screw engagable by an eyebolt mechanism previously place on rod 150 .
- Such an eyebolt attachment mechanism is offered by Sofamor Danek Group as the TSRHTM Variable Angle Eyebolt. Once in alignment, the eyebolt mechanism is utilized to securely interconnect the screw and rod.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
An introduction apparatus for approximating a longitudinal member and an implant to permit fixation therebetween. The introduction apparatus having a gripping nose for securely engaging an implant, a lateral approximation mechanism for laterally aligning an implant and an offset longitudinal member, and a reduction mechanism for reducing the vertical distance between the implant and the longitudinal member. The introduction apparatus is provide with a gripping nose actuated by axial movement of a clamping shaft in an outer sleeve. The clamping shaft further includes an axial cannula for passage of a fastener to the implant.
Description
This application is a reissue of U.S. Pat. No. 5,910,141, issued on Jun. 8, 1999, which is hereby incorporated by reference, as if fully set forth herein. U.S. Pat. No. 5,910,141 matured from U.S. application Ser. No. 08/798,092, filed Feb. 12, 1997.
1. Description of the Prior Art
The present invention relates generally to instruments used to manipulate orthopedic implants. More particularly, the present invention relates to the manipulation of hone anchoring elements positioned in the spine and longitudinal members interconnecting those elements. While the present invention is particularly useful in spinal surgery, it may find use in other areas of medicine as well.
In many applications, particularly those relating to spinal correction techniques, it is desirable to place a series of implants in a patient's spine prior to inserting a longitudinal member (a rod or a plate) along the spine to interconnect the previously placed implants. On occasion, implants may be vertically spaced from the rod or plate and require a mechanical mechanism to bring the rod or plate into contact with the implant. In the instance of a plate, often the implant is a double threaded bolt with a series of bone screw threads anchoring into the bone and a machine threaded post extending through an opening in the plate. A machine threaded nut slightly larger than the opening in the plate may then be threaded onto the threaded post and tightened to bring the implant closer to the plate. For rod systems, a similar arrangement can be utilized whereby the threaded post of the implant extends through a connector attached to the rod. In these systems a nut is used to draw the implant closer to the connector by progressively threading the nut onto the post of the bone bolt.
Alternatively, it is known to provide a rod introducer mechanism that forces the rod and an implant towards each other. In some cases, the threaded post of a bolt type bone anchor is not long enough to extend through a connector attached to the rod. In this situation a mechanism is used to grasp the bolt and pull it towards the connector until the threaded post extends through an opening in the connector. A threaded nut may then be used to complete the connection to the connector.
In other cases the implant, either a bone screw or spinal hook, includes an open channel to receive the rod. A plug or set screw can be used to close the channel and lock the rod to the implant. In certain surgical techniques a rod is anchored at both ends by at least one implant, resulting in the rod being suspended above a second implant. A mechanism is then required to urge the second implant and rod together to permit connection of the implant to the rod and more particularly to seat the rod within the open channel of the implant. One such instrument marketed by Sofamor Danek Group as part of the Compact CD™ system, is an introducer lever C-6903 which resembles a fork with a pair of offset tines. The tines of this device extend over the vertically spaced rod and under either side of an enlarged portion of the implant. Once in place, the fork handle is moved toward the rod thereby forcing the rod and implant together. One problem with this arrangement is that the fork tines must pass between the implant and the bone, which in many cases may be difficult and may result in damage to the bone. Moreover, the connection between the fork tines and the implant is not a secure engagement and may result in the rod introducer slipping during the procedure of forcing the rod into the implant.
Other types of rod introduction devices have overcome the problems associated with the simple fork device by first achieving a secure attachment to the implant with articulated forceps or the like. Various instruments for gripping and handling implants are commonly known. One such instrument has a pair of articulating branches defining a gripping nose opposite a pair of handles. While many varieties of these forceps exist to accomplish various functions during surgery, some are adapted specifically to securely hold an implant, and in particular, a spinal osteosynthesis implant. The gripping nose of one such configuration utilizes a pair of inwardly facing cylindrical projections disposed at the distal end of the gripping nose. The cylindrical projections are adapted to engage corresponding recesses on an implant, thereby providing a secure grip. Because of the small size of many spinal implants and the accompanying difficulty gaining a secure grip with only manual pressure, such forceps are often utilized in the manipulation and placement of the implants.
In addition to providing a nose for gripping implants, many forceps also provide a locking mechanism to hold the forceps in the gripping position once the implant is gripped. A common example is the provision of one half of a ratchet rack on one articulating branch aligned to engage a second half of the ratchet rack on the other articulating branch. Upon movement of the branches towards one another, the separate halves of the ratchet rack come into engagement thereby preventing separation of the articulating branches. As is common with such arrangements, the articulating branches have sufficient flexibility that they may be flexed with respect to one another, thereby disengaging the ratchet racks.
An alternative forcep locking mechanism is disclosed in U.S. Pat. No. 5,423,855 owned by the Sofamor SNC subsidiary of Sofamor Danek Group. This patent shows forceps having an implant gripping nose as previously discussed. In this configuration, the articulating branches are held in the closed position by a spring biased cap disposed on the end of the branches opposite the gripping nose.
In prior systems, once a secure engagement has been accomplished between the forceps and the implant, a separate apparatus is attached between the forceps and the rod. In one such mechanism marketed by Sofamor Danek Group as the TSRH™ mini-corkscrew, a threaded rod is threadedly coupled at one end to the forceps and engages the rod at the opposite end. Rotation of the threaded rod urges the rod and implant towards each other. In another mechanism marketed by Sofamor Danek Group as an articulated rod pusher C-6211 for use with the Compact CD™ system, forceps grip the implant and a pivoting two piece rod pusher lever is used to urge the rod and implant towards one another. In this device, a lower end of the first member of the rod pusher engages the rod and the upper end of the first member is pivotally attached to the second member of the rod pusher lever. The lower end of a second member engages the forceps while the upper end of the second member is rotated to force the rod and implant towards each other.
U.S. Patent 5,020,519 to Hayes et al. discloses a single mechanism which both grips the rod and has a threaded mechanism to accomplish vertical reduction of the rod into the implant. As this reference discloses, the mechanism must first be attached to the implant and then the rod threaded through the opening between the clamping jaws. This unnecessarily creates a complication for the surgeon, i.e. maintaining both the reduction mechanism and the hook in the desired position while attempting to thread the rod through various implants and the opening in the reduction apparatus. Moreover, once the rod has been reduced into the implant opening, the reduction apparatus interferes with visualizing the implant and rod connection, and with placement of a fastener to hold the rod in the implant.
In addition to the surgical condition where the rod is suspended above the implant, the rod may be laterally offset with respect to the implant. Moreover, in some applications the implant may have an implant opening for receiving the rod which opens to the side, thereby requiring the rod to be laterally introduced into the implant. In these instances, it is often desirable to have mechanical assistance in bringing the rod and implant together to permit securing the rod within the implant. One such device marketed by Synthes Spine as the Universal Spinal System Rod Introduction Pliers is utilized to urge a laterally offset rod into a side opening implant. The Rod Introduction Pliers are used in conjunction with a Hook or Screw Holder device threadedly engaging the implant. One branch of the pliers consists of a barrel while the opposing branch defines a rod engaging surface. In operation, this barrel is placed over the Hook or Screw Hold device and the opposing branch of the pliers engages the offset rod and upon actuation of the plier handles the rod is urged into the implant opening. While this system provides a means to reduce the lateral displacement of the rod, it does not permit the user to additionally reduce any vertical displacement between the rod and the implant. Rather, the barrel of the rod introduction pliers apparently slides freely up and down the hook holder.
In addition to having a need, in some surgical situations, to both laterally approximate the rod to the implant and to vertically reduce the rod into the implant, there is a need to deliver a fastening member to the implant while the rod is securely held in place by the rod reduction apparatus. In some systems, the components required to accomplish reduction are offset with respect to the implant, thereby providing access to the implant to facilitate placement of the fastener once the rod is inserted into the implant. Use of offset instruments to apply force to the rod and implant may impart rotational forces to the implant tending to displace the implant from the desired location. Moreover, in most applications the fastening elements must be relatively small to prevent unnecessary protrusion from the implant. While this is desirable after placement, the small size of the fastener makes handling these items difficult. The difficulty of handling the small fasteners is increased when it is required to place them in the implant that is partially obscured by the rod introduction device. One approach to solving this problem is taken by the Universal Spine System pliers discussed above. In operation, a fastening collar is preloaded over the barrel prior to placement over the hook holder. Once the rod has been inserted into the implant the collar may be advanced over the barrel and engaged with the implant.
One disadvantage to the systems discussed above, is that none of the systems provide both a mechanism for reducing vertical rod offset and lateral rod offset from the bone anchor in a single device. Moreover, many of the systems utilize articulating clamping tips actuated by articulating handles to hold the implants and require a separate apparatus attached to the hook or screw holder to perform manipulation of the rod. It will be appreciated that the various handles extending out of the patient interfere both with vision and work space in an already limited surgical field. Therefore, it is desirable to provide a compact implant holder adapted to perform both vertical and lateral reduction of a rod.
The present invention overcomes the problems associated with the prior art by providing a gripping mechanism and a rod introduction lever for both lateral and vertical approximation in a single convenient instrument.
One form of the present invention contemplates a multiple action insertion apparatus for engaging a longitudinal member and an implant, comprising an implant holder including a first clamping branch and a second clamping branch cooperable with the first clamping branch to hold to the implant, a reduction mechanism interconnected with the implant holder, the reduction mechanism having a distal end for engaging the longitudinal member, wherein the reduction mechanism urges the longitudinal member into vertical alignment with the implant, and a lateral approximator mechanism interconnected with the implant holder, the lateral approximator mechanism having a distal end disposed adjacent the first and second clamping branches, said distal end adapted to engage the longitudinal member, wherein said lateral approximator mechanism urges the longitudinal member into lateral alignment with the implant.
Still a further form of the present invention contemplates a multiple action insertion apparatus for engaging a longitudinal member and an implant, comprising a device for attaching to an implant having an opening for receiving a rod, a device for lateral approximation of a longitudinal member laterally offset from the implant rod opening, the device for lateral approximation interconnected with the device for attaching, and a device for vertical reduction of a longitudinal member vertically offset from the implant, the device for vertical reduction interconnected with the device for attaching, wherein the device for lateral approximation laterally aligns the longitudinal member over the implant and the device for vertical reduction vertically aligns the longitudinal member with the implant.
Another form of the invention contemplates an implant holder for holding an implant adapted to receive a fastener, comprising a device for gripping the implant, the device for gripping including a gripping end and a handle defining a longitudinal cannula having a distal end adjacent the gripping end, the cannula adapted to receive a fastener cooperable with the implant.
In another aspect, the present invention contemplates an implant holder for gripping an implant, comprising a shaft having a gripping end with a portion, the gripping end defining a first clamping branch and a cooperable second clamping branch, the first and second clamping branches tending to assume an insertion position defining a first distance between the first and second clamping branches, and the first and second clamping branches compressible into a clamping position defining a second distance between the first and second clamping branches, the first distance greater than the second distance, and a sleeve defining an interior channel, the shaft slidably received within the interior channel, the shaft moveable between a first position with the portion extending from the sleeve and a second position with the portion drawn into the sleeve, wherein movement of the shaft within the tubular sleeve from the first position to the second position controls the first and second clamping branches from the insertion position to the clamping position.
Another form of the present invention contemplates an implant holder having a rod reduction mechanism for vertically aligning a longitudinal member and an implant, comprising a device for gripping the implant, a sleeve having an axis and a distal end adapted to engage the longitudinal member, the sleeve having an axial bore sized to receive the device for gripping, the device for gripping slidably received within the axial bore, and a device for axially displacing the sleeve with respect to the device for gripping, whereby the vertical offset longitudinal member is urged into alignment with the implant.
Additionally, the invention includes a method for for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of providing an introduction apparatus having an attachment mechanism with a cannula and a vertical reduction mechanism, attaching the introduction apparatus to the implant, operating the vertical reduction mechanism to force the longitudinal member into alignment with the implant, inserting a fastener through the cannula, interconnecting the fastener and the implant, wherein the longitudinal member is securely attached to the implant, and removing the introduction apparatus.
The invention includes an additional method for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of providing an introduction apparatus having an attachment mechanism, a lateral approximation lever, and a vertical reduction mechanism, attaching the introduction apparatus to the implant, engaging a laterally offset longitudinal member with one end of the lateral approximator lever, rotating the lever to urge the longitudinal member into lateral alignment with the implant, operating the vertical reduction mechanism to force the longitudinal member into vertical alignment with the implant, and interconnecting the longitudinal member and the implant.
One object of the present invention is to provide an implant holder having a cannula for passage of a fastener to the implant while it is being securely held.
Another object of the present invention is to provide a simple device for gripping the implant and reducing vertical offset between an implant and a longitudinal member.
A further object of the present invention is to provide an implant holder operable in a small lateral area to clamp an implant by axial movement of the holder mechanism.
Still a further object of the present invention is to provide a multiple action insertion apparatus that is capable of gripping an implant, approximating the implant and an laterally offset longitudinal member, and reducing the vertical distance between the implant and the longitudinal member.
Another object of the present invention is to provide a multiple action insertion apparatus that is capable of gripping an implant, approximating the implant and an laterally offset longitudinal member, and reducing the vertical distance between the implant and the longitudinal member wherein the apparatus includes a cannula for insertion of a fastening member.
Related objects and advantages of the present invention will be apparent from the following description.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
Referring now to FIG. 1 , a rod introduction apparatus 10 according to the present invention includes an outer sleeve 14, a clamp shaft 18 and a lateral approximator lever 12. As will be appreciated by the detailed description that follows, the rod introduction apparatus is a multiple action device having the capability of securely holding an implant (often a hook or a screw), aligning a laterally offset longitudinal member (typically a rod or a plate), reducing the vertical distance between the longitudinal member and the implant, and providing a passage for placement of a fastener into the implant while the implant and longitudinal member are held in alignment. It is understood that all of the features of the apparatus may be used in combination or only a select portion thereof may be utilized, the features utilized will depend on the needs of the surgery being performed.
Referring now to FIGS. 5 through 8 , outer sleeve 14 includes on its proximal end a shoulder 46 extending around the entire circumference of the outer sleeve. Pivot pins 24 and 25 project from opposite sides of the outer sleeve. The distal end of outer sleeve 14 is the rod engagement end 40, which defines a pair of diametrically opposed rod engagement arms 62 and 63. As shown in FIG. 6 , these arms have a substantially reduced width 52 in comparison to diameter of outer sleeve 14, as they extend towards the rod engagement end 40. Disposed on the distal tip of rod engagement arm 62 is a concave recess 54 having a curvature substantially equivalent to the outside diameter of a rod. A similar concave recess 55 is disposed on the distal tip of rod engagement arm 63 and is in alignment with concave recess 54 to permit a rod to be engaged by both recesses simultaneously. It will be understood that rod engaging arms 62 and 63 have concave recesses 54 and 55 in order to hold a portion of the rod and inhibit lateral movement thereof.
Referring now to FIGS. 9 through 11 , clamp shaft 18 is sized to be slidingly received within the interior channel of outer sleeve 14. Clamp shaft 18 includes gripping nose 22 having a portion extendable beyond the distal end of outer sleeve 14. Gripping nose 22 includes a first clamping branch 36 and a second clamping branch separated by space 76. The distance between first clamping branch 36 and second clamping branch 76 changes as the clamping branches are moved from there insertion position, with ramped sidewall portion extending outside outer sleeve 14, to a clamping position with ramped sidewall portions 72 and 73 engaging bearing surfaces 60 and 61 respectively. In the preferred embodiment the clamping branches resiliently tend to assume there insertion form unless constrained by outer sleeve 14. Preferably, clamping branches 36 and 38 have an area of reduced wall thickness defining a void 78 adjacent their attachment points to the remainder of clamping shaft 18. This area of reduced wall thickness tends to experience the greatest amount of deflection when the clamping branches are in the clamping position. While the preferred embodiment relies on the resiliency of the clamping branches themselves to assume the insertion position, it is contemplated that a mechanical means cooperable with the clamping branches may be utilized to move the clamping branches between the insertion and clamping positions.
Each clamping branch includes a series of projections 42a and 42b to engage corresponding recesses 44a and 44b on implant 26. While FIGS. 2 and 3 show implant 26 as a spinal hook, it is contemplated that the clamping branches may be adapted to engage a variety of implants, with or without the use of interengaging projections and recesses. In the preferred embodiment, each branch includes two projections 42a and 42b to engage a corresponding two recesses 44a and 44b on implant 26. However, it is contemplated that the number of projections on each clamping branch can vary, depending on the number of mating recesses disposed on implant 26. Moreover, it is contemplated that implant 26 may contain a series of projections while clamping branches may have corresponding recesses.
Disposed on the opposite end of clamp shaft 18 is T-handle 20. Adjacent T-handle 20 and spaced by a smooth cylindrical shank portion 35, are external threads 26 adapted to engage an internally threaded nut. Additionally, disposed between the treads 26 and the gripping nose 22 is a shoulder 86 where clamping shaft 18 transitions from a cylindrical cross section adjacent threads 26 to a substantially rectangular cross section extending to gripping nose 22.
Referring now to FIG. 10 , clamp shaft 18 has a substantially uniform width when viewed from this side, with the exception of a reduced width portion disposed between shoulder 86 and gripping end 22. The reduced width area is defined by sidewalls 70 and 71 and continues at a reduced width until it begins to increase at ramped portions 72 and 73. Ramp portions terminate in sidewalls 74 and 75, having the same width as the remainder of the clamp shaft 18. In addition to the area of reduced outer width, in the area of reduced outer width, the walls also include reduced thickness sidewalls 80 and 82. This area of reduced thickness creates void 78. It will be understood that in use, as clamp shaft 18 is withdrawn into outer sleeve 14, outer sleeve side walls 60 and 61 will engage ramps 72 and 73, respectively, thereby urging clamping branches 36 and 38 toward one another and reducing the distance between the clamping branches. Moreover, it will be understood that a major portion of the deformation required to urge clamping branches 36, 38 toward one another will occur in the sidewalls defining cavity 78.
Referring now to FIG. 11(a) , clamp shaft 18 has a central cannula 84 extending throughout the entire length of the shaft. Cannula 84 has a uniform diameter throughout and is adapted to receive a fastener for placement onto an implant. The internal passage for delivery of the fastening member to the implant provides an important advantage to the surgeon when the rod is being held in alignment with the implant because external passages to the implant may be obstructed or have limited clearance because of the presence of the rod reduction apparatus. In the preferred embodiment, an externally threaded plug 88 (FIG. 11(b) ) may be placed into the cannula and urged into engagement with an internally threaded opening in hook 26. An elongated driving member 89 is then inserted through cannula 84 and engaged with threaded plug 88 to threadedly insert the plug into a corresponding threaded opening in the implant. Although an externally threaded plug is shown in this embodiment, it is contemplated that an internally threaded nut could be passed through cannula 84 to engage an externally threaded portion of a hook or a screw. The internally threaded nut could then be tightened by engagement of projections on a tightening tool with corresponding recesses in the nut.
Preferably, the rod insertion apparatus of the present invention includes a lateral approximator mechanism to bring an implant into alignment with a laterally offset longitudinal member. In the preferred embodiment, the lateral approximator mechanism is a lateral approximator lever 12 pivotally attached to outer sleeve 14 (FIG. 1 ). Lateral approximator lever 12 defines a pair of keyways 13 and 15 (FIG. 3 ) adapted to selectively engage a pair of pivot pins 24 and 24 on outer sleeve 14. The proximal end 31 of lever 12 is configured to be a handle for manually manipulating the lever to urge a laterally offset rod and implant into alignment.
The rod engaging end 30 of lever 12 is bifurcated into a first lever arm 29 and a second lever arm 33. Each arm freely passes over the outer surface of outer sleeve 14. First lever arm 29 has a rod engaging hook 32 disposed at its distal end. Likewise, second lever arm 33 has a corresponding rod engaging hook 34 disposed at its distal end and in alignment with engaging hook 32 permitting both hooks to contact a rod simultaneously. It is contemplated that the extent of lever arm extending distally beyond hooks 32 and 34 should be minimized in order to limit contact with surrounding anatomical structures during the lateral approximation procedure and the vertical reduction procedure if performed.
The above-described components of the rod introduction apparatus of the present invention are assembled as follows. Clamp shaft 18 as shown in FIGS. 9 through 11 , is inserted into outer sleeve 14 with surfaces 70 and 72 aligned with surfaces 60 and 61 of the outer sleeve, respectively. Speed nut 16 is then passed over the proximal end 29 of clamp shaft 18 until bearing surface 58 abuts shoulder 46 on outer sleeve 14. A series of retaining pins 19, 21 and a third pin (not shown) are placed in the openings 56, 57 and a third opening in nut 16 (not shown). The retaining pins extend into the space between nut 16 and outer sleeve 14. Nut 16 is thereby retained on shoulder 46 by bearing surface 58 and a series of retaining pins.
In the preferred embodiment, T-handle 20 having a central opening aligned with cannula 84 is added for ease of manipulation of clamp shaft 18 within outer sleeve 14. In the preferred embodiment, T-handle 20 is welded onto clamp shaft 18, although it is contemplated that other means such as brazing or threading may be used to attach T-handle 20. It is contemplated that a separate handle is not required, instead, the surface of clamp shaft 18 may be roughened for easy gripping by the surgeon or the shaft may be machined to define an enlarged area for gripping. Finally, at the option of the user, lateral rod approximator lever slides about the outer surface of outer sleeve 14 to pass key way 13 and corresponding key way 15 on the opposite side of lever 12 over pivot pins 24 and 25, respectively. In the preferred embodiment, lateral approximator lever 12 can be selectively interconnected with the outer sleeve, thus permitting the lever to be added or removed at the user's discretion.
As shown in FIG. 14 , it is contemplated that a lateral approximator lever 90 having rod engaging end 91 with rod hook 94 could be pivotally attached to outer sleeve 14 in a non-removable fashion. In this embodiment, lever 90 is pivotally attached to outer sleeve 14 by a pivot pin 92 and a similar pivot pin (not shown) disposed on the opposite side of outer sleeve 14. Moreover, in this embodiment, lever 90 is provided with a mechanical means to urge the rod and implant into lateral alignment. The mechanical mechanism extends through oblong opening 93 in lever 90. A threaded shaft 95 is pivotally connected to outer sleeve 14 by a pin 96. An enlarged finger nut 97 is threaded onto threaded shaft 95 to urge lever 90 into the desired position.
Referring now to FIGS. 2 through 4 , in operation, the rod introduction apparatus of the present invention may be utilized to both laterally approximate a spinal rod to an implant having an opening for receiving a rod and to vertically reduce the rod into the opening of the implant. As will be appreciated by those skilled in the art, clamp shaft 18 is free to slide within outer sleeve 14 when threads 28 are not engaged with speed nut 16. In a first area of freedom of movement, clamp shaft 18 is free to move the length of smooth shank portion 35 disposed between threads 28 and T-handle 20. In this position, gripping nose 22 may be extended a substantial distance beyond the rod engagement end 40 of outer sleeve 14 into the insertion position in preparation for securely clamping an implant. It will be understood that with T-handle engaging speed nut 16, space 76 between clamping branches 36 and 38 will be at its maximum, thereby permitting the clamping branches to extend around an implant. As clamp shaft 18 is manually withdrawn into outer sleeve 14, ramp surfaces 72 and 73 of the clamp shaft bear against surfaces 60 and 61 of the outer sleeve, thereby urging clamping branches 36 and 38 toward one another and into the clamping position. It is contemplated that the action of drawing clamp shaft 18 within outer sleeve 14 is performed only after aligning projections 42 with the corresponding recesses 44 in the implant 26. In this manner, the implant may be securely gripped by the rod introduction apparatus of the present invention. At this point, speed nut 16 may be partially rotated to engage at least a portion of threads 28 in order to securely hold clamp shaft 18 in the clamping position.
Once the implant has been securely gripped, the spinal rod 50 may then be aligned with the opening in the implant, both laterally and vertically. For lateral approximation, lateral rod approximator lever 12 is positioned as previously described about the outer sleeve 14 and pivotally connected with pivot pins 24 and 25. As shown in FIG. 2 , the upper end 31 of lever 12 is displaced from the body of outer sleeve 14, thereby pivoting about the pivot pins and extending the rod engaging portion 30 of the lever a sufficient distance laterally from the outer sleeve to securely engage spinal rod 50 within hooks 32 and 34. After hooks 32 and 34 are securely engaged with rod 50, the upper end 31 of lever 12 is urged back into alignment with outer sleeve 14, thereby urging spinal rod 50 into alignment with rod engagement end 40 of the outer sleeve. Once this position has been achieved, the vertical displacement between rod 50 and implant 26 may then be reduced. Speed nut 16 is rotated while engagement with threads 28 to urge gripping nose 22 of clamping shaft 18 to be drawn into outer sleeve 14. As the clamping shaft is drawn into the outer sleeve, rod engagement end 40 approaches gripping nose 22 and thereby forces rod 50 into implant opening 27. Once in the final position (FIG. 4 ), implant 26 may be secured to rod 50 by any number of means, which include a threaded plug or blocking sleeve. In the preferred embodiment, clamp shaft 18 includes a cannula 84 extending therethrough. Once the rod has been positioned within the opening 27 of implant 26, a threaded plug 88 is passed through cannula 84 until it seats into the correspondingly threaded opening in implant 26. A driving member extending through cannula 84 is used to tighten the plug in the implant. Threaded plug 88 securely holds the rod in the implant opening.
Once the rod has been secured to the implant, rod adjustability lever 12 is rotated away from engagement with outer sleeve 14, thereby releasing the rod 50. Further, speed nut 16 is rotated to urge gripping nose 22 out of outer sleeve 14 and thereby separate rod engagement end 40 from rod 50. Speed nut 16 is continued to be rotated until it no longer engages threads 28, which thereby allows clamp shaft 18 to slide within outer sleeve until handle 20 engages speed nut 16. This movement permits clamping branches 36 and 38 to assume the insertion position and thereby release the implant. Once released, the rod introduction apparatus of the present invention may then be withdrawn.
Referring now to FIGS. 15 through 19 , an alternative embodiment of the rod introduction apparatus according to the present invention includes outer sleeve 110, clamping shaft 118, and lateral approximator lever 112. Similar to the first described embodiment, rod reduction apparatus 101 is capable of gripping an implant, engaging a laterally offset longitudinal member and aligning the implant and offset longitudinal member and reducing the vertical distance between the implant and longitudinal member.
In this embodiment, clamping shaft 118 comprises two articulating branches 142 and 143 pivoting about a connecting pivot pin 144 (FIG. 16 ). While the branches illustrated do not define an internal cannula, it is contemplated that for certain applications it may be desirable that each branch form a portion of a cannula adapted for insertion of a fastener. Distally of pivot pin 144, articulating branches 142 and 143 define clamping branches 138 and 136, respectively. Clamping branches 136 and 138 have projections 146 and 145, respectively, adapted to engage corresponding recesses (not shown) in screw 126. Articulating movement of branches 142 and 143 moves clamping branches 136 and 138 between an insertion position with clamping branches spaced by a first larger distance and a clamping position with clamping branches spaced by a second smaller distance. The branches are held in the clamping position by retaining cap 140 pivotally connected to branch 143 and selectively engaging branch 142. Articulating branch 142 further includes a rack 117 disposed on its outer surface.
Lateral rod approximation lever 112 is pivotally mounted to outer sleeve 110 by pivot pins 124 and 125. The rod engaging end 120 of lever 112 includes a pair of hooks 121 and 122 for engaging a rod. As shown in FIG. 18 , each hook includes an upper projection 151 for securely engaging the rod during vertical reduction.
In operation, articulating branches 142 and 143 are separated to position clamping branches 136 and 138 in the insertion position. The clamping branches are positioned adjacent screw 126 with projections 145 and 146 aligned with corresponding recesses (not shown) in screw 126. Articulating branches are then brought together, thereby urging projections into the screw recesses to securely hold the implant. Retaining cap 140 is then rotated about pin 141 until the cap securely engages articulating branch 142. In this manner, the branches remain in the clamping position.
After the implant has been securely clamped, outer sleeve 110 with interconnected lever 112 and pinion 116 is slid over clamping shaft 118 with pinion 116 aligned with rack 117 and is urged downwardly until pinion 116 engages rack 117. Lever 112 is then positioned to engage rod 150. Lever 112 is moved to bring rod 150 into lateral alignment with screw 126. Pinion 116 is then rotated to urge outer sleeve 110 towards screw 126 thereby urging engaged rod 150 into vertical alignment with screw 126. In the illustrated embodiment, screw 126 is a variable angle screw engagable by an eyebolt mechanism previously place on rod 150. Such an eyebolt attachment mechanism is offered by Sofamor Danek Group as the TSRH™ Variable Angle Eyebolt. Once in alignment, the eyebolt mechanism is utilized to securely interconnect the screw and rod.
Once screw and rod are interconnected, pinion 116 must be reversed to move outer sleeve 110 away from screw 126. Once pinion 116 is free of rack 117, outer sleeve 110 may be removed. Retaining cap 140 is then removed from articulating branch 142, thereby permitting the branches to disengage screw 126.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Claims (46)
1. A multiple action insertion apparatus for engaging a longitudinal member and an implant, comprising:
an implant holder including a first clamping branch and a second clamping branch cooperable with said first clamping branch to hold to an implant;
a reduction mechanism interconnected with said implant holder, said reduction mechanism having a distal end for engaging the longitudinal member, wherein said reduction mechanism urges the longitudinal member into vertical alignment with the implant; and
a lateral approximator mechanism interconnected with said implant holder, said lateral approximator mechanism having a distal end disposed adjacent said first and second clamping branches, said distal end adapted to engage the longitudinal member, wherein said lateral approximator mechanism urges the longitudinal member into lateral alignment with the implant.
2. The insertion apparatus of claim 1 , wherein said lateral approximator mechanism is a lever arm pivotally connected to said implant holder.
3. The insertion apparatus of claim 1 , A multiple action insertion apparatus for engaging a longitudinal member and an implant, comprising:
an implant holder including a first clamping branch and a second clamping branch cooperable with, and movable relative to, said first clamping branch to hold to an implant;
a reduction mechanism interconnected with said implant holder, said reduction mechanism having a distal end for engaging the longitudinal member, wherein said reduction mechanism urges the longitudinal member into vertical alignment with the implant; and
a lateral approximator mechanism interconnected with said implant holder, said lateral approximator mechanism having a distal end disposed adjacent said first and second clamping branches, said distal end adapted to engage the longitudinal member, wherein said lateral approximator mechanism urges the longitudinal member into lateral alignment with the implant,
wherein said implant holder comprises a shaft having a gripping end with a portion, said gripping end defining a first clamping branch and a cooperable second clamping branch, said first and second clamping branches tending to assume an insertion position defining a first distance between said first and second clamping branches, and said first and second clamping branches compressible into a clamping position defining a second distance between said first and second clamping branches, said first distance greater than said second distance; and
a sleeve defining an interior channel, said shaft slidably received within said interior channel, said shaft moveable between a first position with said portion extending from said sleeve and a second position with said portion drawn into said sleeve;
wherein movement of said shaft within said tubular sleeve from said first position to said second position controls said first and second clamping branches from said insertion position to said clamping position.
4. The introduction apparatus of claim 3 , wherein said reduction apparatus comprises a series of external threads disposed on said shaft and an internally threaded nut rotatably mounted on said sleeve, said internally threaded nut cooperable with said external threads, said sleeve further defining a bearing surface adjacent said gripping end for engaging the longitudinal member, wherein rotation of said nut moves said shaft with respect to said sleeve and urges said bearing surface against the longitudinal member thereby reducing the distance between the longitudinal member and the implant.
5. The introduction apparatus of claim 4 , wherein the longitudinal member is a rod and said bearing surface is a recessed area on said sleeve.
6. A multiple action insertion apparatus for engaging a longitudinal member and an implant, comprising:
means for attaching to an implant;
means for lateral approximation of a longitudinal member laterally offset from the implant, said means for lateral approximation interconnected with said means for attaching; and
means for vertical reduction of the longitudinal member vertically offset from the implant, said means for vertical reduction interconnected with said means for attaching, wherein said means for lateral approximation laterally aligns the longitudinal member over the implant and said means for vertical reduction vertically aligns the longitudinal member with the implant.
7. An implant holder for holding an implant adapted to receive a fastener, comprising:
means for gripping the implant said means for gripping including a gripping end and a handle defining a longitudinal cannula having a distal end adjacent said gripping end, said cannula adapted to receive a fastener cooperable with said implant;
wherein said means for gripping includes a first clamping branch and a second clamping branch defining said gripping end, said first and second clamping branches aligned in a spaced relationship and cooperable to engage the implant, and wherein said handle defines a series of threads opposite said gripping end, and further including a sleeve defining an internal channel adapted to receive at least a portion of said gripping end and said handle, and a nut rotatably mounted on said sleeve, said nut cooperable with said threads on said handle.
8. The implant holder of claim 7 , wherein said sleeve has a distal end adjacent said gripping end and said sleeve defines a bearing surface adapted to bear against a longitudinal member, wherein rotation of said nut draws said handle into said sleeve and thereby reduces the distance between the implant engaged by said first and second clamping branches and the longitudinal member bearing against said bearing surface of said sleeve.
9. The implant holder of claim 8 , further including a lateral approximating lever pivotally attached to said sleeve.
10. An implant holder for gripping an implant, comprising:
a shaft having a gripping end with a portion, said gripping end defining a first clamping branch and a cooperable second clamping branch, said first and second clamping branches tending to assume an insertion position defining a first distance between said first and second clamping branches, and said first and second clamping branches compressible into a clamping position defining a second distance between said first and second clamping branches, said first distance greater than said second distance; and
a sleeve defining an interior channel, said shaft slidably received within said interior channel, said shaft moveable between a first position with said portion extending from said sleeve and a second position with said portion drawn into said sleeve; and
an actuating mechanism for moving said shaft within said tubular sleeve, said actuating mechanism provided about said tubular sleeve and an actuating force for operating said actuating mechanism applied about the tubular sleeve,
wherein movement of said shaft within said tubular sleeve from said first position to said second position controls said first and second clamping branches from said insertion position to said clamping position.
11. The implant holder of claim 10 , wherein said sleeve defines an engagement surface for engaging a longitudinal member to be interconnected with said implant, whereby positioning said shaft in said second position clamps the implant and further movement of said inner shaft into said sleeve urges the implant into alignment with the longitudinal member.
12. The implant holder of claim 11 , further including means for controlling the position of said shaft within said sleeve wherein said actuator mechanism comprises threads provided about the central opening of said tubular sleeve.
13. The implant holder of claim 12 , wherein said means for controlling actuator mechanism includes an external thread disposed on said inner shaft and a nut rotatably mounted on said tubular sleeve, said nut having an internal thread corresponding to said external thread, whereby said inner shaft may be drawn into said outer sleeve by rotation of said nut.
14. The implant holder of claim 11 , wherein said threads on said shaft includes are formed as a series of external threads and said shaft further including includes an internally threaded nut rotatably mounted on said sleeve, said internally threaded nut cooperable with said external threads, wherein rotation of said nut moves said shaft with respect to said sleeve.
15. The implant holder of claim 14 , further including a lateral approximator lever pivotally engaging said sleeve, said lateral approximator lever having a rod engaging end adapted to engage a laterally offset rod, wherein upon engaging a laterally offset rod, said lateral approximator lever may be pivoted toward said sleeve, thereby positioning the rod adjacent the implant.
16. The implant holder of claim 15 , wherein said first and second clamping branches each have a distal end and include at least one projection defined on each of said distal ends.
17. The implant holder of claim 10 , wherein said shaft includes a handle disposed opposite said gripping, said handle utilized to position said shaft within said sleeve.
18. The implant holder of claim 10 , wherein said shaft is cannulated to slidingly receive a fastening member adapted to be engaged with the implant.
19. The implant holder of claim 10 , wherein said attachment to said implant is a non-pivotal attachment.
20. The implant holder of claim 10 , further including a lateral approximator lever pivotally engaging said sleeve, said lateral approximator lever having a rod engaging end adapted to engage a laterally offset rod, wherein upon engaging a laterally offset rod, said lateral approximator lever may be pivoted toward said sleeve, the rod is positioned adjacent the implant.
21. The implant holder of claim 20 , wherein said lateral approximator lever removably engages said sleeve, whereby said lever may be selectively removed.
22. The implant holder of claim 10 , wherein said first and second clamping branches each have a distal end and include at least one projection defined on said distal end.
23. The implant holder of claim 10 , wherein said shaft defines a cannula having a distal end adjacent said first and second clamping branches, said cannula adapted to slidingly receive a fastener, whereby said fastener is delivered through said cannula to said distal end for interengagement with the implant.
24. An implant holder having a rod reduction mechanism for vertically aligning a longitudinal member and an implant, comprising:
means for gripping the implant;
a sleeve having an axis and a distal end adapted to engage the longitudinal member, said sleeve having an axial bore sized to receive said means for gripping, said means for gripping slidably received within said axial bore; and
threaded means for axially displacing said sleeve with respect to said means for gripping, whereby a verticalvertically offset longitudinal member is urged into alignment with the implant.
25. The implant holder of claim 24 , wherein said means for gripping are articulating forceps.
26. The implant holder of claim 24 , wherein said means for axial displacement includes a series of threads disposed on said means for gripping and a nut rotatably mounted on said sleeve and threadedly engagable with said threads.
27. The implant holder of claim 24 , wherein said means for axial displacement includes a rack disposed on said means for gripping and a pinion pivotally mounted on said sleeve and interengagable with said rack.
28. A method for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of:
providing an introduction apparatus having an attachment mechanism with a cannula and a vertical reduction mechanism;
attaching the introduction apparatus to the implant;
operating the vertical reduction mechanism, by actuating a threaded engagement mechanism of the vertical reduction mechanism, to force the longitudinal member into alignment with the implant;
inserting a fastener through the cannula;
interconnecting the fastener and the implant, wherein the longitudinal member is securely attached to the implant; and
removing the introduction apparatus.
29. A method for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of:
providing an introduction apparatus having an attachment mechanism, a lateral approximation lever, and a vertical reduction mechanism;
attaching the introduction apparatus to the implant;
engaging a laterally offset longitudinal member with one end of the lateral approximator lever;
rotating the lever to urge the longitudinal member into lateral alignment with the implant;
operating the vertical reduction mechanism to force the longitudinal member into vertical alignment with the implant; and
interconnecting the longitudinal member and the implant.
30. The method of claim 29 , A method for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of:
providing an introduction apparatus having an attachment mechanism, a lateral approximation lever, and a vertical reduction mechanism;
attaching the introduction apparatus to the implant;
engaging a laterally offset longitudinal member with one end of the lateral approximator lever;
rotating the lever to urge the longitudinal member into lateral alignment with the implant;
operating the vertical reduction mechanism to force the longitudinal member into vertical alignment with the implant; and
interconnecting the longitudinal member and the implant,
wherein the providing step includes providing attachment mechanism having a cannula and further including the step of delivering a fastener through the cannula and to the implant prior to interconnecting the longitudinal member and the implant.
31. A method for interconnecting a longitudinal member and an implant adapted to engage the longitudinal member, comprising the steps of:
providing an introduction apparatus having an attachment mechanism with attachment prongs for attaching to the implant, a cannula and a vertical reduction mechanism;
attaching the introduction apparatus to the implant;
operating the vertical reduction mechanism to force the longitudinal member into alignment with the implant;
inserting a threaded fastener through the cannula;
interconnecting the fastener and the implant, wherein the longitudinal member is securely attached to the implant; and
removing the introduction apparatus,
wherein the introduction apparatus further comprises an elongated member that extends through the cannula, the elongated member engaging the fastener in said interconnecting step to cause the fastener to interconnect with the implant.
32. The method of claim 31, wherein the attachment prongs are formed on the proximal end of the cannula.
33. The method of claim 32, wherein the implant is a bone screw.
34. The method of claim 33, wherein the longitudinal member is an implantable rod.
35. The method of claim 32, wherein the elongated member is separate from the vertical reduction mechanism.
36. The method of claim 32, wherein the introduction apparatus further comprises an actuator for operating the vertical reduction mechanism in said operating step, and the actuator connects to the distal end of the cannula about a circumference of the distal end.
37. The method of claim 36, wherein the implant contains a threaded opening that receives the threaded fastener in said interconnecting step.
38. The method of claim 31, wherein the operating and inserting steps take place separately.
39. An implant holder for gripping an implant, comprising:
a shaft having a gripping end with a portion, said gripping end defining a first clamping branch and a cooperable second clamping branch, said first and second clamping branches tending to assume an insertion position defining a first distance between said first and second clamping branches, and said first and second clamping branches compressible into a clamping position defining a second distance between said first and second clamping branches, said first distance greater than said second distance; and
a sleeve defining an interior channel, said shaft slidably received within said interior channel, said shaft moveable between a first position with said portion extending from said sleeve and a second position with said portion drawn into said sleeve;
wherein movement of said shaft within said tubular sleeve from said first position to said second position controls said first and second clamping branches from said insertion position to said clamping position, and
wherein said implant holder further comprises an actuator for moving said shaft relative to said tubular sleeve, said actuator comprising a first portion engaging a first side of said sleeve and a second portion engaging a second side of said sleeve opposite said first side, said first and second portions moving relative to said shaft to actuate movement of said sleeve.
40. A system for spinal, surgery comprising:
said implant holder of claim 39;
a series of implants; and
a longitudinal member,
wherein said implant holder grips each of said series of implants, and
wherein the relative movement of said shaft and said tubular sleeve of said implant holder operate to reduce said longitudinal member to connect to an implant of said series of implants.
41. The system of claim 40, wherein said series of bone implants are bone screws and said longitudinal member is a rod.
42. The system of claim 41, wherein said shaft defines a passage through which a fastener for fastening said rod to a bone screw is insertable, while said first and second clamping branches grip said bone screw in the clamping position.
43. The system of claim 42, wherein a distal opening of said sleeve has an arcuate engaging edge for engaging said rod when said shaft and said sleeve are actuated relative to each other, said engaging edge operating to reduce said rod.
44. The system of claim 43, wherein said actuator is symmetrical with respect to opposing sides of said shaft.
45. A system for spinal surgery comprising:
the insertion apparatus of claim 40;
a series of implants; and
a longitudinal member,
wherein said implant holder grips each of said series of implants, and
wherein the relative movement of said shaft and said tubular sleeve of said implant holder operate to reduce said longitudinal member to connect to an implant of said series of implants.
46. A system for spinal surgery comprising:
said implant holder of claim 10;
a series of implants; and
a longitudinal member,
wherein said implant holder grips each of said series of implants, and
wherein the relative movement of said shaft and said tubular sleeve of said implant holder operate to reduce said longitudinal member to connect to an implant of said series of implants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/052,465 USRE43526E1 (en) | 1997-02-12 | 2008-03-20 | Rod introduction apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/798,092 US5910141A (en) | 1997-02-12 | 1997-02-12 | Rod introduction apparatus |
US12/052,465 USRE43526E1 (en) | 1997-02-12 | 2008-03-20 | Rod introduction apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/798,092 Reissue US5910141A (en) | 1997-02-12 | 1997-02-12 | Rod introduction apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE43526E1 true USRE43526E1 (en) | 2012-07-17 |
Family
ID=25172534
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/798,092 Ceased US5910141A (en) | 1997-02-12 | 1997-02-12 | Rod introduction apparatus |
US12/052,465 Expired - Lifetime USRE43526E1 (en) | 1997-02-12 | 2008-03-20 | Rod introduction apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/798,092 Ceased US5910141A (en) | 1997-02-12 | 1997-02-12 | Rod introduction apparatus |
Country Status (1)
Country | Link |
---|---|
US (2) | US5910141A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090318972A1 (en) * | 2004-11-23 | 2009-12-24 | Jackson Roger P | Spinal fixation tool set and method |
US20110313470A1 (en) * | 2010-06-18 | 2011-12-22 | Spine Wave, Inc. | Pedicle Screw Extension for Use in Percutaneous Spinal Fixation |
US20120271365A1 (en) * | 2008-12-17 | 2012-10-25 | Synthese USA, LLC | Rod reducer apparatus for spinal corrective surgery |
US8512383B2 (en) | 2010-06-18 | 2013-08-20 | Spine Wave, Inc. | Method of percutaneously fixing a connecting rod to a spine |
US20140058464A1 (en) * | 2012-08-23 | 2014-02-27 | Synthes Usa, Llc | Bi-planar persuader |
US8900275B2 (en) | 1999-10-20 | 2014-12-02 | Warsaw Orthopedic, Inc. | Instruments and methods for stabilization of bony structures |
US10206723B2 (en) | 2013-03-14 | 2019-02-19 | Stryker European Holdings I, Llc | Rod inserter and insertion tube |
US11020187B2 (en) * | 2017-09-21 | 2021-06-01 | Synaptive Medical Inc. | Tracked suction tool |
Families Citing this family (237)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6187000B1 (en) | 1998-08-20 | 2001-02-13 | Endius Incorporated | Cannula for receiving surgical instruments |
US6123707A (en) * | 1999-01-13 | 2000-09-26 | Spinal Concepts, Inc. | Reduction instrument |
US6251111B1 (en) * | 1999-10-20 | 2001-06-26 | Sdgi Holdings, Inc. | Jack for pulling a vertebral anchor |
JP3936118B2 (en) * | 2000-03-28 | 2007-06-27 | 昭和医科工業株式会社 | Rod gripper |
DE10032126B4 (en) * | 2000-07-05 | 2004-12-02 | Marquardt Medizintechnik Gmbh | Instrument for inserting a connecting rod into and through mutually aligned transverse bores in the heads of two or more pedicle screws screwed into the spine |
US7056321B2 (en) | 2000-08-01 | 2006-06-06 | Endius, Incorporated | Method of securing vertebrae |
US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
US6666866B2 (en) | 2000-11-07 | 2003-12-23 | Osteotech, Inc. | Spinal intervertebral implant insertion tool |
WO2002058600A2 (en) | 2001-01-26 | 2002-08-01 | Osteotech, Inc. | Implant insertion tool |
US7118579B2 (en) * | 2001-02-04 | 2006-10-10 | Sdgi Holdings, Inc. | Instrumentation for inserting an expandable interbody spinal fusion implant |
US6673113B2 (en) | 2001-10-18 | 2004-01-06 | Spinecore, Inc. | Intervertebral spacer device having arch shaped spring elements |
US7169182B2 (en) * | 2001-07-16 | 2007-01-30 | Spinecore, Inc. | Implanting an artificial intervertebral disc |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US7862587B2 (en) * | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US6679888B2 (en) | 2001-05-29 | 2004-01-20 | Synthes | Femur lever |
US6440133B1 (en) * | 2001-07-03 | 2002-08-27 | Sdgi Holdings, Inc. | Rod reducer instruments and methods |
US7695478B2 (en) * | 2001-07-16 | 2010-04-13 | Spinecore, Inc. | Insertion tool for use with intervertebral spacers |
US6428544B1 (en) * | 2001-07-16 | 2002-08-06 | Third Millennium Engineering, Llc | Insertion tool for use with trial intervertebral distraction spacers |
US6471725B1 (en) * | 2001-07-16 | 2002-10-29 | Third Millenium Engineering, Llc | Porous intervertebral distraction spacers |
US6554864B2 (en) * | 2001-07-16 | 2003-04-29 | Spinecore, Inc | Surgical method of treating scoliosis |
FR2827758B1 (en) | 2001-07-25 | 2004-07-16 | Spinevision Sa | ANCILLARY FOR A SPINAL OSTEOSYNTHESIS SYSTEM |
US6746449B2 (en) * | 2001-09-12 | 2004-06-08 | Spinal Concepts, Inc. | Spinal rod translation instrument |
US7771477B2 (en) | 2001-10-01 | 2010-08-10 | Spinecore, Inc. | Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves |
AU2002340306A1 (en) * | 2001-10-30 | 2003-05-12 | Osteotech, Inc. | Bone implant and insertion tools |
US20080027548A9 (en) | 2002-04-12 | 2008-01-31 | Ferree Bret A | Spacerless artificial disc replacements |
US8038713B2 (en) | 2002-04-23 | 2011-10-18 | Spinecore, Inc. | Two-component artificial disc replacements |
US6660006B2 (en) * | 2002-04-17 | 2003-12-09 | Stryker Spine | Rod persuader |
US7572276B2 (en) * | 2002-05-06 | 2009-08-11 | Warsaw Orthopedic, Inc. | Minimally invasive instruments and methods for inserting implants |
US7004947B2 (en) | 2002-06-24 | 2006-02-28 | Endius Incorporated | Surgical instrument for moving vertebrae |
US7306603B2 (en) | 2002-08-21 | 2007-12-11 | Innovative Spinal Technologies | Device and method for percutaneous placement of lumbar pedicle screws and connecting rods |
US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US6648888B1 (en) | 2002-09-06 | 2003-11-18 | Endius Incorporated | Surgical instrument for moving a vertebra |
AU2003272308A1 (en) * | 2002-10-25 | 2004-05-25 | Endius Incorporated | Apparatus and methods for shielding body structures during surgery |
WO2004041100A1 (en) * | 2002-10-30 | 2004-05-21 | Spinal Concepts, Inc. | Spinal stabilization system insertion and methods |
US20060095035A1 (en) * | 2004-11-03 | 2006-05-04 | Jones Robert J | Instruments and methods for reduction of vertebral bodies |
US9539012B2 (en) | 2002-10-30 | 2017-01-10 | Zimmer Spine, Inc. | Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures |
US7887539B2 (en) * | 2003-01-24 | 2011-02-15 | Depuy Spine, Inc. | Spinal rod approximators |
US7988698B2 (en) * | 2003-01-28 | 2011-08-02 | Depuy Spine, Inc. | Spinal rod approximator |
US6908484B2 (en) * | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
AU2004220634B2 (en) * | 2003-03-06 | 2009-09-17 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US7645232B2 (en) * | 2003-05-16 | 2010-01-12 | Zimmer Spine, Inc. | Access device for minimally invasive surgery |
US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
US7156849B2 (en) * | 2003-06-16 | 2007-01-02 | Depuy Spine, Inc. | Rod reduction nut and driver tool |
US7967850B2 (en) * | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US8366753B2 (en) | 2003-06-18 | 2013-02-05 | Jackson Roger P | Polyaxial bone screw assembly with fixed retaining structure |
US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
US20040267275A1 (en) * | 2003-06-26 | 2004-12-30 | Cournoyer John R. | Spinal implant holder and rod reduction systems and methods |
AU2004257643A1 (en) * | 2003-07-03 | 2005-01-27 | Synthes Gmbh | Top loading spinal fixation device and instruments for loading and handling the same |
US20050059969A1 (en) * | 2003-09-17 | 2005-03-17 | Depuy Acromed, Inc. | Rod approximator |
US7455685B2 (en) * | 2003-09-29 | 2008-11-25 | Warsaw Orthopedic, Inc. | Instruments and methods for securing a connecting element along a bony segment |
US7655012B2 (en) * | 2003-10-02 | 2010-02-02 | Zimmer Spine, Inc. | Methods and apparatuses for minimally invasive replacement of intervertebral discs |
US7967826B2 (en) * | 2003-10-21 | 2011-06-28 | Theken Spine, Llc | Connector transfer tool for internal structure stabilization systems |
US7905907B2 (en) | 2003-10-21 | 2011-03-15 | Theken Spine, Llc | Internal structure stabilization system for spanning three or more structures |
WO2005041760A2 (en) * | 2003-10-31 | 2005-05-12 | University Of Southern California | Device and method for radial delivery of a structural element |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
ATE441376T1 (en) * | 2003-12-17 | 2009-09-15 | Depuy Spine Inc | INSTRUMENTS AND PROCEDURES FOR BONE ANCHOR PROCEDURES AND SPINAL BAR REDUCTION |
US7842044B2 (en) * | 2003-12-17 | 2010-11-30 | Depuy Spine, Inc. | Instruments and methods for bone anchor engagement and spinal rod reduction |
US7597694B2 (en) * | 2004-01-30 | 2009-10-06 | Warsaw Orthopedic, Inc. | Instruments and methods for minimally invasive spinal stabilization |
US8029548B2 (en) * | 2008-05-05 | 2011-10-04 | Warsaw Orthopedic, Inc. | Flexible spinal stabilization element and system |
US7815664B2 (en) * | 2005-01-04 | 2010-10-19 | Warsaw Orthopedic, Inc. | Systems and methods for spinal stabilization with flexible elements |
US9451990B2 (en) * | 2004-02-17 | 2016-09-27 | Globus Medical, Inc. | Facet joint replacement instruments and methods |
US9050148B2 (en) * | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
CA2555868C (en) | 2004-02-27 | 2011-09-06 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
US7470279B2 (en) * | 2004-02-27 | 2008-12-30 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US7611517B2 (en) * | 2004-02-27 | 2009-11-03 | Warsaw Orthopedic, Inc. | Rod reducer |
US7491207B2 (en) * | 2004-04-12 | 2009-02-17 | Synthes Usa, Llc | Rod persuader |
EP1841374A2 (en) * | 2004-07-06 | 2007-10-10 | Synthes GmbH | Spinal rod insertion instrument |
US7686814B2 (en) * | 2004-07-06 | 2010-03-30 | Warsaw Orthopedic, Inc. | Systems and methods for compressing and distracting vertebrae of the spinal column |
US7591836B2 (en) * | 2004-07-30 | 2009-09-22 | Zimmer Spine, Inc. | Surgical devices and methods for vertebral shifting utilizing spinal fixation systems |
US7572281B2 (en) * | 2004-08-06 | 2009-08-11 | Depuy Spine, Inc. | Instrument for guiding a rod into an implant in a spinal fixation system |
US7462182B2 (en) * | 2004-08-10 | 2008-12-09 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US7465306B2 (en) * | 2004-08-13 | 2008-12-16 | Warsaw Orthopedic, Inc. | System and method for positioning a connecting member adjacent the spinal column in minimally invasive procedures |
US20060052812A1 (en) * | 2004-09-07 | 2006-03-09 | Michael Winer | Tool for preparing a surgical site for an access device |
DE102004043996B4 (en) * | 2004-09-08 | 2008-04-17 | Aesculap Ag & Co. Kg | Surgical instrument and implant system |
US7651502B2 (en) * | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US7988699B2 (en) * | 2004-10-19 | 2011-08-02 | Warsaw Orthopedic, Inc. | Adjustable instrumentation for spinal implant insertion |
US20060089651A1 (en) * | 2004-10-26 | 2006-04-27 | Trudeau Jeffrey L | Apparatus and method for anchoring a surgical rod |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US7481813B1 (en) * | 2004-11-19 | 2009-01-27 | Alphatec Spine, Inc. | Securing device and corresponding methods thereof for bone fixation systems |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US7875065B2 (en) | 2004-11-23 | 2011-01-25 | Jackson Roger P | Polyaxial bone screw with multi-part shank retainer and pressure insert |
US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
US7625396B2 (en) | 2004-11-23 | 2009-12-01 | Jackson Roger P | Polyaxial bone screw with multi-part shank retainer |
US20060111730A1 (en) * | 2004-11-23 | 2006-05-25 | Medical Innovators, Inc. | Deformity reduction instrument and method |
EP1814474B1 (en) | 2004-11-24 | 2011-09-14 | Samy Abdou | Devices for inter-vertebral orthopedic device placement |
US7625376B2 (en) * | 2005-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US7799031B2 (en) * | 2005-02-09 | 2010-09-21 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US7951175B2 (en) | 2005-03-04 | 2011-05-31 | Depuy Spine, Inc. | Instruments and methods for manipulating a vertebra |
US7951172B2 (en) * | 2005-03-04 | 2011-05-31 | Depuy Spine Sarl | Constrained motion bone screw assembly |
US20060217717A1 (en) * | 2005-03-24 | 2006-09-28 | Dale Whipple | Methods and devices for stabilizing a bone anchor |
US7758617B2 (en) * | 2005-04-27 | 2010-07-20 | Globus Medical, Inc. | Percutaneous vertebral stabilization system |
US9314273B2 (en) | 2005-04-27 | 2016-04-19 | Globus Medical, Inc. | Percutaneous vertebral stabilization system |
US7491208B2 (en) | 2005-04-28 | 2009-02-17 | Warsaw Orthopedic, Inc. | Instrument and method for guiding surgical implants and instruments during surgery |
US7608081B2 (en) * | 2005-05-23 | 2009-10-27 | Custom Spine, Inc. | Rod reducer |
US20060293692A1 (en) | 2005-06-02 | 2006-12-28 | Whipple Dale E | Instruments and methods for manipulating a spinal fixation element |
US7776074B2 (en) * | 2005-06-08 | 2010-08-17 | Robert S. Bray, Jr. | Procedure for aligning and stabilizing bone elements |
US7909830B2 (en) * | 2005-08-25 | 2011-03-22 | Synthes Usa, Llc | Methods of spinal fixation and instrumentation |
US7695475B2 (en) * | 2005-08-26 | 2010-04-13 | Warsaw Orthopedic, Inc. | Instruments for minimally invasive stabilization of bony structures |
US7771430B2 (en) * | 2005-09-29 | 2010-08-10 | K2M, Inc. | Single action anti-torque rod reducer |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US7722651B2 (en) | 2005-10-21 | 2010-05-25 | Depuy Spine, Inc. | Adjustable bone screw assembly |
GB0521582D0 (en) | 2005-10-22 | 2005-11-30 | Depuy Int Ltd | An implant for supporting a spinal column |
DE602005011823D1 (en) * | 2005-10-27 | 2009-01-29 | Brainlab Ag | Device for fastening a reference element |
US20070161998A1 (en) * | 2005-10-28 | 2007-07-12 | Dale Whipple | Instruments and Methods For Manipulating A Spinal Rod |
US7704271B2 (en) | 2005-12-19 | 2010-04-27 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
GB0600662D0 (en) | 2006-01-13 | 2006-02-22 | Depuy Int Ltd | Spinal support rod kit |
US8348952B2 (en) | 2006-01-26 | 2013-01-08 | Depuy International Ltd. | System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery |
US7927360B2 (en) * | 2006-01-26 | 2011-04-19 | Warsaw Orthopedic, Inc. | Spinal anchor assemblies having extended receivers |
US7520879B2 (en) * | 2006-02-07 | 2009-04-21 | Warsaw Orthopedic, Inc. | Surgical instruments and techniques for percutaneous placement of spinal stabilization elements |
US7931654B2 (en) * | 2006-03-09 | 2011-04-26 | K2M, Inc. | Dual action rod reducing and locking device and method |
AU2007238129A1 (en) * | 2006-04-11 | 2007-10-25 | Synthes Gmbh | Minimally invasive fixation system |
US7927334B2 (en) * | 2006-04-11 | 2011-04-19 | Warsaw Orthopedic, Inc. | Multi-directional rod reducer instrument and method |
US7722617B2 (en) * | 2006-04-25 | 2010-05-25 | Warsaw Orthopedic, Inc. | Surgical instrumentation for rod reduction |
US7731735B2 (en) | 2006-04-28 | 2010-06-08 | Warsaw Orthopedic, Inc. | Open axle surgical implant |
US20080015601A1 (en) * | 2006-06-14 | 2008-01-17 | Michael Castro | Reduction device and method of use |
WO2007149426A2 (en) * | 2006-06-16 | 2007-12-27 | Alphatec Spine, Inc. | Systems and methods for manipulating and/or installing a pedicle screw |
US7686809B2 (en) * | 2006-09-25 | 2010-03-30 | Stryker Spine | Rod inserter and rod with reduced diameter end |
US7918857B2 (en) | 2006-09-26 | 2011-04-05 | Depuy Spine, Inc. | Minimally invasive bone anchor extensions |
US20090012563A1 (en) * | 2006-10-11 | 2009-01-08 | Nas Medical Technologies, Inc. | Spinal fixation devices and methods |
US8262662B2 (en) * | 2006-11-20 | 2012-09-11 | Depuy Spine, Inc. | Break-off screw extensions |
US8679128B2 (en) * | 2006-12-07 | 2014-03-25 | Zimmer Spine, Inc. | Apparatus and methods for reduction of vertebral bodies in a spine |
CA2670988C (en) | 2006-12-08 | 2014-03-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US20080183180A1 (en) * | 2007-01-31 | 2008-07-31 | Warsaw Orthopedic, Inc. | Implant Holder and Pusher |
US8308774B2 (en) | 2007-02-14 | 2012-11-13 | Pioneer Surgical Technology, Inc. | Spinal rod reducer and cap insertion apparatus |
US20080249531A1 (en) * | 2007-02-27 | 2008-10-09 | Warsaw Orthopedic, Inc. | Instruments and methods for minimally invasive insertion of dynamic implants |
US20080234765A1 (en) * | 2007-03-13 | 2008-09-25 | Depuy Spine, Inc. | Rod reduction methods and devices |
US8172847B2 (en) * | 2007-03-29 | 2012-05-08 | Depuy Spine, Inc. | In-line rod reduction device and methods |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US7947046B2 (en) * | 2007-06-21 | 2011-05-24 | Warsaw Orthopedic, Inc. | Anchor extenders for minimally invasive surgical procedures |
US20090030420A1 (en) * | 2007-07-26 | 2009-01-29 | Depuy Spine, Inc. | Spinal rod reduction instruments and methods for use |
US8323294B2 (en) | 2007-08-21 | 2012-12-04 | Depuy Spine, Inc. | Tether tensioning instrument |
US8790348B2 (en) | 2007-09-28 | 2014-07-29 | Depuy Spine, Inc. | Dual pivot instrument for reduction of a fixation element and method of use |
US8414588B2 (en) | 2007-10-04 | 2013-04-09 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal connection element delivery |
US8366714B2 (en) * | 2007-10-23 | 2013-02-05 | K2M, Inc. | Rod insertion instrument and method of use |
GB0720762D0 (en) | 2007-10-24 | 2007-12-05 | Depuy Spine Sorl | Assembly for orthopaedic surgery |
US8235997B2 (en) * | 2008-01-29 | 2012-08-07 | Pioneer Surgical Technology, Inc. | Rod locking instrument |
US8439922B1 (en) | 2008-02-06 | 2013-05-14 | NiVasive, Inc. | Systems and methods for holding and implanting bone anchors |
US8709015B2 (en) | 2008-03-10 | 2014-04-29 | DePuy Synthes Products, LLC | Bilateral vertebral body derotation system |
US8608746B2 (en) * | 2008-03-10 | 2013-12-17 | DePuy Synthes Products, LLC | Derotation instrument with reduction functionality |
US8303628B2 (en) * | 2008-05-14 | 2012-11-06 | Dewey Jonathan M | Spinal stabilization system |
US10973556B2 (en) | 2008-06-17 | 2021-04-13 | DePuy Synthes Products, Inc. | Adjustable implant assembly |
EP2442739A1 (en) | 2008-08-01 | 2012-04-25 | Jackson, Roger P. | Longitudinal connecting member with sleeved tensioned cords |
US8388659B1 (en) | 2008-10-17 | 2013-03-05 | Theken Spine, Llc | Spondylolisthesis screw and instrument for implantation |
FR2937855B1 (en) * | 2008-11-05 | 2010-12-24 | Warsaw Orthopedic Inc | PROGRESSIVE INTRODUCTION INSTRUMENT FOR A VERTEBRAL ROD. |
US8075565B2 (en) * | 2008-11-05 | 2011-12-13 | Warsaw Orthopedic, Inc. | Surgical instruments for delivering forces to bony structures |
US8864767B2 (en) * | 2008-11-10 | 2014-10-21 | Spinal Elements, Inc. | Rod reducer instrument for spinal surgery |
US8128629B2 (en) * | 2009-01-22 | 2012-03-06 | Ebi, Llc | Rod coercer |
US8137357B2 (en) | 2009-01-22 | 2012-03-20 | Ebi, Llc | Rod coercer |
US8206394B2 (en) | 2009-05-13 | 2012-06-26 | Depuy Spine, Inc. | Torque limited instrument for manipulating a spinal rod relative to a bone anchor |
BRPI1010924A2 (en) | 2009-05-20 | 2019-01-08 | Synthes Gmbh | retraction mounted on patients |
EP2434973B1 (en) * | 2009-05-27 | 2015-09-02 | Synthes GmbH | Surgical instrument for fixing a clamp to a bone fixation device |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
WO2011043805A1 (en) | 2009-10-05 | 2011-04-14 | Roger Jackson P | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US8236032B2 (en) | 2009-10-20 | 2012-08-07 | Depuy Spine, Inc. | Spinal implant with a flexible extension element |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US8545505B2 (en) | 2010-01-15 | 2013-10-01 | Pioneer Surgical Technology, Inc. | Low friction rod persuader |
US20110184469A1 (en) * | 2010-01-28 | 2011-07-28 | Warsaw Orthopedic, Inc. | Set screw alignment tool |
US8900240B2 (en) * | 2010-02-12 | 2014-12-02 | Pioneer Surgical Technology, Inc. | Spinal rod and screw securing apparatus and method |
US8535318B2 (en) | 2010-04-23 | 2013-09-17 | DePuy Synthes Products, LLC | Minimally invasive instrument set, devices and related methods |
US8777954B2 (en) | 2010-06-18 | 2014-07-15 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US8394108B2 (en) | 2010-06-18 | 2013-03-12 | Spine Wave, Inc. | Screw driver for a multiaxial bone screw |
US8454664B2 (en) | 2010-06-18 | 2013-06-04 | Spine Wave, Inc. | Method for fixing a connecting rod to a thoracic spine |
EP2613719A1 (en) | 2010-09-08 | 2013-07-17 | Roger P. Jackson | Dynamic stabilization members with elastic and inelastic sections |
US8777953B1 (en) | 2010-10-06 | 2014-07-15 | Greatbatch Ltd. | Rocker mechanism |
US9198698B1 (en) | 2011-02-10 | 2015-12-01 | Nuvasive, Inc. | Minimally invasive spinal fixation system and related methods |
US8764756B2 (en) | 2011-02-22 | 2014-07-01 | K2M, Inc. | Single action anti-torque rod reducer |
US8556904B2 (en) | 2011-05-05 | 2013-10-15 | Warsaw Orthopedic, Inc. | Anchors extender assemblies and methods for using |
US8617218B2 (en) | 2011-05-13 | 2013-12-31 | Warsaw Orthoepdic, Inc. | Bone anchor extenders |
JP6072012B2 (en) | 2011-05-27 | 2017-02-01 | シンセス・ゲーエムベーハーSynthes GmbH | Minimally invasive spinal fixation system including vertebra alignment features |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
US8911479B2 (en) | 2012-01-10 | 2014-12-16 | Roger P. Jackson | Multi-start closures for open implants |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
US9011450B2 (en) | 2012-08-08 | 2015-04-21 | DePuy Synthes Products, LLC | Surgical instrument |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US9545270B2 (en) * | 2012-10-15 | 2017-01-17 | K2M, Inc. | Universal rod holder |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
US9095385B2 (en) * | 2012-11-21 | 2015-08-04 | K2M, Inc. | Adjustable spinal implant insertion instrument |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
US9486256B1 (en) | 2013-03-15 | 2016-11-08 | Nuvasive, Inc. | Rod reduction assemblies and related methods |
US10136927B1 (en) | 2013-03-15 | 2018-11-27 | Nuvasive, Inc. | Rod reduction assemblies and related methods |
US9295500B2 (en) | 2013-06-12 | 2016-03-29 | Spine Wave, Inc. | Screw driver with release for a multiaxial bone screw |
AU2014332172B2 (en) | 2013-10-07 | 2019-05-30 | K2M, Inc. | Rod reducer |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
EP3047811B1 (en) | 2015-01-15 | 2022-05-18 | K2M, Inc. | Rod reducer |
EP3288473B1 (en) | 2015-04-30 | 2022-12-28 | K2M, Inc. | Rod reducer |
US9974577B1 (en) | 2015-05-21 | 2018-05-22 | Nuvasive, Inc. | Methods and instruments for performing leveraged reduction during single position spine surgery |
US10117678B2 (en) | 2015-05-28 | 2018-11-06 | K2M, Inc. | Surgical system for bone screw insertion and rod reduction |
US9439692B1 (en) | 2015-10-09 | 2016-09-13 | Spine Wave, Inc. | Minimally invasive spinal fixation system and method therefor |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
DE102016106608A1 (en) | 2016-04-11 | 2017-10-12 | Aesculap Ag | Instrument for guiding a rod into an implant receptacle |
US10085778B2 (en) | 2016-03-04 | 2018-10-02 | Spinal Elements, Inc. | Rod reducer instrument for spinal surgery |
US10524843B2 (en) | 2016-05-06 | 2020-01-07 | K2M, Inc. | Rotation shaft for a rod reducer |
US10363068B2 (en) * | 2016-06-02 | 2019-07-30 | Warsaw Orthopedic, Inc. | Instrument for percutaneously delivering a percutaneous revision implant |
US10398481B2 (en) | 2016-10-03 | 2019-09-03 | Nuvasive, Inc. | Spinal fixation system |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10779866B2 (en) | 2016-12-29 | 2020-09-22 | K2M, Inc. | Rod reducer assembly |
US10485590B2 (en) | 2017-01-18 | 2019-11-26 | K2M, Inc. | Rod reducing device |
US10448978B2 (en) * | 2017-07-27 | 2019-10-22 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US11730522B2 (en) | 2017-10-20 | 2023-08-22 | Spine Wave, Inc. | Threaded spinal rod reducer |
US10966762B2 (en) | 2017-12-15 | 2021-04-06 | Medos International Sarl | Unilateral implant holders and related methods |
US11051861B2 (en) | 2018-06-13 | 2021-07-06 | Nuvasive, Inc. | Rod reduction assemblies and related methods |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11291482B2 (en) | 2019-03-21 | 2022-04-05 | Medos International Sarl | Rod reducers and related methods |
USD1004774S1 (en) | 2019-03-21 | 2023-11-14 | Medos International Sarl | Kerrison rod reducer |
US11291481B2 (en) | 2019-03-21 | 2022-04-05 | Medos International Sarl | Rod reducers and related methods |
US11553947B2 (en) | 2019-07-16 | 2023-01-17 | Aesculap Implant Systems, Llc | Spinal deformity sequential persuader |
CN112107358B (en) * | 2020-10-08 | 2024-10-11 | 江苏双羊医疗器械有限公司 | Cross nail holding screwdriver |
US11291477B1 (en) | 2021-05-04 | 2022-04-05 | Warsaw Orthopedic, Inc. | Dorsal adjusting implant and methods of use |
US11432848B1 (en) | 2021-05-12 | 2022-09-06 | Warsaw Orthopedic, Inc. | Top loading quick lock construct |
US11712270B2 (en) | 2021-05-17 | 2023-08-01 | Warsaw Orthopedic, Inc. | Quick lock clamp constructs and associated methods |
US11957391B2 (en) | 2021-11-01 | 2024-04-16 | Warsaw Orthopedic, Inc. | Bone screw having an overmold of a shank |
Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604487A (en) | 1969-03-10 | 1971-09-14 | Richard S Gilbert | Orthopedic screw driving means |
US3844291A (en) | 1973-04-26 | 1974-10-29 | G Moen | Grip device |
SU995769A1 (en) * | 1981-05-18 | 1983-02-15 | Рижский Медицинский Институт | Forceps |
US4411259A (en) | 1980-02-04 | 1983-10-25 | Drummond Denis S | Apparatus for engaging a hook assembly to a spinal column |
US5020519A (en) * | 1990-12-07 | 1991-06-04 | Zimmer, Inc. | Sagittal approximator |
US5113685A (en) * | 1991-01-28 | 1992-05-19 | Acromed Corporation | Apparatus for contouring spine plates and/or rods |
US5209755A (en) | 1992-06-05 | 1993-05-11 | Stella Abrahan | Dermal exciser |
US5308357A (en) | 1992-08-21 | 1994-05-03 | Microsurge, Inc. | Handle mechanism for manual instruments |
DE4238339A1 (en) | 1992-11-13 | 1994-05-19 | Peter Brehm | Fastening screw for spinal column support rod - has hollow slotted head with female thread to accommodate grub-screw to firmly clamp rod in place |
US5314431A (en) * | 1992-06-19 | 1994-05-24 | Graziano Thomas A | Surgical instrument used in conjunction with fixation of fractures or surgical osteotomies |
US5330472A (en) | 1990-06-13 | 1994-07-19 | Howmedica Gmbh | Device for applying a tensional force between vertebrae of the human vertebral column |
US5364397A (en) | 1993-06-01 | 1994-11-15 | Zimmer, Inc. | Spinal coupler seater with dual jaws and an independent plunger |
US5389099A (en) * | 1993-07-28 | 1995-02-14 | Hartmeister; Ruben | Keyhole rod bender |
US5392978A (en) | 1991-02-08 | 1995-02-28 | United States Surgical Corporation | Surgical staple and endoscopic stapler |
US5423855A (en) * | 1994-02-15 | 1995-06-13 | Sofamor, S.N.C. | Capped locking clamp for manipulation of surgical implants |
US5449361A (en) | 1993-04-21 | 1995-09-12 | Amei Technologies Inc. | Orthopedic cable tensioner |
US5458608A (en) | 1993-06-03 | 1995-10-17 | Surgin Surgical Instrumentation Inc. | Laparoscopic instruments and methods |
US5466243A (en) | 1994-02-17 | 1995-11-14 | Arthrex, Inc. | Method and apparatus for installing a suture anchor through a hollow cannulated grasper |
US5588580A (en) | 1992-10-09 | 1996-12-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5616143A (en) | 1995-02-06 | 1997-04-01 | Schlapfer; Johannes F. | Surgical forceps |
US5720751A (en) * | 1996-11-27 | 1998-02-24 | Jackson; Roger P. | Tools for use in seating spinal rods in open ended implants |
US5782830A (en) | 1995-10-16 | 1998-07-21 | Sdgi Holdings, Inc. | Implant insertion device |
US5782831A (en) | 1996-11-06 | 1998-07-21 | Sdgi Holdings, Inc. | Method an device for spinal deformity reduction using a cable and a cable tensioning system |
US5810878A (en) | 1997-02-12 | 1998-09-22 | Sdgi Holdings, Inc. | Rod introducer forceps |
US5855311A (en) | 1994-03-30 | 1999-01-05 | Ethicon Endo-Surgery | Reloadable surgical instrument |
US5899901A (en) | 1991-05-18 | 1999-05-04 | Middleton; Jeffrey Keith | Spinal fixation system |
US5944720A (en) | 1998-03-25 | 1999-08-31 | Lipton; Glenn E | Posterior spinal fixation system |
US6042582A (en) | 1997-05-20 | 2000-03-28 | Ray; Charles D. | Instrumentation and method for facilitating insertion of spinal implant |
US6063088A (en) | 1997-03-24 | 2000-05-16 | United States Surgical Corporation | Method and instrumentation for implant insertion |
US6261296B1 (en) | 1998-10-02 | 2001-07-17 | Synthes U.S.A. | Spinal disc space distractor |
US6440133B1 (en) | 2001-07-03 | 2002-08-27 | Sdgi Holdings, Inc. | Rod reducer instruments and methods |
US6830570B1 (en) | 1999-10-21 | 2004-12-14 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
US20040267275A1 (en) | 2003-06-26 | 2004-12-30 | Cournoyer John R. | Spinal implant holder and rod reduction systems and methods |
US20050192579A1 (en) | 2004-02-27 | 2005-09-01 | Jackson Roger P. | Orthopedic implant rod reduction tool set and method |
US20050192570A1 (en) | 2004-02-27 | 2005-09-01 | Jackson Roger P. | Orthopedic implant rod reduction tool set and method |
US20050228400A1 (en) | 2004-03-31 | 2005-10-13 | Chao Nam T | Instrument for inserting, adjusting and removing pedicle screws and other orthopedic implants |
US20060036244A1 (en) | 2003-10-21 | 2006-02-16 | Innovative Spinal Technologies | Implant assembly and method for use in an internal structure stabilization system |
US20060074418A1 (en) | 2004-09-24 | 2006-04-06 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US20060111712A1 (en) | 2004-11-23 | 2006-05-25 | Jackson Roger P | Spinal fixation tool set and method |
US7156849B2 (en) | 2003-06-16 | 2007-01-02 | Depuy Spine, Inc. | Rod reduction nut and driver tool |
US20070270867A1 (en) | 2006-04-11 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-directional rod reducer instrument and method |
US20070270868A1 (en) | 2006-04-24 | 2007-11-22 | Sdgi Holdings, Inc. | Cam based reduction instrument |
US20070276379A1 (en) | 2005-02-09 | 2007-11-29 | Miller Keith E | Reducing instrument for spinal surgery |
US20080077139A1 (en) | 2002-10-30 | 2008-03-27 | Landry Michael E | Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures |
US20080091213A1 (en) | 2004-02-27 | 2008-04-17 | Jackson Roger P | Tool system for dynamic spinal implants |
US20080234765A1 (en) | 2007-03-13 | 2008-09-25 | Depuy Spine, Inc. | Rod reduction methods and devices |
US20080234678A1 (en) | 2007-03-20 | 2008-09-25 | Robert Gutierrez | Rod reducer |
US7611517B2 (en) | 2004-02-27 | 2009-11-03 | Warsaw Orthopedic, Inc. | Rod reducer |
US7625376B2 (en) | 2005-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
-
1997
- 1997-02-12 US US08/798,092 patent/US5910141A/en not_active Ceased
-
2008
- 2008-03-20 US US12/052,465 patent/USRE43526E1/en not_active Expired - Lifetime
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604487A (en) | 1969-03-10 | 1971-09-14 | Richard S Gilbert | Orthopedic screw driving means |
US3844291A (en) | 1973-04-26 | 1974-10-29 | G Moen | Grip device |
US4411259A (en) | 1980-02-04 | 1983-10-25 | Drummond Denis S | Apparatus for engaging a hook assembly to a spinal column |
SU995769A1 (en) * | 1981-05-18 | 1983-02-15 | Рижский Медицинский Институт | Forceps |
US5330472A (en) | 1990-06-13 | 1994-07-19 | Howmedica Gmbh | Device for applying a tensional force between vertebrae of the human vertebral column |
US5020519A (en) * | 1990-12-07 | 1991-06-04 | Zimmer, Inc. | Sagittal approximator |
US5113685A (en) * | 1991-01-28 | 1992-05-19 | Acromed Corporation | Apparatus for contouring spine plates and/or rods |
US5392978A (en) | 1991-02-08 | 1995-02-28 | United States Surgical Corporation | Surgical staple and endoscopic stapler |
US5899901A (en) | 1991-05-18 | 1999-05-04 | Middleton; Jeffrey Keith | Spinal fixation system |
US5209755A (en) | 1992-06-05 | 1993-05-11 | Stella Abrahan | Dermal exciser |
US5314431A (en) * | 1992-06-19 | 1994-05-24 | Graziano Thomas A | Surgical instrument used in conjunction with fixation of fractures or surgical osteotomies |
US5308357A (en) | 1992-08-21 | 1994-05-03 | Microsurge, Inc. | Handle mechanism for manual instruments |
US5588580A (en) | 1992-10-09 | 1996-12-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
DE4238339A1 (en) | 1992-11-13 | 1994-05-19 | Peter Brehm | Fastening screw for spinal column support rod - has hollow slotted head with female thread to accommodate grub-screw to firmly clamp rod in place |
US5449361A (en) | 1993-04-21 | 1995-09-12 | Amei Technologies Inc. | Orthopedic cable tensioner |
US5364397A (en) | 1993-06-01 | 1994-11-15 | Zimmer, Inc. | Spinal coupler seater with dual jaws and an independent plunger |
US5458608A (en) | 1993-06-03 | 1995-10-17 | Surgin Surgical Instrumentation Inc. | Laparoscopic instruments and methods |
US5389099A (en) * | 1993-07-28 | 1995-02-14 | Hartmeister; Ruben | Keyhole rod bender |
US5423855A (en) * | 1994-02-15 | 1995-06-13 | Sofamor, S.N.C. | Capped locking clamp for manipulation of surgical implants |
US5466243A (en) | 1994-02-17 | 1995-11-14 | Arthrex, Inc. | Method and apparatus for installing a suture anchor through a hollow cannulated grasper |
US5855311A (en) | 1994-03-30 | 1999-01-05 | Ethicon Endo-Surgery | Reloadable surgical instrument |
US5616143A (en) | 1995-02-06 | 1997-04-01 | Schlapfer; Johannes F. | Surgical forceps |
US5782830A (en) | 1995-10-16 | 1998-07-21 | Sdgi Holdings, Inc. | Implant insertion device |
US5782831A (en) | 1996-11-06 | 1998-07-21 | Sdgi Holdings, Inc. | Method an device for spinal deformity reduction using a cable and a cable tensioning system |
US5720751A (en) * | 1996-11-27 | 1998-02-24 | Jackson; Roger P. | Tools for use in seating spinal rods in open ended implants |
US6036692A (en) | 1997-02-12 | 2000-03-14 | Sdgi Holdings, Inc. | Rod introducer forceps |
US5810878A (en) | 1997-02-12 | 1998-09-22 | Sdgi Holdings, Inc. | Rod introducer forceps |
US6063088A (en) | 1997-03-24 | 2000-05-16 | United States Surgical Corporation | Method and instrumentation for implant insertion |
US6042582A (en) | 1997-05-20 | 2000-03-28 | Ray; Charles D. | Instrumentation and method for facilitating insertion of spinal implant |
US5944720A (en) | 1998-03-25 | 1999-08-31 | Lipton; Glenn E | Posterior spinal fixation system |
US6261296B1 (en) | 1998-10-02 | 2001-07-17 | Synthes U.S.A. | Spinal disc space distractor |
US6830570B1 (en) | 1999-10-21 | 2004-12-14 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
US6440133B1 (en) | 2001-07-03 | 2002-08-27 | Sdgi Holdings, Inc. | Rod reducer instruments and methods |
US6790209B2 (en) | 2001-07-03 | 2004-09-14 | Sdgi Holdings, Inc. | Rod reducer instruments and methods |
US20080077139A1 (en) | 2002-10-30 | 2008-03-27 | Landry Michael E | Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures |
US7156849B2 (en) | 2003-06-16 | 2007-01-02 | Depuy Spine, Inc. | Rod reduction nut and driver tool |
US20040267275A1 (en) | 2003-06-26 | 2004-12-30 | Cournoyer John R. | Spinal implant holder and rod reduction systems and methods |
US20060036244A1 (en) | 2003-10-21 | 2006-02-16 | Innovative Spinal Technologies | Implant assembly and method for use in an internal structure stabilization system |
US20060173454A1 (en) | 2003-10-21 | 2006-08-03 | Innovative Spinal Technologies | Internal structure stabilization system for spanning three or more structures |
US20080091213A1 (en) | 2004-02-27 | 2008-04-17 | Jackson Roger P | Tool system for dynamic spinal implants |
US7470279B2 (en) | 2004-02-27 | 2008-12-30 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US20050192570A1 (en) | 2004-02-27 | 2005-09-01 | Jackson Roger P. | Orthopedic implant rod reduction tool set and method |
US20050192579A1 (en) | 2004-02-27 | 2005-09-01 | Jackson Roger P. | Orthopedic implant rod reduction tool set and method |
US7611517B2 (en) | 2004-02-27 | 2009-11-03 | Warsaw Orthopedic, Inc. | Rod reducer |
US20050228400A1 (en) | 2004-03-31 | 2005-10-13 | Chao Nam T | Instrument for inserting, adjusting and removing pedicle screws and other orthopedic implants |
US20060074418A1 (en) | 2004-09-24 | 2006-04-06 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US20060111712A1 (en) | 2004-11-23 | 2006-05-25 | Jackson Roger P | Spinal fixation tool set and method |
US7625376B2 (en) | 2005-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US20070276379A1 (en) | 2005-02-09 | 2007-11-29 | Miller Keith E | Reducing instrument for spinal surgery |
US20070270867A1 (en) | 2006-04-11 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-directional rod reducer instrument and method |
US20070270868A1 (en) | 2006-04-24 | 2007-11-22 | Sdgi Holdings, Inc. | Cam based reduction instrument |
US20080234765A1 (en) | 2007-03-13 | 2008-09-25 | Depuy Spine, Inc. | Rod reduction methods and devices |
US20080234678A1 (en) | 2007-03-20 | 2008-09-25 | Robert Gutierrez | Rod reducer |
Non-Patent Citations (16)
Title |
---|
Compact CD Low Back Surgeon's Documentation, Sofamor Spine Division, pp. 60-61, 78-79. Date unknown. * |
Cortel-Dubousset Instrumentation (1 page). Date unknown. * |
Laufer and Bowe, CD Horizon Spinal System, Surgical Technique, 1996, Sofamor Danek. |
Moss® Miami 3-Dimensional Instrumentation Product Catalogue, 1995, Depuy Motech, Inc. |
Orthopedic Sourcebook, Instruments for Surgeons, Section K, 1999, Medic. |
Pages 50-51, Chapeter 2,The TSRH Minicorkscrew. |
Pediatric Isola® Spinal System, Ordering Information for Implants and Instruments, 1998, AcroMed Corporation. |
Shufflebarger et al., Taking Spinal Instrumentation to a New Dimension, 1995. |
Sofamor Rod Reducer (1994). |
Sofamor, "Introducteur-Contreur De Tige" (schematic drawings), Jan. 1, 1994. |
Sofamor, "Introducteur—Contreur De Tige" (schematic drawings), Jan. 1, 1994. |
The RSRH Minicordscrew, pp. 50-51, ch. 2. Date unknown. * |
TSRH-3D Vertebral Body Reduction Instrumentation, 2001, Medtronic Sofamor Danek. |
Universal Spinal System Rod Introduction Pliers by Synthes Spine (13 Pages). |
Universal Spinal System Rod Introduction Pliers by Synthes Spine (13 pages). Date unknown. * |
Z Spinal Instrumentation, Section D, 1987, Zimmer, Inc. |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9918754B2 (en) | 1999-10-20 | 2018-03-20 | Warsaw Orthopedic, Inc. | Instruments and methods for stabilization of bony structures |
US9597127B2 (en) | 1999-10-20 | 2017-03-21 | Warsaw Orthopedic, Inc. | Instruments and methods for stabilization of bony structures |
US8900275B2 (en) | 1999-10-20 | 2014-12-02 | Warsaw Orthopedic, Inc. | Instruments and methods for stabilization of bony structures |
US8591515B2 (en) * | 2004-11-23 | 2013-11-26 | Roger P. Jackson | Spinal fixation tool set and method |
US20090318972A1 (en) * | 2004-11-23 | 2009-12-24 | Jackson Roger P | Spinal fixation tool set and method |
US9161788B2 (en) * | 2008-12-17 | 2015-10-20 | DePuy Synthes Products, Inc. | Rod reducer apparatus for spinal corrective surgery |
US9962198B2 (en) | 2008-12-17 | 2018-05-08 | DePuy Synthes Products, Inc. | Rod reducer apparatus and method for spinal corrective surgery |
US20120271365A1 (en) * | 2008-12-17 | 2012-10-25 | Synthese USA, LLC | Rod reducer apparatus for spinal corrective surgery |
US9636152B2 (en) | 2008-12-17 | 2017-05-02 | DePuy Synthes Products, Inc. | Rod reducer apparatus and method for spinal corrective surgery |
US20160354125A1 (en) * | 2010-06-18 | 2016-12-08 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US20110313470A1 (en) * | 2010-06-18 | 2011-12-22 | Spine Wave, Inc. | Pedicle Screw Extension for Use in Percutaneous Spinal Fixation |
US10639081B2 (en) | 2010-06-18 | 2020-05-05 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US20150012049A1 (en) * | 2010-06-18 | 2015-01-08 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US8845640B2 (en) * | 2010-06-18 | 2014-09-30 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US9962196B2 (en) * | 2010-06-18 | 2018-05-08 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US8512383B2 (en) | 2010-06-18 | 2013-08-20 | Spine Wave, Inc. | Method of percutaneously fixing a connecting rod to a spine |
US9433446B2 (en) * | 2010-06-18 | 2016-09-06 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US20140058464A1 (en) * | 2012-08-23 | 2014-02-27 | Synthes Usa, Llc | Bi-planar persuader |
US10376294B2 (en) | 2012-08-23 | 2019-08-13 | DePuy Synthes Products, LLC | Bi-planar persuader |
US9480505B2 (en) * | 2012-08-23 | 2016-11-01 | DePuy Synthes Products, Inc. | Bi-planar persuader |
US11344340B2 (en) | 2012-08-23 | 2022-05-31 | DePuy Synthes Products, Inc. | Bi-planar persuader |
US10206723B2 (en) | 2013-03-14 | 2019-02-19 | Stryker European Holdings I, Llc | Rod inserter and insertion tube |
US11020187B2 (en) * | 2017-09-21 | 2021-06-01 | Synaptive Medical Inc. | Tracked suction tool |
US11766174B2 (en) | 2017-09-21 | 2023-09-26 | Synaptive Medical Inc. | Tracked suction tool |
Also Published As
Publication number | Publication date |
---|---|
US5910141A (en) | 1999-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE43526E1 (en) | Rod introduction apparatus | |
US5810878A (en) | Rod introducer forceps | |
US5476466A (en) | Orthopaedic positioning instrument | |
EP1585436B1 (en) | Spinal rod approximator | |
US10130399B2 (en) | Orthopedic implant system | |
EP1781217B1 (en) | Instrument for guiding a rod into an implant in a spinal fixation system | |
US7648506B2 (en) | Pivoting implant holder | |
EP0893969B1 (en) | Malleable clip applier | |
US6679888B2 (en) | Femur lever | |
US5931777A (en) | Tissue retractor and method for use | |
US6652539B2 (en) | Method for applying a ligation clip | |
CA2432732C (en) | Universal handle for surgical instruments | |
JP5547851B2 (en) | System for percutaneously securing a connecting rod to the spinal column | |
US7648507B2 (en) | Pivoting implant holder | |
US5391181A (en) | Orthopaedic holding forceps | |
US8617165B2 (en) | Rod reducing instrument and methods of use thereof | |
US6013028A (en) | Tissue spreading instrument for use in narrow passage | |
US20030004519A1 (en) | Tool and system for aligning and applying fastener to implanted anchor | |
US20070106314A1 (en) | Tissue clamp | |
WO1996032891A1 (en) | Clip applicator | |
EP2689737A1 (en) | Surgical reduction clamp | |
EP0792621A1 (en) | Cannulated clamp |