USRE41737E1 - Method for searching cells in mobile communication system - Google Patents

Method for searching cells in mobile communication system Download PDF

Info

Publication number
USRE41737E1
USRE41737E1 US10/944,541 US94454104A USRE41737E US RE41737 E1 USRE41737 E1 US RE41737E1 US 94454104 A US94454104 A US 94454104A US RE41737 E USRE41737 E US RE41737E
Authority
US
United States
Prior art keywords
power
mobile station
searching
adjacent cells
request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/944,541
Inventor
Jun-Bae Leem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US10/944,541 priority Critical patent/USRE41737E1/en
Application granted granted Critical
Publication of USRE41737E1 publication Critical patent/USRE41737E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7083Cell search, e.g. using a three-step approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates generally to a mobile station radio communication system and, more particularly, to a method for searching cells using PN codes upon power on.
  • a mobile communication system employs a cellular configuration to support many users with limited radio frequency (RF) resources. That is, the service area for radio communication is divided into several small zones or cells, and the RF resources are allocated per cell.
  • FIG. 1 shows an ideal cellular configuration applied to a typical mobile communication system.
  • location registration In a mobile communication system employing such a cellular configuration, it is necessary to detect a location of a mobile station (or cellular terminal) in order to setup a call for which the mobile station is considered to be the call destination.
  • the process of detecting the location of the mobile station is referred to as “location registration”.
  • the location registration can be generally divided into power-on location registration, power-off location registration, time-based location registration, distance-based location registration, parameter changed location registration, command-based location registration, implicit location registration and cell channel location registration.
  • Power-off location registration is performed, when a user turns off a power switch of the mobile station. However, when this occurs, the power supply to the mobile station is not actually cut off until the power-off location registration is completed. Further, the mobile station does not perform the power-off location registration unless a present location is registered. In a power-off state, if the mobile station is beyond an effective distance at its presently registered location, power-off location registration may not be performed correctly. If the power-off location registration, though uncertain, is performed correctly, it is possible to prevent a mobile switching center from unnecessarily paging the mobile station.
  • Power-on location registration is performed when the user turns on the power switch of the mobile station.
  • the mobile station maintains and manages a power-on/initialization timer and does not attempt connection for the purpose of location registration while the timer is activated.
  • the location registration procedure starts after a lapse of, for example, 20 seconds.
  • the mobile station determines an adjacent cell to be registered and sends a registration message including location registration information to a base station for the determined adjacent cell over an access channel.
  • This registration message is an actual location registration message, wherein the location registration information includes a location registration type, a slot period index, a mobile station protocol update number, a mobile station class indicator, and an incoming call indicator.
  • the base station Upon receipt of the registration message, the base station sends information about the system and network, and a system parameter message including location registration, handoff (or handover) and power control parameters to the mobile station over a paging channel.
  • the mobile station performs a PN (Pseudo Noise) code sync operation to search for an adjacent cell, prior to performing the power-on location registration subsequent to turning on the power switch.
  • the PN code sync operation includes two steps; a sync acquisition step and a sync tracking step.
  • a sync acquisition step a received PN signal and a locally generated PN signal are adjusted to fall within the range of one chip or less.
  • the sync tracking step the above two PN signals are finely adjusted so that phases of the PN signals are matched to each other.
  • FIG. 3 is a flowchart which illustrates a conventional PN code search procedure in a mobile station. A description will now be provided for the conventional PN code search method with reference to FIGS. 1 and 3 .
  • a mobile station determines, in step 310 , whether a power-off request is received from a user. Upon detection of the power-off request, the mobile station performs a power-off location registration in step 312 . After completion of the power-off location registration, the mobile station determines, in step 314 , whether a power-on request is received from the user. Upon detection of the power-on request, the mobile station searches a cell group where the mobile station is presently located, using a received spread spectrum signal in step 316 . After the cell group search, at step 318 , the mobile station sequentially searches PN codes for adjacent respective cells in a predetermined order. Upon acquisition of PN code sync for a specific cell in the cell search process, the mobile station performs power-on location registration to register itself at the sync-acquired cell, in step 320 .
  • the mobile station searches the PN codes for the respective cells. It is assumed herein that the mobile station is synchronized with a cell group to which it presently belongs.
  • the mobile station When the mobile station is powered on at a location B of FIG. 1 after being power off at a location A, the mobile station initially searches a PN code (PN KA ) for the cell where it was powered off, that is, cell “A”. After the initial PN code search, the mobile station searches the PN codes in predetermined order of, for example, PN KB , PN KC , PN KD , PN KE , PN KF and PN KG . In the PN code search process, the mobile station compares unique PN codes for the respective cells with PN codes included in a sync frame received from the base station, to search for a PN code having the highest receiving power level. That is, detection of a PN code having the highest receiving power means that the mobile station has detected a cell (or base station) from which it will receive a service.
  • PN KA PN code
  • the mobile station upon detection of the power-on request, the mobile station first searches a cell group and then sequentially searches the PN codes for the respective cells in the cell group in the predetermined order.
  • PN code search method when the user travels to a cell which is last on the list of cells to be searched according to the predetermined order, a call setup time will increase. For example, when the mobile station travels to a cell using the PN code PN KG , the mobile station unnecessarily searches the PN codes PN KB , PN KC , PN KD , PN KE and PN KF , thereby wasting search time on the inapplicable PN codes. This inevitably increases the call setup time.
  • an object of the present invention to provide a method for rapidly searching a cell using a PN code in a mobile station.
  • a cell search method for a mobile communication system Upon detection of a power-off request, the mobile station stores in a memory PN information of adjacent cells together with receiving power levels of the adjacent cells. Upon power on, it is determined whether the mobile station is presently located in the same cell group where it was located at a power-off time. When the mobile station is located in the same cell group, it sequentially reads the PN information from the memory in order of receiving power level to search the adjacent cells. Before searching adjacent cells, however, the mobile station first searches a cell registered at the power-off time prior to searching the adjacent cells.
  • a cell search method for a mobile communication system measures receiving power levels of adjacent cells to perform a handoff during a call, and monitors a power-off request from a user. Upon detection of the power-off request, the mobile station stores in a memory PN information for the adjacent cells together with the measured receiving power levels, prior to cutting off power. Upon detection of a subsequent power-on request from the user, the mobile station provides the requested power, and then determines whether the mobile station is presently located in the same cell group where the mobile station was located at a power-off time. When the mobile station is located in the same cell group, it searches the cell whose location was registered at the power-off time. However, upon failure to search the initial cell, the mobile station sequentially reads the PN information from the memory in order of receiving power level to search the adjacent cells.
  • FIG. 1 is a diagram illustrating an ideal cellular configuration as utilized in a conventional mobile communication system
  • FIG. 2 is a block diagram illustrating a conventional receiver configuration for a mobile station, which searches PN codes
  • FIG. 3 is a flow chart illustrating a procedure for searching PN codes in a mobile station for a conventional mobile communication system
  • FIG. 4 is a flow chart illustrating a procedure for searching PN codes in a mobile station for a mobile communication system according to an embodiment of the present invention.
  • a receiver in a mobile station includes a PN sync acquisition block, a PN sync tracking block, a carrier recovery/tracking block and a spreading/demodulation block, as illustrated in FIG. 2 .
  • a PN signal acquisition part 210 searches phases of received spread spectrum signals to determine a value having the highest correlation with a received PN signal.
  • a PN signal tracing part 212 synchronizes a phase of the determined value with a phase of a PN signal for the received spread spectrum signal, using a feedback loop.
  • a carrier recovery/tracking part 214 extracts a carrier from the received spread spectrum signal.
  • a despreading/demodulation part 216 performs a demodulation/despreading operation using the carrier output from the carrier recovery/tracking part 214 and the PN signal output from the PN signal tracking part 212 , so as to obtain a data estimation value from the spread spectrum signal.
  • the carrier and the PN signal output from the carrier recovery/tracking part 214 and the PN signal tracking part 212 are used to assist mutual functions as represented by dotted lines. This is called “decision-directed carrier recovery and synchronization”. Further, though not illustrated in FIG. 2 , a bandpass filter taking the carrier as a center frequency is generally provided at a preceding stage of the receiver to bandpass filter the spread spectrum signal so as to remove noises and disturbance signals. Furthermore, though not illustrated in the drawing, the embodiment includes a memory for storing PN information in association with power levels of the adjacent cells.
  • a receiver as configured in FIG. 2 performs a PN code search operation in accordance with a procedure of FIG. 4 .
  • the procedure of FIG. 4 includes a first step of measuring receiving power levels of respective adjacent cells upon detection of a power-off request and storing the measured power level values.
  • the procedure further includes a second step of searching a cell group upon receipt of a subsequent power-on request and sequentially searching the respective adjacent cells in the order of the stored power values, when the searched cell group corresponds to the power level-measured cell group.
  • a mobile station determines, in step 410 , whether a power-off request is received from a user.
  • the user can make the power-off request by operating a power switch.
  • the mobile station measures receiving power levels of adjacent base stations (i.e., adjacent cells) by performing a power-off location registration, and stores the measured power level values in a memory table of an internal flash memory by assigning priorities according to the measured power level values. Once stored, the power supply is then cut off, in step 412 .
  • the mobile station also stores, in the memory table, PN information for designating the cell group associated with the measured power levels.
  • Table 1 shows a memory table formed in the internal flash memory, in which the measured receiving power values are stored with reference to the ideal cellular configuration of FIG. 1 .
  • Steps 410 and 412 it is also possible to determine data to be stored in the memory table using receiving power levels measured for the purpose of performing a handoff.
  • a mobile station periodically monitors receiving power levels of adjacent cells to perform a handoff between base stations during a call.
  • the mobile station can not provide the call service. In this state, the power consumption is minimized. In the minimum power consumption state, even though the mobile station does not provide the call service, it still consumes minimum operation power. Likewise, for the operations of the present invention, a minimum power is required even though the power is off.
  • the mobile station determines, in step 414 , whether a power-on request is received from the user.
  • the user can make the power-on request by operating the power switch on a keypad of the mobile station.
  • the mobile station searches a cell group in step 416 , and determines whether the searched cell group is identical to the cell group stored in the memory table in steps 410 and 412 .
  • the cell group stored in the memory table means the cell group where the mobile station was located at the power-off time. Therefore, when it is determined in step 416 that the searched cell group is identical to the stored cell group, it means that the mobile station has remained in the same cell group from the point in time from the power-off time to the power-on time. Otherwise, when the searched cell group is not identical to the stored cell group, it means that the mobile station has moved from the registered cell group after power-off.
  • step 416 when it is determined, in step 416 , that the searched cell group is not identical to the stored cell group, the mobile station performs an existing PN code search operation. However, when it is determined, in step 416 , that the searched cell group is identical to the stored cell group, the procedure continues at step 418 where the mobile station searches PN codes according to the priorities stored in the memory table in association with the respective cells in the cell group. For the case of the memory table of FIG. 1 , the PN codes are searched in the order of PN KA , PN KE , PN KC , PN KD , PN KG , PN KF and PN KB .
  • steps 416 and 418 are the same as the operation described with reference to FIG. 2 . Further, the search operation is well known in the art. Therefore, a detailed description will be avoided herein.
  • the mobile station Upon acquiring synchronization of a PN code for a base station through the PN code search in steps 416 and 418 , the mobile station performs a power-on location registration to a base station (i.e. cell) corresponding to the sync-acquired PN code, in step 420 .
  • a base station i.e. cell
  • the mobile station has acquired cell sync for a specific base station.
  • a novel PN code search procedure will be described with reference to a case where a mobile station is powered off at a location A A P and is powered on at a location B B P during a travel from a PN KA an A cell to a PN KE an E cell, as illustrated in FIG. 1 .
  • the mobile station has the memory table of Table 1 for the case of power-off at the location A B P .
  • the mobile station is registered at a base station servicing the PN KA A cell.
  • the receiving power of the PN KE E cell increases as the mobile station travels to the PN KE E cell which uses the PN code PN KE .
  • the mobile station can detect an increase in the receiving power level through measurement of the receiving power level for the handoff.
  • a power-off request occurs when the user turns off the power switch at the location A A P .
  • the mobile station performs a power-off location registration and cuts off the power supply required for the call.
  • the mobile station stores the cell group and the receiving power levels of the adjacent cells in the cell group at the power-off time in the memory table illustrated by Table 1.
  • the receiving power levels can be stored in the memory table using either the receiving power levels measured to perform the handoff or the receiving power levels measured to perform the power-off location registration. It can be noted from Table 1 that the receiving power levels measured at the location A A P are in the order of PN KA , PN KE , PN KC , PN KD , PN KG , PN KF and PN KB cell A, E, C, D, G, F and B. For example, even if a receiving power level of the PN KE E cell is higher than a receiving power level of the PN KA A cell, the higher priority will be assigned to the PN KA A cell since the PN KA A cell is the last registered cell.
  • the mobile station performs the PN code search.
  • the mobile station compares a PN code for a spread spectrum signal received at a power-on time with one of the PN codes stored in the memory table to determine whether they are identical.
  • the mobile station searches the PN codes for the adjacent base stations in the order of PN KA , PN KE , PN KC , PN KD , PN KG , PN KF and PN KB according to receiving power levels stored in the memory table of Table 1.
  • the novel mobile station upon power on, performs the PN code search beginning with a PN code for a cell having a highest probability, where the mobile station may be located. In this manner, it is possible to reduce the PN code search time of the mobile station, thereby guaranteeing a fast call setup.
  • the novel mobile station measures receiving power levels of the respective adjacent cells at a power-off time, and upon power on, performs the PN sync operation according to the measured receiving power levels, providing the following advantages of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A rapid cell search method is disclosed for a mobile station in a mobile communication system. Upon detection of a power-off request, the mobile station stores in a memory PN information of adjacent cells in association with receiving power levels of the adjacent cells. Upon power on, it is determined whether the mobile station is presently located in a same cell group where it was located at a power-off time. When the mobile station is located in the same cell group, it sequentially reads the PN information from the memory in order of receiving power level to search the adjacent cells. Further, the mobile station searches a cell registered at the power-off time prior to searching the adjacent cells.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a mobile station radio communication system and, more particularly, to a method for searching cells using PN codes upon power on.
2. Description of the Related Art
In general, a mobile communication system employs a cellular configuration to support many users with limited radio frequency (RF) resources. That is, the service area for radio communication is divided into several small zones or cells, and the RF resources are allocated per cell. FIG. 1 shows an ideal cellular configuration applied to a typical mobile communication system. In a mobile communication system employing such a cellular configuration, it is necessary to detect a location of a mobile station (or cellular terminal) in order to setup a call for which the mobile station is considered to be the call destination. The process of detecting the location of the mobile station is referred to as “location registration”. The location registration can be generally divided into power-on location registration, power-off location registration, time-based location registration, distance-based location registration, parameter changed location registration, command-based location registration, implicit location registration and cell channel location registration.
Power-off location registration is performed, when a user turns off a power switch of the mobile station. However, when this occurs, the power supply to the mobile station is not actually cut off until the power-off location registration is completed. Further, the mobile station does not perform the power-off location registration unless a present location is registered. In a power-off state, if the mobile station is beyond an effective distance at its presently registered location, power-off location registration may not be performed correctly. If the power-off location registration, though uncertain, is performed correctly, it is possible to prevent a mobile switching center from unnecessarily paging the mobile station.
Power-on location registration is performed when the user turns on the power switch of the mobile station. For power-on location registration, the mobile station maintains and manages a power-on/initialization timer and does not attempt connection for the purpose of location registration while the timer is activated. Furthermore, in order to prevent the occurrence of continuous location registrations due to repetitive turning on/off of the power switch of the mobile station for a short time, the location registration procedure starts after a lapse of, for example, 20 seconds.
For location registration, the mobile station determines an adjacent cell to be registered and sends a registration message including location registration information to a base station for the determined adjacent cell over an access channel. This registration message is an actual location registration message, wherein the location registration information includes a location registration type, a slot period index, a mobile station protocol update number, a mobile station class indicator, and an incoming call indicator. Upon receipt of the registration message, the base station sends information about the system and network, and a system parameter message including location registration, handoff (or handover) and power control parameters to the mobile station over a paging channel.
The mobile station performs a PN (Pseudo Noise) code sync operation to search for an adjacent cell, prior to performing the power-on location registration subsequent to turning on the power switch. The PN code sync operation includes two steps; a sync acquisition step and a sync tracking step. In the sync acquisition step, a received PN signal and a locally generated PN signal are adjusted to fall within the range of one chip or less. Further, in the sync tracking step, the above two PN signals are finely adjusted so that phases of the PN signals are matched to each other.
FIG. 3 is a flowchart which illustrates a conventional PN code search procedure in a mobile station. A description will now be provided for the conventional PN code search method with reference to FIGS. 1 and 3.
A mobile station determines, in step 310, whether a power-off request is received from a user. Upon detection of the power-off request, the mobile station performs a power-off location registration in step 312. After completion of the power-off location registration, the mobile station determines, in step 314, whether a power-on request is received from the user. Upon detection of the power-on request, the mobile station searches a cell group where the mobile station is presently located, using a received spread spectrum signal in step 316. After the cell group search, at step 318, the mobile station sequentially searches PN codes for adjacent respective cells in a predetermined order. Upon acquisition of PN code sync for a specific cell in the cell search process, the mobile station performs power-on location registration to register itself at the sync-acquired cell, in step 320.
Now, with reference to FIG. 1, a detailed description will be made as to how the mobile station searches the PN codes for the respective cells. It is assumed herein that the mobile station is synchronized with a cell group to which it presently belongs.
When the mobile station is powered on at a location B of FIG. 1 after being power off at a location A, the mobile station initially searches a PN code (PNKA) for the cell where it was powered off, that is, cell “A”. After the initial PN code search, the mobile station searches the PN codes in predetermined order of, for example, PNKB, PNKC, PNKD, PNKE, PNKF and PNKG. In the PN code search process, the mobile station compares unique PN codes for the respective cells with PN codes included in a sync frame received from the base station, to search for a PN code having the highest receiving power level. That is, detection of a PN code having the highest receiving power means that the mobile station has detected a cell (or base station) from which it will receive a service.
In other words, upon detection of the power-on request, the mobile station first searches a cell group and then sequentially searches the PN codes for the respective cells in the cell group in the predetermined order.
In such a PN code search method, when the user travels to a cell which is last on the list of cells to be searched according to the predetermined order, a call setup time will increase. For example, when the mobile station travels to a cell using the PN code PNKG, the mobile station unnecessarily searches the PN codes PNKB, PNKC, PNKD, PNKE and PNKF, thereby wasting search time on the inapplicable PN codes. This inevitably increases the call setup time.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a method for rapidly searching a cell using a PN code in a mobile station.
It is another object of the present invention to provide a method for rapidly searching a cell using a PN code in a mobile station utilizing received power levels of adjacent cells, which are measured to perform a handover.
In accordance with one aspect of the present invention, there is provided a cell search method for a mobile communication system. Upon detection of a power-off request, the mobile station stores in a memory PN information of adjacent cells together with receiving power levels of the adjacent cells. Upon power on, it is determined whether the mobile station is presently located in the same cell group where it was located at a power-off time. When the mobile station is located in the same cell group, it sequentially reads the PN information from the memory in order of receiving power level to search the adjacent cells. Before searching adjacent cells, however, the mobile station first searches a cell registered at the power-off time prior to searching the adjacent cells.
In accordance with another aspect of the present invention, there is provided a cell search method for a mobile communication system. The mobile station measures receiving power levels of adjacent cells to perform a handoff during a call, and monitors a power-off request from a user. Upon detection of the power-off request, the mobile station stores in a memory PN information for the adjacent cells together with the measured receiving power levels, prior to cutting off power. Upon detection of a subsequent power-on request from the user, the mobile station provides the requested power, and then determines whether the mobile station is presently located in the same cell group where the mobile station was located at a power-off time. When the mobile station is located in the same cell group, it searches the cell whose location was registered at the power-off time. However, upon failure to search the initial cell, the mobile station sequentially reads the PN information from the memory in order of receiving power level to search the adjacent cells.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
FIG. 1 is a diagram illustrating an ideal cellular configuration as utilized in a conventional mobile communication system;
FIG. 2 is a block diagram illustrating a conventional receiver configuration for a mobile station, which searches PN codes;
FIG. 3 is a flow chart illustrating a procedure for searching PN codes in a mobile station for a conventional mobile communication system; and
FIG. 4 is a flow chart illustrating a procedure for searching PN codes in a mobile station for a mobile communication system according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A preferred embodiment of the present invention will be described hereinbelow with reference to the accompanying drawings.
In general, a receiver in a mobile station includes a PN sync acquisition block, a PN sync tracking block, a carrier recovery/tracking block and a spreading/demodulation block, as illustrated in FIG. 2.
Referring to FIG. 2, a PN signal acquisition part 210 searches phases of received spread spectrum signals to determine a value having the highest correlation with a received PN signal. A PN signal tracing part 212 synchronizes a phase of the determined value with a phase of a PN signal for the received spread spectrum signal, using a feedback loop. A carrier recovery/tracking part 214 extracts a carrier from the received spread spectrum signal. A despreading/demodulation part 216 performs a demodulation/despreading operation using the carrier output from the carrier recovery/tracking part 214 and the PN signal output from the PN signal tracking part 212, so as to obtain a data estimation value from the spread spectrum signal. The carrier and the PN signal output from the carrier recovery/tracking part 214 and the PN signal tracking part 212 are used to assist mutual functions as represented by dotted lines. This is called “decision-directed carrier recovery and synchronization”. Further, though not illustrated in FIG. 2, a bandpass filter taking the carrier as a center frequency is generally provided at a preceding stage of the receiver to bandpass filter the spread spectrum signal so as to remove noises and disturbance signals. Furthermore, though not illustrated in the drawing, the embodiment includes a memory for storing PN information in association with power levels of the adjacent cells.
In an exemplary embodiment, a receiver as configured in FIG. 2 performs a PN code search operation in accordance with a procedure of FIG. 4. In brief, the procedure of FIG. 4 includes a first step of measuring receiving power levels of respective adjacent cells upon detection of a power-off request and storing the measured power level values. The procedure further includes a second step of searching a cell group upon receipt of a subsequent power-on request and sequentially searching the respective adjacent cells in the order of the stored power values, when the searched cell group corresponds to the power level-measured cell group.
Now, a detailed description will be made regarding a preferred embodiment of the present invention with reference to FIGS. 2 and 4.
A mobile station determines, in step 410, whether a power-off request is received from a user. Here, the user can make the power-off request by operating a power switch. Upon detection of the power-off request, the mobile station measures receiving power levels of adjacent base stations (i.e., adjacent cells) by performing a power-off location registration, and stores the measured power level values in a memory table of an internal flash memory by assigning priorities according to the measured power level values. Once stored, the power supply is then cut off, in step 412. The mobile station also stores, in the memory table, PN information for designating the cell group associated with the measured power levels.
Table 1 shows a memory table formed in the internal flash memory, in which the measured receiving power values are stored with reference to the ideal cellular configuration of FIG. 1.
TABLE 1
CellPN
Priority Information RX Power
Cell Group 1 APNKA PKA
Index 2 EPNKE PKE
(PNgroup) 3 CPNKC PKC
4 DPNKD PKD
5 GPNKG PKG
6 FPNKF PKF
7 BPNKB PKB
Although a description has been made with reference to a case where the mobile station measures receiving power of the respective adjacent cells upon detection of a power-off request from the user (Steps 410 and 412), it is also possible to determine data to be stored in the memory table using receiving power levels measured for the purpose of performing a handoff. Commonly, a mobile station periodically monitors receiving power levels of adjacent cells to perform a handoff between base stations during a call.
If the power is off during the handoff, the mobile station can not provide the call service. In this state, the power consumption is minimized. In the minimum power consumption state, even though the mobile station does not provide the call service, it still consumes minimum operation power. Likewise, for the operations of the present invention, a minimum power is required even though the power is off.
In the power-off state, the mobile station determines, in step 414, whether a power-on request is received from the user. Here, the user can make the power-on request by operating the power switch on a keypad of the mobile station. Upon detection of the power-on request, the mobile station searches a cell group in step 416, and determines whether the searched cell group is identical to the cell group stored in the memory table in steps 410 and 412. The cell group stored in the memory table means the cell group where the mobile station was located at the power-off time. Therefore, when it is determined in step 416 that the searched cell group is identical to the stored cell group, it means that the mobile station has remained in the same cell group from the point in time from the power-off time to the power-on time. Otherwise, when the searched cell group is not identical to the stored cell group, it means that the mobile station has moved from the registered cell group after power-off.
Though not illustrated in FIG. 4, when it is determined, in step 416, that the searched cell group is not identical to the stored cell group, the mobile station performs an existing PN code search operation. However, when it is determined, in step 416, that the searched cell group is identical to the stored cell group, the procedure continues at step 418 where the mobile station searches PN codes according to the priorities stored in the memory table in association with the respective cells in the cell group. For the case of the memory table of FIG. 1, the PN codes are searched in the order of PNKA, PNKE, PNKC, PNKD, PNKG, PNKF and PNKB.
The search operation performed in steps 416 and 418 is the same as the operation described with reference to FIG. 2. Further, the search operation is well known in the art. Therefore, a detailed description will be avoided herein.
Upon acquiring synchronization of a PN code for a base station through the PN code search in steps 416 and 418, the mobile station performs a power-on location registration to a base station (i.e. cell) corresponding to the sync-acquired PN code, in step 420. In other words, the mobile station has acquired cell sync for a specific base station.
Next, a novel PN code search procedure will be described with reference to a case where a mobile station is powered off at a location A AP and is powered on at a location B BP during a travel from a PNKA an A cell to a PNKE an E cell, as illustrated in FIG. 1. Herein, it will be assumed that the mobile station has the memory table of Table 1 for the case of power-off at the location A BP.
In FIG. 1, the mobile station is registered at a base station servicing the PNKA A cell. The receiving power of the PNKE E cell increases as the mobile station travels to the PNKE E cell which uses the PN code PNKE. The mobile station can detect an increase in the receiving power level through measurement of the receiving power level for the handoff. A power-off request occurs when the user turns off the power switch at the location A AP. When this occurs the mobile station performs a power-off location registration and cuts off the power supply required for the call. In the meantime, the mobile station stores the cell group and the receiving power levels of the adjacent cells in the cell group at the power-off time in the memory table illustrated by Table 1. The receiving power levels can be stored in the memory table using either the receiving power levels measured to perform the handoff or the receiving power levels measured to perform the power-off location registration. It can be noted from Table 1 that the receiving power levels measured at the location A AP are in the order of PNKA, PNKE, PNKC, PNKD, PNKG, PNKF and PNKB cell A, E, C, D, G, F and B. For example, even if a receiving power level of the PNKE E cell is higher than a receiving power level of the PNKA A cell, the higher priority will be assigned to the PNKA A cell since the PNKA A cell is the last registered cell.
Meanwhile, when the user subsequently turns on the power switch to make a power-on request at the location B, the mobile station performs the PN code search. Upon power on, the mobile station compares a PN code for a spread spectrum signal received at a power-on time with one of the PN codes stored in the memory table to determine whether they are identical. When the two PN codes are found to be identical, the mobile station searches the PN codes for the adjacent base stations in the order of PNKA, PNKE, PNKC, PNKD, PNKG, PNKF and PNKB according to receiving power levels stored in the memory table of Table 1.
As described above, upon power on, the novel mobile station performs the PN code search beginning with a PN code for a cell having a highest probability, where the mobile station may be located. In this manner, it is possible to reduce the PN code search time of the mobile station, thereby guaranteeing a fast call setup.
In sum, the novel mobile station measures receiving power levels of the respective adjacent cells at a power-off time, and upon power on, performs the PN sync operation according to the measured receiving power levels, providing the following advantages of:
    • (1) reducing the PN sync time, thereby providing a fast call service; and
    • (2) reducing a call setup time, thereby decreasing the call charge.
While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (8)

1. A method for searching cells in a mobile communication system, comprising the steps of:
upon detection of a power-off request, storing in a memory for a plurality of adjacent cells PN (Pseudo Noise) information and a receiving power level;
upon power on, determining whether the mobile station is presently located in a same cell group where the mobile station was located at a power-off time; and
sequentially reading the PN information from the memory in order of receiving power level to search the adjacent cells, when the mobile station is located in the same cell group.
2. The method as claimed in claim 1, further comprising the step of searching a cell registered at the power-off time prior to searching the adjacent cells.
3. A method for searching cells in a mobile communication system, comprising the steps of:
detecting a power-off request from a user;
upon detection of the power-off request, measuring receiving power levels of adjacent cells by performing power-off location registration;
storing in a memory PN information for the adjacent cells and an associated measured receiving power level, levels for a plurality of adjacent cells and cutting off power;
upon detection of a power-on request from a user, providing the power;
determining whether the mobile station is presently located in a same cell group where the mobile station was located at a power-off time;
searching an initial cell whose location was registered at the power-off time, when the mobile station is located in the same cell group; and
upon failure to search the initial cell, searching the adjacent cells by sequentially reading the PN information from the memory searching PN codes of the adjacent cells in order of receiving power level.
4. A method for searching cells in a mobile communication system, comprising the steps of:
measuring receiving power levels of adjacent cells to perform a handoff during a call;
detecting a power-off request from a user;
upon detection of a power-off request, storing in a memory PN information for the adjacent cells and an associated measured receiving power levels for a plurality of adjacent cells, and cutting off power;
upon detection of a power-on request from the user, providing the power;
determining whether the mobile station is presently located in a same cell group where the mobile station was located at a power-off time;
searching an initial cell whose location was registered at the power-off time, when the mobile station is located in the same cell group; and
upon failure to search the initial cell, searching the adjacent cells by sequentially reading the PN information from the memory searching PN codes of the adjacent cells in order of receiving power level.
5. A method for searching cells in a mobile communication system, comprising the steps of:
(a) upon detection of a power-off request, storing in a memory receiving power levels of a plurality of adjacent cells;
(b) upon power on, determining if the mobile station is presently located in a same cell group where the mobile station was located at a power-off time; and
(c) sequentially searching PN codes of the adjacent cells in order of the receiving power level, when the mobile station is located in the same cell group.
6. The method as claimed in claim 5, further comprising the step of searching a cell registered at the power-off time prior to searching the adjacent cells.
7. The method as claimed in claim 5, further comprising the steps of:
measuring said receiving power levels by performing power-off location registration;
searching for an initial cell whose location was registered at the power-off time; and
performing step (c) upon failure to find the initial cell.
8. The method as claimed in claim 5, further comprising the steps of:
measuring said receiving power levels during handoff;
searching for an initial cell whose location was registered at the power-off time; and
performing step (c) upon failure to find the initial cell.
US10/944,541 1998-07-07 2004-09-17 Method for searching cells in mobile communication system Expired - Lifetime USRE41737E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/944,541 USRE41737E1 (en) 1998-07-07 2004-09-17 Method for searching cells in mobile communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1019980027245A KR20000007758A (en) 1998-07-07 1998-07-07 Pn code searching method of cellular terminal
KR98-27245 1998-07-07
US09/349,298 US6452912B1 (en) 1998-07-07 1999-07-07 Method for searching cells in mobile communication system
US10/944,541 USRE41737E1 (en) 1998-07-07 2004-09-17 Method for searching cells in mobile communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/349,298 Reissue US6452912B1 (en) 1998-07-07 1999-07-07 Method for searching cells in mobile communication system

Publications (1)

Publication Number Publication Date
USRE41737E1 true USRE41737E1 (en) 2010-09-21

Family

ID=19543320

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/349,298 Ceased US6452912B1 (en) 1998-07-07 1999-07-07 Method for searching cells in mobile communication system
US10/944,541 Expired - Lifetime USRE41737E1 (en) 1998-07-07 2004-09-17 Method for searching cells in mobile communication system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/349,298 Ceased US6452912B1 (en) 1998-07-07 1999-07-07 Method for searching cells in mobile communication system

Country Status (9)

Country Link
US (2) US6452912B1 (en)
EP (1) EP1025740B1 (en)
KR (1) KR20000007758A (en)
CN (1) CN1117509C (en)
AU (1) AU4656199A (en)
BR (1) BR9906584A (en)
DE (1) DE69927472T2 (en)
RU (1) RU2191472C2 (en)
WO (1) WO2000002396A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090325574A1 (en) * 2008-06-26 2009-12-31 Kyocera Corporation Mobile station and wireless communication method
US20210041330A1 (en) * 2018-03-22 2021-02-11 Siemens Aktiengesellschaft Method and device for taking a sample, and use of a device of this type
US11080828B1 (en) * 2020-01-09 2021-08-03 United States Of America As Represented By The Secretary Of The Navy Weighted summing of component chiral images for improved contrast enhancement
US20220215315A1 (en) * 2018-12-06 2022-07-07 Asana, Inc. Systems and methods for generating prioritization models and predicting workflow prioritizations
US20220324439A1 (en) * 2019-03-31 2022-10-13 Gm Cruise Holdings Llc Autonomous vehicle maneuvering based upon risk associated with occluded regions
US11561996B2 (en) 2014-11-24 2023-01-24 Asana, Inc. Continuously scrollable calendar user interface
US11568366B1 (en) 2018-12-18 2023-01-31 Asana, Inc. Systems and methods for generating status requests for units of work
US11636432B2 (en) 2020-06-29 2023-04-25 Asana, Inc. Systems and methods to measure and visualize workload for completing individual units of work
US11656754B2 (en) 2018-04-04 2023-05-23 Asana, Inc. Systems and methods for preloading an amount of content based on user scrolling
US20230275978A1 (en) * 2017-11-14 2023-08-31 General Electric Company Hierarchical data exchange management system
US11782737B2 (en) 2019-01-08 2023-10-10 Asana, Inc. Systems and methods for determining and presenting a graphical user interface including template metrics
US12026649B2 (en) 2019-11-14 2024-07-02 Asana, Inc. Systems and methods to measure and visualize threshold of user workload
US12093859B1 (en) 2021-06-02 2024-09-17 Asana, Inc. Systems and methods to measure and visualize workload for individual users

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565102B2 (en) * 1999-08-13 2004-09-15 日本電気株式会社 Downlink spreading code allocation method and base station
US6697622B1 (en) * 1999-09-06 2004-02-24 Nit Docomo, Inc. Control method of searching neighboring cells, mobile station, and mobile communication system
JP2001086035A (en) * 1999-09-14 2001-03-30 Nec Corp Cell search method in cdma
US6941152B2 (en) * 2001-04-24 2005-09-06 Ipr Licensing, Inc. Wireless subscriber network registration system for configurable services
GB0130800D0 (en) * 2001-12-22 2002-02-06 Koninkl Philips Electronics Nv Mobile device power saving
US6963744B2 (en) * 2002-08-28 2005-11-08 Flextronics Sales And Mktg (A-P) Ltd. Method and system for saving power in mobile units
US7212821B2 (en) * 2003-12-05 2007-05-01 Qualcomm Incorporated Methods and apparatus for performing handoffs in a multi-carrier wireless communications system
US7047009B2 (en) * 2003-12-05 2006-05-16 Flarion Technologies, Inc. Base station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
CN100459814C (en) * 2006-11-16 2009-02-04 重庆重邮信科通信技术有限公司 Search technique of quickening initial search speed of sector
JP5417780B2 (en) * 2008-09-18 2014-02-19 富士通株式会社 Wireless communication system, terminal device, and wireless base station
CN101466131B (en) * 2009-01-14 2011-10-05 华为技术有限公司 Method for communication switch, method, base station, terminal and system for obtaining neighboring district
ES2461619T3 (en) 2009-02-25 2014-05-20 Syneron Medical Ltd. Electric skin rejuvenation
US8504029B2 (en) * 2011-07-28 2013-08-06 Telefonaktiebolaget L M Ericsson (Publ) Mobile communication system cell selection in the presence of unacceptable cells
JP6375917B2 (en) * 2014-03-25 2018-08-22 株式会社デンソー Near field communication device and registration management program

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566893A1 (en) 1992-04-20 1993-10-27 International Business Machines Corporation Tracking of mobile stations in wireless networks
US5724384A (en) * 1994-07-14 1998-03-03 Samsung Electronics Co., Ltd. PN code sync device using an adaptive threshold
RU2107992C1 (en) 1992-09-23 1998-03-27 Сименс АГ Handover method for mobile subscribers of mobile radio network
EP0837617A2 (en) 1996-10-18 1998-04-22 Matsushita Electric Industrial Co., Ltd. Mobile station
US5790589A (en) * 1996-08-14 1998-08-04 Qualcomm Incorporated System and method for rapidly reacquiring a pilot channel
GB2330402A (en) 1997-10-17 1999-04-21 Moulinex Sa Water heater or steam generator with electrical heating element
US5950131A (en) * 1996-10-29 1999-09-07 Motorola, Inc. Method and apparatus for fast pilot channel acquisition using a matched filter in a CDMA radiotelephone
US5970084A (en) * 1996-06-13 1999-10-19 Matsushita Electric Industrial Co., Ltd. CDMA mobile communication receiving apparatus
US5987012A (en) * 1996-12-19 1999-11-16 Motorola, Inc. Method of handing off and a wireless communication device
US6263010B1 (en) * 1997-08-04 2001-07-17 Kabushiki Kaisha Toshiba Spread spectrum communication apparatus
US6535752B1 (en) * 1999-04-01 2003-03-18 Ericsson Inc. Radio receiver with power saving during synchronization retries

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760352B1 (en) * 1996-11-29 1998-05-28 日本電気株式会社 Cell search circuit for CDMA

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566893A1 (en) 1992-04-20 1993-10-27 International Business Machines Corporation Tracking of mobile stations in wireless networks
RU2107992C1 (en) 1992-09-23 1998-03-27 Сименс АГ Handover method for mobile subscribers of mobile radio network
US5724384A (en) * 1994-07-14 1998-03-03 Samsung Electronics Co., Ltd. PN code sync device using an adaptive threshold
US5970084A (en) * 1996-06-13 1999-10-19 Matsushita Electric Industrial Co., Ltd. CDMA mobile communication receiving apparatus
US5790589A (en) * 1996-08-14 1998-08-04 Qualcomm Incorporated System and method for rapidly reacquiring a pilot channel
EP0837617A2 (en) 1996-10-18 1998-04-22 Matsushita Electric Industrial Co., Ltd. Mobile station
US5950131A (en) * 1996-10-29 1999-09-07 Motorola, Inc. Method and apparatus for fast pilot channel acquisition using a matched filter in a CDMA radiotelephone
US5987012A (en) * 1996-12-19 1999-11-16 Motorola, Inc. Method of handing off and a wireless communication device
US6263010B1 (en) * 1997-08-04 2001-07-17 Kabushiki Kaisha Toshiba Spread spectrum communication apparatus
GB2330402A (en) 1997-10-17 1999-04-21 Moulinex Sa Water heater or steam generator with electrical heating element
US6535752B1 (en) * 1999-04-01 2003-03-18 Ericsson Inc. Radio receiver with power saving during synchronization retries

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351929B2 (en) * 2008-06-26 2013-01-08 Kyocera Corporation Mobile station and wireless communication method
US20090325574A1 (en) * 2008-06-26 2009-12-31 Kyocera Corporation Mobile station and wireless communication method
US11561996B2 (en) 2014-11-24 2023-01-24 Asana, Inc. Continuously scrollable calendar user interface
US12088687B2 (en) * 2017-11-14 2024-09-10 Ge Intellectual Property Licensing, Llc Hierarchical data exchange management system
US20230275978A1 (en) * 2017-11-14 2023-08-31 General Electric Company Hierarchical data exchange management system
US20210041330A1 (en) * 2018-03-22 2021-02-11 Siemens Aktiengesellschaft Method and device for taking a sample, and use of a device of this type
US12013316B2 (en) * 2018-03-22 2024-06-18 Siemens Energy Global GmbH & Co. KG Method and device for taking a sample, and use of a device of this type
US11656754B2 (en) 2018-04-04 2023-05-23 Asana, Inc. Systems and methods for preloading an amount of content based on user scrolling
US11694140B2 (en) * 2018-12-06 2023-07-04 Asana, Inc. Systems and methods for generating prioritization models and predicting workflow prioritizations
US20230325747A1 (en) * 2018-12-06 2023-10-12 Asana, Inc. Systems and methods for generating prioritization models and predicting workflow prioritizations
US20220215315A1 (en) * 2018-12-06 2022-07-07 Asana, Inc. Systems and methods for generating prioritization models and predicting workflow prioritizations
US12026648B2 (en) * 2018-12-06 2024-07-02 Asana, Inc. Systems and methods for generating prioritization models and predicting workflow prioritizations
US11568366B1 (en) 2018-12-18 2023-01-31 Asana, Inc. Systems and methods for generating status requests for units of work
US11782737B2 (en) 2019-01-08 2023-10-10 Asana, Inc. Systems and methods for determining and presenting a graphical user interface including template metrics
US20220324439A1 (en) * 2019-03-31 2022-10-13 Gm Cruise Holdings Llc Autonomous vehicle maneuvering based upon risk associated with occluded regions
US11767011B2 (en) * 2019-03-31 2023-09-26 Gm Cruise Holdings Llc Autonomous vehicle maneuvering based upon risk associated with occluded regions
US12026649B2 (en) 2019-11-14 2024-07-02 Asana, Inc. Systems and methods to measure and visualize threshold of user workload
US11080828B1 (en) * 2020-01-09 2021-08-03 United States Of America As Represented By The Secretary Of The Navy Weighted summing of component chiral images for improved contrast enhancement
US11636432B2 (en) 2020-06-29 2023-04-25 Asana, Inc. Systems and methods to measure and visualize workload for completing individual units of work
US12093859B1 (en) 2021-06-02 2024-09-17 Asana, Inc. Systems and methods to measure and visualize workload for individual users

Also Published As

Publication number Publication date
KR20000007758A (en) 2000-02-07
AU4656199A (en) 2000-01-24
EP1025740B1 (en) 2005-09-28
BR9906584A (en) 2001-01-16
DE69927472T2 (en) 2006-03-23
US6452912B1 (en) 2002-09-17
CN1117509C (en) 2003-08-06
WO2000002396A3 (en) 2000-03-30
CN1273754A (en) 2000-11-15
WO2000002396A2 (en) 2000-01-13
EP1025740A2 (en) 2000-08-09
DE69927472D1 (en) 2006-02-09
RU2191472C2 (en) 2002-10-20

Similar Documents

Publication Publication Date Title
USRE41737E1 (en) Method for searching cells in mobile communication system
US7599693B2 (en) Cell search method and mobile communication terminal
AU755667B2 (en) Systems and methods for fast terminal synchronization in a wireless communication system
KR101032242B1 (en) Subscriber station with dynamic multi-mode service acquisition capability
KR100362441B1 (en) Method and apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
RU2313196C2 (en) Method and device for efficient selection and acquisition of wireless communication system
US7324479B2 (en) Cell search method in UMTS
KR101061283B1 (en) Frame Synchronization and Scrambling Code Identification and Methods in Wireless Communication Systems
KR100398784B1 (en) Information management method for cell search in mobile communications system, cell search method of mobile station, mobile communications system, mobile station, base station and control station
JPH09271062A (en) Systematic scanning method and device for portable radio telephone
US7142526B1 (en) Mobile communication terminal equipment, control method therefor, and recording medium on which control program therefor is recorded
JP2002199428A (en) Mobile communication terminal and its handover control method and control program
US7149201B2 (en) Enhanced bearer overhead monitoring for improved position location performance for wireless mobiles
US7272399B2 (en) Method of recovering dropped call in mobile communication system
US6718171B1 (en) Robust and efficient reacquisition after call release
JP2001237769A (en) Method for deciding position of synchronous information in signal flow, and receiver coping with method
JP2005223466A (en) System and terminal for mobile communication cell search method used therefor, and its program
US6405063B1 (en) Communication method of cordless telephone that can always make call as necessary and suppress unnecessary waiting operation to reduce consumption power and cordless telephone
KR100713372B1 (en) Synchronization acquisition device and method in mobile communication system
KR100236593B1 (en) System clock acquisition method of cdma system
KR100777515B1 (en) Handoff method in asynchronous type mobile communication system
RU2406269C2 (en) Method and device designed to detect location of wireless local network in global network
RU2392775C2 (en) Method and device supporting wireless network fingerprint
JP2002152794A (en) Method for roaming of mobile terminal and mobile terminal
JP2001285178A (en) Cdma portable phone

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12