USRE41691E1 - Method and apparatus for performing joint timing recovery of multiple received signals - Google Patents
Method and apparatus for performing joint timing recovery of multiple received signals Download PDFInfo
- Publication number
- USRE41691E1 USRE41691E1 US11/805,865 US80586507A USRE41691E US RE41691 E1 USRE41691 E1 US RE41691E1 US 80586507 A US80586507 A US 80586507A US RE41691 E USRE41691 E US RE41691E
- Authority
- US
- United States
- Prior art keywords
- sum
- signal
- nco
- adjusting
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000001914 filtration Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 3
- 238000005562 fading Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000001997 free-flow electrophoresis Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0054—Detection of the synchronisation error by features other than the received signal transition
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/0807—Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/087—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/06—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
- H04L25/061—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
- H04L25/062—Setting decision thresholds using feedforward techniques only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/06—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
- H04L25/061—Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
- H04L25/063—Setting decision thresholds using feedback techniques only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0079—Receiver details
- H04L7/0083—Receiver details taking measures against momentary loss of synchronisation, e.g. inhibiting the synchronisation, using idle words or using redundant clocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
- H04L7/0331—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock
Definitions
- the invention relates to data synchronization techniques and, more particularly, the invention relates to a method and apparatus for performing joint timing recovery in a digital receiver using multiple received signals.
- Data signals transmitted through a communication network are subject to various distortions caused by the transmission medium or channel. Distortions such as noise, channel fading and multipath may cause errors in decoding a received digital signal. For example, multipath may severely distort or fade a received signal.
- the receiver may utilize receiver diversity, i.e., use multiple antennas to receive multiple versions of a transmitted signal.
- the receiver demodulates and decodes the multiple received signals and combines the signals into a suitable format for an appliance such as a television, computer, and the like.
- an appliance such as a television, computer, and the like.
- the receiver To accurately perform such demodulation and decoding, the receiver must provide proper timing recovery of the received signals. However, such timing recovery of multiple signals is difficult in the presence of multipath and channel fading.
- the present invention provides a method and apparatus for performing joint timing recovery in a digital receiver using multiple input signals.
- the apparatus comprises a plurality of phase detectors, a summer, a level shifter, a loop filter and a numerically controlled oscillator NCO.
- Each of the phase detectors produces a phase signal by comparing a timing signal produced by the NCO with each of the input signals.
- the phase signals are then summed and the level shifter adjusts the summed value to compensate for the number of signals used to form the sum, i.e., the summed value is adjusted to be within the input range of the NCO.
- FIG. 1 depicts a block diagram of a front end of a receiver using the joint timing recovery circuit of FIG. 2 ;
- FIG. 2 depicts a block diagram of a joint timing recovery circuit in accordance with the present invention.
- FIG. 1 depicts a block diagram of a front end of a digital receiver 100 using a joint timing recovery circuit 200 of the present invention.
- the digital receiver 100 is a QAM (Quadrature Amplitude Modulation) diversity receiver using multiple antennas 101 to receive a previously transmitted signal.
- QAM Quadrature Amplitude Modulation
- the illustrative receiver 100 receives and processes two input signals, the receiver 100 may likewise receive and process any plurality of input signals.
- the front end comprises automatic gain control (AGC) circuits 102 and 104 , a joint timing recovery circuit 200 , matched filters 106 and 108 , feed forward equalizers (FFE) 110 and 112 , a summer 114 , a carrier recovery circuit 116 and a decision feedback equalizer (DFE) 118 .
- AGC automatic gain control
- FFE feed forward equalizers
- DFE decision feedback equalizer
- Inputs from the antennas 101 A and 101 B are stabilized at the respective AGC circuits 102 and 104 .
- the output of the AGC circuits 102 and 104 are coupled to the joint timing recovery circuit 200 described with reference to FIG. 2.
- a common timing signal is derived in the circuit 200 and coupled to the matched filter 106 and 108 .
- the matched filters 106 and 108 , the FFEs 110 and 112 , the summer 114 , and the DFE 118 form a diversity equalizer 150 .
- the matched filters 106 and 108 correlate the input signals in a conventional manner.
- the FFEs 110 and 112 equalize the matched filter outputs that are then coupled to the summer 114 with the output of the DFE 118 .
- the summed output from the summer 114 is then used in the carrier recovery circuit 116 .
- the carrier recovery circuit 116 recovers the carrier used to transmit the signal to the antennas 101 A and 101 B.
- the recovered carrier is then coupled to a forward error correction (FEC) module for further processing.
- FEC forward error correction
- FIG. 2 depicts the joint timing recovery circuit 200 in accordance with the present invention.
- the joint timing recovery circuit 200 performs joint timing recovery of two input signals A and B.
- the input signals A and B may be received at different antennas ( 101 in FIG. 1 ), where the signals A and B are transmitted from the same source but received at different antennas i.e., a diversity receiver for combating multipath distortion.
- a diversity receiver enables the receipt of a valid signal despite multipath distortion, e.g., fading, in a communications channel.
- the circuit illustratively shows two input signals, the circuit 200 likewise applies to joint timing recovery of three or more input signals.
- the joint timing recovery circuit 200 comprises two phase detectors 202 and 204 , a summer 206 , signal detectors 208 and 210 , a decision circuit 212 , a level shifter 214 , a loop filter 216 and a numerically controlled oscillator (NCO) 218 .
- the phase detector 202 receives input signal A and the output of the NCO 218 , compares the phases of these input signals, and generates a phase difference signal between input signal A and the NCO output.
- the phase detector 204 receives input signal B and the output of the NCO 218 , compares the phases of these input signals, and generates a signal (referred to herein as a phase signal) representing the difference in phase between input signal B and the NCO output.
- the summer 206 adds the phase signals from the phase detectors 202 and 204 .
- the sum of the phase signals is coupled to the decision circuit 212 .
- the signal detectors 208 and 210 determine whether each of the respective inputs A and B are detectable. For example, the signal detectors 208 and 210 may determine whether the amplitude of each input signal A or B is greater than a threshold value.
- the status of the received signal e.g., whether the signal was properly received, is coupled to the decision circuit 212 .
- the decision circuit 212 receives signals from the signal detectors 208 and 210 to determine the total number of input signals that were properly received in the joint timing recovery circuit 200 . Thus, the decision circuit 212 may ignore a particularly weak input signal, i.e., an input signal having a low amplitude or signal level.
- the decision circuit 212 comprises an n-bit priority encoder that outputs how many of up to 2 n ⁇ 1 inputs were received with a signal level that will facilitate accurate demodulation. For example, if the decision circuit 112 comprises a 2-bit priority encoder, the number of inputs may be 0, 1, 2 or 3.
- the level shifter 214 uses the output of the decision circuit 212 to adjust the sum from the summer 206 . Namely, the level shifter 214 adjusts the sum of the detected phases in response to the number of input signals that were detected as receivable by the signal detectors 208 and 210 . The level shifter 214 adjusts the sum to be within the input range of the NCO 218 . Otherwise, if the sum of the detected phases is outside the input range of the NCO 218 , i.e., the sum is either too large or too small for the NCO 218 , the NCO 218 cannot generate a signal with a correct phase estimate of any of the detected signals.
- the level shifter 214 may use different approaches to adjust the sum of the detected phases.
- the level shifter 214 divides the sum by the number of detected inputs.
- the level shifter 214 either adds or subtracts an offset value to the sum of the phase detectors 202 and 204 . For example, if the sum of detected phases is greater than the input range of the NCO 218 , the level shifter 212 214 would subtract the offset from the sum. Similarly, if the sum of the detected phases is less than the input range of the NCO 218 , the level shifter 212 214 would add the offset to the sum.
- the value of the offset is configured such that the adjusted sum is within the input range of the NCO 218 .
- the loop filter 216 filters the adjusted sum from the level shifter 214 to the NCO 218 .
- the loop filter 216 typically comprises an integrator circuit that operates as a low pass filter.
- the NCO 218 receives the filtered sum and generates a phase estimate of the adjusted sum of detected phases.
- the generated phase estimate is coupled to the phase detectors 202 and 204 .
- only one NCO 218 is used to generate a common phase estimate for all the inputs, e.g., A and B, in the joint timing recovery system 200 .
- the phase estimate from the NCO is coupled to the phase detectors 202 and 204 .
- the phase detectors 202 and 204 use the phase estimate and the input signals A and B to derive phase difference signals. Iteration of the phase difference signals in the joint timing recovery system 200 will stabilize the phase estimate from the NCO 218 .
- the output of the NCO 218 is used as a timing signal, e.g., a timing recovery signal within the receiver.
- the present invention By adjusting the sum of the detected phases within the input range of a single numerically controlled oscillator (NCO), the present invention generates a single timing signal for a receiver that receives multiple input signals.
- NCO numerically controlled oscillator
- One such application of the joint timing recovery circuit 200 is a receiver having diverse antennas.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Radio Transmission System (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/805,865 USRE41691E1 (en) | 2001-04-13 | 2007-05-23 | Method and apparatus for performing joint timing recovery of multiple received signals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/835,030 US6947498B2 (en) | 2001-04-13 | 2001-04-13 | Method and apparatus for performing joint timing recovery of multiple received signals |
US11/805,865 USRE41691E1 (en) | 2001-04-13 | 2007-05-23 | Method and apparatus for performing joint timing recovery of multiple received signals |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,030 Reissue US6947498B2 (en) | 2001-04-13 | 2001-04-13 | Method and apparatus for performing joint timing recovery of multiple received signals |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41691E1 true USRE41691E1 (en) | 2010-09-14 |
Family
ID=25268399
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,030 Ceased US6947498B2 (en) | 2001-04-13 | 2001-04-13 | Method and apparatus for performing joint timing recovery of multiple received signals |
US11/805,865 Expired - Lifetime USRE41691E1 (en) | 2001-04-13 | 2007-05-23 | Method and apparatus for performing joint timing recovery of multiple received signals |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,030 Ceased US6947498B2 (en) | 2001-04-13 | 2001-04-13 | Method and apparatus for performing joint timing recovery of multiple received signals |
Country Status (1)
Country | Link |
---|---|
US (2) | US6947498B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7317756B2 (en) | 2001-12-06 | 2008-01-08 | Pulse-Link, Inc. | Ultra-wideband communication apparatus and methods |
US7257156B2 (en) * | 2001-12-06 | 2007-08-14 | Pulse˜Link, Inc. | Systems and methods for equalization of received signals in a wireless communication network |
US8045935B2 (en) | 2001-12-06 | 2011-10-25 | Pulse-Link, Inc. | High data rate transmitter and receiver |
KR100462471B1 (en) * | 2002-09-05 | 2004-12-17 | 한국전자통신연구원 | Apparatus for compensating phase error of digital signal and method of the same |
CN101567687A (en) * | 2008-04-21 | 2009-10-28 | 扬智科技股份有限公司 | Signal generation circuit |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3555194A (en) * | 1967-11-17 | 1971-01-12 | Nippon Electric Co | Interstation synchronization apparatus |
US5321850A (en) * | 1991-10-09 | 1994-06-14 | Telefonaktiebolaget L M Ericsson | Diversity radio receiver automatic frequency control |
US6169907B1 (en) * | 1997-10-21 | 2001-01-02 | Interwave Communications International Ltd. | Power control of remote communication devices |
US6307413B1 (en) | 1999-12-23 | 2001-10-23 | Cypress Semiconductor Corp. | Reference-free clock generator and data recovery PLL |
US20020049936A1 (en) * | 2000-07-31 | 2002-04-25 | Vadim Gutnik | Clock distribution circuits and methods of operating same that use multiple clock circuits connected by phase detector circuits to generate and synchronize local clock signals |
US20020136342A1 (en) * | 2001-03-20 | 2002-09-26 | Gct Semiconductor, Inc. | Sample and hold type fractional-N frequency synthesezer |
US20030016087A1 (en) * | 2001-07-19 | 2003-01-23 | Matsushita Electric Industrial Co., Ltd. | Phase-locked loop circuit and data reproduction apparatus |
US20030085739A1 (en) * | 2001-11-07 | 2003-05-08 | Hirofumi Totsuka | Method of and apparatus for detecting difference between frequencies, and phase locked loop circuit |
-
2001
- 2001-04-13 US US09/835,030 patent/US6947498B2/en not_active Ceased
-
2007
- 2007-05-23 US US11/805,865 patent/USRE41691E1/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3555194A (en) * | 1967-11-17 | 1971-01-12 | Nippon Electric Co | Interstation synchronization apparatus |
US5321850A (en) * | 1991-10-09 | 1994-06-14 | Telefonaktiebolaget L M Ericsson | Diversity radio receiver automatic frequency control |
US6169907B1 (en) * | 1997-10-21 | 2001-01-02 | Interwave Communications International Ltd. | Power control of remote communication devices |
US6307413B1 (en) | 1999-12-23 | 2001-10-23 | Cypress Semiconductor Corp. | Reference-free clock generator and data recovery PLL |
US20020049936A1 (en) * | 2000-07-31 | 2002-04-25 | Vadim Gutnik | Clock distribution circuits and methods of operating same that use multiple clock circuits connected by phase detector circuits to generate and synchronize local clock signals |
US20020136342A1 (en) * | 2001-03-20 | 2002-09-26 | Gct Semiconductor, Inc. | Sample and hold type fractional-N frequency synthesezer |
US20030016087A1 (en) * | 2001-07-19 | 2003-01-23 | Matsushita Electric Industrial Co., Ltd. | Phase-locked loop circuit and data reproduction apparatus |
US20030085739A1 (en) * | 2001-11-07 | 2003-05-08 | Hirofumi Totsuka | Method of and apparatus for detecting difference between frequencies, and phase locked loop circuit |
Non-Patent Citations (5)
Title |
---|
Gutnik et al., "Clock Distribution Circuits and Methods of Operating Same That Use Multiple Clock Circuits Connected By Phase Detector Circuits To Generate and Synchronize Local Clock Signals". |
Lee et al., "Sample and Hold Type Fractional-N Frequency Synthesizer". |
Totsuke, "Method of and Apparatus for Detecting Difference Between Frequencies, And Phase Locked Loop Circuit". |
U.S. Appl. No. 60/221,709, filed on Jul 31, 2000. * |
Yamane et al., "Phase-Locked Loop Circuit and Data Reproduction Apparatus". |
Also Published As
Publication number | Publication date |
---|---|
US20020150177A1 (en) | 2002-10-17 |
US6947498B2 (en) | 2005-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8761328B2 (en) | Equalizer architecture for data communication | |
CN1659780B (en) | Decision feedback equalizer | |
US7580482B2 (en) | Joint, adaptive control of equalization, synchronization, and gain in a digital communications receiver | |
US7342981B2 (en) | Digital receiver having adaptive carrier recovery circuit | |
US6038266A (en) | Mixed mode adaptive analog receive architecture for data communications | |
KR100270893B1 (en) | Detection of co-channel interference in digital television signals | |
US20050286625A1 (en) | Equalizer capable of adjusting step size and equalization method thereof | |
EP0609828A2 (en) | Adaptive matched filter | |
USRE41691E1 (en) | Method and apparatus for performing joint timing recovery of multiple received signals | |
US20060203900A1 (en) | Burst error limiting feedback equalizer system and method for multidimensional modulation systems | |
GB1587421A (en) | Method of and apparatus for digital signal equalization | |
CN1518820B (en) | Phase tracking system | |
US5173925A (en) | Demodulating system capable of accurately equalizing received signals using error correction codes | |
JPH01157112A (en) | Automatic equalization system | |
JP4389934B2 (en) | Clock recovery circuit | |
CA2054049A1 (en) | Apparatus and method for removing distortion in a received signal | |
JP3527270B2 (en) | Multipath transmission compensation method in TDMA system | |
US7190709B2 (en) | Early-late correlation for timing error correction in data communication receivers | |
US20040001541A1 (en) | AGC fine-tuning be the adaptive time domain equalizer | |
US9025969B2 (en) | Method with improved phase robustness in coherent detected optical system | |
US5825818A (en) | Apparatus and method of recovering a timing signal in a transmission apparatus by adjusting tap coefficients | |
US6108375A (en) | Equalization circuit for unknown QAM constellation size | |
GB2296411A (en) | Automatic equalizer | |
EP1340348B1 (en) | Method and apparatus for increasing the quality of the receiver synchronization of qam or cap modulated modem connection | |
TWI253260B (en) | Signal processing apparatus capable of enhance correctness of feedbacked signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SARNOFF CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REED, CHARLES, JR.;REEL/FRAME:019707/0718 Effective date: 20010412 Owner name: TRANSPACIFIC IP LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SARNOFF CORPORATION;REEL/FRAME:019707/0720 Effective date: 20060719 |
|
AS | Assignment |
Owner name: MIYAKO S.A., L.L.C., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRANSPACIFIC IP LTD.;REEL/FRAME:021083/0889 Effective date: 20060711 |
|
AS | Assignment |
Owner name: TRANSPACIFIC PLATINUMERIC, LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRANSPACIFIC IP LTD.;REEL/FRAME:022629/0478 Effective date: 20090416 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |