USRE40664E1 - Method for display time stamping and synchronization of multiple video object planes - Google Patents

Method for display time stamping and synchronization of multiple video object planes Download PDF

Info

Publication number
USRE40664E1
USRE40664E1 US11019149 US1914997A USRE40664E US RE40664 E1 USRE40664 E1 US RE40664E1 US 11019149 US11019149 US 11019149 US 1914997 A US1914997 A US 1914997A US RE40664 E USRE40664 E US RE40664E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
time
base
vop
video
modulo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11019149
Inventor
Thiow Keng Tan
Sheng Mei Shen
Chak Joo Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
    • H04N19/29Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding involving scalability at the object level, e.g. video object layer [VOL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/31Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the temporal domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television, VOD [Video On Demand]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234318Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into objects, e.g. MPEG-4 objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television, VOD [Video On Demand]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/242Synchronization processes, e.g. processing of Program Clock References [PCR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television, VOD [Video On Demand]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network, synchronizing decoder's clock; Client middleware
    • H04N21/4302Content synchronization processes, e.g. decoder synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television, VOD [Video On Demand]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network, synchronizing decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/44012Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving rendering scenes according to scene graphs, e.g. MPEG-4 scene graphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television, VOD [Video On Demand]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/845Structuring of content, e.g. decomposing content into time segments
    • H04N21/8455Structuring of content, e.g. decomposing content into time segments involving pointers to the content, e.g. pointers to the I-frames of the video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/24Systems for the transmission of television signals using pulse code modulation
    • H04N7/52Systems for transmission of a pulse code modulated video signal with one or more other pulse code modulated signals, e.g. an audio signal or a synchronizing signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

A method of encoding a local time base embedded in the compressed data is disclosed. The local time base is encoded in two parts. The first part has a modulo time base that indicates the specific interval in the reference time base and the second part has a time base increment relative to the reference time. Two forms of time base increment is used to allow for the possibility of different encoding order and displaying order. A mechanism for the synchronization of multiple compressed streams with local time base is also described. A time base offset mechanism is also used to allow finer granularity synchronization of the multiple compressed streams.

Description

The present application is a Divisional of Reissue application Ser. No. 09/736,441 filed on Dec. 15, 2000, which is Reissue of U.S. Pat. No. 6,075,576, and which is related to Divisional application Ser. No. 09/736,442 filed on Dec. 15, 2000, which is related to Divisional application Ser. No. 09/846,207 filed on May 2, 2001, and which is related to Divisional application Ser. No. 09/169,300 filed on Dec. 15, 2000, all of which are related to Reissue application Ser. No. 09/736,441 filed on Dec. 15, 2000, all of which are reissue applications of U.S. Pat. No. 6,075,576.

TECHNICAL FIELD

This invention is useful in the coding of digital audio visual materials where there is a need for synchronizing more than one independently encoded audio visual objects for presentation. It is especially suitable when the temporal sampling of the audio visual material is not the same.

BACKGROUND ART

In MPEG-1 and MPEG-2 the input video consists of image frames sampled at regular time intervals. This represents the finest temporal resolution of the input FIG. 1 shows a video sequence with fixed frame rates where the image frames are sampled at regular intervals. In the coded representation of the video sequence using the MPEG-1 and MPEG-2 standards the display order of the decoded frames is indicated by the temporal reference. This parameter appears at the picture header of the bitstream syntax. The value of this parameter is incremented by one for each decoded frame when examined in the display order.

In the H.263 standard it is possible to skip frames and thus decode a variable frame rate video sequence. However the sampling of frames is still fixed. Thus the temporal reference method used in MPEG-1 and MPEG-2 is still appropriate and only need to be modified such that the increment is not in steps of 1 but in step of 1 plus the number of non-transmitted pictures at the input frame rate.

Currently work is being done in the area of coding video as separate objects in multiple video object planes. This represents a new dimension in the decoding and synchronization of the respective video objects. It is expected that these different video object planes may come from several sources and can have very different frame rates. Some of the objects may be rendered and have almost continuous temporal sampling rate. These video objects planes are combined into a composite image for display. Therefore some kind of synchronization is required for the composition. It is possible that the display frame rate is different from any of the frame rates of the video object planes. FIG. 2 shows an example of two video object planes having different and varying frame rates compared to one another. Even if a common frame rate can be found between the two video object plane, it is not automatic that this frame rate will be the same as the output frame rate of the compositor.

Hereafter we will refer to the problem in the video domain. However the same principles of this invention can be extended to the audio domain as well as combinations of the two.

From the above it is clear that the current state of the art does not cater for the synchronization of video object planes. The state of the art also does not provide a common temporal reference when the different video object planes have different frame rates which are not multiples of one another.

The first problem is how to provide a common local time base mechanism for each video object plane. This time base will have to be able to provide very fine temporal granularity and at the same time be able to cope with possibility of very long intervals between two successive instances of the video object planes.

The second problem is how to provide a mechanism for synchronizing video object planes having different frame rates.

DISCLOSURE OF INVENTION

The above problems can be solved by implementing a common temporal resolution to be used for all the local time base. In order to cater for the wide range of temporal granularity the local time base is partitioned into two different parts. The first part containing the fine granularity temporal resolution which provide a short time base. The second part contain a coarse granularity temporal resolution which provide a long time base. The short time base is included at each the video object planes to provide temporal reference to the instances of the video objects. The short time base is then synchronized to the longtime base which is common to all the video object planes. It is used to synchronize all the different video object planes to a common time base provided by the master clock.

According to a first aspect of the present invention, a method of encoding a local time base of an audio visual sequence in the compressed data comprises the steps of:

obtaining instances of the audio visual sequence by temporal sampling;

determining the local time base of the said instances to be encoded into compressed data;

encoding the said local time base in two parts, comprising of a modulo time base that marks the occurrence of a set of time reference spaced evenly at a specific interval on the local time base and a time base increment relative to the said evenly spaced time reference;

inserting the modulo time base into the compressed data whenever the specific interval have elapsed; and

inserting the time base increment within the compressed data of the said instances of the audio visual sequence.

According to a second aspect of the invention, a method of encoding a local time base of an audio visual sequence in the compressed data comprises the steps of:

obtaining instances of the audio visual sequence by temporal sampling;

determining the local time base of the said instances to be encoded into compressed data;

encoding the said instances in one of two methods comprising of a first method of compression without reference to any future instances and a second method of compression which refers to the future reconstructed instance;

encoding the said local time base in two parts, comprising of a modulo time base that marks the occurrence of a set of time reference spaced evenly at a specific interval on the local time base and a time base increment.

encoding the time base increment for the instance compressed using the first compression method as an absolute value relative to the said evenly spaced time reference;

encoding the time base increment for the instance compressed using the second compression method as a relative value to the local time base of the previously compressed instance using the said first method;

inserting the modulo time base into the compressed data whenever the specific interval have elapsed; and

inserting the time base increment within the compressed data of the said instances of the audio visual sequence.

According to a third aspect of the invention, a method of the first or the second aspect of the invention, wherein a plurality of compressed bitstreams containing local time base information encoded therein are multiplexed, further comprises, for multiplexing, the steps of:

synchronizing the local time base of the individual compressed bitstream to a common time base by encoding and inserting the time base offset in the multiplexed bitstream;

examining each of the compressed bitstream for the next compressed instance to be placed into the multiplexed bitstream until all the compressed bitstreams have arrived at the modulo time base;

inserting a common modulo time base into the multiplex bitstream and skipping the modulo time base of the compressed bitstreams; and

repeating the last two steps until all compressed bitstreams are exhausted.

According to a fourth aspect of the invention, a method of the first or the second aspect of the invention, wherein a plurality of compressed bitstreams containing local time base information encoded therein are multiplexed and de-multiplexed, further comprises, for de-multiplexing, the steps of:

decoding the time base offset of the individual compressed bitstream;

examining the multiplexed bitstream for the next compressed instance and placing the said instance into the appropriate compressed bitstream until a modulo time base is encountered in the multiplexed bitstream;

inserting a modulo time base to each of the compressed bitstreams; and

repeating the last two steps until the multiplexed bitstream is exhausted.

According to a fifth aspect of the invention, a method of decoding a local time base of an audio visual sequence from the time base of the compressed data encoded, according to the first aspect of the invention, comprises the steps of:

initializing the reference time base taking into account the time base offset;

incrementing the reference time base by a specific interval for each modulo time base decoded;

decoding the time base increment of the compressed instance; and

determining the decoding time base of the said instance by adding the said decoded time base increment value to the reference time base.

According to a sixth aspect of the invention, a method of decoding a local time base of an audio visual sequence from the time base of the compressed data encoded, according to the second aspect of the invention, comprises the steps of

initializing the reference time base taking into account of the time base offset;

incrementing the reference time base by a specific interval for each modulo time base decoded;

decoding the time base increment of the compressed instance; and

determining the time base increment to be one of two types, absolute or relative, depending on the first or second compression method used in the encoding of the instance, respectively;

determining the decoding time base of the said instance by adding the said decoded time base increment value to the reference time base if the time base is of the first type; and

determining the decoding time base of the said instance by adding the said decoded time base increment value to the decoding time base of the previous instance encoded using the first compression method, if the time base increment is of the second type.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will become more fully understood from the detailed description given below and the accompanying diagrams wherein:

FIG. 1 illustrates the temporal sampling of the prior art where the frames of the video sequence is sampled at regular intervals.

FIG. 2 illustrates the concept of video object planes and the relationship with one another. The sampling of the video object planes can be irregular and the sampling period can vary drastically.

FIG. 3A illustrates the current invention where the temporal reference of the video objects are indicated by the modulo time base and the VOP time increment. Illustration uses I and P VOP only.

FIG. 3B illustrates the current invention where the temporal reference of the video objects are indicated by the modulo time base and the VOP time increment. Illustration uses I, P and B VOP.

FIG. 4 illustrates an example of the ambiguity that can arise when the presentation order and the encoding order is different as a result of B-video object planes.

FIG. 5 illustrates a solution to the ambiguity by employing absolute and relative time bases.

FIG. 6 illustrates the combining of two VOPs and their synchronization to the common time base by employing VOP time offsets.

FIG. 7 illustrates the flow diagram for the encoding of the time base.

FIG. 8 illustrates the flow diagram for the multiplexing of more than one video object planes.

FIG. 9 illustrates the flow diagram for the de-multiplexing of more than one video object planes.

FIG. 10 illustrates the flow diagram for the recovery of the presentation time stamp.

FIG. 11 illustrates the block diagram for the operation of the bitstream encoder for encoding of the time base.

FIG. 12 illustrates the block diagram for the operations of the bitstream decoder for decoding of the time base.

FIG. 13 illustrates the time chart for forming a bitstream data.

BEST MODE FOR CARRYING OUT THE INVENTION

This invention operates by providing two forms of synchronization. The first is a short time base attached to the video object plane. Hereafter this time base will be referred to as the VOP time increment. The VOP time increment is the timing mechanism for the video object plane with respect to the long time base which is attached to a group of video object planes to be decoded and composed together. The long time base is referred to as the modulo time base. The VOP time increment and the modulo time based will then be used jointly to determine the actual time base to use for the composition of the video object planes into the final composited sequence for display.

In order to facilitate editing of the bitstream and combining different video object planes from different sources into a new group of video object planes there is a need for a third component to allow a fixed amount of offset between the local time base of the individual video object plane from the common time base. Hereafter this offset will be referred to as the VOP time offset. This prevents the different video object planes from having to synchronize at a granularity equivalent to the modulo time base interval. This component should be kept constant for each video object plane within the group of video object planes that are multiplexed together.

First, the modulo time base is described.

Modulo time base represent the coarse resolution of the local time base. It does not have a value like the VOP time increment. In fact it is more of a synchronization mechanism to synchronize the VOP time increment to the local time base of the video object plane. It is placed in the encoded bitstream as markers to indicate that the VOP time increment of the video object planes that follows are to be reset and that the reference to the local time base are to be incremented by one or more units of the modulo time base interval. In FIGS. 3A, 3B, 4, 5 and 6, the modulo time base is shown as a series of zero or more “1” terminated by a “0” inserted into the bitstream header before the VOP time increment. The number of “1” inserted into the bitstream depends on the number of units of modulo time base that has elapsed since the last code I or P-video object plane. At the encoder and decoder the modulo time base counter is incremented by one for each “1” encountered. Modulo time based counter is finite in length and therefore in a practical system the modulo time base is reset to zero when the maximum value is exhausted. In a typical video sequence, the video object planes from a group of VOP. Therefore the modulo time base is usually reset at the start of this group of VOP.

Next, the VOP time increment is described.

The VOP time increment shall be in units that can support the shortest temporal sampling of the video objects. It can also be the native time base for the object which is rendered. It therefore represents the finest granularity of temporal resolution that is required or can be supported.

The VOP time increment can then be indicated by a finite length number greater or equal to the ratio of the global time base interval to the local time base resolution. FIG. 3A shows an example of the VOP time increment for I and P-video object planes and the reference to the modulo time base. An absolute time base is used. The VOP time increment is reset each time the modulo time base is encountered. FIG. 3B shows another example using I, P and B-video object planes. The operation is the same with the exception that the modulo time base is repeated in the B-video object planes. If the modulo time base is not repeated in the B-video object plane then ambiguities arise due to the difference in decoding and presentation order. This is described in detail below.

Since the VOP time increment corresponds to the presentation time base, a potential problem will arise when the encoding order is different from presentation order. This occurs with B-video object planes. Similar to MPEG-1 and MPEG-2 B-pictures, B-video object planes are encoded after their reference I and P-video object planes even though they preceded the reference video objects in the presentation order. Since the VOP time increment is finite and is relative to the modulo time base, the VOP time increment is reset when the modulo time base is encountered. However, the order of encoding for the B-video object planes have been delayed. FIG. 4 show the ambiguity that can arise. It is not possible to determine when the VOP time increment should be reset. In fact when given a sequence of encoded events as in FIG. 4A, it is not possible to know which of the timing situations of FIGS. 4B, 4C and 4D it is trying to represent. This problem comes about because of the use of one modulo time base shared among all the different types of video object coupled with the difference between the encoding and presentation order. There is nothing that can be done to the encoding order since the reference information is required by the B-video object planes. It is also not desirable to have independent modulo time base for the different prediction type. Therefore the solution is to code the VOP time increment of the B-video object planes as a relative value to the preceding I or P-video object planes and that the modulo time base applies only to the I and P-video object planes and not the B video object planes. This solution is depicted in FIG. 5.

Next, VOP time offset is described.

Besides the above the modulo time base are shared between all video object planes. This means that the synchronization of the different video objects will have a granularity equivalent to the modulo time base interval. This is unacceptable especially in the case where video object planes from different groups are combined to form a new group of video object planes. FIG. 6 shows an example of two different video object planes that were encoded with two different local time base that are offset from one another. Thus when the video object planes are multiplexed, the synchronization of the video objects planes are also offset. A finer granularity is achieved by allowing each individual video object plane to have a VOP time offset. This means that only this value is changed when the video object planes are manipulated and multiplexed. There is no need to change the VOP time increment and yet it is possible to multiplex the different video object planes without coarse granularity timing differentials. FIG. 6 illustrates the use of this time base offsets.

The preferred embodiment of the current invention involves a method of encoding the time base for each of the individual video object plane bitstream, a method of multiplexing different video object planes into a common time base, a method of de-multiplexing the multiplexed bitstream into the components and a method of recovering the time base from the component bitstream.

Encoding the time base is described.

The flow diagram of the embodiment of the time base encoding is shown in FIG. 7. In the encoder the local time base is first initialized to the local start time in step 1. The process is passed to step 2 where the encoder determines the current value of the local time base. In step 3 the local time base obtained is compared to the previously encoded modulo time base to see if the interval has exceeded the modulo time base interval. If the interval has been exceeded the control is passed to step 4 where the required number of modulo time base is inserted into the bitstream. If the interval has not been exceeded then no special handling is necessary. The processing then proceeds to step 5 where the VOP time increment is inserted into the bitstream. The object is then encoded in step 6 and the inserted into the bitstream. The encoder then checks to determine if there are more objects to be encoded in step 7. If there are more objects to be encoded the process resumes at step 2 where the local time base is obtained. If there are no more objects to be encoded then the process terminates.

The following formula are used to determine the absolute and relative VOP time increments for I/P-video object planes and B-video object planes, respectively.
tGTBn=n×tGTBI+tGTBO(n=0, 1, 2, 3, . . . )  (1)
tAVTI=tTBI/P−tGTBn  (2)
tRVTI=tETB−tETBI/P  (3)
where

  • tGTBn is the encoder time base marked by the nth encoded modulo time base,
  • tGTBI is the pre-determined modulo time base interval,
  • tGTBO is the encoder time base start time,
  • tAVTI is the absolute VOP time increment for the I or P-video object planes,
  • tETBI/P is the encoder time base at the start of the encoding of the I or P video object planes,
  • tRVTI is the relative VOP time increment for the B-video object planes, and
  • tETBB is the encoder time base at the start of the encoding of the B video object plane.

Next, multiplexing more than one video object planes is described.

When more than one video object planes are multiplexed together, the multiplexer examines the multiple video object plane bitstreams to determine the order of multiplexing as well as the synchronization. The operations involved is depicted in FIG. 8. The VOP time offsets for each of the video object planes to be multiplexed are inserted into the bitstream in step 11. All the bitstreams of the video object planes to be multiplexed are then examined in step 12 to determine if all of the planes are at their respective modulo time base. If they are then the processing is passes to step 13 where a common modulo time base is inserted into the multiplexed bitstream. The processing then proceeds to step 14 ,where the next encoded video object is inserted into the multiplexed bitstream. In step 15 the bitstreams of the video object planes to be multiplexed are again examined to see if there are more video objects to be multiplexed. If there is, then the control is passed to step 12 again. Otherwise the process ends.

De-multiplexing the bitstream containing more than one video object planes is described.

The de-multiplexing of the bitstream containing multiple video object planes is depicted in FIG. 9. The process begins in step 21 where the VOP time offsets are decoded and passed to the decoders for synchronization. Then the multiplexed bitstream is examined in step 22 to see if the modulo time base is found. If the modulo time base is found then the process is passed to step 23 where the modulo time base is inserted into all the video object bitstreams. The processing then continues with step 24 where the next video object is examined and inserted into the appropriate video object bitstream. Finally the multiplexed bitstream is examined again to see if there is any more video object to de-multiplex. If there is, then the process is passed to step 22 again. Otherwise the process ends.

Recovering the time base is described.

The embodiment of the time base recovery is shown in FIG. 10. In recovering the local time base, the process begins in step 31 where the local time base is initialized taking into account of the VOP time offset decoded by the de-multiplexer. Then the process is passed to step 32 which checks the bitstream to determine if the modulo time base is decoded. If the modulo time base is decoded then the process is passed to step 33 where the local time base is incremented by the modulo time base increment. The process is then passed to step 37. If the modulo time base is not decoded then the process is passed to step 34 where the video object is examine to determine if it is a B-video object or not. If it is then the process is passed to step 35 where the B-video object decoding time base is calculated based on equation (6). The process is then passed to step 37. If the result of step 34 is not a B-video object then the process is passed to step 36 where the decoding time base is calculated based on equation (5). The process then proceeds to step 37. In step 37, the bitstream is examine to see if there is more video objects to decode. If there is then the process is passed to step 32 again. Otherwise the processing ends.

The following formula are used to determine the presentation time stamp of the video objects:
tGTBn=n×tGTBI+tGTBO (n=0, 1, 2, 3, . . . )  (4)
tDTBI/P=tAVTI+tGTBn  (5)
tDTBB=tRVTI+tDTBI/P  (6)
where

  • tGTBn is the decoding time base marked by the nth encoded modulo time base,
  • tGTBI is the pre-determined modulo time base interval,
  • tGTBO is the decoding time base start time,
  • tDTBI/P is the decoding time base at the start of the decoding of the I or P video object planes,
  • tAVTI is the decoded absolute VOP time increment for the I or P-video object planes,
  • tDTBB is the decoding time base at the start of the decoding of the B video object plane, and
  • tRVTI is the decoded relative VOP time increment for the B-video object planes.

Implementation of the Bitstream Encoder is described.

FIG. 11 shows the block diagram for an implementation of the bitstream encoder for encoding the modulo time base and the VOP time increment. For the purpose of this illustration the example in FIG. 3B is used. Since bi-directional prediction is used, the encoding order is different from the presentation order shown in FIG. 3B. The encoding order begins with the I-VOP followed by the P-VOP before the B-VOP. This is illustrated in the three paragraphs below.

The process begins in the initializer, step 41 where the bitstream encoder starts by initializing the local time base register to the initial value of the time code. The same time code value is encoded into the bitstream. At the start of the encoding of the next I-VOP the time code comparator, step 42, compares the presentation time of the I-VOP against the local time base register. The result is passed to the modulo time base encoder, step 43. The modulo time base encoder will insert into the bitstream the required number of “1” equivalent to the number of modulo time base increment that has elapsed. This is then followed by the symbol “O” to signal the end of the modulo time base code. The local time base register is updated to the current modulo time base. The processing then proceed to the VOP time base increment encoder, step 44, where the remainder of the presentation time code of the I-VOP is encoded.

The process then repeats with the next encoded video object plane which is the P-VOP. The time code comparator, step 42, compares the presentation time of the P-VOP against the local time base register. The result is passed to the modulo time base encoder, step 43. The modulo time base encoder will insert the required number of “1” equivalent to the number of modulo time base increment that has elapsed. This is then followed by the symbol “O” to signal the end of the modulo time base code. The B-VOP time base register is set to the value of the local time base register and the local time base register is updated to the current modulo time base. The processing then proceeds to the VOP time base increment encoder, step 44, where the remainder of the presentation time code of the P-VOP is encoded.

The process then repeats with the next encoded video object plane which is the B-VOP. The time code comparator, step 42, compares the presentation time of the B-VOP against the B-VOP time base register. The result is passed to the modulo time base encoder, step 43. The modulo time base encoder will insert the required number of “1” equivalent to the number of modulo time base increment that has elapsed. This is then followed by the symbol “O” to signal the end of the modulo time base code. Both the B-VOP time base register and the local time base register are not changed after the processing of the B-VOP. The processing then proceed to the VOP time base increment encoder, step 44, where the remainder of the presentation time code of the B-VOP is encoded.

The local time base register is reset at the next I-VOP which marks the beginning of the next group of VOP.

Implementation of the Bitstream Decoder is described.

FIG. 12 illustrates the block diagram for the implementation of the decoder for the modulo time base and VOP time increment to recover the presentation time stamp. As in the implementation of the encoder the example in FIG. 3B is used. The decoding order is the same as the encoding order where the I-VOP is decoded followed by the P-VOP before the B-VOP. This is explained in the paragraphs below.

The processing begins in the initializer, step 51, where the local time base register is set to the value of the time code decoded from the bitstream. The processing then proceeds the modulo time base decoder, step 52, where the modulo time base increment is decoded. The total number of modulo time base increment decoded is given by the number of “1” decoded before the symbol “0” Next the VOP time base increment is decoded in the VOP time base increment, step 53. In the time base calculator, step 54, the presentation time of the I-VOP is recovered. The total decoded modulo time base increment value is added to the local time base register. The VOP time base increment is then added to the local time base register to obtain the presentation time of the I-VOP. The process then goes to the video object decoder where the video object is decoded.

For the P-VOP, the process repeats in the modulo time base decoder, step 52, where the modulo time base increment is decoded. The total number of modulo time base increment decoded is given by the number of “1” decoded before the symbol “O”. Next the VOP time base increment is decoded in the VOP time base increment, step 53. In the time base calculator, step 54, the presentation time of the P-VOP is recovered. The B-VOP modulo time base register is set to the value in the local time base register. The total decoded modulo time base increment value is added to the local time base register. The VOP time base increment is then added to the local time base register to obtain the presentation time of the P-VOP. The process then goes to the video object decoder where the video object is decoded.

For the B-VOP, the process repeats in the modulo time base decoder, step 52, where the modulo time base increment is decoded. The total number of modulo time base increment decoded is given by the number of “1” decoded before the symbol “O”. Next the VOP time base increment is decoded in the VOP time base increment, step 53. In the time base calculator, step 54, the presentation time of the B-VOP is recovered. The total decoded modulo time base increment value and the VOP time base increment is added to the B-VOP time base register to obtain the presentation time of the B-VOP. Both the B-VOP time base register and the local time base register are left unchanged The process then goes to the video object decoder where the video object is decoded.

The local time base register is reset at the next I-VOP which marks the beginning of the next group of VOP.

Specific example is described.

Referring to FIG. 13, an example of the steps for encoding the compressed data into bitstream data is shown. As shown in the top row in FIG. 13, the compressed video data VOPs are aligned in the display order, I1, B1, B2, P1, B3, P3 with a GOP (group of pictures) header inserted at the beginning of group of VOPs. While being displayed, the local time, at which the display is effected, is measured for each VOP using the local time clock. For example, the first VOP (I1-VOP) is displayed at 1 hour 23 minute 45 second 350 millisecond (1:23:45:350) counted from the very beginning of the video data; the second VOP (B1-VOP) is displayed at 1:23:45:750; the third VOP (B2-VOP) is displayed at 1:23:46:150; and so on.

For encoding the VOPs, it is necessary to insert the display time data to each VOP. The insertion of the full time data including hour, minute, second and millisecond occupies a certain data space in the header portion of each VOP. The aim of the present invention is to reduce such a data space and to simplify the time data to be inserted in each VOP.

Each of the VOPs shown in the first row in FIG. 13 is stored with the display time data of millisecond at the VOP time increment area. Each of the VOPs in the first row is also stored temporarily with the display time data of hour, minute and second. The GOP header is stored with the display data of hour, minute and second for the first VOP (I1-VOP).

As shown in the second row in FIG. 13, the VOPs are delayed by a predetermined time using a buffer (not shown). When the VOPs are produced from the buffer, the order of the VOPs are changed according to the bi-directional prediction rule such that the bi-directional VOP, i.e., B-VOP, should be positioned after the P-VOP to which the B-VOP references. Thus, the VOPs are aligned in the order of I1, P1, B1, B2, P2, B3.

As shown in the third row in FIG. 13, at time T1, i.e., when the GOP header is being encoded, the local time base register stores the hour, minute, second data as stored in the GOP header. In the example shown in FIG. 13, the local time base register stores 1:23:45. Then, before time T2, the bitstream data for the GOP header is obtained with the hour, minute, second data being inserted as shown at the bottom row in FIG. 13.

Then, at time T2, the first VOP (I1-VOP) is taken up. The time code comparator compares the time (hour, minute, second) stored in the local time base register with the time (hour, minute, second) temporarily stored in the first VOP (I1-VOP). According to the example, the result of the comparison is the same. Thus, the comparator produces “0” indicating that the first VOP (I1-VOP) occurs in the same second as the second being held in the local time base register. The result “0” as produced from the comparator is added to the first VOP (I1-VOP) at the modulo time base area. At the same time, the hour, minute and second data temporarily stored in the first VOP (I1-VOP) is eliminated. Thus, before time T3, the bitstream data for the first VOP (I1-VOP) is obtained with “0” inserted in the modulo time base area and “350” inserted in the VOP time increment area.

Then, at time T3, the second VOP (P1-VOP) is taken up. The time code comparator compares the time (hour, minute, second) stored in the local time base register with the time (hour, minute, second) temporarily stored in the second VOP (P1-VOP). According to the example, the result of the comparison is such that the time temporarily stored in the second VOP (P1-VOP) is one second greater than the time stored in local time base register. Thus, the comparator produces “10” indicating that the second VOP (P1-VOP) occurs in the next one second to the second being held in the local time base register. If the second VOP (P1-VOP) occurs in the next—next second to the second being held in the local time base register, the comparator will produce “110”.

After time T3, the B-VOP time base register is set to the time equal to the time carried in the local time base register immediately before time T3. In the example, the B-VOP time base register is set to 1:23:45. Also, after time T3, the local time base register is incremented to the time equal to the time temporarily stored in the second VOP (P1-VOP). Thus, in the example, the local time base register is incremented to 1:23:46.

The result “10” as produced from the comparator is added to the second VOP (P1-VOP) at the modulo time base area. At the same time, the hour, minute and second data temporarily stored in the second VOP (P1-VOP) is eliminated. Thus, before time T4, the bitstream data for the second VOP (P1-VOP) is obtained with “10” inserted in the modulo time base area and “550” inserted in the VOP time increment area.

Then, at time T4, the third VOP (B1-VOP) is taken up. The time code comparator compares the time (hour, minute, second) stored in the B-VOP time base register with the time (hour, minute, second) temporarily stored in the third VOP (B1-VOP). According to the example, the result of the comparison is the same. Thus, the comparator produces “0” indicating that the third VOP (B1-VOP) occurs in the same second as the second being held in the B-VOP time base register. The result “0” as produced from the comparator is added to the third VOP (B1-VOP) at the modulo time base area. At the same time, the hour, minute and second data temporarily stored in the third VOP (I1-VOP) is eliminated. Thus, before time T5, the bitstream data for the third VOP (B1-VOP) is obtained with “0” inserted in the modulo time base area and “750” inserted in the VOP time increment area.

Then, at time T5, the fourth VOP (B2-VOP) is taken up. The time code comparator compares the time (hour, minute, second) stored in the B-VOP time base register with the time (hour, minute, second) temporarily stored in the fourth VOP (B2-VOP). According to the example, the result of the comparison is such that the time temporarily stored in the fourth VOP (B2-VOP) is one second greater than the time stored in B-VOP time base register. Thus, the comparator produces “10” indicating that the fourth VOP (B2-VOP) occurs in the next one second to the second being held in the B-VOP time base register.

During the processing of the B type VOP, neither the local time base register nor the B-VOP time base register is incremented regardless of whatever result the comparator produces.

The result “10” as produced from the comparator is added to the fourth VOP (B2-VOP) at the modulo time base area. At the same time, the hour, minute and second data temporarily stored in the fourth VOP (B2-VOP) is eliminated. Thus, before time T6, the bitstream data for the fourth VOP (B2-VOP) is obtained with “10” inserted in the modulo time base area and “150” inserted in the VOP time increment area.

Then, at time T6, the fifth VOP (P2-VOP) is taken up. The time code comparator compares the time (hour, minute, second) stored in the local time base register with the time (hour, minute, second) temporarily stored in the fifth VOP (P2-VOP). According to the example, the result of the comparison is such that the time temporarily stored in the fifth VOP (P2-VOP) is one second greater than the time stored in local time base register. Thus, the comparator produces “10” indicating that the fifth VOP (P2-VOP) occurs in the next one second to the second being held in the local time base register.

After time T6, the B-VOP time base register is incremented to the time equal to the time carried in the local time base register immediately before time T6. In the example, the B-VOP time base register is incremented to 1:23:46. Also, after time T6, the local time base register is incremented to the time equal to the time temporarily stored in the fifth VOP (P2-VOP). Thus, in the example, the local time base register is incremented to 1:23:47.

The result “10” as produced from the comparator is added to the fifth VOP (P2-VOP) at the modulo time base area. At the same time, the hour, minute and second data temporarily stored in the fifth VOP (P2-VOP) is eliminated. Thus, before time T4, the bitstream data for the fifth VOP (P2-VOP) is obtained with “10” inserted in the modulo time base area and “350” inserted in the VOP time increment area.

Thereafter, a similar operation is carried out for forming bitstream data for the following VOPs.

For decoding the bitstream data, an operation opposite to the above is carried out. First, the time (hour, minute, second) carried in the GOP header is read. The read time is stored in the local time base register.

Upon receipt of the I type or P type VOP, i.e., other then the B type VOP, the data stored in the modulo time base area is read. If the read data is “0”, i.e., without any is in front of 0, no change is made in the local time base register, and also no change is made in the B-VOP time base register. If the read data is “10”, the time stored in the local time base register is incremented by one second. If the read data is “110”, the time stored in the local time base register is incremented by two seconds. In this manner, the number of seconds which should be incremented is determined by the number of is inserted in front of 0. Also, when the read data is “10” or “110”, the B-VOP time base register, which is a memory, copies the time the local time base register had carried just before the most recent increment. Then, the time (hour, minute, second) carried in the local time base register is combined with the time (millisecond) carried in the VOP time increment area to establish a specific time at which the I type or P type VOP should occur.

Upon receipt of the B type VOP, the data stored in the modulo time base area is read. If the read data is “0”, the time (hour, minute, second) carried in the B-VOP VOP time base register is combined with the time (millisecond) carried in the VOP time increment area to establish a specific time at which the B type VOP should occur. If the read data is “10”, the time (hour, minute, second) carried in the B-VOP time base register is added one second, and then the added result time is combined with the time (millisecond) carried in the VOP time increment area to establish a specific time at which the B type VOP should occur. If the read data is “110”, the time (hour, minute, second) carried in the B-VOP time base register is added two seconds, and then the added result time is combined with the time (millisecond) carried in the VOP time increment area to establish a specific time at which the B type VOP should occur.

The effects of this invention is to enable video object planes encoded by different encoders to be multiplexed. It will also facilitate object based bitstream manipulation of compressed data that come from different sources to create new bitstreams. It provides a method of synchronization for audio visual objects.

The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims (9)

1. A method of encoding a local time base of an audio visual sequence in the compressed data comprising the steps of:
obtaining instances of the audio visual sequence by temporal sampling;
determining the local time base of the said instances to be encoded into compressed data;
encoding the said local time base in two parts, comprising of a modulo time base that marks the occurrence of a set of time reference spaced evenly at a specific interval on the local time base and a time base increment relative to the said evenly spaced time reference;
inserting the modulo time base into the compressed data whenever the specific interval have elapsed; and
inserting the time base increment within the compressed data of the said instances of the audio visual sequence.
2. A method of claim 1, wherein a plurality of compressed bitstreams containing local time base information encoded therein are multiplexed and de-multiplexed, for de-multiplexing further comprising the steps of:
decoding the time base offset of the individual compressed bitstream;
examining the multiplexed bitstream for the next compressed instance and placing the said instance into the appropriate compressed bitstream until a modulo time base is encountered in the multiplexed bitstream;
inserting a modulo time base to each of the compressed bitstreams; and
repeating the last two steps until the multiplexed bitstream is exhausted.
3. A method of decoding a local time base of an audio visual sequence from the time base of the compressed data encoded according to claim 1 comprising the steps of:
initializing the reference time base taking into account the time base offset;
incrementing the reference time base by a specific interval for each modulo time base decoded;
decoding the time base increment of the compressed instance; and
determining the decoding time base of the said instance by adding the said decoded time base increment value to the reference time base.
4. A method of encoding the time base according to claim 1 wherein the local time base, time base increment and time base offsets are in units of milliseconds and the specific interval has a duration of 1000 milliseconds.
5. A method of claim 1, wherein a plurality of compressed bitstreams containing local time base information encoded therein are multiplexed, for multiplexing further comprising the steps of:
synchronizing the local time base of the individual compressed bitstream to a common time base by encoding and inserting the time base offset in the multiplexed bitstream;
examining each of the compressed bitstream for the next compressed instance to be placed into the multiplexed bitstream until all the compressed bitstreams have arrived at the modulo time base;
inserting a common modulo time base into the multiplex bitstream and skipping the modulo time base of the compressed bitstreams; and
repeating the last two steps until all compressed bitstreams are exhausted.
6. A method of multiplexing a plurality of compressed bitstreams as in claim 5 where the individual compressed bitstreams are themselves multiplexed bitstreams.
7. A method of encoding a local time base of an audio visual sequence in the compressed data comprising the steps of:
obtaining instances of the audio visual sequence by temporal sampling;
determining the local time base of the said instances to be encoded into compressed data;
encoding the said instances in one of two methods comprising of a first method of compression without reference to any future instances and a second method of compression which refers to the future reconstructed instance;
encoding the said local time base in two parts, comprising of a modulo time base that marks the occurrence of a set of time reference spaced evenly at a specific interval on the local time base and a time base increment;
encoding the time base increment for the instance compressed using the first compression method as an absolute value relative to the said evenly spaced time reference;
encoding the time base increment for the instance compressed using the second compression method as a relative value to the local time base of the previously compressed instance using the said first method;
inserting the modulo time base into the compressed data whenever the specific interval have elapsed; and
inserting the time base increment within the compressed data of the said instances of the audio visual sequence.
8. A method of decoding a local time base of an audio visual sequence from the time base of the compressed data encoded according to claim 7 comprising the steps of
initializing the reference time base taking into account of the time base offset;
incrementing the reference time base by a specific interval for each modulo time base decoded;
decoding the time base increment of the compressed instance; and
determining the time base increment to be one of two types, absolute or relative, depending on the first or second compression method used in the encoding of the instance, respectively;
determining the decoding time base of the said instance by adding the said decoded time base increment value to the reference time base if the time base is of the first type; and
determining the decoding time base of the said instance by adding the said decoded time base increment value to the decoding time base of the previous instance encoded using the first compression method, if the time base increment is of the second type.
9. A method for encoding a local time base of a video object plane (VOP) comprising:
encoding a time code that indicates a modulo part of a first video object plane (VOP) in a group of video object planes (VOPs);
encoding the local time base for the first video object plane (VOP) in a first part and a second part, the first part being a modulo time base indicating a time in one second resolution units that has elapsed since the time code, the second part being a time base increment representing a time increment from a reference time marked by the modulo time base of the first video object plane (VOP);
encoding the local time base for each next video object planes (VOPs) following the first video object plane (VOP) in a first part and a second part, the first part being a modulo time base indicating a time in one second resolution units that has elapsed since a reference time marked by the modulo time base of a previous video object plane (VOP) positioned before the next video object plane (VOP), the second part being a time base increment representing a time increment from a reference time marked by the modulo time base of the next video object plane (VOP);
inserting the encoded time code into a group of pictures (GOP) header at the beginning of the group of video object planes (VOPs); and
inserting the encoded local time base of the video object plane (VOP) into a bitstream of the video object plane (VOP).
US11019149 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes Expired - Lifetime USRE40664E1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP17643096 1996-07-05
US11019149 USRE40664E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
PCT/JP1997/002319 WO1998002003A1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09011761 US6075576A (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09736441 USRE38923E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09736442 USRE39115E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US73630000 true 2000-12-15 2000-12-15
US84620701 true 2001-05-02 2001-05-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11019149 USRE40664E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09011761 Reissue US6075576A (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes

Publications (1)

Publication Number Publication Date
USRE40664E1 true USRE40664E1 (en) 2009-03-17

Family

ID=16013573

Family Applications (6)

Application Number Title Priority Date Filing Date
US09736442 Expired - Lifetime USRE39115E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US11019149 Expired - Lifetime USRE40664E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09736300 Expired - Lifetime USRE38875E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video objects planes
US09736441 Expired - Lifetime USRE38923E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09846207 Expired - Lifetime USRE39344E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09011761 Expired - Lifetime US6075576A (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09736442 Expired - Lifetime USRE39115E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes

Family Applications After (4)

Application Number Title Priority Date Filing Date
US09736300 Expired - Lifetime USRE38875E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video objects planes
US09736441 Expired - Lifetime USRE38923E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09846207 Expired - Lifetime USRE39344E1 (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes
US09011761 Expired - Lifetime US6075576A (en) 1996-07-05 1997-07-03 Method for display time stamping and synchronization of multiple video object planes

Country Status (8)

Country Link
US (6) USRE39115E1 (en)
EP (6) EP1073277A1 (en)
JP (1) JP3186775B2 (en)
KR (1) KR100274434B1 (en)
CN (5) CN1184821C (en)
DE (10) DE69738035T2 (en)
ES (5) ES2158570T3 (en)
WO (1) WO1998002003A1 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016220A (en) * 1997-04-01 2000-03-25 이데이 노부유끼 Picture coding device, picture coding method, picture decoding device, picture decoding method, and providing medium
WO1999021367A1 (en) * 1997-10-20 1999-04-29 Mitsubishi Denki Kabushiki Kaisha Image encoder and image decoder
DE19746611A1 (en) * 1997-10-22 1999-04-29 Bosch Gmbh Robert Contour encoding method for image sequence
JP2000013790A (en) 1998-06-19 2000-01-14 Sony Corp Image encoding device, image encoding method, image decoding device, image decoding method, and providing medium
JP4109772B2 (en) * 1998-12-03 2008-07-02 キヤノン株式会社 Data processing method and apparatus
JP2000184373A (en) * 1998-12-21 2000-06-30 Matsushita Electric Ind Co Ltd Time stamping method and device using modulo time standard and dynamic time increment resolution
US6299998B1 (en) * 1999-03-15 2001-10-09 Reveo, Inc. Movable anode fuel cell battery
EP1122955A4 (en) * 1999-03-31 2008-09-24 Matsushita Electric Ind Co Ltd Method and device for seamless-decoding video stream including streams having different frame rates
US7624337B2 (en) * 2000-07-24 2009-11-24 Vmark, Inc. System and method for indexing, searching, identifying, and editing portions of electronic multimedia files
EP2364025B1 (en) * 2000-08-15 2015-09-16 Microsoft Technology Licensing, LLC Methods, systems and data structures for timecoding media samples
CN1393094A (en) * 2000-08-16 2003-01-22 皇家菲利浦电子有限公司 Method of playing multimedia applications
WO2002015591A1 (en) * 2000-08-16 2002-02-21 Koninklijke Philips Electronics N.V. Method of playing multimedia data
JP4208398B2 (en) * 2000-10-05 2009-01-14 株式会社東芝 Video decoding and reproducing apparatus, video decoding reproduction method and the multimedia information receiving apparatus
US20020089602A1 (en) 2000-10-18 2002-07-11 Sullivan Gary J. Compressed timing indicators for media samples
US7224730B2 (en) * 2001-03-05 2007-05-29 Intervideo, Inc. Systems and methods for decoding redundant motion vectors in compressed video bitstreams
US20020145622A1 (en) * 2001-04-09 2002-10-10 International Business Machines Corporation Proxy content editing system
US7280738B2 (en) 2001-04-09 2007-10-09 International Business Machines Corporation Method and system for specifying a selection of content segments stored in different formats
US6870887B2 (en) * 2001-04-09 2005-03-22 International Business Machines Corporation Method and system for synchronization between different content encoding formats
US6662176B2 (en) * 2001-05-07 2003-12-09 Hewlett-Packard Development Company, L.P. Database indexing and rolling storage method for time-stamped normalized event data
US20050075929A1 (en) * 2002-10-17 2005-04-07 Wolinsky Robert I. System and method for partitioning airtime for distribution and display of content
US20030229549A1 (en) 2001-10-17 2003-12-11 Automated Media Services, Inc. System and method for providing for out-of-home advertising utilizing a satellite network
US7613630B2 (en) * 2002-10-17 2009-11-03 Automated Media Services, Inc. System and method for editing existing footage to generate and distribute advertising content to retail locations
US7614065B2 (en) * 2001-12-17 2009-11-03 Automated Media Services, Inc. System and method for verifying content displayed on an electronic visual display
EP1328127A1 (en) * 2002-01-09 2003-07-16 Beta Research GmbH Simultaneous feeding and synchronisation of audio and video data
DE60310368D1 (en) * 2002-01-22 2007-01-25 Microsoft Corp A method for preventing start code emulation and stuffing data
US7149247B2 (en) 2002-01-22 2006-12-12 Microsoft Corporation Methods and systems for encoding and decoding video data to enable random access and splicing
KR100895932B1 (en) * 2002-04-19 2009-05-07 마이크로소프트 코포레이션 Methods and systems for preventing start code emulation at locations that include non-byte aligned and/or bit-shifted positions
US7088776B2 (en) * 2002-07-15 2006-08-08 Apple Computer, Inc. Method and apparatus for variable accuracy inter-picture timing specification for digital video encoding
US6728315B2 (en) 2002-07-24 2004-04-27 Apple Computer, Inc. Method and apparatus for variable accuracy inter-picture timing specification for digital video encoding with reduced requirements for division operations
US8254461B2 (en) 2002-07-24 2012-08-28 Apple Inc. Method and apparatus for variable accuracy inter-picture timing specification for digital video encoding with reduced requirements for division operations
EP1487214A1 (en) * 2003-06-11 2004-12-15 Digital Multimedia Technologies S.P.A. A method and a system for synchronizing MHP applications in a data packet stream
US20050002459A1 (en) * 2003-07-04 2005-01-06 Protocom Technology Corporation Method for determining display order of VOPs in decoder end of MPEG image system and device for executing the same
US8213779B2 (en) * 2003-09-07 2012-07-03 Microsoft Corporation Trick mode elementary stream and receiver system
US7852919B2 (en) * 2003-09-07 2010-12-14 Microsoft Corporation Field start code for entry point frames with predicted first field
US7924921B2 (en) * 2003-09-07 2011-04-12 Microsoft Corporation Signaling coding and display options in entry point headers
US7609762B2 (en) 2003-09-07 2009-10-27 Microsoft Corporation Signaling for entry point frames with predicted first field
US7839930B2 (en) * 2003-11-13 2010-11-23 Microsoft Corporation Signaling valid entry points in a video stream
JP4767165B2 (en) * 2004-04-15 2011-09-07 パナソニック株式会社 Content generating device and method
EP1622382B1 (en) * 2004-07-22 2007-10-17 Harman Becker Automotive Systems GmbH Data transmission synchronization scheme
US8228956B2 (en) * 2005-04-19 2012-07-24 Alcatel Lucent Time stamp offset in data packet bundling
US8315308B2 (en) 2006-01-11 2012-11-20 Qualcomm Incorporated Video coding with fine granularity spatial scalability
WO2007112445A3 (en) * 2006-03-28 2008-10-16 Motionbox Inc A system and data model for shared viewing and editing of time-based media
CA2647617A1 (en) * 2006-03-28 2007-11-08 Motionbox, Inc. System and method for enabling social browsing of networked time-based media
WO2008060655A3 (en) * 2006-03-29 2008-10-02 Motionbox Inc A system, method, and apparatus for visual browsing, deep tagging, and synchronized commenting
WO2008118183A1 (en) * 2007-03-28 2008-10-02 Motionbox, Inc. System and method for autogeneration of long term media data from networked time-based media
US9812169B2 (en) * 2006-03-28 2017-11-07 Hewlett-Packard Development Company, L.P. Operational system and architectural model for improved manipulation of video and time media data from networked time-based media
WO2007112447A3 (en) * 2006-03-28 2008-09-18 Motionbox Inc A system for individual and group editing of networked time-based media
EP1855402A1 (en) * 2006-05-11 2007-11-14 Philips Electronics N.V. Transmission, reception and synchronisation of two data streams
JP4607856B2 (en) * 2006-12-26 2011-01-05 富士通株式会社 Encoding and decoding system and encoding and decoding methods
US7765315B2 (en) * 2007-01-08 2010-07-27 Apple Inc. Time synchronization of multiple time-based data streams with independent clocks
CN100518332C (en) 2007-01-12 2009-07-22 西安交通大学 Multi-path media synchronous display control method
WO2008108694A1 (en) * 2007-03-08 2008-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Seeking and synchronization using global scene time
KR101372418B1 (en) * 2007-10-19 2014-03-12 (주)휴맥스 Bitstream decoding device and method
CA2714566A1 (en) * 2008-02-08 2009-08-13 Automated Media Services, Inc. System and method for creating an in-store media network using traditional media metrics description of
CN102439989B (en) * 2008-10-28 2014-12-10 思科技术公司 Stream synchronization for live video encoding
US20100225811A1 (en) * 2009-03-05 2010-09-09 Nokia Corporation Synchronization of Content from Multiple Content Sources
WO2014203516A1 (en) * 2013-06-18 2014-12-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Transmission method and reception method
US20160360288A1 (en) * 2015-06-08 2016-12-08 Qualcomm Incorporated Broadcast content redistribution and ad insertion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634870A2 (en) 1993-07-16 1995-01-18 Pioneer Electronic Corporation Synchronizing system for time-divided video and audio signals
EP0648056A2 (en) 1993-09-30 1995-04-12 Thomson Consumer Electronics, Inc. Audio/video synchronization in a digital transmission system
US5467139A (en) * 1993-09-30 1995-11-14 Thomson Consumer Electronics, Inc. Muting apparatus for a compressed audio/video signal receiver
US5784422A (en) * 1996-08-05 1998-07-21 Transcrypt International, Inc. Apparatus and method for accurate synchronization with inbound data packets at relatively low sampling rates
US5793431A (en) * 1994-12-02 1998-08-11 U.S. Philips Corporation Audio/video discrepancy management

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953073A (en) * 1996-07-29 1999-09-14 International Business Machines Corp. Method for relating indexing information associated with at least two indexing schemes to facilitate the play-back of user-specified digital video data and a video client incorporating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634870A2 (en) 1993-07-16 1995-01-18 Pioneer Electronic Corporation Synchronizing system for time-divided video and audio signals
US5537409A (en) * 1993-07-16 1996-07-16 Pioneer Electronic Corporation Synchronizing system for time-divided video and audio signals
EP0648056A2 (en) 1993-09-30 1995-04-12 Thomson Consumer Electronics, Inc. Audio/video synchronization in a digital transmission system
US5430485A (en) * 1993-09-30 1995-07-04 Thomson Consumer Electronics, Inc. Audio/video synchronization in a digital transmission system
US5467139A (en) * 1993-09-30 1995-11-14 Thomson Consumer Electronics, Inc. Muting apparatus for a compressed audio/video signal receiver
US5793431A (en) * 1994-12-02 1998-08-11 U.S. Philips Corporation Audio/video discrepancy management
US5784422A (en) * 1996-08-05 1998-07-21 Transcrypt International, Inc. Apparatus and method for accurate synchronization with inbound data packets at relatively low sampling rates

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An article by A. Knoll, entitled "MSDL: MPEG-4 Systems and Description Languages", at pp. 459, 460, 462, 464, and 465 of Ferneseh und Kinotechnik, vol. 50, No. 8/09, Aug. 1996.
An article by O. Avaro et al., entitled: "The MPEG-4 systems and description languages: A way ahead in audio visual information representation", at pp. 385-431 of Signal Processing. Image Communication, vol. 9, No. 4, May 1997.
Avaro et al., "The MPEG-4 systems and description languages: A way ahead in audio visual Information representation," Signal Processing. Image Communication, vol. 9, No. 4, pp. 385-431 (May 1997), XP004075337.
Knoll, "MSDL: MPEG-4 System and Description Languages,": vol. 50, No. 8/09, pp. 459/460 462, 464/465 (Aug. 1996), XP000636467.

Also Published As

Publication number Publication date Type
CN1292598C (en) 2006-12-27 grant
DE69738035D1 (en) 2007-09-27 grant
CN1152579C (en) 2004-06-02 grant
EP1073278B1 (en) 2001-10-31 grant
EP1111934B1 (en) 2001-10-24 grant
ES2194801T3 (en) 2003-12-01 grant
CN1197579A (en) 1998-10-28 application
US6075576A (en) 2000-06-13 grant
DE69719828T2 (en) 2003-12-24 grant
EP1111934A1 (en) 2001-06-27 application
EP1073278A1 (en) 2001-01-31 application
DE69704481T2 (en) 2001-10-31 grant
EP0864228B1 (en) 2001-04-04 grant
DE69707929D1 (en) 2001-12-06 grant
EP1343330A3 (en) 2006-05-10 application
USRE39344E1 (en) 2006-10-17 grant
CN1620149A (en) 2005-05-25 application
CN1347250A (en) 2002-05-01 application
EP0864228A1 (en) 1998-09-16 application
EP1343330A2 (en) 2003-09-10 application
CN1347251A (en) 2002-05-01 application
EP1111933B1 (en) 2003-03-12 grant
ES2169019T3 (en) 2002-07-01 grant
DE69738035T2 (en) 2008-04-30 grant
EP1343330B1 (en) 2007-08-15 grant
JPH11513222A (en) 1999-11-09 application
ES2166746T3 (en) 2002-05-01 grant
EP1073277A1 (en) 2001-01-31 application
USRE38923E1 (en) 2005-12-20 grant
CN1184821C (en) 2005-01-12 grant
DE69719828D1 (en) 2003-04-17 grant
CN1107418C (en) 2003-04-30 grant
WO1998002003A1 (en) 1998-01-15 application
DE69707720T2 (en) 2002-08-08 grant
DE69704481D1 (en) 2001-05-10 grant
USRE39115E1 (en) 2006-06-06 grant
EP1111933A1 (en) 2001-06-27 application
CN1148971C (en) 2004-05-05 grant
USRE38875E1 (en) 2005-11-15 grant
CN1364032A (en) 2002-08-14 application
DE69707720D1 (en) 2001-11-29 grant
KR100274434B1 (en) 2000-12-15 grant
JP3186775B2 (en) 2001-07-11 grant
ES2291563T3 (en) 2008-03-01 grant
ES2158570T3 (en) 2001-09-01 grant
DE69707929T2 (en) 2002-06-20 grant

Similar Documents

Publication Publication Date Title
US5742623A (en) Error detection and recovery for high rate isochronous data in MPEG-2 data streams
US5588029A (en) MPEG audio synchronization system using subframe skip and repeat
US7027516B2 (en) Method and apparatus for splicing
US5740307A (en) Methods for monitoring a trick play data stream to insure MPEG compliance
US7327790B1 (en) MPEG on screen display coder for DTV interfaces
US6529550B2 (en) Coded stream splicing device and method, and coded stream generating device and method
US5859660A (en) Non-seamless splicing of audio-video transport streams
US5905768A (en) MPEG audio synchronization system using subframe skip and repeat
US20030123556A1 (en) Information processing apparatus
US5174641A (en) Video encoding method for television applications
US7174560B1 (en) Method of synchronizing events with a digital television audio-visual program
US6598172B1 (en) System and method for clock skew compensation between encoder and decoder clocks by calculating drift metric, and using it to modify time-stamps of data packets
US5734443A (en) Method and device for performing source transitions in a video system which performs entropy encoding
US6380991B1 (en) Method for splicing MPEG-2 transport streams
US7199836B1 (en) Object-based audio-visual terminal and bitstream structure
US5381181A (en) Clock recovery apparatus as for a compressed video signal
US6803964B1 (en) Method and apparatus for processing digital data
US5257113A (en) Video mixing technique using JPEG compressed data
US6160587A (en) Waveform generator for insertion of data into digital television signals
US5486864A (en) Differential time code method and apparatus as for a compressed video signal
US5771075A (en) Audio/video synchronizer
US5886736A (en) Synchronization of a stereoscopic video sequence
US5726989A (en) Method for ensuring synchronization of MPEG-1 data carried in an MPEG-2 transport stream
US6025877A (en) Scalable transmission method of visual objects segmented by content-base
US20040179600A1 (en) Multi-channel video compression system

Legal Events

Date Code Title Description
CC Certificate of correction
CC Certificate of correction
FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AME

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:033033/0163

Effective date: 20140527