USRE40360E1 - Methods for inhibition of angiogenesis with a composition comprising 3-hydroxythalidomide - Google Patents
Methods for inhibition of angiogenesis with a composition comprising 3-hydroxythalidomide Download PDFInfo
- Publication number
- USRE40360E1 USRE40360E1 US11/384,188 US38418806A USRE40360E US RE40360 E1 USRE40360 E1 US RE40360E1 US 38418806 A US38418806 A US 38418806A US RE40360 E USRE40360 E US RE40360E
- Authority
- US
- United States
- Prior art keywords
- undesired angiogenesis
- angiogenesis occurs
- occurs
- disease
- undesired
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 107
- 239000000203 mixture Substances 0.000 title claims description 44
- XMPJICVFSDYOEG-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-4-hydroxyisoindole-1,3-dione Chemical compound O=C1C=2C(O)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O XMPJICVFSDYOEG-UHFFFAOYSA-N 0.000 title claims 4
- 230000014399 negative regulation of angiogenesis Effects 0.000 title description 2
- 230000033115 angiogenesis Effects 0.000 claims abstract description 157
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 230000007062 hydrolysis Effects 0.000 claims abstract description 8
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 8
- 239000002207 metabolite Substances 0.000 claims abstract description 4
- 201000010099 disease Diseases 0.000 claims description 61
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 61
- 206010028980 Neoplasm Diseases 0.000 claims description 38
- 241001465754 Metazoa Species 0.000 claims description 17
- 208000015181 infectious disease Diseases 0.000 claims description 15
- 206010038933 Retinopathy of prematurity Diseases 0.000 claims description 12
- 230000001684 chronic effect Effects 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 206010023332 keratitis Diseases 0.000 claims description 9
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 8
- 208000025865 Ulcer Diseases 0.000 claims description 8
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 8
- 201000000306 sarcoidosis Diseases 0.000 claims description 8
- 231100000397 ulcer Toxicity 0.000 claims description 8
- 206010055665 Corneal neovascularisation Diseases 0.000 claims description 7
- 201000000159 corneal neovascularization Diseases 0.000 claims description 7
- 201000011066 hemangioma Diseases 0.000 claims description 7
- 208000002780 macular degeneration Diseases 0.000 claims description 7
- 230000035755 proliferation Effects 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 208000014674 injury Diseases 0.000 claims description 6
- 230000008733 trauma Effects 0.000 claims description 6
- 208000010412 Glaucoma Diseases 0.000 claims description 5
- 208000007766 Kaposi sarcoma Diseases 0.000 claims description 5
- 230000001497 fibrovascular Effects 0.000 claims description 5
- 230000002538 fungal effect Effects 0.000 claims description 5
- 208000032839 leukemia Diseases 0.000 claims description 5
- 201000003142 neovascular glaucoma Diseases 0.000 claims description 5
- 208000006379 syphilis Diseases 0.000 claims description 5
- 230000009885 systemic effect Effects 0.000 claims description 5
- 208000030507 AIDS Diseases 0.000 claims description 4
- 206010001257 Adenoviral conjunctivitis Diseases 0.000 claims description 4
- 208000009043 Chemical Burns Diseases 0.000 claims description 4
- 208000005590 Choroidal Neovascularization Diseases 0.000 claims description 4
- 206010060823 Choroidal neovascularisation Diseases 0.000 claims description 4
- 206010011017 Corneal graft rejection Diseases 0.000 claims description 4
- 208000009889 Herpes Simplex Diseases 0.000 claims description 4
- 208000007514 Herpes zoster Diseases 0.000 claims description 4
- 206010051151 Hyperviscosity syndrome Diseases 0.000 claims description 4
- 208000016604 Lyme disease Diseases 0.000 claims description 4
- 208000024599 Mooren ulcer Diseases 0.000 claims description 4
- 208000010191 Osteitis Deformans Diseases 0.000 claims description 4
- 208000027868 Paget disease Diseases 0.000 claims description 4
- 208000007135 Retinal Neovascularization Diseases 0.000 claims description 4
- 206010038848 Retinal detachment Diseases 0.000 claims description 4
- 206010039705 Scleritis Diseases 0.000 claims description 4
- 208000018656 Terrien marginal degeneration Diseases 0.000 claims description 4
- 206010064996 Ulcerative keratitis Diseases 0.000 claims description 4
- 206010047663 Vitritis Diseases 0.000 claims description 4
- 210000001367 artery Anatomy 0.000 claims description 4
- 230000001580 bacterial effect Effects 0.000 claims description 4
- 230000007850 degeneration Effects 0.000 claims description 4
- 208000021373 epidemic keratoconjunctivitis Diseases 0.000 claims description 4
- 208000013653 hyalitis Diseases 0.000 claims description 4
- 230000035984 keratolysis Effects 0.000 claims description 4
- 230000002197 limbic effect Effects 0.000 claims description 4
- 150000002632 lipids Chemical class 0.000 claims description 4
- 206010025135 lupus erythematosus Diseases 0.000 claims description 4
- 208000027202 mammary Paget disease Diseases 0.000 claims description 4
- 230000000414 obstructive effect Effects 0.000 claims description 4
- 230000004264 retinal detachment Effects 0.000 claims description 4
- 201000004700 rosacea Diseases 0.000 claims description 4
- 201000006476 shipyard eye Diseases 0.000 claims description 4
- 208000007056 sickle cell anemia Diseases 0.000 claims description 4
- 210000003462 vein Anatomy 0.000 claims description 4
- 102100028187 ATP-binding cassette sub-family C member 6 Human genes 0.000 claims description 3
- 201000001320 Atherosclerosis Diseases 0.000 claims description 3
- 206010013774 Dry eye Diseases 0.000 claims description 3
- 208000019878 Eales disease Diseases 0.000 claims description 3
- 208000006168 Ewing Sarcoma Diseases 0.000 claims description 3
- 208000031953 Hereditary hemorrhagic telangiectasia Diseases 0.000 claims description 3
- 206010024229 Leprosy Diseases 0.000 claims description 3
- 206010029260 Neuroblastoma Diseases 0.000 claims description 3
- 208000004788 Pars Planitis Diseases 0.000 claims description 3
- 208000010362 Protozoan Infections Diseases 0.000 claims description 3
- 201000004613 Pseudoxanthoma elasticum Diseases 0.000 claims description 3
- 201000004681 Psoriasis Diseases 0.000 claims description 3
- 201000002154 Pterygium Diseases 0.000 claims description 3
- 201000000582 Retinoblastoma Diseases 0.000 claims description 3
- 208000021386 Sjogren Syndrome Diseases 0.000 claims description 3
- 206010046851 Uveitis Diseases 0.000 claims description 3
- 208000010011 Vitamin A Deficiency Diseases 0.000 claims description 3
- 208000001491 myopia Diseases 0.000 claims description 3
- 230000004379 myopia Effects 0.000 claims description 3
- 201000008482 osteoarthritis Diseases 0.000 claims description 3
- 201000008968 osteosarcoma Diseases 0.000 claims description 3
- 208000023558 pseudoxanthoma elasticum (inherited or acquired) Diseases 0.000 claims description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 3
- 208000011580 syndromic disease Diseases 0.000 claims description 3
- 206010003645 Atopy Diseases 0.000 claims description 2
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 2
- 208000011231 Crohn disease Diseases 0.000 claims description 2
- 201000005485 Toxoplasmosis Diseases 0.000 claims description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 2
- 208000037976 chronic inflammation Diseases 0.000 claims description 2
- 230000006020 chronic inflammation Effects 0.000 claims description 2
- 206010034277 Pemphigoid Diseases 0.000 claims 2
- 206010009887 colitis Diseases 0.000 claims 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 abstract description 26
- 229960003433 thalidomide Drugs 0.000 abstract description 24
- -1 analogs Substances 0.000 abstract description 12
- 239000002243 precursor Substances 0.000 abstract description 3
- 238000009472 formulation Methods 0.000 description 19
- 238000011282 treatment Methods 0.000 description 17
- 210000004087 cornea Anatomy 0.000 description 15
- 230000002491 angiogenic effect Effects 0.000 description 14
- 150000002118 epoxides Chemical group 0.000 description 13
- 241000283973 Oryctolagus cuniculus Species 0.000 description 12
- 230000006378 damage Effects 0.000 description 11
- 238000003556 assay Methods 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 0 [1*]c1c([2*])c([3*])c([4*])c2c1[5*][7*][8*]([9*])[6*]2.[1*]c1c([2*])c([3*])c([4*])c2c1[5*][8*]([9*])[6*]2.[1*]c1c([2*])c([3*])c([4*])c2c1[5*][8*]2[9*] Chemical compound [1*]c1c([2*])c([3*])c([4*])c2c1[5*][7*][8*]([9*])[6*]2.[1*]c1c([2*])c([3*])c([4*])c2c1[5*][8*]([9*])[6*]2.[1*]c1c([2*])c([3*])c([4*])c2c1[5*][8*]2[9*] 0.000 description 9
- 239000004037 angiogenesis inhibitor Substances 0.000 description 9
- 210000004204 blood vessel Anatomy 0.000 description 9
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 210000002889 endothelial cell Anatomy 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229940127514 Epoxide Hydrolase Inhibitors Drugs 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 206010027476 Metastases Diseases 0.000 description 6
- 206010029113 Neovascularisation Diseases 0.000 description 6
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 6
- 230000009401 metastasis Effects 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 5
- 230000001772 anti-angiogenic effect Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- 210000002469 basement membrane Anatomy 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 230000003390 teratogenic effect Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 229960000604 valproic acid Drugs 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- QIWKCQDJZPRXNS-VIFPVBQESA-N (2s)-2-[(2-carboxybenzoyl)amino]pentanedioic acid Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)C1=CC=CC=C1C(O)=O QIWKCQDJZPRXNS-VIFPVBQESA-N 0.000 description 3
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 208000002158 Proliferative Vitreoretinopathy Diseases 0.000 description 3
- 206010038934 Retinopathy proliferative Diseases 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000001345 alkine derivatives Chemical class 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000000845 cartilage Anatomy 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- NGGMYCMLYOUNGM-CSDLUJIJSA-N fumagillin Chemical compound C([C@H]([C@H]([C@@H]1[C@]2(C)[C@H](O2)CC=C(C)C)OC)OC(=O)\C=C\C=C\C=C\C=C\C(O)=O)C[C@@]21CO2 NGGMYCMLYOUNGM-CSDLUJIJSA-N 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 208000021971 neovascular inflammatory vitreoretinopathy Diseases 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 230000006785 proliferative vitreoretinopathy Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 231100000378 teratogenic Toxicity 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- NGGMYCMLYOUNGM-UHFFFAOYSA-N (-)-fumagillin Natural products O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)C=CC=CC=CC=CC(O)=O)CCC21CO2 NGGMYCMLYOUNGM-UHFFFAOYSA-N 0.000 description 2
- 241000220479 Acacia Species 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000005486 Epoxide hydrolase Human genes 0.000 description 2
- 108020002908 Epoxide hydrolase Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 206010025412 Macular dystrophy congenital Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000024556 Mendelian disease Diseases 0.000 description 2
- 241001111421 Pannus Species 0.000 description 2
- 102000007327 Protamines Human genes 0.000 description 2
- 108010007568 Protamines Proteins 0.000 description 2
- 206010038910 Retinitis Diseases 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- DZIRZHBFUPWNFK-UHFFFAOYSA-N [H]N(C)C(=O)c1ccccc1C(=O)O Chemical compound [H]N(C)C(=O)c1ccccc1C(=O)O DZIRZHBFUPWNFK-UHFFFAOYSA-N 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 239000002870 angiogenesis inducing agent Substances 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000003837 chick embryo Anatomy 0.000 description 2
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 208000001780 epistaxis Diseases 0.000 description 2
- 229960000936 fumagillin Drugs 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 210000004088 microvessel Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000016087 ovulation Effects 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 229940048914 protamine Drugs 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 231100000462 teratogen Toxicity 0.000 description 2
- 239000003439 teratogenic agent Substances 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- OMOMUFTZPTXCHP-UHFFFAOYSA-N valpromide Chemical compound CCCC(C(N)=O)CCC OMOMUFTZPTXCHP-UHFFFAOYSA-N 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 201000007790 vitelliform macular dystrophy Diseases 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- AODPIQQILQLWGS-UHFFFAOYSA-N (3alpa,5beta,11beta,17alphaOH)-form-3,11,17,21-Tetrahydroxypregnan-20-one, Natural products C1C(O)CCC2(C)C3C(O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC21 AODPIQQILQLWGS-UHFFFAOYSA-N 0.000 description 1
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 description 1
- QQWLXNMPPFCVCD-UHFFFAOYSA-N 1,1-dioxo-2-(2-oxopiperidin-3-yl)-1,2-benzothiazol-3-one Chemical compound O=S1(=O)C2=CC=CC=C2C(=O)N1C1CCCNC1=O QQWLXNMPPFCVCD-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- GMZMWIYVODQEAL-UHFFFAOYSA-N 2-[[5-amino-1-[5-amino-2-[(2-carboxybenzoyl)amino]-5-oxopentanoyl]oxy-1,5-dioxopentan-2-yl]carbamoyl]benzoic acid Chemical compound C(C=1C(C(=O)O)=CC=CC=1)(=O)NC(CCC(N)=O)C(=O)OC(C(NC(C=1C(C(=O)O)=CC=CC=1)=O)CCC(N)=O)=O GMZMWIYVODQEAL-UHFFFAOYSA-N 0.000 description 1
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 1
- CWJJAFQCTXFSTA-UHFFFAOYSA-N 4-methylphthalic acid Chemical compound CC1=CC=C(C(O)=O)C(C(O)=O)=C1 CWJJAFQCTXFSTA-UHFFFAOYSA-N 0.000 description 1
- 201000000736 Amenorrhea Diseases 0.000 description 1
- 206010001928 Amenorrhoea Diseases 0.000 description 1
- 241000380131 Ammophila arenaria Species 0.000 description 1
- 206010003226 Arteriovenous fistula Diseases 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010044583 Bartonella Infections Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- PORFOXWHZMLDFR-UHFFFAOYSA-N C.C.CC(C)(C)[Y].CN(C)C Chemical compound C.C.CC(C)(C)[Y].CN(C)C PORFOXWHZMLDFR-UHFFFAOYSA-N 0.000 description 1
- SJRJJKPEHAURKC-UHFFFAOYSA-N CN1CCOCC1 Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 1
- MQHHWZOAUAVUQP-UHFFFAOYSA-N CO.CO.CO.CO.CO.CO.CO.CO.CO.O=C(O)CCC(C(=O)O)N1CC2=C(C=CC=C2)C1=O.O=C(O)CCC(C(=O)O)N1CC2=C(C=CC=C2)C1=O.[H]N1C(=O)CCC(N2C(=O)C3=C(C=CC=C3)C2=O)C1=O.[H]N1C(=O)CCC(N2C(=O)C3=C(C=CC=C3)C2=O)C1=O.[H]N1C(=O)CCC(N2CC3=C(C=CC=C3)C2=O)C1=O.[H]N1C(=O)CCC(N2CC3=C(C=CC=C3)C2=O)C1=O Chemical compound CO.CO.CO.CO.CO.CO.CO.CO.CO.O=C(O)CCC(C(=O)O)N1CC2=C(C=CC=C2)C1=O.O=C(O)CCC(C(=O)O)N1CC2=C(C=CC=C2)C1=O.[H]N1C(=O)CCC(N2C(=O)C3=C(C=CC=C3)C2=O)C1=O.[H]N1C(=O)CCC(N2C(=O)C3=C(C=CC=C3)C2=O)C1=O.[H]N1C(=O)CCC(N2CC3=C(C=CC=C3)C2=O)C1=O.[H]N1C(=O)CCC(N2CC3=C(C=CC=C3)C2=O)C1=O MQHHWZOAUAVUQP-UHFFFAOYSA-N 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- 208000002691 Choroiditis Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010063560 Excessive granulation tissue Diseases 0.000 description 1
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 101001054334 Homo sapiens Interferon beta Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 description 1
- 206010062207 Mycobacterial infection Diseases 0.000 description 1
- 201000004404 Neurofibroma Diseases 0.000 description 1
- MSHZHSPISPJWHW-PVDLLORBSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound C([C@H]([C@H]([C@@H]1[C@]2(C)[C@H](O2)CC=C(C)C)OC)OC(=O)NC(=O)CCl)C[C@@]21CO2 MSHZHSPISPJWHW-PVDLLORBSA-N 0.000 description 1
- ALNLAKICXCFKRE-UHFFFAOYSA-N O=C(O)CCC(C(=O)O)N1C(=O)c2ccccc2C1=O.O=C1CCC(N2C(=O)c3ccccc3C2=O)C(=O)O1.[H]N1C(=O)CCC(N2C(=O)c3ccccc3C2=O)C1=O.[H]N1C(=O)CCC(N2C(=O)c3ccccc3S2(=O)=O)C1=O.[H]N1C(=O)CCC(N2Cc3ccccc3C2=O)C1=O Chemical compound O=C(O)CCC(C(=O)O)N1C(=O)c2ccccc2C1=O.O=C1CCC(N2C(=O)c3ccccc3C2=O)C(=O)O1.[H]N1C(=O)CCC(N2C(=O)c3ccccc3C2=O)C1=O.[H]N1C(=O)CCC(N2C(=O)c3ccccc3S2(=O)=O)C1=O.[H]N1C(=O)CCC(N2Cc3ccccc3C2=O)C1=O ALNLAKICXCFKRE-UHFFFAOYSA-N 0.000 description 1
- PUCWLIZAPZZVPU-UHFFFAOYSA-N O=C(O)CCC(C(=O)O)N1CC23OC2C=CC=C3C1=O.O=C(O)CCC(C(=O)O)N1CC2=C(C1=O)C1OC1C=C2.[H]N1C(=O)CCC(N2C(=O)C3=C(C2=O)C2OC2C=C3)C1=O.[H]N1C(=O)CCC(N2C(=O)C3=CC=CC4OC34C2=O)C1=O.[H]N1C(=O)CCC(N2CC34OC3C=CC=C4C2=O)C1=O.[H]N1C(=O)CCC(N2CC3=C(C2=O)C2OC2C=C3)C1=O Chemical compound O=C(O)CCC(C(=O)O)N1CC23OC2C=CC=C3C1=O.O=C(O)CCC(C(=O)O)N1CC2=C(C1=O)C1OC1C=C2.[H]N1C(=O)CCC(N2C(=O)C3=C(C2=O)C2OC2C=C3)C1=O.[H]N1C(=O)CCC(N2C(=O)C3=CC=CC4OC34C2=O)C1=O.[H]N1C(=O)CCC(N2CC34OC3C=CC=C4C2=O)C1=O.[H]N1C(=O)CCC(N2CC3=C(C2=O)C2OC2C=C3)C1=O PUCWLIZAPZZVPU-UHFFFAOYSA-N 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 241000013913 Paradendryphiella arenariae Species 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 208000034038 Pathologic Neovascularization Diseases 0.000 description 1
- 208000003971 Posterior uveitis Diseases 0.000 description 1
- 206010037649 Pyogenic granuloma Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 206010041101 Small intestinal obstruction Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 231100000540 amenorrhea Toxicity 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 206010004145 bartonellosis Diseases 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000625 blastula Anatomy 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001775 bruch membrane Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 210000004246 corpus luteum Anatomy 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000294 dose-dependent toxicity Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 210000001126 granulation tissue Anatomy 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 230000036732 histological change Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 208000030776 invasive breast carcinoma Diseases 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 208000027531 mycobacterial infectious disease Diseases 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000003359 percent control normalization Methods 0.000 description 1
- 210000003668 pericyte Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- MNQYNQBOVCBZIQ-JQOFMKNESA-A sucralfate Chemical compound O[Al](O)OS(=O)(=O)O[C@@H]1[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](COS(=O)(=O)O[Al](O)O)O[C@H]1O[C@@]1(COS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)O1 MNQYNQBOVCBZIQ-JQOFMKNESA-A 0.000 description 1
- 229960004291 sucralfate Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229950000213 supidimide Drugs 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- AODPIQQILQLWGS-GXBDJPPSSA-N tetrahydrocortisol Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CC[C@@H]21 AODPIQQILQLWGS-GXBDJPPSSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 231100000816 toxic dose Toxicity 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 206010044325 trachoma Diseases 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 229960001930 valpromide Drugs 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 210000004127 vitreous body Anatomy 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/4035—Isoindoles, e.g. phthalimide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
Definitions
- the present invention relates to methods and compositions for preventing unwanted angiogenesis in a human or animal. More particularly, the present invention relates to a method for preventing unwanted angiogenesis, particularly in angiogenesis dependent or associated diseases, by administration of compounds such as thalidomide and related compounds.
- angiogenesis means the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals only undergo angiogenesis in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometdum and placenta.
- the control of angiogenesis is a highly regulated system of aniogenic stimulators and inhibitors. The control of angiogenesis has been found to be altered in certain disease states and, in many cases, the pathological damage associated with the disease is related to the uncontrolled angiogenesis.
- Angiogenesis begins with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane. Aniogenic stimulants induce the endothelial cells to migrate through the eroded basement membrane. The migrating cells form a “sprout” off the parent blood vessel, where the endothelial cells undergo mitosis and proliferate. The endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel. In the disease state, prevention of angiogenesis could avert the damage caused by the invasion of the new microvascular system.
- Persistent, unregulated angiogenesis occurs in a multiplicity of disease states, tumor metastasis and abnormal growth by endothelial cells and supports the pathological damage seen in these conditions.
- the diverse pathological states created due to unregulated angiogenesis have been grouped together as angiogenic dependent or angiogenic associated diseases. Therapies directed at control of the angiogenic processes could lead to the abrogation or mitigation of these diseases.
- ocular neovascular disease This disease is characterized by invasion of new blood vessels into the structures of the eye such as the retina or cornea. It is the most common cause of blindness and is involved in approximately twenty eye diseases. In age-related macular degeneration, the associated visual problems are caused by an ingrowth of chorioidal capillaries through defects in Bruch's membrane with proliferation of fibrovascular tissue beneath the retinal pigment epithelium. Angiogenic damage is also associated with diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia.
- corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A, deficiency, contact lens overwear, stopic keratitis, superior limbic keratitis, pterygium keratitis sioca, sjogrens, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, and corneal graph rejection.
- Diseases associated with retinal/choroidal neovascularization include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uvetitis/vitritis, mycobacterial infections, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Hales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stragarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications.
- Other diseases include, but are not limited to, diseases associated with rubeosis (n
- angiogenesis Another disease in which angiogenesis is believed to be involved is rheumatoid arthritis.
- the endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction.
- the factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis.
- Factors associated with angiogenesis may also have a role in osteoarthritis.
- the activation of the chondrocytes by angiogenic-related factors contributes to the destruction of the joint. At a later stage, the angiogenic factors would promote new bone formation.
- Therapeutic intervention that prevents the bone destruction could halt the progress of the disease and provide relief for persons suffering with arthritis.
- Chronic inflammation may also involve pathological angiogenesis.
- pathological angiogenesis Such disease states as ulcerative colitis and Chrohn's disease show histological changes with the ingrowth of new blood vessels into the inflamed tissues. Bartonellosis, a bacterial infection found in South America, can result in a chronic stage that is characterized by proliferation of vascular endothelial cells.
- Another pathological role associated with angiogenesis is found in atherosclerosis. The plaques formed within the lumen of blood vessels have been shown to have angiogenic stimulatory activity.
- hemangioma One of the most frequent angiogenic diseases of childhood is the hemangioma. In most cases, the tumors are benign and regress without intervention. In more severe cases, the tumors progress to large cavernous and infiltrative forms and create clinical complications. Systemic forms of hemangiomas, the hemangiomatoses, have a high mortality rate. Therapy-resistant hemangiomas exist that cannot be treated with therapeutics currently in use.
- Angiogenesis is also responsible for damage found in hereditary diseases such as Osler-Weber-Rendu disease, or hereditary hemorrhagic telanglectasia. This is an inherited disease characterized by multiple small angiomas, tumors of blood or lymph vessels. The angiomas are found in the skin and mucous membranes, often accompanied by epistaxis (nosebleeds) or gastrointestinal bleeding and sometimes with pulmonary or hepatic arteriovenous fistula.
- Angiogenesis is prominent in solid tumor formation and metastasis. Angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastomas, Ewing sarcoma, neuroblastoma, and osteosarcoma. A tumor cannot expand without a blood supply to provide nutrients and remove cellular wastes. Tumors in which angiogenesis is important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas. Prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
- angiogenesis has been associated with blood-born tumors such as leukemias, any of various acute or chronic neoplastic diseases of the bone marrow in which unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen. It is believed that angiogenesis plays a role in the abnormalities in the bone marrow that give rise to leukemia-like tumors.
- Angiogenesis is important in two stages of tumor metastasis.
- the first stage where angiogenesis stimulation is important is in the vascularization of the tumor which allows minor cells to enter the blood stream and to circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis must occur before the new tumor can grow and expand. Therefore, prevention of angiogenesis could lead to the prevention of metastasis of tumors and possibly contain the neoplastic growth at the primary site.
- angiogenesis in the maintenance and metastasis of tumors has led to a prognostic indicator for breast cancer.
- the amount of neovascularization found in the primary tumor was determined by counting the microvessel density in the area of the most intense neovascularization in invasive breast carcinoma. A high level of microvessel density was found to correlate with tumor recurrence. Control of angiogenesis by therapeutic means could possibly lead to cessation of the recurrence of the tumors.
- Angiogenesis is also involved in normal physiological processes such as reproduction and wound healing. Angiogenesis is an important step in ovulation and also in implantation of the blastula after fertilization. Prevention of angiogenesis could be used to induce amenorrhea, to block ovulation or to prevent implantation by the bastula.
- Taylor et al. have used protamine to inhibit angiogenesis, see Taylor et al., Nature 297:307 (1982).
- the toxicity of protamine limits its practical use as a therapeutic.
- Folkman et al. have disclosed the use of heparin and seteroids to control angiogenesis. See Folkman et al., Science 221:719 (1983) and U.S. Pat. Nos. 5,001,116 and 4,994,443.
- Steroids, such as tetrahydrocortisol which lack gluco and mineral cortidoid activity, have been found to be angiogenic inhibitors.
- interferon inhibits angiogenesis.
- interferon ⁇ or human interferon ⁇ has been shown to inhibit tumor-induced angiogenesis in mouse dermis stimulated by human neoplastic cells.
- Interferon ⁇ is also a potent inhibitor of angiogenesis induced by allogeneic spleen cells. See Sidky et al., Cancer Research 47:5155-5161 (1987).
- ⁇ interferon Human recombinant ⁇ interferon (alpha/A) was reported to be successfully used in the treatment of pulmonary hemangiomatosis, an angiogenesis-induced disease. See White et al., New England J. Med. 320:1197-1200 (1989).
- a fungal product, fumagillin is a potent angiostatic agent in vitro.
- the compound is toxic in vivo, but a synthetic derivative, AGM 12470, has been used in vivo to treat collagen II arthritis. Fumagillin and O-substituted fumagillin derivatives are disclosed in EPO Publication Nos. 0325199A2 and 0357061A 1.
- PCT Application No. WO 92/14455 to Kaplan et al. is directed to a method for controlling abnormal concentration to TNF- ⁇ by administering thalidomide or thalidomide derivatives to a patient with toxic concentrations of TNF- ⁇ .
- the above compounds are either topical or injectable therapeutics. Therefore, there are drawbacks to their use as a general angiogenic inhibitor and lack adequate potency. For example, in prevention of excessive wound healing, surgery on internal body organs involves incisions in various structures contained within the body cavities. These wounds are not accessible to local applications of angiogenic inhibitors. Local delivery systems also involve frequent dressings which are impracticable for internal wounds, and increase the risk of infection or damage to delicate granulation tissue for surface wounds.
- a method and composition are needed that are capable of inhibiting angiogenesis and which are easily administered.
- a simple and efficacious method of treatment would be through the oral route. If an angiogenic inhibitor could be given by an oral route, the many kinds of diseases discussed above, and other angiogenic dependent pathologies, could be treated easily.
- the optimal dosage cold be distributed in a form that the patient could self-administer.
- compositions and methods are provided that are effective in inhibiting unwanted angiogenesis. These compositions are easily administered by different routes including oral and can be given in dosages that are safe and provide angiogenic inhibition at internal sites.
- the present invention provides a method of treating mammalian diseases mediated by undesired and uncontrolled angiogenesis by administering a composition comprising an anti-angiogenic compound in a dosage sufficient to inhibit angiogenesis.
- the present invention also includes angiogenic inhibiting compounds that contain an epoxide group. These angiogenic inhibiting compounds can be administered to a human or animal alone or with epoxide hydrolase inhibiting compounds.
- the present invention is especially useful for treating certain ocular neovascular diseases such as macular degeneration.
- the compounds which are contemplated as part of the present invention preferably can be given orally to the patient and thereby halt the progression of the disease.
- Other disease that can be treated using the present invention are diabetic retinopathy, neovascular glaucoma and retrolental fibroplasia.
- FIGS. 1 through 3 are a listing of representative compounds in the genus represented by the following general formulas:
- FIG. 4 is a listing of representative compounds in the genus represented by the following general formula:
- FIG. 5 is a listing of representative compounds in the genus represented by the following general formula:
- FIG. 6 shows the effect of thalidomide and EM12 on angiogenesis in a rabbit cornea model of angiogenesis.
- FIG. 7 shows the effect of thalidomide of the area of corneal vascularization in a rabbit cornea model of angiogenesis.
- the present invention includes compositions and methods for the treatment of diseases that are mediated by angiogenesis.
- One embodiment of the present invention is the use of thalidomide or the metabolites of thalidomide as disclosed herein to inhibit unwanted angiogenesis.
- the present invention also includes compounds which cause dysmelia is the developing fetus and have anti-angiogenic activity.
- the present invention comprises a method of treating undesired angiogenesis in a human or animal comprising the steps of administering to the human or animal with the undesired angiogenesis a composition comprising an effective amount of a teratogenic compound that is anti-angiogenic.
- the compound has formula B), where R 5 and R 6 are selected from the group consisting of: and R 9 has formula F) or H); and R 14 and R 16 are selected from the group consisting of: where R 21 is —H, —CH 3 , or —OH.
- Specific preferred compounds according to this aspect of the present invention include thalidomide, its precursors, metabolites and analogs. Particular analogs include EM-12, N-phthaloly-DL-glutamic acid (PGA) or N-phthaloyl-DL-glutamine anhydride. Examples of compounds that are members of this genus are listed in FIGS. 1 through 3 . It is to be understood that the compounds included as part of the present invention are not to be limited to those compounds shown in FIGS. 1 through 3 and include all other compounds that are members of the genus described by the general formulas herein.
- R 22 and R 23 are (independently), —H, —F, —Cl, —Br, —I, —CH 3 , or —CH 2 —CH 3 ; and R 24 is —H, —CH 3 , or —CH 2 —CH 3 .
- the present invention also features inhibiting angiogenesis in a mammal by administering a compound according to the above formulae in a dosage sufficient to inhibit angiogenesis. Examples of specific compounds that are members of this genus are listed in FIG. 4 .
- Angiogenesis inhibition compounds having the following general formula can be used in practicing the present invention: wherein compounds of structure (I), wherein R is selected from the group consisting of hydrogen, alkyl radicals of 1 to 6 carbon atoms, the phenyl radical, and the benzyl radical; and wherein R′ is selected from the group consisting of the phthalimido radical and the succinimido radical and of structure (II), wherein X is CH 2 or C ⁇ O; R′′ is H, —CH 2 CH 3 , —C 6 H 5 , —CH 2 C 6 H 5 , —CH 2 CH ⁇ CH 2 , or (a) and hydrolysis products of the compounds wherein R′′ is H and the piperidino ring or both the piperidino and the imido ring are hydrolyzed.
- epoxides of thalidomide EM-12 and EM-138.
- Representative epoxide compounds are shown as follows:
- epoxides of the thalidomide, EM-12, and EM 138 can be hydrolyzed to the following compounds:
- epoxides are hydrolyzed by a group of enzymes known as epoxide hydrolases.
- epoxide hydrolases There is a class of compounds which are epoxide hydrolase inhibitors. Examples of these compounds are valpromide (2-propylpentanamide) and valproic acid (2-propylpentanoic acid).
- Becuase epoxides are important angiogenesis inhibitors, it is contemplated as part of the present invention, compositions comprising any of the angiogenesis inhibitors compounds recited herein in combination with epoxide hydrolase inhibitors.
- the epoxide hydrolase inhibitors can be administered to a human or animal together or sequentially.
- the epoxide group appears to be an important substituent common to several angiogenesis inhibitors.
- the use of epoxide hydrolase inhibitors to potentiate the activity of any angiogenesis inhibitor containing an epoxide is contemplated as part of the present invention.
- the epoxide hydrolase inhibitors can be administered with the following epoxide-containing anti-angiogenesis compounds: AGM 1470, Eponimycin, microbial metabolites of Scolecobasidium arenarium designated f/2015, fr/111142 and fr/18487. See Olkawa, Biochem Biophys. Res. Comm, Vol. 81:1070 (1971) and Otsuka, J. Microbial. Biotech., Vol. 1:163 (1991).
- TNF- ⁇ has been recognized as manifesting a dose dependent toxicity. If present at low levels for a long period of time, TNF- ⁇ can result in cachexia. Cachexais is a general weight loss and wasting occurring in the course of some chromic diseases such as cancer, opportunistic infections of AIDS, inflammatory diseases, parasitic diseases, tuberculosis, and high dose IL-2 therapy.
- the epoxide containing angiogenesis inhibitors, with or without epoxide hydrolase inhibitors are also effective in treating diseases such as septic shock, leprosy and graph vs. host disease.
- the preferred compounds are thalidomide, as well as analogs, hydrolysis products, metabolities and precursors of thalidomide that are teratogenic, and, more specifically, that cause dismelia.
- Dysmelia-causing compounds can be identified by the general procedures of Helm, Arzneimittle Wunsch, 31(i/6):941-949 (1981), in which rabbit pumps are examined after exposure to the compound in utero.
- the compounds can generally be purchased, e.g., from Andrulis Pharmaceuticals, Beltsville, Md., or synthesized according to known procedures. It is to be understood that the compounds of the present invention can exist as enantiomers and that the racemic mixture of enantiomers or the isolated enantiomers are all considered as within the scope of the present invention.
- the compounds described above can be provided as pharmaceutically acceptable formulations using formulation methods known to those of ordinary skill in the art. These formulations can be administered by standard routes. In general, the combinations may be administered by the topical, transdermal, oral, rectal or parenteral (e.g., intravenous, subcutaneous or intramuscular) route. In addition, the combination may be incorporated into biodegradable polymers allowing for sustained release of the compound, the polymers being implanted in the vicinity of where drug delivery is desired, for example, at the site of a tumor. The biodegradable polymers and their use are described, for example, in detail in Brem et al., J. Neurosurg. 74:441-446 (1991).
- the dosage of the compound will depend on the condition being treated, the particular compound, and other clinical factors such as weight and condition of the human or animal and the route of administration of the compound. It is to be understood that the present invention has application for both human and veterinary use.
- the formulations include those suitable for oral, rectal, ophthalmic, (including intravitreal or intrameral) nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intratracheal, and epidural) administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion and as a bolus, etc.
- a tablet may be made by compression or molding, optionally with one more accessory ingredients.
- Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent.
- Molded tablets may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may be optionally coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
- Formulations suitable for topical administration in the mouth include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the ingredient to be administered in a suitable liquid carrier.
- Formulations suitable for topical administration to the skin may be presented as ointments, creams, gels and pastes comprising the ingredients to be administered in a pharmaceutical acceptable carrier.
- a preferred topical delivery system is a transdermal patch containing the ingredient to be administered.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- Formulations suitable for nasal administration include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the same manner in which snuff is administered, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
- Formulations suitable for vaginal administration may be presented as pessaries, tamports, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
- Formulations suitable for pareteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotomic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) conditions requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Preferred unit dosage formualtions are those containing a daily dose or unit, daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the administered ingredient.
- formulations of the present invention may include other agents conventional in the art having regard to the type of formulation in question for example, those suitable for oral administration may include flavoring agents.
- corneal neovascularization Diseases associated with corneal neovascularization that can be treated according to the present invention include but are not limited to, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pteryglum keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, trauma, rheumatoid arthritis, systemic l
- Disease associated with retinal/choroidal neovascularization that can be treated according to the present invention include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uvetitis/vitritis, myobacterial infectants, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infectants causing a retinitis or chroiditis, presumed ocular hisotplasmosis, Bests disease, myopia, optic pita, Stragarts disease, para planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosisi, trauma and post-laser complications.
- diseases include, but are not limited to, diseases associated with rubesoiss (neovascularization of the angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy, whether or not associated with diabetes.
- Another disease which can be treated according to the present invention is rheumatoid arthritis. It is believed that the blood vessels in the synovial lining of the joints undergo angiogenesis. In addition to forming new vascular networks, he endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction. The factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis.
- Another disease that can be treated according to the present invention are hemangiomas, Osler-Weber-Rendu disease, or hereditary hemorrhage, telangiectasia, solid or blood borne tumors are acquired immune deficiency syndrome.
- Pellets for implantation into rabbit corneas were made by mixing 110 ⁇ l of saline containing 12 ⁇ g of recombinant bFGF (Takeda Pharmaceuticals-Japan) with 40 mg of sucralfate (Bukh Meditec-Denmark); this suspension was added to 80 ⁇ l of 12% hydron (Interferon Sciences) is ehtanol. 10 ⁇ l aliquots of this mixture was then pipetted onto teflon pegs and allowed to dry producing approximately 17 pellets. A pellet was implanted into corneal micropockets of each eye of an anesthetized female New Zealand white rabbit, 2 mm from the limbus followed by topical application of erythromycin ointment onto the surface of the cornea.
- the animals were fed daily from 2 days post-implantation by gastric lavage with either drug suspended in 0.5% carboxymethyl cellulose or 0.5% carboxymethyl cellulose alone.
- Thalidomide was purchased from Andrulus Pharmaceutical (Maryland) and the EM-12 and Supidinide were kindly provided by Grunenthal GMBH (Germany).
- the animals were examined with a slit lamp every other day in a masked manner by the same corneal specialist.
- the area of corneal neovascularization was determined by measuring with a reticulate the vessel length (L) from the limbus and the number of clock hours (C) of limbus involved.
- Various mathematical models were utilized to determine the amount of vascularized cornea and this formula was found to provide the most accurate approximation of the area of the band of neovascularization that grows towards the pellet.
- rabbit cornea assay is preferable because it will generally recognize compounds that are inactive per se but are metabolized to yield active compounds.
- Thalidomide related compounds as shown below in Example III, are known to be teratogens and are candidates for use in the present invention.
- Pellets containing bFGF and sucraflate were implanted into micropouches of both cornea of rabbits according to Example II. Vessel ingrowth into clear cornea from the limbus was first noted on day 2 and treatments (200 mg/kg orally) were begun on this day. The area of corneal neovascularization was measured from day 4 through day 12. Day 8 measurements were used for comparison between groups. No regression of vessels and near maximal neovascularization was seen at this time point. Statistical analysis was performed with ANOVA with ranked data to account for intraexperimental variations and to guard against a non-normal distribution of data (i.e. outliers) by utilizing a homoparametric method.
- the inibition of angiogenesis by thalidomide was seen after only two doses (FIG. 7 ).
- the rabbits did not demonstrate obvious sedation and there were no signs of toxicity or weight loss.
- Other analogs, PGA and PG acid displayed weaker inhibitory effects than thalidomide (data not shown). The density of vessel ingrowth in thalidomide-treated animals was also markedly reduced.
- EM-12 was tested in the rabbit cornea assay described in Example II at 100 mg/kg/day and showed 21% inhibition, and at 200 mg/kg/day the assay showed 43% inhibition.
- Phthaloyl glutamic acid was tested in the above described CAM assay and exhibit an avascular zone with a mild scar.
- Phthaloyl glutamic anhydride was test in the CAM assay described above and exhibited an avascular zone.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention comprises a group of compounds that effectively inhibit angiogenesis. More specifically, thalidomide and various related compounds such as thalidomide precursors, analogs, metabolites and hydrolysis products have been shown to inhibit angiogenesis. Importantly, these compounds can be administered orally.
Description
This is a continuation of application Ser. No. 08/168,817, filed Dec. 15, 1993, now U.S. Pat. No. 5,629,327 which is a continuation-in-part of U.S. patent application Ser. No. 08/025,046, filed Mar. 1, 1993, now abandoned.
The present invention relates to methods and compositions for preventing unwanted angiogenesis in a human or animal. More particularly, the present invention relates to a method for preventing unwanted angiogenesis, particularly in angiogenesis dependent or associated diseases, by administration of compounds such as thalidomide and related compounds.
As used herein, the term “angiogenesis” means the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals only undergo angiogenesis in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometdum and placenta. The control of angiogenesis is a highly regulated system of aniogenic stimulators and inhibitors. The control of angiogenesis has been found to be altered in certain disease states and, in many cases, the pathological damage associated with the disease is related to the uncontrolled angiogenesis.
Both controlled and uncontrolled angiogenesis are thought to proceed in a similar manner. Endothelial cells and pericytes, surrounded by a basement membrane, form capillary blood vessels. Angiogenesis begins with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane. Aniogenic stimulants induce the endothelial cells to migrate through the eroded basement membrane. The migrating cells form a “sprout” off the parent blood vessel, where the endothelial cells undergo mitosis and proliferate. The endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel. In the disease state, prevention of angiogenesis could avert the damage caused by the invasion of the new microvascular system.
Persistent, unregulated angiogenesis occurs in a multiplicity of disease states, tumor metastasis and abnormal growth by endothelial cells and supports the pathological damage seen in these conditions. The diverse pathological states created due to unregulated angiogenesis have been grouped together as angiogenic dependent or angiogenic associated diseases. Therapies directed at control of the angiogenic processes could lead to the abrogation or mitigation of these diseases.
One example of a disease mediated by angiogenesis is ocular neovascular disease. This disease is characterized by invasion of new blood vessels into the structures of the eye such as the retina or cornea. It is the most common cause of blindness and is involved in approximately twenty eye diseases. In age-related macular degeneration, the associated visual problems are caused by an ingrowth of chorioidal capillaries through defects in Bruch's membrane with proliferation of fibrovascular tissue beneath the retinal pigment epithelium. Angiogenic damage is also associated with diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia. Other diseases associated with corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A, deficiency, contact lens overwear, stopic keratitis, superior limbic keratitis, pterygium keratitis sioca, sjogrens, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, and corneal graph rejection.
Diseases associated with retinal/choroidal neovascularization include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uvetitis/vitritis, mycobacterial infections, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Hales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stragarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications. Other diseases include, but are not limited to, diseases associated with rubeosis (neovascularization of the angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy.
Another disease in which angiogenesis is believed to be involved is rheumatoid arthritis. The blood vessels in the synovial lining of the joints undergo angiogenesis. In addition to forming new vascular networks, the endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction. The factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis.
Factors associated with angiogenesis may also have a role in osteoarthritis. The activation of the chondrocytes by angiogenic-related factors contributes to the destruction of the joint. At a later stage, the angiogenic factors would promote new bone formation. Therapeutic intervention that prevents the bone destruction could halt the progress of the disease and provide relief for persons suffering with arthritis.
Chronic inflammation may also involve pathological angiogenesis. Such disease states as ulcerative colitis and Chrohn's disease show histological changes with the ingrowth of new blood vessels into the inflamed tissues. Bartonellosis, a bacterial infection found in South America, can result in a chronic stage that is characterized by proliferation of vascular endothelial cells. Another pathological role associated with angiogenesis is found in atherosclerosis. The plaques formed within the lumen of blood vessels have been shown to have angiogenic stimulatory activity.
One of the most frequent angiogenic diseases of childhood is the hemangioma. In most cases, the tumors are benign and regress without intervention. In more severe cases, the tumors progress to large cavernous and infiltrative forms and create clinical complications. Systemic forms of hemangiomas, the hemangiomatoses, have a high mortality rate. Therapy-resistant hemangiomas exist that cannot be treated with therapeutics currently in use.
Angiogenesis is also responsible for damage found in hereditary diseases such as Osler-Weber-Rendu disease, or hereditary hemorrhagic telanglectasia. This is an inherited disease characterized by multiple small angiomas, tumors of blood or lymph vessels. The angiomas are found in the skin and mucous membranes, often accompanied by epistaxis (nosebleeds) or gastrointestinal bleeding and sometimes with pulmonary or hepatic arteriovenous fistula.
Angiogenesis is prominent in solid tumor formation and metastasis. Angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastomas, Ewing sarcoma, neuroblastoma, and osteosarcoma. A tumor cannot expand without a blood supply to provide nutrients and remove cellular wastes. Tumors in which angiogenesis is important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas. Prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
It should be noted that angiogenesis has been associated with blood-born tumors such as leukemias, any of various acute or chronic neoplastic diseases of the bone marrow in which unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen. It is believed that angiogenesis plays a role in the abnormalities in the bone marrow that give rise to leukemia-like tumors.
Angiogenesis is important in two stages of tumor metastasis. The first stage where angiogenesis stimulation is important is in the vascularization of the tumor which allows minor cells to enter the blood stream and to circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis must occur before the new tumor can grow and expand. Therefore, prevention of angiogenesis could lead to the prevention of metastasis of tumors and possibly contain the neoplastic growth at the primary site.
Knowledge of the role of angiogenesis in the maintenance and metastasis of tumors has led to a prognostic indicator for breast cancer. The amount of neovascularization found in the primary tumor was determined by counting the microvessel density in the area of the most intense neovascularization in invasive breast carcinoma. A high level of microvessel density was found to correlate with tumor recurrence. Control of angiogenesis by therapeutic means could possibly lead to cessation of the recurrence of the tumors.
Angiogenesis is also involved in normal physiological processes such as reproduction and wound healing. Angiogenesis is an important step in ovulation and also in implantation of the blastula after fertilization. Prevention of angiogenesis could be used to induce amenorrhea, to block ovulation or to prevent implantation by the bastula.
In wound healing, excessive repair or fibroplasia can be a detrimental side effect of surgical procedures and may be caused or exacerbated by angiogenesis. Adhesions are a frequent complication of surgery and lead to problems such as small bowel obstruction.
Several kinds of compounds have been used to prevent angiogenesis. Taylor et al. have used protamine to inhibit angiogenesis, see Taylor et al., Nature 297:307 (1982). The toxicity of protamine limits its practical use as a therapeutic. Folkman et al. have disclosed the use of heparin and seteroids to control angiogenesis. See Folkman et al., Science 221:719 (1983) and U.S. Pat. Nos. 5,001,116 and 4,994,443. Steroids, such as tetrahydrocortisol, which lack gluco and mineral cortidoid activity, have been found to be angiogenic inhibitors.
Other factors found endogenously in animals, such as a 4 kDa glycoprotein from bovine vitreous humor and a cartilage derived factor, have been used to inhibit angiogenesis. Cellular factors such as interferon inhibit angiogenesis. For example, interferon α or human interferon β has been shown to inhibit tumor-induced angiogenesis in mouse dermis stimulated by human neoplastic cells. Interferon β is also a potent inhibitor of angiogenesis induced by allogeneic spleen cells. See Sidky et al., Cancer Research 47:5155-5161 (1987). Human recombinant α interferon (alpha/A) was reported to be successfully used in the treatment of pulmonary hemangiomatosis, an angiogenesis-induced disease. See White et al., New England J. Med. 320:1197-1200 (1989).
Other agents which have been used to inhibit angiogenesis include ascorbic acid ethers and related compounds. See Japanese Kokai Tokkyo Koho No. 58-131978. Sulfated polysaccharide DS 4152 also shows angiogenic inhibition. See Japanese Kokai Tokkyo Koho No. 63-119500. A fungal product, fumagillin, is a potent angiostatic agent in vitro. The compound is toxic in vivo, but a synthetic derivative, AGM 12470, has been used in vivo to treat collagen II arthritis. Fumagillin and O-substituted fumagillin derivatives are disclosed in EPO Publication Nos. 0325199A2 and 0357061A 1.
PCT Application No. WO 92/14455 to Kaplan et al. is directed to a method for controlling abnormal concentration to TNF-α by administering thalidomide or thalidomide derivatives to a patient with toxic concentrations of TNF-α.
The above compounds are either topical or injectable therapeutics. Therefore, there are drawbacks to their use as a general angiogenic inhibitor and lack adequate potency. For example, in prevention of excessive wound healing, surgery on internal body organs involves incisions in various structures contained within the body cavities. These wounds are not accessible to local applications of angiogenic inhibitors. Local delivery systems also involve frequent dressings which are impracticable for internal wounds, and increase the risk of infection or damage to delicate granulation tissue for surface wounds.
Thus, a method and composition are needed that are capable of inhibiting angiogenesis and which are easily administered. A simple and efficacious method of treatment would be through the oral route. If an angiogenic inhibitor could be given by an oral route, the many kinds of diseases discussed above, and other angiogenic dependent pathologies, could be treated easily. The optimal dosage cold be distributed in a form that the patient could self-administer.
In accordance with the present invention, compositions and methods are provided that are effective in inhibiting unwanted angiogenesis. These compositions are easily administered by different routes including oral and can be given in dosages that are safe and provide angiogenic inhibition at internal sites. The present invention provides a method of treating mammalian diseases mediated by undesired and uncontrolled angiogenesis by administering a composition comprising an anti-angiogenic compound in a dosage sufficient to inhibit angiogenesis.
The present invention also includes angiogenic inhibiting compounds that contain an epoxide group. These angiogenic inhibiting compounds can be administered to a human or animal alone or with epoxide hydrolase inhibiting compounds.
The present invention is especially useful for treating certain ocular neovascular diseases such as macular degeneration. The compounds which are contemplated as part of the present invention preferably can be given orally to the patient and thereby halt the progression of the disease. Other disease that can be treated using the present invention are diabetic retinopathy, neovascular glaucoma and retrolental fibroplasia.
Accordingly, it is an object of the present invention to provide a compound and method to inhibit unwanted angiogenesis in a human or animal.
It is yet another object of the present invention to provide a composition of inhibiting angiogenesis by oral administration of the composition.
It is another object of the present invention to provide a treatment for diseases mediated by angiogenesis.
It is yet another object of the present invention to provide a treatment for macular degeneration.
It is yet another object of the present invention to provide a treatment for all forms of proliferative vitreoretinopathy including those forms not associated with diabetes.
It is yet another object of the present invention to provide a treatment for solid tumors.
It is yet another object of the present invention to provide a method and composition for the treatment of blood-born tumors such as leukemia.
It is another object of the present invention to provide a method and composition for the treatment of hemangioma.
It is another object of the present invention to provide a method and composition for the treatment of retrolental fibroplasia.
It is another object of the present invention to provide a method and composition for the treatment of psoriasis.
It is another object of the present invention to provide a method and composition for the treatment of Kaposi's sarcoma.
It is another object of the present invention to provide a method and composition for the treatment of Crohn's diseases.
It is another object of the present invention to provide a method and composition for the treatment of diabetic retinopathy.
Other features and advantages of the invention will be apparent from the following description of preferred embodiments thereof.
These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.
The present invention includes compositions and methods for the treatment of diseases that are mediated by angiogenesis. One embodiment of the present invention is the use of thalidomide or the metabolites of thalidomide as disclosed herein to inhibit unwanted angiogenesis. The present invention also includes compounds which cause dysmelia is the developing fetus and have anti-angiogenic activity. The present invention comprises a method of treating undesired angiogenesis in a human or animal comprising the steps of administering to the human or animal with the undesired angiogenesis a composition comprising an effective amount of a teratogenic compound that is anti-angiogenic.
Compounds that can be used in accordance with the present invention include compounds included in the following general formulae. Examples of compounds that have anti-angiogenic properties having one of the following three formulae (A), (B), or (C):
In the above formulae A), B), and C), R1, R2, R3 and R4 can be selected from: —H, —OH; ═O, straight chained and branched alkanes, alkenes, alkynes; cyclic alkanes, alkenes, and alkynes; combinations of cyclic and acyclic alkanes, alkenes, and alkynes; alcohol, aldehyde, ketone, carboxylic acid, ester, or ether moieties in combination with acyclic, cyclic, or combination acyclic/cyclic moieties; aza; amino; —XOn or —O—XOm, [where X═N and n=2; X═S and n=2 or 3; or X═P and n=1-3]; and halogens; R5, R6 and R7 are each independently selected from:
or —O— where Y is optional and is the same as defined above for R1; and R10 is the same as defined above for R1, or (where Y is absent) R10 is ═O; and R8 is independently selected from
and R9 is a moiety having formula D), E), F) G) or H):
where each of R12-R17 is (independently) the same as defined above for R5; and R11 is independently the same as defined above for R8;
where R18, R19 and R20 are independently selected from
and n=1 to 4.
In the above formulae A), B), and C), R1, R2, R3 and R4 can be selected from: —H, —OH; ═O, straight chained and branched alkanes, alkenes, alkynes; cyclic alkanes, alkenes, and alkynes; combinations of cyclic and acyclic alkanes, alkenes, and alkynes; alcohol, aldehyde, ketone, carboxylic acid, ester, or ether moieties in combination with acyclic, cyclic, or combination acyclic/cyclic moieties; aza; amino; —XOn or —O—XOm, [where X═N and n=2; X═S and n=2 or 3; or X═P and n=1-3]; and halogens; R5, R6 and R7 are each independently selected from:
or —O— where Y is optional and is the same as defined above for R1; and R10 is the same as defined above for R1, or (where Y is absent) R10 is ═O; and R8 is independently selected from
and R9 is a moiety having formula D), E), F) G) or H):
where each of R12-R17 is (independently) the same as defined above for R5; and R11 is independently the same as defined above for R8;
where R18, R19 and R20 are independently selected from
and n=1 to 4.
Accordingly, another aspect of the present invention features inhibiting angiogenesis in a mammal by administering a therapeutic composition comprising one of the above-described compounds in a dosage sufficient to inhibit angiogenesis.
In preferred embodiments, the compound has formula B), where R5 and R6 are selected from the group consisting of:
and R9 has formula F) or H); and R14 and R16 are selected from the group consisting of:
where R21 is —H, —CH3, or —OH. Specific preferred compounds according to this aspect of the present invention include thalidomide, its precursors, metabolites and analogs. Particular analogs include EM-12, N-phthaloly-DL-glutamic acid (PGA) or N-phthaloyl-DL-glutamine anhydride. Examples of compounds that are members of this genus are listed inFIGS. 1 through 3 . It is to be understood that the compounds included as part of the present invention are not to be limited to those compounds shown in FIGS. 1 through 3 and include all other compounds that are members of the genus described by the general formulas herein.
and R9 has formula F) or H); and R14 and R16 are selected from the group consisting of:
where R21 is —H, —CH3, or —OH. Specific preferred compounds according to this aspect of the present invention include thalidomide, its precursors, metabolites and analogs. Particular analogs include EM-12, N-phthaloly-DL-glutamic acid (PGA) or N-phthaloyl-DL-glutamine anhydride. Examples of compounds that are members of this genus are listed in
Compounds of the following formula that have anti-angiogenic properties:
where R22 and R23 are (independently), —H, —F, —Cl, —Br, —I, —CH3, or —CH2—CH3; and R24 is —H, —CH3, or —CH2—CH3.
where R22 and R23 are (independently), —H, —F, —Cl, —Br, —I, —CH3, or —CH2—CH3; and R24 is —H, —CH3, or —CH2—CH3.
The present invention also features inhibiting angiogenesis in a mammal by administering a compound according to the above formulae in a dosage sufficient to inhibit angiogenesis. Examples of specific compounds that are members of this genus are listed in FIG. 4.
Angiogenesis inhibition hydrolysis products of thalidomide having the following general formula can be used in practicing the present invention:
where X is R6 as defined above, or
and R25 and R26 are, independently, —OH, —H, or NH2, and n=1 through 4. Examples of such compounds are shown in FIG. 5.
where X is R6 as defined above, or
and R25 and R26 are, independently, —OH, —H, or NH2, and n=1 through 4. Examples of such compounds are shown in FIG. 5.
Angiogenesis inhibition compounds having the following general formula can be used in practicing the present invention:
wherein compounds of structure (I), wherein R is selected from the group consisting of hydrogen, alkyl radicals of 1 to 6 carbon atoms, the phenyl radical, and the benzyl radical; and wherein R′ is selected from the group consisting of the phthalimido radical and the succinimido radical and of structure (II), wherein X is CH2 or C═O; R″ is H, —CH2CH3, —C6H5, —CH2C6H5, —CH2CH═CH2, or (a) and hydrolysis products of the compounds wherein R″ is H and the piperidino ring or both the piperidino and the imido ring are hydrolyzed.
wherein compounds of structure (I), wherein R is selected from the group consisting of hydrogen, alkyl radicals of 1 to 6 carbon atoms, the phenyl radical, and the benzyl radical; and wherein R′ is selected from the group consisting of the phthalimido radical and the succinimido radical and of structure (II), wherein X is CH2 or C═O; R″ is H, —CH2CH3, —C6H5, —CH2C6H5, —CH2CH═CH2, or (a) and hydrolysis products of the compounds wherein R″ is H and the piperidino ring or both the piperidino and the imido ring are hydrolyzed.
Another set of compounds that are considered part of the present invention are the epoxides of thalidomide, EM-12 and EM-138. Representative epoxide compounds are shown as follows:
It should be understood that the epoxide can be attached at the 6,1 site on the benzene ring, the 1,2 site, the 2,3 site 3,4 or the 4,5 site. All of these compounds are contemplated as part of the present invention.
It is to be understood that the hydroxyl group can be on carbons 1, 2, 3, 4, 5 and 6 of the benzene ring. Also contemplated as part of the present invention are dihydroxyl compounds wherein the two hydroxyl groups are located bis to each other on carbons 1, 2, 3, 5 and 6 of the above compounds. The epoxides, the hydrolysis products of the epoxides, and the hydrolysis products of the thalidomide are all contemplated to be part of the present invention.
It is known that epoxides are hydrolyzed by a group of enzymes known as epoxide hydrolases. There is a class of compounds which are epoxide hydrolase inhibitors. Examples of these compounds are valpromide (2-propylpentanamide) and valproic acid (2-propylpentanoic acid). Becuase epoxides are important angiogenesis inhibitors, it is contemplated as part of the present invention, compositions comprising any of the angiogenesis inhibitors compounds recited herein in combination with epoxide hydrolase inhibitors. The epoxide hydrolase inhibitors can be administered to a human or animal together or sequentially. The epoxide group appears to be an important substituent common to several angiogenesis inhibitors. The use of epoxide hydrolase inhibitors to potentiate the activity of any angiogenesis inhibitor containing an epoxide is contemplated as part of the present invention. For example, the epoxide hydrolase inhibitors can be administered with the following epoxide-containing anti-angiogenesis compounds: AGM 1470, Eponimycin, microbial metabolites of Scolecobasidium arenarium designated f/2015, fr/111142 and fr/18487. See Olkawa, Biochem Biophys. Res. Comm, Vol. 81:1070 (1971) and Otsuka, J. Microbial. Biotech., Vol. 1:163 (1991).
It is contemplated as an embodiment of the present invention the use of the epoxide containing angiogenesis inhibitors with or without epoxide hydrolase inhibitors as a treatment for diseases mediated by elevated or toxic levels of TNF-α. TNF-α has been recognized as manifesting a dose dependent toxicity. If present at low levels for a long period of time, TNF-α can result in cachexia. Cachexais is a general weight loss and wasting occurring in the course of some chromic diseases such as cancer, opportunistic infections of AIDS, inflammatory diseases, parasitic diseases, tuberculosis, and high dose IL-2 therapy. The epoxide containing angiogenesis inhibitors, with or without epoxide hydrolase inhibitors, are also effective in treating diseases such as septic shock, leprosy and graph vs. host disease.
Other embodiments are within the present invention. For example, other dysmelia-causing compounds can be used according to the present invention, e.g. 4-methylphthalic acid, pyridoxine, vasopressin, acetazolamide, or a compound having the following formula (where R═H, —OH, or —CH3):
Other compounds which are teratogens, such as valproic acid (2-propylpentanoic acid), the retinoids, such as cis-retinoic acid, and rifampin may also be used in accordance with the invention.
Other compounds which are teratogens, such as valproic acid (2-propylpentanoic acid), the retinoids, such as cis-retinoic acid, and rifampin may also be used in accordance with the invention.
In summary, the preferred compounds are thalidomide, as well as analogs, hydrolysis products, metabolities and precursors of thalidomide that are teratogenic, and, more specifically, that cause dismelia. However, it is to be understood that it is necessary for a compound to have both teratogenic activity and angiogenesis inhibiting activity to be considered part of the present invention. Dysmelia-causing compounds can be identified by the general procedures of Helm, Arzneimittleforschung, 31(i/6):941-949 (1981), in which rabbit pumps are examined after exposure to the compound in utero. The compounds can generally be purchased, e.g., from Andrulis Pharmaceuticals, Beltsville, Md., or synthesized according to known procedures. It is to be understood that the compounds of the present invention can exist as enantiomers and that the racemic mixture of enantiomers or the isolated enantiomers are all considered as within the scope of the present invention.
Many of the compounds that are contemplated as part of the present invention can be enriched in optically active enantiomers of the compounds specified above. Specifically, Blaschke has reported that the S enantiomers may be disproportionately responsible for the dismelia-producing effect of these compounds. See, generally Blaschke, Arzneimittelforschung 29:1640-1642 (1979). The above described articles generally describe procedures to obtain optically active preparations of the compounds of interest. See, e.g. Shealy et al., Chem. Indus. 1030 (1965); and Casini et al., Farmaco Ed. Sci. 19:563 (1964).
The compounds described above can be provided as pharmaceutically acceptable formulations using formulation methods known to those of ordinary skill in the art. These formulations can be administered by standard routes. In general, the combinations may be administered by the topical, transdermal, oral, rectal or parenteral (e.g., intravenous, subcutaneous or intramuscular) route. In addition, the combination may be incorporated into biodegradable polymers allowing for sustained release of the compound, the polymers being implanted in the vicinity of where drug delivery is desired, for example, at the site of a tumor. The biodegradable polymers and their use are described, for example, in detail in Brem et al., J. Neurosurg. 74:441-446 (1991).
The dosage of the compound will depend on the condition being treated, the particular compound, and other clinical factors such as weight and condition of the human or animal and the route of administration of the compound. It is to be understood that the present invention has application for both human and veterinary use. For oral administration to humans, a dosage of between approximately 0.1 to 300 mg/kg/day, preferably between approximately 0.5 and 50 mg/kg/day, and most preferably between approximately 1 to 10 mg/kg/day, is generally sufficient.
The formulations include those suitable for oral, rectal, ophthalmic, (including intravitreal or intrameral) nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intratracheal, and epidural) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into associate the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion and as a bolus, etc.
A tablet may be made by compression or molding, optionally with one more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding, in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may be optionally coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
Formulations suitable for topical administration in the mouth include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the ingredient to be administered in a suitable liquid carrier.
Formulations suitable for topical administration to the skin may be presented as ointments, creams, gels and pastes comprising the ingredients to be administered in a pharmaceutical acceptable carrier. A preferred topical delivery system is a transdermal patch containing the ingredient to be administered.
Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
Formulations suitable for nasal administration, wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the same manner in which snuff is administered, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
Formulations suitable for vaginal administration may be presented as pessaries, tamports, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
Formulations suitable for pareteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotomic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) conditions requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
Preferred unit dosage formualtions are those containing a daily dose or unit, daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the administered ingredient.
It should be understood that in addition to the ingredients, particularly mentioned above, the formulations of the present invention may include other agents conventional in the art having regard to the type of formulation in question for example, those suitable for oral administration may include flavoring agents.
Diseases associated with corneal neovascularization that can be treated according to the present invention include but are not limited to, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pteryglum keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, trauma, rheumatoid arthritis, systemic lupus, polyarteritis, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, and corneal graph rejection.
Disease associated with retinal/choroidal neovascularization that can be treated according to the present invention include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uvetitis/vitritis, myobacterial infectants, Lyme's disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infectants causing a retinitis or chroiditis, presumed ocular hisotplasmosis, Bests disease, myopia, optic pita, Stragarts disease, para planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosisi, trauma and post-laser complications. Other diseases include, but are not limited to, diseases associated with rubesoiss (neovascularization of the angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy, whether or not associated with diabetes.
Another disease which can be treated according to the present invention is rheumatoid arthritis. It is believed that the blood vessels in the synovial lining of the joints undergo angiogenesis. In addition to forming new vascular networks, he endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction. The factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis.
Another disease that can be treated according to the present invention are hemangiomas, Osler-Weber-Rendu disease, or hereditary hemorrhage, telangiectasia, solid or blood borne tumors are acquired immune deficiency syndrome.
This invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.
The chick embryo chorioallantoic membrane assay described by Crum et al., Science 230:1375 et seq. (1985), is used to identify compounds that do not require further metabolic conversion. See also, U.S. Pat. No. 5,001,116, hereby incorporated by reference, which describes the CAM assay at col. 7 of the patent. Briefly, fertilized chick embryos are removed from their shell on day 3 or 4, and a methylcellulose disc containing the compounds is implanted on the chorioallantoic membrane. The embryos are examined 48 hours later and, if a clear avascular zone appears around the methylcellulose disc, the diameter of that zone is measured.
Pellets for implantation into rabbit corneas were made by mixing 110 μl of saline containing 12 μg of recombinant bFGF (Takeda Pharmaceuticals-Japan) with 40 mg of sucralfate (Bukh Meditec-Denmark); this suspension was added to 80 μl of 12% hydron (Interferon Sciences) is ehtanol. 10 μl aliquots of this mixture was then pipetted onto teflon pegs and allowed to dry producing approximately 17 pellets. A pellet was implanted into corneal micropockets of each eye of an anesthetized female New Zealand white rabbit, 2 mm from the limbus followed by topical application of erythromycin ointment onto the surface of the cornea. The animals were fed daily from 2 days post-implantation by gastric lavage with either drug suspended in 0.5% carboxymethyl cellulose or 0.5% carboxymethyl cellulose alone. Thalidomide was purchased from Andrulus Pharmaceutical (Maryland) and the EM-12 and Supidinide were kindly provided by Grunenthal GMBH (Germany). The animals were examined with a slit lamp every other day in a masked manner by the same corneal specialist. The area of corneal neovascularization was determined by measuring with a reticulate the vessel length (L) from the limbus and the number of clock hours (C) of limbus involved. A formula was used to determine the area of a circular band segment C/12*3.1416 [r3−(r−L)2] where r=6 mm the measured radius of the rabbit cornea. Various mathematical models were utilized to determine the amount of vascularized cornea and this formula was found to provide the most accurate approximation of the area of the band of neovascularization that grows towards the pellet.
It is important to note that the rabbit cornea assay is preferable because it will generally recognize compounds that are inactive per se but are metabolized to yield active compounds. Thalidomide related compounds, as shown below in Example III, are known to be teratogens and are candidates for use in the present invention.
Pellets containing bFGF and sucraflate were implanted into micropouches of both cornea of rabbits according to Example II. Vessel ingrowth into clear cornea from the limbus was first noted on day 2 and treatments (200 mg/kg orally) were begun on this day. The area of corneal neovascularization was measured from day 4 through day 12. Day 8 measurements were used for comparison between groups. No regression of vessels and near maximal neovascularization was seen at this time point. Statistical analysis was performed with ANOVA with ranked data to account for intraexperimental variations and to guard against a non-normal distribution of data (i.e. outliers) by utilizing a homoparametric method.
Treatment with a dose of (200 mg/kg) of thalidomide resulted in an inhibition of the area of vascularized cornea that ranged from 30-51% in three experiments with a media inhibition of 36% (FIG. 6 ) (n=30 eyes, p=0.0001, 2 way ANOVA with ranked data). The inibition of angiogenesis by thalidomide was seen after only two doses (FIG. 7). The rabbits did not demonstrate obvious sedation and there were no signs of toxicity or weight loss. The teratogenic analog EM-12, which shows the other properties of thalidomide was also inhibitory, with a mediation inhibition of 42% (p=10 eyes, p=0.002, 1-way ANOVA with ranked data). Supidimide, a nonteratogenic analog of thalidomide that retains the sedative properties of thalidomide, exhibited no activity (area 107% control, n=10 eyes, not statistically different from control). Other analogs, PGA and PG acid displayed weaker inhibitory effects than thalidomide (data not shown). The density of vessel ingrowth in thalidomide-treated animals was also markedly reduced.
EM-12 was tested in the rabbit cornea assay described in Example II at 100 mg/kg/day and showed 21% inhibition, and at 200 mg/kg/day the assay showed 43% inhibition.
Phthaloyl glutamic acid was tested in the above described CAM assay and exhibit an avascular zone with a mild scar.
Phthaloyl glutamic acid described above at 200 mg/kg and exhibited 29% inhibition of angiogenesis.
Phthaloyl glutamic anhydride was test in the CAM assay described above and exhibited an avascular zone.
It should be understood, of course, that the foregoing relates only to preferred embodiments of the present invention and that numerous modifications or alterations may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims.
Claims (81)
1. A method of treating undesired angiogenesis in a human or animal comprising the step of administering to the human or animal with the undesired angiogenesis a composition comprising an effective amount of an angiogenesis-inhibiting compound selected from the group consisting of 3-amothalidomide, and 3-hydroxythalidomide, and metabolities or hydrolysis products of 3-aminothalidomide and metabolites or hydrolysis products of 3-hydroxythalidomide, and mixtures thereof.
2. The method of claim 1 , wherein the undesired angiogenesis is associated with retinal neovascularization.
3. The method of claim 1 , wherein the undesired angiogenesis is associated with choroidal neovascularization.
4. The method of claim 1 wherein the undesired angiogenesis is associated with diabetic retinopathy.
5. The method of claim 1 , wherein the undesired angiogenesis is associated with macular degeneration.
6. The method of claim 1 , wherein the undesired angiogenesis is associated with corneal neovascularization.
7. The method of claim 1 wherein the undesired angiogenesis occurs in retinopathy of prematurity.
8. The method of claim 1 wherein the undesired angiogenesis occurs in corneal graft rejection.
9. The method of claim 1 wherein the undesired angiogenesis occurs in neovascular glaucoma.
10. The method of claim 1 wherein the undesired angiogenesis occurs in retrolental fibroplasia.
11. The method of claim 1 wherein the undesired angiogenesis occurs in epidemic keratoconjunctivitis.
12. The method of claim 1 wherein the undesired angiogenesis occurs due to Vitamin A deficiency.
13. The method of claim 1 wherein the undesired angiogenesis occurs due to contact lens overwear.
14. The method of claim 1 wherein the undesired angiogenesis occurs in stopitc keratitis.
15. The method of claim 1 wherein the undesired angiogenesis occurs in superior limbic keratitis.
16. The method of claim 1 wherein the undesired angiogenesis occurs in pterygium keratitis sicca.
17. The method of claim 1 wherein the undesired angiogenesis occurs in sjogrens.
18. The method of claim 1 wherein the undesired angiogenesis occurs in acne rosacea.
19. The method of claim 1 wherein the undesired angiogenesis occurs in phylectemolosis.
20. The method of claim 1 wherein the undesired angiogenesis occurs in syhilis.
21. The method of claim 1 wherein the undesired angiogenesis occurs in Myobacteria infections other than leprosy.
22. The method of claim 1 wherein the undesired angiogenesis occurs in lipid degeneration.
23. The method of claim 1 wherein the undesired angiogenesis occurs in chemical burns.
24. The method of claim 1 wherein the undesired angiogenesis occurs in bacterial ulcers.
25. The method of claim 1 wherein the undesired angiogenesis occurs in fungal ulcers.
26. The method of claim 1 wherein the undesired angiogenesis occurs in Herpes simplex infections.
27. The method of claim 1 wherein the undesired angiogenesis occurs in Herpes zoster infections.
28. The method of claim 1 wherein the undesired angiogenesis occurs in protozona infections.
29. The method of claim 1 wherein the undesired angiogenesis occurs in Kaposi's sarcoma.
30. The method of claim 1 wherein the undesired angiogenesis occurs in Mooren ulcer.
31. The method of claim 1 wherein the undesired angiogenesis occurs in Terrien's marginal degeneration.
32. The method of claim 1 wherein the undesired angiogenesis occurs in marginal keratolysis.
33. The method of claim 1 wherein the undesired angiogenesis is caused by trauma.
34. The method of claim 1 wherein the undesired angiogenesis occurs in rheumatoid arthritis.
35. The method of claim 1 wherein the undesired angiogenesis occurs in systemic lupus.
36. The method of claim 1 wherein the undesired angiogenesis occurs in polyarteritis.
37. The method of claim 1 wherein the undesired angiogenesis occurs in Wegeners sarcoidosis.
38. The method of claim 1 wherein the undesired angiogenesis occurs in scleritis.
39. The method of claim 1 wherein the undesired angiogenesis occurs in Steven's Johnson disease.
40. The method of claim 1 wherein the undesired angiogenesis occurs in radial keratotomy.
41. The method of claim 1 wherein the undesired angiogenesis occurs in sickle cell anemia.
42. The method of claim 1 wherein the undesired angiogenesis occurs in sarcoid.
43. The method of claim 1 wherein the undesired angiogenesis occurs in pseudoxanthoma elasticum.
44. The method of claim 1 wherein the undesired angiogenesis occurs in Pagets disease.
45. The method of claim 1 wherein the undesired angiogenesis occurs in vein occlusion.
46. The method of claim 1 wherein the undesired angiogenesis occurs in artery occlusion.
47. The method of claim 1 wherein the undesired angiogenesis occurs in carotid obstructive disease.
48. The method of claim 1 wherein the undesired angiogenesis occurs in chronic uvetitis.
49. The method of claim 1 wherein the undesired angiogenesis occurs in chronic vitritis.
50. The method of claim 1 wherein the undesired angiogenesis occurs in Lyme's disease.
51. The method of claim 1 wherein the undesired angiogenesis occurs in Eales disease.
52. The method of claim 1 wherein the undesired angiogenesis occurs in Bechets disease.
53. The method of claim 1 wherein the undesired angiogenesis occurs in myopis.
54. The method of claim 1 wherein the undesired angiogenesis occurs in optic pits.
55. The method of claim 1 wherein the undesired angiogenesis occurs in Stargarts disease.
56. The method of claim 1 wherein the undesired angiogenesis occurs in pars planitis.
57. The method of claim 1 wherein the undesired angiogenesis occurs is chronic retinal detachment.
58. The method of claim 1 wherein the undesired angiogenesis occurs in hyperviscosity syndromes.
59. The method of claim 1 wherein the undesired angiogenesis occurs in toxoplasmosis.
60. The method of claim 1 wherein the undesired angiogenesis occurs in post-laser complications.
61. The method of claim 1 wherein the undesired angiogenesis occurs in abnormal proliferation of fibrovascular tissue.
62. The method of claim 1 wherein the undesired angiogenesis occurs in hemangiomas.
63. The method of claim 1 wherein the undesired angiogenesis occurs in Osler-Weber-Rendu.
64. The method of claim 1 wherein the undesired angiogenesis occurs in solid tumors.
65. The method of claim 1 wherein the undesired angiogenesis occurs in blood borne tumors.
66. The method of claim 1 wherein the undesired angiogenesis occurs in acquired immune deficiency syndrome.
67. The method of claim 1 wherein the undesired angiogenesis occurs in occular neovascular disease.
68. The method of claim 1 wherein the undesired angiogenesis occurs in osteoarthritis.
69. The method of claim 1 wherein the undesired angiogenesis occurs in diseases caused by chronic inflammation.
70. The method of claim 1 wherein the undesired angiogenesis occurs in Chron's disease.
71. The method of claim 1 wherein the undesired angiogenesis occurs in ulceritive colitis.
72. The method of claim 1 wherein the undesired angiogenesis occurs in the tumors of rhabdomyosarcoma.
73. The method of claim 1 wherein the undesired angiogenesis occurs in the tumors of retinoblastoma.
74. The method of claim 1 wherein the undesired angiogenesis occurs in the tumors of Ewing sarcoma.
75. The method of claim 1 wherein the undesired angiogenesis occurs in the tumors of neuroblastoma.
76. The method of claim 1 wherein the undesired angiogenesis occurs in the tumors of osteosarcoma.
77. The method of claim 1 wherein the undesired angiogenesis occurs in leukemia.
78. The method of claim 1 wherein the undesired angiogenesis occurs in psoriasis.
79. The method of claim 1 wherein the undesired angiogenesis occurs in atherosclerosis.
80. The method of claim 1 wherein the undesired angiogenesis occurs in pemphigoid.
81. A method of treating undesired angiogenesis in a human or animal comprising administering to the human or animal with the undesired angiogenesis a composition comprising an effective amount of 3-hydroxythalidomide, wherein the undesired angiogenesis is associated with retinal neovascularization, choroidal neovascularization, diabetic retinopathy, macular degeneration, corneal neovascularization, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjorgrens, acne rosacea, phyletenulosis, syphilis, Mycobacteria infections other than leprosy, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi's sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, trauma, rheumatoid arthritis, systemic lupus, polyarteritis, Wegeners sarcoidosis, scleritis, Steven's Johnson disease, radial keratotomy, sickle cell anemia, sarcoid, pseudoxanthoma elasticium, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitus, chronic vitritis, Lyme's disease, Eales disease, Bechets disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmoisis, post-laser complications, abnormal proliferation of fibrovascular tissue, hemangiomas, Osler-Weber-Rendu disease solid tumors, blood borne tumors, acquired immune deficiency syndrome, ocular neovascular disease, osteoarthritis, Crohn's disease, ulcerative colitis, rhabdomyosarcoma, retinoblastoma, Ewing sarcoma, neuroblastoma, osteosarcoma, leukemia, psoriasis, atherosclerosis or pemphigoid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/384,188 USRE40360E1 (en) | 1993-03-01 | 2006-03-17 | Methods for inhibition of angiogenesis with a composition comprising 3-hydroxythalidomide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2504693A | 1993-03-01 | 1993-03-01 | |
US08/168,817 US5629327A (en) | 1993-03-01 | 1993-12-15 | Methods and compositions for inhibition of angiogenesis |
US08/468,792 US5712291A (en) | 1993-03-01 | 1995-06-06 | Methods and compositions for inhibition of angiogenesis |
US11/384,188 USRE40360E1 (en) | 1993-03-01 | 2006-03-17 | Methods for inhibition of angiogenesis with a composition comprising 3-hydroxythalidomide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/468,792 Reissue US5712291A (en) | 1993-03-01 | 1995-06-06 | Methods and compositions for inhibition of angiogenesis |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE40360E1 true USRE40360E1 (en) | 2008-06-03 |
Family
ID=27362452
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/126,542 Expired - Lifetime US6114355A (en) | 1993-03-01 | 1998-07-30 | Methods and compositions for inhibition of angiogenesis |
US11/384,188 Expired - Lifetime USRE40360E1 (en) | 1993-03-01 | 2006-03-17 | Methods for inhibition of angiogenesis with a composition comprising 3-hydroxythalidomide |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/126,542 Expired - Lifetime US6114355A (en) | 1993-03-01 | 1998-07-30 | Methods and compositions for inhibition of angiogenesis |
Country Status (1)
Country | Link |
---|---|
US (2) | US6114355A (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228879B1 (en) * | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
US6114355A (en) | 1993-03-01 | 2000-09-05 | D'amato; Robert | Methods and compositions for inhibition of angiogenesis |
US6518281B2 (en) * | 1995-08-29 | 2003-02-11 | Celgene Corporation | Immunotherapeutic agents |
US6346510B1 (en) | 1995-10-23 | 2002-02-12 | The Children's Medical Center Corporation | Therapeutic antiangiogenic endostatin compositions |
US6281230B1 (en) * | 1996-07-24 | 2001-08-28 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
US7629360B2 (en) * | 1999-05-07 | 2009-12-08 | Celgene Corporation | Methods for the treatment of cachexia and graft v. host disease |
US7361643B2 (en) | 2000-02-09 | 2008-04-22 | University Of Puerto Rico | Methods for inhibiting angiogenesis |
KR20030003708A (en) * | 2000-03-31 | 2003-01-10 | 셀진 코포레이션 | Inhibition of cyclooxygenase-2 activity |
US6468735B2 (en) * | 2000-03-31 | 2002-10-22 | Merck & Co., Inc. | Angiogenesis assay |
WO2002064083A2 (en) * | 2000-11-30 | 2002-08-22 | The Children's Medical Center Corporation | Synthesis of 3-amino-thalidomide and its enantiomers |
ATE428419T1 (en) * | 2001-08-06 | 2009-05-15 | Childrens Medical Center | ANTIANGIOGENESIS EFFECT OF NITROGEN-SUBSTITUTED THALIDOMIDE ANALOGS |
WO2003042354A2 (en) * | 2001-09-04 | 2003-05-22 | Aventis Pharmaceuticals Inc. | Abrogen polypeptides, nucleic acids encoding them and methods for using them to inhibit angiogenesis |
TWI323658B (en) * | 2001-12-06 | 2010-04-21 | Nat Health Research Institutes | Novel compounds of indol-3-yl-2-oxyacetylamide derivatives, pharmaceutical composition thereof, and method for manufacturing the same |
WO2003059350A1 (en) * | 2002-01-11 | 2003-07-24 | University Of Virginia Patent Foundation | Development of novel regulators of angiogenesis |
US20100129363A1 (en) * | 2002-05-17 | 2010-05-27 | Zeldis Jerome B | Methods and compositions using pde4 inhibitors for the treatment and management of cancers |
ES2521672T3 (en) | 2002-05-17 | 2014-11-13 | Celgene Corporation | Pharmaceutical formulations for cancer treatment |
USRE48890E1 (en) | 2002-05-17 | 2022-01-11 | Celgene Corporation | Methods for treating multiple myeloma with 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione after stem cell transplantation |
US7968569B2 (en) | 2002-05-17 | 2011-06-28 | Celgene Corporation | Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione |
US7323479B2 (en) * | 2002-05-17 | 2008-01-29 | Celgene Corporation | Methods for treatment and management of brain cancer using 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline |
WO2003097040A1 (en) * | 2002-05-17 | 2003-11-27 | Celgene Corporation | Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases |
US7393862B2 (en) | 2002-05-17 | 2008-07-01 | Celgene Corporation | Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias |
US20040052777A1 (en) * | 2002-09-04 | 2004-03-18 | Mark Nesbit | Kringle polypeptides and methods for using them to inhibit angiogenesis |
JP2006508131A (en) | 2002-11-06 | 2006-03-09 | セルジーン・コーポレーション | Methods and compositions using selective cytokine inhibitors for the treatment and management of cancer and other diseases |
US7230012B2 (en) * | 2002-11-14 | 2007-06-12 | Celgene Corporation | Pharmaceutical compositions and dosage forms of thalidomide |
US9006267B2 (en) * | 2002-11-14 | 2015-04-14 | Celgene Corporation | Pharmaceutical compositions and dosage forms of thalidomide |
UA83504C2 (en) * | 2003-09-04 | 2008-07-25 | Селджин Корпорейшн | Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)-piperidine-2,6-dione |
KR20060124607A (en) | 2003-11-06 | 2006-12-05 | 셀진 코포레이션 | Methods and compositions for using thalidomide for the treatment and management of cancer and other diseases |
WO2006004795A2 (en) * | 2004-06-25 | 2006-01-12 | The Johns Hopkins University | Angiogenesis inhibitors |
AU2005282728A1 (en) | 2004-09-03 | 2006-03-16 | Celgene Corporation | Processes for the preparation of substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines |
US20060270707A1 (en) * | 2005-05-24 | 2006-11-30 | Zeldis Jerome B | Methods and compositions using 4-[(cyclopropanecarbonylamino)methyl]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione for the treatment or prevention of cutaneous lupus |
ES2402204T3 (en) | 2005-06-30 | 2013-04-29 | Celgene Corporation | Procedures for the preparation of 4-amino-2- (2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compounds |
US20080138295A1 (en) * | 2005-09-12 | 2008-06-12 | Celgene Coporation | Bechet's disease using cyclopropyl-N-carboxamide |
US20070155791A1 (en) * | 2005-12-29 | 2007-07-05 | Zeldis Jerome B | Methods for treating cutaneous lupus using aminoisoindoline compounds |
CL2007002218A1 (en) * | 2006-08-03 | 2008-03-14 | Celgene Corp Soc Organizada Ba | USE OF 3- (4-AMINO-1-OXO-1,3-DIHIDRO-ISOINDOL-2-IL) -PIPERIDINE 2,6-DIONA FOR THE PREPARATION OF A USEFUL MEDICINAL PRODUCT FOR THE TREATMENT OF LAYER CELL LYMPHOMA. |
WO2009020590A1 (en) | 2007-08-07 | 2009-02-12 | Celgene Corporation | Methods for treating lymphomas in certain patient populations and screening patients for said therapy |
US20120134969A1 (en) | 2009-05-25 | 2012-05-31 | Hiroshi Handa | Pharmaceutical composition containing nuclear factor involved in proliferation and differentiation of central neuronal cells |
BR112012003284A8 (en) * | 2009-08-11 | 2016-05-17 | Allergan Inc | isothiozoles to treat eye conditions |
WO2012149299A2 (en) | 2011-04-29 | 2012-11-01 | Celgene Corporaiton | Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor |
EP3489682B1 (en) | 2012-06-29 | 2021-03-31 | Celgene Corporation | Methods for determining drug efficacy using ikzf3 (aiolos) |
US9587281B2 (en) | 2012-08-14 | 2017-03-07 | Celgene Corporation | Cereblon isoforms and their use as biomarkers for therapeutic treatment |
WO2015200795A1 (en) | 2014-06-27 | 2015-12-30 | Celgene Corporation | Compositions and methods for inducing conformational changes in cereblon other e3 ubiquitin ligases |
MX388383B (en) | 2014-08-22 | 2025-03-19 | Celgene Corp | Immunomodulatory compounds in combination with antibodies for use in methods of treating multiple myeloma. |
US10001483B2 (en) | 2015-06-26 | 2018-06-19 | Celgene Corporation | Methods for the treatment of Kaposi's sarcoma or KSHV-induced lymphoma using immunomodulatory compounds, and uses of biomarkers |
US10830762B2 (en) | 2015-12-28 | 2020-11-10 | Celgene Corporation | Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2830991A (en) * | 1954-05-17 | 1958-04-15 | Gruenenthal Chemie | Products of the amino-piperidine-2-6-dione series |
GB1182709A (en) * | 1966-11-08 | 1970-03-04 | Richard Kwizda | Imides of Substituted Dicarboxylic Acids and process of producing the same |
US3560495A (en) * | 1965-05-08 | 1971-02-02 | Ernst Frankus | 1-heterocyclic amino methyl or 1-heterocyclic hydrazino methyl-3-phthalimido or (3',6'-dithia-3',4',5',6'-tetrahydrophthalimido)-pyrrolidinediones-2,5 or piperidinediones-2,6 |
US3563986A (en) * | 1965-10-12 | 1971-02-16 | Ernst Frankus | 4 - phthalimido - n - heterocyclic amino methyl or piperidino hydrazino piperidine diones 2,6 |
US3705162A (en) * | 1967-07-01 | 1972-12-05 | Gruenenthal Chemie | 4-phthalimidine glutarimides |
JPS58131978A (en) * | 1982-01-15 | 1983-08-06 | イ−ライ・リリ−・アンド・カンパニ− | Ascorbic acid ether and related compounds |
US4552888A (en) * | 1982-01-15 | 1985-11-12 | Eli Lilly And Company | Ascorbic acid ethers in angiogene |
JPS63119500A (en) * | 1986-05-23 | 1988-05-24 | Dai Ichi Seiyaku Co Ltd | Sulfated polysaccharide ds 4152 and vascularization inhibitor and antitumor agent containing the same |
US4808402A (en) * | 1987-05-29 | 1989-02-28 | Northwestern University | Method and compositions for modulating neovascularization |
EP0325199A2 (en) * | 1988-01-19 | 1989-07-26 | Takeda Chemical Industries, Ltd. | Fumagillin as angiostatic agent |
EP0357061A1 (en) * | 1988-09-01 | 1990-03-07 | Takeda Chemical Industries, Ltd. | Angiogenesis inhibitory agent |
US4994443A (en) * | 1982-12-20 | 1991-02-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US5001116A (en) * | 1982-12-20 | 1991-03-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US5021404A (en) * | 1988-04-20 | 1991-06-04 | The Children's Medical Center Corporation | Angiostatic collagen modulators |
US5134127A (en) * | 1990-01-23 | 1992-07-28 | University Of Kansas | Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof |
WO1992014455A1 (en) * | 1991-02-14 | 1992-09-03 | The Rockefeller University | METHOD FOR CONTROLLING ABNORMAL CONCENTRATION TNF α IN HUMAN TISSUES |
WO1992018496A1 (en) * | 1991-04-17 | 1992-10-29 | Grünenthal GmbH | New thalidomide derivatives, method of manufacture and use thereof in medicaments |
US5260329A (en) * | 1990-01-11 | 1993-11-09 | Farmitalia Carlo Erba Srl | Ureido derivatives of poly-4-amino-2-carboxy-1-methyl compounds |
US5593990A (en) | 1993-03-01 | 1997-01-14 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US5635517A (en) * | 1996-07-24 | 1997-06-03 | Celgene Corporation | Method of reducing TNFα levels with amino substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxo-and 1,3-dioxoisoindolines |
US6114355A (en) | 1993-03-01 | 2000-09-05 | D'amato; Robert | Methods and compositions for inhibition of angiogenesis |
US6228879B1 (en) | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
US20020161023A1 (en) | 1993-03-01 | 2002-10-31 | D'amato Robert | Method of treating diseases using 3-amino thalidomide |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192744A (en) * | 1990-01-12 | 1993-03-09 | Northwestern University | Method of inhibiting angiogenesis of tumors |
US5399363A (en) * | 1991-01-25 | 1995-03-21 | Eastman Kodak Company | Surface modified anticancer nanoparticles |
US5679696A (en) * | 1992-07-28 | 1997-10-21 | Rhone-Poulenc Rorer Limited | Compounds containing phenyl linked to aryl or heteroaryl by an aliphatic-or heteroatom-containing linking group |
DE4320157A1 (en) * | 1993-06-18 | 1994-12-22 | Bayer Ag | Use of 1,2,4-dithiazolium salts as chemotherapeutic agents |
US5605914A (en) * | 1993-07-02 | 1997-02-25 | Celgene Corporation | Imides |
AU7376494A (en) * | 1993-08-04 | 1995-02-28 | Andrulis Pharmaceuticals Corporation | Treatment of rheumatoid arthritis with thalidomide alone or in combination with other anti-inflammatory agents |
US5405855A (en) * | 1993-12-23 | 1995-04-11 | Andrulis Pharmaceuticals Corp. | Treatment of insulin resistant diabetes with thalidomine |
US5434170A (en) * | 1993-12-23 | 1995-07-18 | Andrulis Pharmaceuticals Corp. | Method for treating neurocognitive disorders |
US5443824A (en) * | 1994-03-14 | 1995-08-22 | Piacquadio; Daniel J. | Topical thalidomide compositions for surface or mucosal wounds, ulcerations, and lesions |
US5643615A (en) * | 1995-03-10 | 1997-07-01 | Atlas Technologies, Inc. | Apparatus and methods for forming workpieces |
US5731325A (en) * | 1995-06-06 | 1998-03-24 | Andrulis Pharmaceuticals Corp. | Treatment of melanomas with thalidomide alone or in combination with other anti-melanoma agents |
US5654312A (en) * | 1995-06-07 | 1997-08-05 | Andrulis Pharmaceuticals | Treatment of inflammatory and/or autoimmune dermatoses with thalidomide alone or in combination with other agents |
EP1182709A1 (en) * | 2000-08-14 | 2002-02-27 | IPU, Instituttet For Produktudvikling | A process for depositing metal contacts on a buried grid solar cell and a solar cell obtained by the process |
-
1998
- 1998-07-30 US US09/126,542 patent/US6114355A/en not_active Expired - Lifetime
-
2006
- 2006-03-17 US US11/384,188 patent/USRE40360E1/en not_active Expired - Lifetime
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2830991A (en) * | 1954-05-17 | 1958-04-15 | Gruenenthal Chemie | Products of the amino-piperidine-2-6-dione series |
US3560495A (en) * | 1965-05-08 | 1971-02-02 | Ernst Frankus | 1-heterocyclic amino methyl or 1-heterocyclic hydrazino methyl-3-phthalimido or (3',6'-dithia-3',4',5',6'-tetrahydrophthalimido)-pyrrolidinediones-2,5 or piperidinediones-2,6 |
US3563986A (en) * | 1965-10-12 | 1971-02-16 | Ernst Frankus | 4 - phthalimido - n - heterocyclic amino methyl or piperidino hydrazino piperidine diones 2,6 |
GB1182709A (en) * | 1966-11-08 | 1970-03-04 | Richard Kwizda | Imides of Substituted Dicarboxylic Acids and process of producing the same |
US3625946A (en) * | 1966-11-08 | 1971-12-07 | Kwizda Fa F Johann | 1,4 endomethylene cyclohexane-2,3 endo-cio di carboximido glutarimides |
US3705162A (en) * | 1967-07-01 | 1972-12-05 | Gruenenthal Chemie | 4-phthalimidine glutarimides |
JPS58131978A (en) * | 1982-01-15 | 1983-08-06 | イ−ライ・リリ−・アンド・カンパニ− | Ascorbic acid ether and related compounds |
US4552888A (en) * | 1982-01-15 | 1985-11-12 | Eli Lilly And Company | Ascorbic acid ethers in angiogene |
US4994443A (en) * | 1982-12-20 | 1991-02-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
US5001116A (en) * | 1982-12-20 | 1991-03-19 | The Children's Medical Center Corporation | Inhibition of angiogenesis |
JPS63119500A (en) * | 1986-05-23 | 1988-05-24 | Dai Ichi Seiyaku Co Ltd | Sulfated polysaccharide ds 4152 and vascularization inhibitor and antitumor agent containing the same |
US4808402A (en) * | 1987-05-29 | 1989-02-28 | Northwestern University | Method and compositions for modulating neovascularization |
EP0325199A2 (en) * | 1988-01-19 | 1989-07-26 | Takeda Chemical Industries, Ltd. | Fumagillin as angiostatic agent |
US5021404A (en) * | 1988-04-20 | 1991-06-04 | The Children's Medical Center Corporation | Angiostatic collagen modulators |
EP0357061A1 (en) * | 1988-09-01 | 1990-03-07 | Takeda Chemical Industries, Ltd. | Angiogenesis inhibitory agent |
US5260329A (en) * | 1990-01-11 | 1993-11-09 | Farmitalia Carlo Erba Srl | Ureido derivatives of poly-4-amino-2-carboxy-1-methyl compounds |
US5134127A (en) * | 1990-01-23 | 1992-07-28 | University Of Kansas | Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof |
WO1992014455A1 (en) * | 1991-02-14 | 1992-09-03 | The Rockefeller University | METHOD FOR CONTROLLING ABNORMAL CONCENTRATION TNF α IN HUMAN TISSUES |
WO1992018496A1 (en) * | 1991-04-17 | 1992-10-29 | Grünenthal GmbH | New thalidomide derivatives, method of manufacture and use thereof in medicaments |
US6071948A (en) | 1993-03-01 | 2000-06-06 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US20050004087A1 (en) | 1993-03-01 | 2005-01-06 | The Children's Medical Center Corporation | Methods and compositions for treating an ocular neovascular disease |
US5593990A (en) | 1993-03-01 | 1997-01-14 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US5712291A (en) | 1993-03-01 | 1998-01-27 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US6977268B2 (en) | 1993-03-01 | 2005-12-20 | Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis with EM-138 |
US20030176463A1 (en) | 1993-03-01 | 2003-09-18 | D'amato Robert | Methods and compositions for inhibition of angiogenesis with phthaloyl glutamic acid derivatives |
US6114355A (en) | 1993-03-01 | 2000-09-05 | D'amato; Robert | Methods and compositions for inhibition of angiogenesis |
US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
US6235756B1 (en) | 1993-03-01 | 2001-05-22 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis by thalidomide |
US6420414B1 (en) | 1993-03-01 | 2002-07-16 | The Children's Medical Center Corporation | Amino derivatives of EM-138 and methods of treating angiogenesis with same |
US6469045B1 (en) | 1993-03-01 | 2002-10-22 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis with EM-138 |
US20020161024A1 (en) | 1993-03-01 | 2002-10-31 | D'amato Robert | Method of treating diseases using 6-amino EM-12 |
US20020161023A1 (en) | 1993-03-01 | 2002-10-31 | D'amato Robert | Method of treating diseases using 3-amino thalidomide |
US20030187024A1 (en) | 1993-03-01 | 2003-10-02 | D'amato Robert | Methods and compositions for inhibition of angiogenesis |
US5635517A (en) * | 1996-07-24 | 1997-06-03 | Celgene Corporation | Method of reducing TNFα levels with amino substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxo-and 1,3-dioxoisoindolines |
US5635517B1 (en) * | 1996-07-24 | 1999-06-29 | Celgene Corp | Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines |
US20030181428A1 (en) | 1997-10-16 | 2003-09-25 | Green Shawn J. | Methods and compositions for inhibition of angiogenesis |
US6518298B2 (en) | 1997-10-16 | 2003-02-11 | Entremed, Inc. | Methods and compositions for inhibition of angiogenesis with EM-138 |
US6228879B1 (en) | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
Non-Patent Citations (74)
Title |
---|
"Thalidomide," The Merck Index, Eleventh Edition, Budavari et al., eds., Merck & co. New Jersey, p. 9182 (1989). * |
Belambe et al., "Should Thalidomide be Rehabilitated?," Sem. Höp. Paris, 59(45):3101-3104 (Dec. 8, 1983). * |
Blaschke, "Chromatographic Separation of Racemie Thalidomide and Teratogenic Activity of its Entantiomers (Chromatographische Racemattrennung von Thalidomid und teratogene Wirkung der Enantiomere)," Drug Research, 29 (II/10): 1640-1642 (1979). (English lang. summary on first page). * |
Boylen, "Tetratogenic Effects . . . ", Can. J. Biochem, vol. 42, pp. 35-42, 1964. * |
Brem et al., Neurosurg., 74:441-446 (1991). * |
Chen et al., "Plasma Pharmacokinetics and Urinary Excretion of Thalidomide After Oral Dosing in Healthy Male Volunteers," Drug Metabolism and Disposition,17(4):402-405 (1989). * |
Colville-Nash et al., "Angiogenesis and Rheumaoid Arthritis: Pathogenic and Therapeutic Implications", Ann. Rheum. Dis., 51:919-925 (1992). * |
Crum et al., Science, 230: 1375 et seq. (1985). * |
D'Amato et al., "Thalidomide is an Inhibitor of Angiogenesis," PNAS USA, 91:4082-4085 (1994). * |
D'Amato, Proc Natl Acad Sci USA, vol. 91, pp. 4082-4085, Apr. 1994. * |
De, A.U. et al., J. Pharm. Sci., 1975, 64(2), pp. 262-266. * |
Diggle, IJCP, Nov. 2001, vol. 55 (9), pp. 627-631. * |
Eger, K. et al., "Synthesis, Central Nervous System Activity and Teratogenicity of a Homothalidomide," Arneim.-Forsch/Drug Res.,40(IL Nr. 10):1073-1075 (1990). * |
Eriksson, Sven O., "Synthesis and Alkaline Hydrolysis of some N-substituted Phthalimides," Acta Pharm. Sucecica, 10:63-74 (1973). * |
Fabro, S. et al., "Teratogenic Activity of Thalidomide and Related Compounds," Life Sciences, 3:987-992 (1964). * |
Fajardo, L.F. et al, "Dual Role of Tumor Necrosis Factor-alpha in Angiogenesis" Am. J. Pathol. 1992(May), 140(3), pp. 539-544, abstract only. * |
Fickenstcher, K., "Stereochemical Properties and Teratogenic Activity of Some Tetrahydrophthalimides," Mol. Pharmacology, 13:133-141 (1977). * |
Flohe et al., "Studies on the Hypothetical Relationship of Thalidomide-induced Embryopathy and Collagen Biosynthesis," Arznetmittelforschung (Germany, West) 31(2):315-20 (1981). * |
Folkman and Shing, "Angiogenesis," J. Biol. Chem., 267(16):10931-10934 (1992). * |
Folkman et al., "Induction of Angiogenesis During the Transition from Hyperplasia to Neoplasia," Nature,339:58-61 (May 4, 1989). * |
Folkman et al., Science, 221:p. 719 (1983). * |
Folkman, "Tumor Angiogenesis: Therapeutic Implications," The New England Journal of Medicine, 285(21):1182-1186 (Nov. 18, 1971). * |
Gimbrone et al., "Tumor Growth and Neovascularization: An Experimental Model Using the Rabbit Cornea," J. Nat'l Cancer Institute, 52(2):413-419 (1974). * |
Glasmacher, Acta Haematol, vol. 114 (suppl 1), pp. 3-7, 2005. * |
Goihman-Yahr, M. et al., Int. Arch. Allergy Appl. Immunnol. 1978, 57(4), pp. 317-332. * |
Gutierrez-Rodriguez, O. et al., J. Rheumatol. 1989, 16(2), pp. 158-163. * |
Hatfill, S.J. et al., Leuk. Res. 1991, 15(2-3), pp. 129-136. * |
Helm, Drug Research,31(I/6):941-949 (1981). * |
Hendler, Sheldon S. et al., "Thalidomide for Autoimmune Disease," Medical Hypothesis, 10:437-443 (1983). * |
Hu, D.E. et al, "Inhibition of Angiogenesis in Rats by IL-1 Receptor Antagonist and Selected Cytokine Antibodies" Inflammation, 1994(Feb.), 18(1), pp. 45-58, abstract only. * |
Ingber et al., "Synthetic Analogs Of Fumagillin That Inhibit Angiogenesis And Supress Tomour Growth," Nature,348:555-557 (Dec. 6, 1990). * |
Jonsson, N. Ake et al., "Chemical Structure and Texatogenic Properties," Acta Pharm. Succica,9:521-542, 431-446, 543-562 (1972). * |
Knighton et al., "Avascular And Vascular Phases Of Tumor Growth In The Chick Embryo," Br. J. Cancer, 35:347-356 (1977). * |
Koch H.P. et al., "Thalidomide and Cogeners as Anti-inflammatory Agents," Progress in Medicinal Chemistry, 22:166-242 (1985). * |
Kumar, J Clin Oncol, vol. 22(12), Jun. 2004, pp. 2477-2488. * |
Matsuyama, Toshifumi, "Cytokines and HIV infection: is AIDS a Tumor Necrosis Factor Disease?," AIDS, 5(12):1405-1417 (1991). * |
Montrucchio, G. et al, "Tumor Necrosis Factor-alpha Induced Angiogenesis depends on in situ Platlet-Activating Gactor Biosynthesis" J. Exp. Med. 1994(Jul. 1), 180(1), pp. 377-382, abstract only. * |
Moses, Bio/Technology, vol. 9, Jul. 1991, pp. 630-634. * |
Mujagid, "Mechanisms of Action and potential . . . ", Coration Medical Journal, vol. 43 No. 3, pp. 274-285, 2002. * |
Mummery, C.L., et al., Toxicol. Lett. 1983, 18(3), pp. 201-209. * |
Muthukkaruppan et al., "Angiogenesis in the Mouse Cornea,"Science, 205:1416-1418 (Sep. 28, 1979). * |
Oikawa et al., "Eponemycin, A Novel Antibiotic, is a Highly Powerful Angiogenesis Inhibitor," Biochem. Biophys. Res. Comm.,181(3)1070-1076 (Dec. 31, 1991). * |
Otsuka et al., "A New Potent Angiogenesis Inhibitor, FR-118487," J. Micro. Biotech., 1(3):163-168 (1991). * |
Phillips, G.D. et al, "Tumor Necrosis Factor-alpha (rh TNF) Fails to Stimulate Angiogenesis in the Rabbit Cornea" Anatomical Record, 1996 (May), 245 (1), pp. 53-56, abstract only. * |
Rajumar, Mayo Clin Proc, Jul. 2004, vol. 79(7), pp. 899-903. * |
Ribatti, Leukemia, vol. 19, pp. 1525-1531, 2005. * |
Schweigerer and Fotsis, "Angiogenesis and angiogenesis inhibitors in paediatric diseases," Eur. J. Pediatr. 151:472-476 (1992). * |
Shealy et al., "D-and L-Thalidomide," Chem. and Indus.,pp. 1030-1031 (Jun. 12, 1965). * |
Sidky et al., Cancer Research, 47:pp. 5155-5161 (1987). * |
Singhal, Biomed Pharmacother, vol. 56, 2002, pp. 4-12. * |
Srivastava et al., "The Prognostic Significance of Tumor Vascularity in Intermediate-Thickness Skin Melanoma," Am. J. Pathol, 133:419-423 (1988). (abstract from MEDLINE:Accession No. 06745734). * |
Taylor et al., Nature, 297: p. 307 (1982). * |
Thomas, Curr Opin Oncol, vol. 12, pp. 564-573, 2000. * |
Torry and Rongish, "Angiogenesis in the Uterus: Potential Regulation and Relation to Tumor Angiogenesis," Am. J. Reprod. Immunol., 27:171-179 (1992). * |
U.S. Appl. No. 08/955,638, filed Oct. 3, 1997, D'Amato. |
U.S. Appl. No. 09/107,578, filed Feb. 24, 1997, D'Amato. |
U.S. Appl. No. 09/300,202, filed Apr. 27, 1999, D'Amato. |
U.S. Appl. No. 09/545,654, filed Apr. Apr. 10, 2000, D'Amato. |
U.S. Appl. No. 09/547,087, filed Apr. 11, 2000, D'Amato. |
U.S. Appl. No. 09/578,845, filed May 25, 2000, D'Amato. |
U.S. Appl. No. 09/704,054, filed Nov. 1, 2000, D'Amato. |
U.S. Appl. No. 09/710,534, filed Nov. 9, 2000, D'Amato. |
U.S. Appl. No. 09/899,318, filed Jul. 5, 2001, D'Amato. |
U.S. Appl. No. 09/899,344, filed Jul. 5, 2001, D'Amato. |
U.S. Appl. No. 09/966,895, filed Sep. 28, 2001, D'Amato. |
U.S. Appl. No. 10/001,183, filed Oct. 24, 2001, D'Amato. |
U.S. Appl. No. 10/015,252, filed Dec. 12, 2001, D'Amato. |
U.S. Appl. No. 10/020,391, filed Dec. 12, 2001, D'Amato. |
U.S. Appl. No. 10/026,291, filed Dec. 20, 2001, D'Amato. |
Vogelsang et al., "Thalidomide for the Chronic Graft-Versus-Host Disease," New England Journal of Medicine, 326:1055-1058 (1992). * |
Waters, et al., "Treatment of Ulcerative Colitis with Thalidomide," British Medical Journal, p. 792 (Mar. 24, 1979). * |
Weidner et al., "Angiogenesis in Prostate Carcinoma," Am. J. Path., 143(2):401-409 (1993). * |
Weidner et al., "Tumor Angiogenesis and Metastasis-Correlation in Invasive Breast Carcinoma," N.E.J. Med., 324(1):1-8(1991). * |
White et al., New England J. Med., 320: pp. 1197-1200 (1989). * |
Also Published As
Publication number | Publication date |
---|---|
US6114355A (en) | 2000-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE40360E1 (en) | Methods for inhibition of angiogenesis with a composition comprising 3-hydroxythalidomide | |
US7723361B2 (en) | Methods for inhibiting undesired angiogenesis in patients having tumors with thalidomide | |
US7524865B2 (en) | Methods and compositions for treating an ocular neovascular disease | |
US20020161023A1 (en) | Method of treating diseases using 3-amino thalidomide | |
US20120142734A1 (en) | Methods for treating tumors with thalidomide | |
HK1077516A (en) | Methods and compositions for treating cancer | |
HK1052865B (en) | Compositions for treating cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 12 |