USRE39203E1 - Current and aeration system for wastewater plant - Google Patents

Current and aeration system for wastewater plant Download PDF

Info

Publication number
USRE39203E1
USRE39203E1 US09/617,749 US61774900A USRE39203E US RE39203 E1 USRE39203 E1 US RE39203E1 US 61774900 A US61774900 A US 61774900A US RE39203 E USRE39203 E US RE39203E
Authority
US
United States
Prior art keywords
chamber
aeration chamber
wastewater
aeration
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/617,749
Inventor
Jerry McKinney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/617,749 priority Critical patent/USRE39203E1/en
Application granted granted Critical
Publication of USRE39203E1 publication Critical patent/USRE39203E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1242Small compact installations for use in homes, apartment blocks, hotels or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • This invention relates to an improved system for supplying air to the aeration chamber of an aerobic wastewater treatment plant.
  • Aerobic wastewater treatment plants use “extended aeration” to efficiently encourage aerobic bacteria growth.
  • Extended aeration includes contacting the wastewater with a large number of small bubbles of oxygen-carrying gas, thus maximizing the surface area for oxygen transfer.
  • Air or oxygen is generally pumped into the tank through diffusers that break up the air into thousands of tiny air bubbles. Aerobic bacteria in the water convert waste products to water and CO 2 , thus purifying the water and reducing the wastewater to a clear odorless liquid.
  • the home wastewater treatment plants accelerates the reduction of waste substantially beyond the rate of reduction which can be accomplished with an anaerobic septic tank or even the rate of reduction observed in nature.
  • the basic aerobic wastewater treatment plant for home use includes a tank which is buried in the ground except for the top opening which provides access to the inside of the tank.
  • the tank is divided into an aeration chamber into which the wastewater flows, where oxygen is supplied to cause aerobic bacteria to digest the solids in the wastewater, and a clarifier chamber from which the treated wastewater exits the treatment plant.
  • An external oxygen source is generally connected to a PVC line which drops through the top portion of the tank to the bottom of the tank in the aeration chamber.
  • the first design includes two substantially rectangular chambers separated by a baffle or partition extending from the top of the plant a substantial length down through the plant. Wastewater must flow under this baffle to reach the clarifier chamber. A deflector directing errant solids out of the clarifier chamber back into the aeration chamber is a frequent element in this type of plant.
  • the second basic design of treatment plants includes a partition that is shaped like an inverted, truncated cone. This partition divides the tank into the two chambers, an outer aeration chamber and an inner clarifier chamber. This design may also incorporate a pyramid shaped deflector placed beneath the truncated conical partition to deflect solids settling out of the clarifier chamber back into the aeration chamber for further bacterial digestion.
  • any solids remaining in the wastewater entering the clarifier chamber are expected to be converted by the bacteria in the clarifier chamber before the water reaches the outlet. Since this does not always happen, it is best to minimize the amount of solids reaching the clarifier chamber by efficiently exposing all solids in the aeration chamber to bacterial digestion and avoiding solid accumulation in the form of sludge.
  • Wastewater treatment plants of all shapes suffer from an accumulation of sludge in the tank.
  • Sludge accumulates due to circulatory “dead spots” in the tank where the fluid does not flow. Dead spots may occur in corners of vessels due to the circulation pattern achieved in the vessel. Dead spots may also occur with the use of diffusers in two or more locations due to the interference pattern produced in the circulation or currents by the diffusers. It has been determined, that sludge tends to accumulate at the base of deflectors and, even worse, directly below the clarifier chamber. As discussed previously, sludge build-up results in the release of nitrogen gas. When the sludge is below the clarifier chamber, the nitrogen bubbles up into the clarifier chamber producing scum and interfering with the operation of the clarifier.
  • U.S. Pat. No. 5,266,239 issued to T. Gig Drewery on Nov. 30, 1993 discusses the use of a wastewater treatment plant with an truncated, inverted conical partition having three drop lines for air, as shown in the drawings.
  • the drop lines with diffusers for releasing air are spaced circumferentially and placed near the bottom of the plant.
  • the diffusers create a current including three rolling patterns.
  • the patent drawings show downwardly sweeping necessitated by the interference pattern of the neighboring diffusers. This creates multiple dead zones on the bottom of the aeration chamber. With the use of multiple diffusers, one such dead zone is created directly beneath the clarifier chamber.
  • One of the inventions of this patent is the use of rigid conduits through which flexible air hoses extend to discharge air adjacent to the bottom of the aeration chamber. These rigid conduits are attached to the plant wall and extend vertically towards the bottom of the plant.
  • the use of two diffusers creates interference patterns similar to those exhibited in the Drewery patent.
  • the introduction of diffused oxygenation gas or air in a single location close to the substantially flat bottom and the cylindrical side wall of an aeration chamber produces a defined current or circulation pattern which generally maintains all solids in circulation and forces all fluid within a wastewater treatment plant into motion, overcoming dead spots created by interference patterns when two or more diffuser locations are used.
  • the diffuser location close to the side wall and the bottom of the aeration chamber of the wastewater treatment plant forces a specific current or pattern of circulation which sweeps fluid from every portion of the plant such that solids will remain well mixed in solution instead of accumulating as sludge. This exposes all solids to efficient digestion by aerobic bacteria.
  • an external oxygenation gas source supplies oxygenation gas, preferably air, through a flexible drop line or air line to the diffuser for release into the aeration chamber.
  • the release of oxygenation gas at the diffuser location forces the defined current pattern in the tank while providing a sufficient supply of oxygen for the growth of the aerobic bacteria which digests the organic solid wastes.
  • the diffuser location can be a single location close to the side wall and near the bottom of the wastewater treatment plant, a preferred embodiment includes placing the diffuser close to the side wall and close to the bottom such that the difuser is substantially below the wastewater treatment plant inlet.
  • a preferred embodiment includes grouping all drop lines and diffusers in close proximity below the wastewater treatment plant inlet.
  • the diffuser system if comprised of multiple diffusers, is positioned such that the individual diffusers are in sufficiently close proximity to one another and adjacent the intersection of the side wall and the bottom wall such that the upwardly generated wastewater currents induce a branched current at the surface of the liquid in the aeration chamber, the branched current having a first run that moves in a first direction around the periphery of the aeration chamber and a second run that moves in the opposite direction around the periphery of the aeration chamber, the first and second runs meeting in an area generally diametrically opposite the inception of the branched current.
  • a preferred embodiment of the current invention includes the use of an aerobic wastewater treatment plant with an inverted truncated conical partition dividing the aeration chamber from the clarifier chamber.
  • a preferred embodiment uses no deflector under the clarifier chamber. The diffuser forces a pattern of circulation which produces exposure to oxygen to all fluid in the aeration chamber as shown in FIG. 4 and minimizes the formation and depositing of sludge on the bottom of the plant.
  • FIG. 1 is an isometric view demonstrating the complete current or circulation pattern established within the wastewater treatment plant of a preferred embodiment.
  • FIG. 3 is a sectional view taken along line 3 — 3 of FIG. 2 showing a single air line connected to a ditfuser.
  • FIG. 5 is an elevation view of the current or circulation pattern established within the wastewater treatment plant of a preferred embodiment.
  • FIG. 6 is an elevation view of the air released from the diffuser forcing the wastewater into the defined current or circulation pattern.
  • FIG. 7 is a 90 degree elevation demonstrating, as in FIG. 6 , the air released from the diffuser forcing the wastewater into the defined current or circulation pattern.
  • the water treatment plant of a preferred embodiment shown in the drawings includes cylindrical tank 10 with dome-shaped upper end 12 . Opening 14 is located in the upper end to provide access to the inside of the tank. Usually, the tank is buried in the ground so that only opening 14 and its cover 15 are above ground.
  • wastewater from the residence or facility to which the plant is connected enters the aeration chamber through inlet 24 .
  • Flow through the plant is a result of hydrostatic pressure.
  • the water entering inlet 24 will increase the hydrostatic head in aeration chamber 20 causing water to flow into opening 26 in the bottom of the clarifier chamber. This causes the water in the clarifier chamber to move upwardly and exit through outlet pipe 30 .
  • air or other oxygenation gas is supplied to aeration chamber 20 through flexible drop line 38 connected to diffuser 40 supported by rigid conduit 32 .
  • Rigid conduit 32 is mounted on partition 18 which defines clarifier chamber 22 and the rigid conduit extends downwardly into aeration chamber 20 to a position close to the bottom of the chamber and close to side wall 50 .
  • This conduit is supported by conduit brackets 34 and is held in the position shown by the conduit brackets and openings 36 in partition 18 through which the conduit extends downwardly into the aeration chamber as shown in FIG. 3 .
  • rigid conduit 32 Positioned in rigid conduit 32 is flexible drop line 38 through which air is supplied to diffuser 40 connected to the end of the flexible drop line.
  • one flexible drop line is shown delivering air to aeration chamber 20 .
  • Air is supplied to the flexible drop line from the external oxygenation source, preferably an air compressor.
  • the defined current or circulation pattern produced by this embodiment is such that oxygenation gas forces the fluid within the aeration chamber to move upwards in direction 100 from the diffuser until it reaches the surface of the liquid within the chamber. This forces a current which travels around the conical partition in both direction directions, as indicated by the numbers 102 and 104 . As these currents meet on the opposite side of the partition, the intersection of the outer currents cause causes a downwardly flowing current 106 which flows to the bottom of the aeration chamber which creates main currents 108 , 110 , and 112 that sweep across the bottom in all directions.
  • the water sweeping generally in a straight line across the bottom of the vessel in direction 108 moves with the greatest speed and serves to move any solid falling out of the clarifier chamber back into circulation in the aeration chamber, thus preventing any accumulation of solids in the bottom of the aeration chamber.
  • the water moving generally around the outer perimeter of the vessel in directions 110 and 112 moves at a slower speed but with enough speed to scour the edges of the vessel and to sweep the solids into circulation. All areas of the bottom of the vessel are forced into circulation. Those areas intermediate between the path straight across the bottom of the vessel and the path around the outer perimeter travel at respectively intermediate speeds. While FIG. 1 shows the entire circulation pattern, FIG. 5-7 show different views of parts of this pattern. As depicted in FIGS.
  • the injection system generates an area of aerating bubbles adjacent the intersection of the side wall and the bottom wall that induces the current flow shown in FIGS. 1 and 6 .
  • direction 100 in FIG. 1 depicts the current flow of the wastewater induced at an injection area adjacent the intersection of the side wall and the bottom wall of the aeration chamber
  • a branched current having runs indicated by 102 and 104 is produced. Accordingly, if multiple diffusers are used, they must be positioned in sufficient proximity to one another such that the current or circulation pattern depicted in FIG. 5 is achieved.
  • the diffuser is located close to the bottom of the plant, preferably within 3 to 4 inches from the bottom, and close to the side wall of the tank in order to produce the desired current. Placing the diffuser closer to the center causes the air to hit the conical partition, thus changing the pattern. Such placement also causes the tiny bubble to coalesce into larger bubbles along the partition, thus reducing the aeration effect. If the diffuser is placed too far above the bottom of the tank, then sludge will accumulate beneath the diffuser on the bottom of the tank.
  • the drop line is discovered disconnected from the external oxygenation gas source, such as an air compressor, and simply pulled out of the rigid conduit in which it is located and out of the tank through opening 14 .
  • the new or repaired hose and diffuser can then be threaded back through the rigid conduit and reconnected to the air compressor.
  • Another preferred embodiment includes the use of multiple diffusers all of which are placed generally below the inlet to the wastewater tank close to the bottom. This allows the introduction of a higher volume of oxygenation gas while creating the circulation or current pattern of the invention.
  • a pressure regulator such as a choke valve can be utilized. This assures an equal amount of oxygenation gas flowing to each diffuser.
  • Another preferred embodiment includes releasing the oxygenation gas through a diffuser located close to the bottom and close to the side wall of the wastewater treatment plant by delivering oxygenation gas directly through the bottom or side of the wastewater treatment plant into the aeration chamber.
  • oxygenation gas can be delivered in many ways to the diffuser location close to the bottom and the side wall of the aeration chamber of the wastewater treatment plant.
  • aeration pipes or the like can be used. The release of the oxygenation gas to create the circulation pattern of this invention encompasses all such deliveries.

Abstract

A defined current and aeration system for the aeration chamber of an aerobic wastewater treatment plant is disclosed. It includes the release of oxygenation gas or air into the aeration chamber through a diffuser or the like at a position such that the air injected into the tank provides the necessary amount of oxygen for aerobic bacterial digestion of the waste while creating a current or circulation pattern in the chamber that forces every portion of the fluid within the aeration chamber into circulation thus preventing the accumulation of solids as sludge in the wastewater treatment plant.

Description

BACKGROUND OF THE INVENTION
This invention relates to an improved system for supplying air to the aeration chamber of an aerobic wastewater treatment plant.
In remote areas, newly developed subdivisions, or other locations where a municipal sewer system is not available, small anaerobic or aerobic wastewater treatment plants are used to handle the wastewater produced. Septic tanks use anaerobic bacteria to convert the organic solid waste in the wastewater stream. Usually, however, most of the organic solids settle as sludge to the bottom of the septic tank and must be pumped out periodically.
Aerobic wastewater treatment plants use “extended aeration” to efficiently encourage aerobic bacteria growth. Extended aeration includes contacting the wastewater with a large number of small bubbles of oxygen-carrying gas, thus maximizing the surface area for oxygen transfer. Air or oxygen is generally pumped into the tank through diffusers that break up the air into thousands of tiny air bubbles. Aerobic bacteria in the water convert waste products to water and CO2, thus purifying the water and reducing the wastewater to a clear odorless liquid. Through extended aeration, the home wastewater treatment plants accelerates the reduction of waste substantially beyond the rate of reduction which can be accomplished with an anaerobic septic tank or even the rate of reduction observed in nature.
One problem associated with aerobic wastewater treatment plants is the failure of the flow of air in the aeration chamber to keep some of the solids from continuously settling to the bottom, where they build up a layer of sludge in the aeration and clarifier chamber, requiring periodic removal. It is desirable that a minimum of sludge removal be required since, in addition to the high maintenance requirement, disposal of the sludge presents an ecological problem. An accumulation of sludge within the unit further results in a deterioration of the wastewater treatment process because the high concentration of bacteria in the sludge rapidly consumes the available oxygen in the immediately surrounding water, whereupon, the bacteria begins to break down nitrogen compounds in the sludge to release bonded oxygen. This results in a release of nitrogen gas, which rises to the surface producing scum and disrupting the bacterial conversion. Thus, bacteria and waste need be maintained in solution for optimum conversion.
The basic aerobic wastewater treatment plant for home use includes a tank which is buried in the ground except for the top opening which provides access to the inside of the tank. The tank is divided into an aeration chamber into which the wastewater flows, where oxygen is supplied to cause aerobic bacteria to digest the solids in the wastewater, and a clarifier chamber from which the treated wastewater exits the treatment plant. An external oxygen source is generally connected to a PVC line which drops through the top portion of the tank to the bottom of the tank in the aeration chamber.
There are two basic designs of these treatment plants known in the art which are devised to retain solids in the aeration chamber until they can be broken down by bacteria. The first design includes two substantially rectangular chambers separated by a baffle or partition extending from the top of the plant a substantial length down through the plant. Wastewater must flow under this baffle to reach the clarifier chamber. A deflector directing errant solids out of the clarifier chamber back into the aeration chamber is a frequent element in this type of plant.
The second basic design of treatment plants includes a partition that is shaped like an inverted, truncated cone. This partition divides the tank into the two chambers, an outer aeration chamber and an inner clarifier chamber. This design may also incorporate a pyramid shaped deflector placed beneath the truncated conical partition to deflect solids settling out of the clarifier chamber back into the aeration chamber for further bacterial digestion.
Any solids remaining in the wastewater entering the clarifier chamber are expected to be converted by the bacteria in the clarifier chamber before the water reaches the outlet. Since this does not always happen, it is best to minimize the amount of solids reaching the clarifier chamber by efficiently exposing all solids in the aeration chamber to bacterial digestion and avoiding solid accumulation in the form of sludge.
Wastewater treatment plants of all shapes suffer from an accumulation of sludge in the tank. Sludge accumulates due to circulatory “dead spots” in the tank where the fluid does not flow. Dead spots may occur in corners of vessels due to the circulation pattern achieved in the vessel. Dead spots may also occur with the use of diffusers in two or more locations due to the interference pattern produced in the circulation or currents by the diffusers. It has been determined, that sludge tends to accumulate at the base of deflectors and, even worse, directly below the clarifier chamber. As discussed previously, sludge build-up results in the release of nitrogen gas. When the sludge is below the clarifier chamber, the nitrogen bubbles up into the clarifier chamber producing scum and interfering with the operation of the clarifier.
While the use of diffusers in multiple locations necessarily creates the problem of circulatory dead spots where sludge accumulates, this problem is accentuated since air entering into multiple lines is not emitted evenly. The air tends to come out more from one diffuser that the other, particularly if the tank is slightly tilted.
Current U.S. Pat. Nos. 4,664,795 and 4,834,879 by William A. Stegall et al issued May 12, 1987 and May 30, 1989 respectively, disclose the use of a diffuser in the rectangular-shaped treatment plant such that the placement of the diffuser opposite of the baffle and deflector set up a circular pattern in the aeration chamber specifically to avoid the migration of solids into the clarifier chamber. The drop line delivering air to the diffuser is placed directly below the inlet to the wastewater treatment plant and close to the bottom of the plant. The position of the diffuser creates a rolling pattern such that fluid carrying solids moves away from the opening of the clarifier chamber. Sludge build-up in low- or no-circulation zones is not addressed, but the circulation pattern as demonstrated in the drawing, while sweeping the bulk of the fluids into motion, does not sweep into the corners of the chamber. Presumably, this is where sludge build-up occurs.
U.S. Pat. No. 5,266,239 issued to T. Gig Drewery on Nov. 30, 1993, discusses the use of a wastewater treatment plant with an truncated, inverted conical partition having three drop lines for air, as shown in the drawings. The drop lines with diffusers for releasing air are spaced circumferentially and placed near the bottom of the plant. The diffusers create a current including three rolling patterns. The patent drawings show downwardly sweeping necessitated by the interference pattern of the neighboring diffusers. This creates multiple dead zones on the bottom of the aeration chamber. With the use of multiple diffusers, one such dead zone is created directly beneath the clarifier chamber.
U.S. Pat. No. 5,221,470 from the current Applicant, Jerry L. McKinney, issued Jun. 22, 1993, discloses a treatment plant having an inverted truncated conical partition and a pyramidshaped deflector below. One of the inventions of this patent is the use of rigid conduits through which flexible air hoses extend to discharge air adjacent to the bottom of the aeration chamber. These rigid conduits are attached to the plant wall and extend vertically towards the bottom of the plant. The use of two diffusers creates interference patterns similar to those exhibited in the Drewery patent.
It is a feature of this invention to minimize or eliminate sludge build up in a wastewater treatment plant.
It is a further feature of this invention to create an improved current in a wastewater treatment plant that sweeps all solids into circulation to prevent solids from accumulating in a wastewater treatment plant.
It is a further feature of this invention to position an air diffuser in a single location in the aeration chamber of a wastewater treatment plant to create currents in the wastewater in the tank that will maintain all solids in circulation with the wastewater.
These and other objects, advantages, and features of this invention will be apparent to those skilled in the art from a consideration of this specification including the attached drawings and appended claims.
BRIEF SUMMARY OF THE INVENTION
The introduction of diffused oxygenation gas or air in a single location close to the substantially flat bottom and the cylindrical side wall of an aeration chamber produces a defined current or circulation pattern which generally maintains all solids in circulation and forces all fluid within a wastewater treatment plant into motion, overcoming dead spots created by interference patterns when two or more diffuser locations are used. The diffuser location close to the side wall and the bottom of the aeration chamber of the wastewater treatment plant forces a specific current or pattern of circulation which sweeps fluid from every portion of the plant such that solids will remain well mixed in solution instead of accumulating as sludge. This exposes all solids to efficient digestion by aerobic bacteria. In a preferred embodiment, an external oxygenation gas source supplies oxygenation gas, preferably air, through a flexible drop line or air line to the diffuser for release into the aeration chamber. The release of oxygenation gas at the diffuser location forces the defined current pattern in the tank while providing a sufficient supply of oxygen for the growth of the aerobic bacteria which digests the organic solid wastes. While the diffuser location can be a single location close to the side wall and near the bottom of the wastewater treatment plant, a preferred embodiment includes placing the diffuser close to the side wall and close to the bottom such that the difuser is substantially below the wastewater treatment plant inlet. When multiple air lines and diffusers must be used to provide sufficient quantities of oxygen, a preferred embodiment includes grouping all drop lines and diffusers in close proximity below the wastewater treatment plant inlet. Thus, the diffuser system, if comprised of multiple diffusers, is positioned such that the individual diffusers are in sufficiently close proximity to one another and adjacent the intersection of the side wall and the bottom wall such that the upwardly generated wastewater currents induce a branched current at the surface of the liquid in the aeration chamber, the branched current having a first run that moves in a first direction around the periphery of the aeration chamber and a second run that moves in the opposite direction around the periphery of the aeration chamber, the first and second runs meeting in an area generally diametrically opposite the inception of the branched current.
A preferred embodiment of the current invention includes the use of an aerobic wastewater treatment plant with an inverted truncated conical partition dividing the aeration chamber from the clarifier chamber. A preferred embodiment uses no deflector under the clarifier chamber. The diffuser forces a pattern of circulation which produces exposure to oxygen to all fluid in the aeration chamber as shown in FIG. 4 and minimizes the formation and depositing of sludge on the bottom of the plant.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is an isometric view demonstrating the complete current or circulation pattern established within the wastewater treatment plant of a preferred embodiment.
FIG. 2 is a vertical sectional view through a preferred embodiment of the treatment plant of this invention.
FIG. 3 is a sectional view taken along line 33 of FIG. 2 showing a single air line connected to a ditfuser.
FIG. 4 is a plan view of the current or circulation pattern established within the wastewater treatment plant of a preferred embodiment.
FIG. 5 is an elevation view of the current or circulation pattern established within the wastewater treatment plant of a preferred embodiment.
FIG. 6 is an elevation view of the air released from the diffuser forcing the wastewater into the defined current or circulation pattern.
FIG. 7 is a 90 degree elevation demonstrating, as in FIG. 6, the air released from the diffuser forcing the wastewater into the defined current or circulation pattern.
So that the manner in which the above recited features, advantages, and objectives of this invention, as well as others which will become apparent, are attained and can be understood in detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the drawings, which drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate only preferred embodiments of the invention and are, therefore, not to be considered limiting of the invention's scope, for the invention may admit to other equally effective embodiments.
DETAILED DESCRIPTION OF THE INVENTION
The water treatment plant of a preferred embodiment shown in the drawings includes cylindrical tank 10 with dome-shaped upper end 12. Opening 14 is located in the upper end to provide access to the inside of the tank. Usually, the tank is buried in the ground so that only opening 14 and its cover 15 are above ground.
Inside the tank is partition 18 that is shaped like an inverted, truncated, cone. The upper end of the partition is attached to dome-shaped upper end 12. This partition divides the tank into two chambers, aeration chamber 20 and clarifier chamber 22.
In operation, wastewater from the residence or facility to which the plant is connected enters the aeration chamber through inlet 24. Flow through the plant is a result of hydrostatic pressure. The water entering inlet 24 will increase the hydrostatic head in aeration chamber 20 causing water to flow into opening 26 in the bottom of the clarifier chamber. This causes the water in the clarifier chamber to move upwardly and exit through outlet pipe 30.
In a preferred embodiment of the current invention, air or other oxygenation gas is supplied to aeration chamber 20 through flexible drop line 38 connected to diffuser 40 supported by rigid conduit 32. Rigid conduit 32 is mounted on partition 18 which defines clarifier chamber 22 and the rigid conduit extends downwardly into aeration chamber 20 to a position close to the bottom of the chamber and close to side wall 50. This conduit is supported by conduit brackets 34 and is held in the position shown by the conduit brackets and openings 36 in partition 18 through which the conduit extends downwardly into the aeration chamber as shown in FIG. 3. Positioned in rigid conduit 32 is flexible drop line 38 through which air is supplied to diffuser 40 connected to the end of the flexible drop line.
In the embodiment shown in FIG. 3, one flexible drop line is shown delivering air to aeration chamber 20. Air is supplied to the flexible drop line from the external oxygenation source, preferably an air compressor.
The defined current or circulation pattern produced by this embodiment, as shown in FIG. 1, is such that oxygenation gas forces the fluid within the aeration chamber to move upwards in direction 100 from the diffuser until it reaches the surface of the liquid within the chamber. This forces a current which travels around the conical partition in both direction directions, as indicated by the numbers 102 and 104. As these currents meet on the opposite side of the partition, the intersection of the outer currents cause causes a downwardly flowing current 106 which flows to the bottom of the aeration chamber which creates main currents 108, 110, and 112 that sweep across the bottom in all directions. The water sweeping generally in a straight line across the bottom of the vessel in direction 108 moves with the greatest speed and serves to move any solid falling out of the clarifier chamber back into circulation in the aeration chamber, thus preventing any accumulation of solids in the bottom of the aeration chamber. The water moving generally around the outer perimeter of the vessel in directions 110 and 112 moves at a slower speed but with enough speed to scour the edges of the vessel and to sweep the solids into circulation. All areas of the bottom of the vessel are forced into circulation. Those areas intermediate between the path straight across the bottom of the vessel and the path around the outer perimeter travel at respectively intermediate speeds. While FIG. 1 shows the entire circulation pattern, FIG. 5-7 show different views of parts of this pattern. As depicted in FIGS. 1 and 6, the injection system generates an area of aerating bubbles adjacent the intersection of the side wall and the bottom wall that induces the current flow shown in FIGS. 1 and 6. Thus, assuming that direction 100 in FIG. 1 depicts the current flow of the wastewater induced at an injection area adjacent the intersection of the side wall and the bottom wall of the aeration chamber, a branched current having runs indicated by 102 and 104 is produced. Accordingly, if multiple diffusers are used, they must be positioned in sufficient proximity to one another such that the current or circulation pattern depicted in FIG. 5 is achieved.
While the wastewater in the aeration chamber is thus forced into circulation, the clarifier chamber remains largely undisturbed. Fluid rises in the clarifier chamber in direction 114 as a result of hydrostatic head. The defined current produced by the introduction of oxygenated gas, flows across the opening of the inverted, truncated cone defining the clarifier chamber in direction 116 but does not flow into the clarifier chamber. Thus the clarifier chamber has reduced turbulence, while the aeration chamber bacteria effectively digest the solid particles from the wastewater. Treated wastewater rises through the clarifier chamber and exits the plant through an outlet pipe.
The diffuser is located close to the bottom of the plant, preferably within 3 to 4 inches from the bottom, and close to the side wall of the tank in order to produce the desired current. Placing the diffuser closer to the center causes the air to hit the conical partition, thus changing the pattern. Such placement also causes the tiny bubble to coalesce into larger bubbles along the partition, thus reducing the aeration effect. If the diffuser is placed too far above the bottom of the tank, then sludge will accumulate beneath the diffuser on the bottom of the tank.
Experimentation was conducted on a base case of a 850 gallon tank using one air diffuser at [x] psig and [y] flow rate. The current pattern described above was observed. The current sweeps up the side wall above the diffuser in direction 100, around the partition in directions 102 and 104, down the opposite side wall in direction 106, and across the bottom in directions 108, 110, and 112. It can be observed that the flow turns below the truncated conical partition creating slight suction which pulls solids out of the bottom of the clarifier chamber by this action. Thus, the defined current not only mixes the solids and water for maximum digestion of the waste such that fewer particles are available to enter the clarifier chamber, but the current also serves to pull solids out of the bottom of the clarifier chamber for further digestion in the aeration chamber.
When a diffuser plugs up or for whatever reason a drop line needs to be removed for repair or replacement, the drop line is discovered disconnected from the external oxygenation gas source, such as an air compressor, and simply pulled out of the rigid conduit in which it is located and out of the tank through opening 14. The new or repaired hose and diffuser can then be threaded back through the rigid conduit and reconnected to the air compressor.
Another preferred embodiment includes the use of multiple diffusers all of which are placed generally below the inlet to the wastewater tank close to the bottom. This allows the introduction of a higher volume of oxygenation gas while creating the circulation or current pattern of the invention. To equalize the pressure between the multiple diffusers, a pressure regulator such as a choke valve can be utilized. This assures an equal amount of oxygenation gas flowing to each diffuser.
Another preferred embodiment includes releasing the oxygenation gas through a diffuser located close to the bottom and close to the side wall of the wastewater treatment plant by delivering oxygenation gas directly through the bottom or side of the wastewater treatment plant into the aeration chamber.
From the foregoing it will be seen that this invention is one well adapted to attain all of the ends and objects hereinabove set forth, together with other advantages which are obvious and which are inherent to the apparatus and structure.
Because many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
For example, oxygenation gas can be delivered in many ways to the diffuser location close to the bottom and the side wall of the aeration chamber of the wastewater treatment plant. In addition to the drop lines, aeration pipes or the like can be used. The release of the oxygenation gas to create the circulation pattern of this invention encompasses all such deliveries.
Likewise, while a diffuser is used to release the oxygenation gas or air so as to encourage bacteria growth and to force the circulation, other emitters or components can be used to produce this desired effect. By releasing the oxygenation gas in such an amount and at such a location as to create the circulation pattern of this invention, such substitute components are encompassed within this invention.
The above examples are illustrative and are to be understood as non-limiting as to the scope of the invention.

Claims (25)

1. In an aerobic wastewater treatment plant comprising:
a vessel defining an aeration chamber and having a substantially flat bottom wall and a substantially cylindrical side wall,
said aeration chamber containing aerobic bacteria into which wastewater containing organic solids flows to be exposed to aerobic bacteria to convertaerobically digest the organic solids in the wastewater to water and CO2, said aeration chamber having a bottom and side walls ,
means for injecting an oxygenation gas into the wastewater
an aeration system in the aeration chamber to support growth of the aerobic bacteria, and
a clarifier chamber formed in said vessel and into which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber,
the improvement comprising a diffuser for releasing the oxygenation gas as bubbles into the wherein said aeration chamber of the wastewater treatment plant, said diffuser providing system forms an aeration area adjacent the intersection of the bottom and side wall of the vessel and provides sufficient flow such that all solids suspended within the plant are forced into circulation, said diffuser being placed close to the bottom of the aeration chamber of the wastewater treatment plant and close to the side wall of the aeration chamber, said diffuser aeration system providing sufficient oxygenation gas to allow the aerobic bacteria to convert digest the organic solids in the wastewater into CO2 and water and a current pattern having at least one first component flowing upwardly in a direction perpendicular to the bottom wall of the vessel and adjacent to the side wall of the vessel, second and third components that flow in opposite directions around the partition which defines the clarifier chamber, a fourth component that flows along said side wall opposite said first component to the bottom, a fifth component that flows across the bottom under the opening to the clarifier chamber, and sixth and seventh components that flow in opposite directions adjacent the bottom wall of the vessel, said current pattern being such that wastewater in said clarifier chamber remains largely undisturbed.
2. The wastewater treatment plant of claim 1, wherein the wastewater treatment plant has a substantially flat bottom.
3. The wastewater treatment plant of claim 2, wherein the released oxygenation gas produces a current in the aeration chamber, the current flowing upwardly from a position of the diffuser in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, then around the partition which defines the clarifier chamber, then downwardly along the opposite side wall to the bottom and then across the bottom under the opening to the clarifier chamber and around the side wall of the aeration chamber adjacent the bottom of the chamber to keep solids from settling on the bottom of the aeration chamber.
4. The wastewater treatment plant of claim 3 3 wherein said oxygenation gas injecting means aeration system further comprises:
a drop line having a first end attached to an external oxygenation source and a second end open to dispense oxygenation gas received from the an external oxygenation gas source, said second end being attached to said diffuser into said aeration area.
5. The wastewater treatment plant of claim 4 wherein said oxygenation gas injecting means aeration system further comprises
a rigid conduit mounted to the inside of the wastewater treatment plant vessel for receiving and firmly securing the drop line such that the drop line extends from the external oxygenation gas source towards the bottom wall of the plant vessel.
6. The wastewater treatment plant of claim 5 wherein said rigid conduit extends generally parallel to the partition and from there generally to the bottom wall of the wastewater treatment plant vessel such that the rigid conduit is intimately connected to the partition.
7. In an aerobic wastewater treatment plant comprising:
vessel having a substantially flat, bottom wall and a substantially cylindrical side wall and defining an aeration chamber into which the wastewater flows to be exposed to aerobic bacteria to convertaerobically digest the organic solids in the wastewater to water and CO2, said aeration chamber having a bottom and side walls,
means for injecting an oxygenation gas into the wastewater in the aeration chamber to support growth of the aerobic bacteria , and
a clarifier chamber in which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition disposed in said vessel, said partition being in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber,
the improvement comprising means for injecting an oxygenation gas and generating a wastewater current pattern in the aeration chamber, the current flowing upwardly from a position from an aeration area close to the bottom and the side wall of the aeration chamber vessel, the current pattern having at least one first component flowing upwardly in a direction perpendicular to the bottom wall of the aeration chamber vessel and parallel to adjacent the side wall of the aeration chamber vessel, then second and third components that flow in opposite directions around the partition which defines the clarifier chamber, then downwardly a fourth component that flows along the said side wall opposite side wall said first component to the bottom and then of the aeration chamber, a fifth component that flows across the bottom under the opening to the clarifier chamber and and sixth and seventh components that flow in opposite directions around the side wall of the aeration chamber vessel adjacent the bottom wall of the chamber vessel to keep solids from settling on the bottom of the aeration chamber.
8. The method of creating a current pattern inside an aeration chamber of a wastewater treatment plant, said aeration chamber having a bottom and side walls, comprising the step of
injecting an oxygenation gas such that a current pattern is produced in the aeration chamber, the current pattern having a first component flowing upwardly from a position close to the bottom and side wall of the aeration chamber in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, then first and second components flowing in opposite directions around the partition which defines a clarifier chamber, then a third component flowing downwardly along the opposite side wall to the bottom and then , a fourth component flowing across the bottom under an opening to the clarifier chamber, and fifth and sixth components flowing in opposite directions around the side wall of the aeration chamber adjacent the bottom of the aeration chamber to keep solids from settling on the bottom of the aeration chamber.
9. An aerobic wastewater treatment plant comprising:
an aeration chamber containing aerobic bacteria into which wastewater containing organic solids flows to be exposed to aerobic bacteria to convert digest the organic solids in the wastewater to water and CO2 , said aeration chamber having a substantially flat, bottom wall and a substantially cylindrical side walls wall,
means for injecting an oxygenation gas into the wastewater in the aeration chamber to support growth of the aerobic bacteria,
a clarifier chamber into which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber, said bottom wall providing a substantially planar surface under said partition,
a diffuseran aeration system for releasing thean oxygenation gas as bubbles into the aeration chamber of the wastewater treatment plant, said diffuseraeration system providing an aeration area and sufficient flow such that all solids suspended within the plant are forced into circulationa circulation pattern, said diffuseraeration system being placed close to the bottom of the aeration chamber of the wastewater treatment plant and close to the side wall of the aeration chamber, said diffuseraeration system providing sufficient oxygenation gas to allow the aerobic bacteria to convertdigest the solids in the wastewater into CO2 and waterand a current pattern having at least one first component flowing upwardly in a direction perpendicular to the bottom wall of the vessel and adjacent the side wall of the vessel, second and third components that flow in opposite directions around the partition which defines the clarifier chamber, a fourth component that flows along said side wall opposite said first component to the bottom, a fifth component that flows across the bottom under the opening to the clarifier chamber, and sixth and seventh components that flow in opposite directions adjacent the bottom wall of the vessel.
10. An aerobic wastewater treatment plant comprising:
an aeration chamber into which the wastewater flows to be exposed to aerobic bacteria to convert aerobically digest the organic solids in the wastewater to water and CO2 , said aeration chamber having a substantially flat, bottom wall and a substantially cylindrical side walls wall,
means for injecting an oxygenation gas into the wastewater in the aeration chamber to support growth of the aerobic bacteria,
a clarifier chamber in which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber, and
a current in the aeration chamber, the current flowing upwardly from a position close to the bottom and the side wall of the aeration chamber in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, then around the partition which defines the clarifier chamber, then downwardly along the opposite side wall to the bottom and then across the bottom under the opening to the clarifier chamber and around the side wall of the aeration chamber adjacent the bottom of the chamber to keep solids from settling on the bottom of the aeration chamber
means for injecting an oxygenation gas and generating a wastewater current pattern in the aeration chamber, the current pattern having at least one first component flowing upwardly in a direction perpendicular to the bottom of the aeration chamber and adjacent the side wall of the aeration chamber, second and third components that flow in opposite directions around the partition which defines the clarifier chamber, a fourth component that flows downwardly along the opposite side wall to the bottom, a fifth component that flows across the bottom under the opening to the clarifier chamber, and sixth and seventh components that flow in opposite directions around the side wall of the aeration chamber adjacent the bottom of the chamber to keep solids from settling on the bottom of the aeration chamber.
11. The wastewater treatment plant of claim 1 wherein said aeration system comprises multiple diffusers.
12. The method of claim 8 wherein injection of said oxygenation gas is through a diffuser system.
13. The method of claim 12 wherein injection of said oxygenation gas is through multiple diffusers.
14. The wastewater treatment plant of claim 9 wherein said aeration system comprises multiple diffusers.
15. The wastewater treatment plant of claim 10 wherein said means for generating said current pattern comprises a diffuser system.
16. The wastewater treatment plant of claim 15 wherein said diffuser system comprises multiple diffusers.
17. In an aerobic wastewater treatment plant comprising:
an aeration chamber containing aerobic bacteria into which wastewater containing organic solids flow to be exposed to aerobic bacteria to digest the organic solids in the wastewater, said aeration chamber having a substantially flat bottom and side walls,
means for injecting an oxygenation gas into the wastewater in the aeration chamber to support growth of the aerobic bacteria, and
a clarifier chamber into which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber,
the improvement comprising a diffuser for releasing the oxygenation gas as bubbles into the aeration chamber of the wastewater treatment plant, said diffuser providing sufficient flow such that all solids suspended within the plant are forced into circulation, said diffuser being placed close to the bottom of the aeration chamber of the wastewater treatment plant and close to the side wall of the aeration chamber, said diffuser providing sufficient oxygenation gas to aerobically digest the organic solids in the wastewater, the released oxygenation gas producing a current pattern in the aeration chamber, the current pattern flowing upwardly from a position of the diffuser in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, then around the partition which defines the clarifier chamber, then downwardly along the opposite side wall to the bottom and then across the bottom under the opening to the clarifier chamber and around the side wall of the aeration chamber adjacent the bottom of the chamber to keep solids from settling on the bottom of the aeration chamber.
18. The wastewater treatment plant of claim 17 wherein said oxygenation gas injecting means further comprises
a drop line having a first end attached to an external oxygenation source and a second end open to dispense oxygenation gas received from the external oxygenation gas source, said second end being attached to said diffuser.
19. The wastewater treatment plant of claim 18 wherein said oxygenation gas injecting means further comprises
a rigid conduit mounted to the inside of the wastewater treatment plant for receiving and firmly securing the drop line such that the drop line extends from the oxygenation source towards the bottom of the plant.
20. The wastewater treatment plant of claim 19 wherein said rigid conduit extends generally parallel to the partition and from there generally to the bottom of the wastewater treatment plant such that the rigid conduit is intimately connected to the partition.
21. In an aerobic wastewater treatment plant comprising:
an aeration chamber into which the wastewater flows to be exposed to aerobic bacteria to digest the organic solids in the wastewater, said aeration chamber having a bottom and side walls,
means for injecting an oxygenation gas into the wastewater in the aeration chamber to support growth of the aerobic bacteria, and
a clarifier chamber in which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber,
the improvement comprising a current pattern produced in the aeration chamber, the current pattern flowing upwardly from a position close to the bottom and the side wall of the aeration chamber in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, the around the partition which defines the clarifier chamber, then downwardly along the opposite side wall to the bottom and then across the bottom under the opening to the clarifier chamber and around the side wall of the aeration chamber adjacent the bottom of the chamber to keep solids from settling on the bottom of the aeration chamber.
22. The method of creating a current inside an aeration chamber of a wastewater treatment plant, said aeration chamber having a bottom and side walls, comprising
injecting an oxygenation gas such that a current pattern is produced in the aeration chamber, the current pattern flowing upwardly from a position close to the bottom and side wall of the aeration chamber in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, then around the partition which defines a clarifier chamber, then downwardly along the opposite side wall to the bottom and then across the bottom under an opening to the clarifier chamber and around the side wall of the aeration chamber adjacent the bottom of the aeration chamber to keep solids from settling on the bottom of the aeration chamber.
23. An aerobic wastewater treatment plant comprising:
an aeration chamber into which the wastewater flows to be exposed to aerobic bacteria to digest the organic solids in the wastewater, said aeration chamber having a bottom and side walls,
means for injecting an oxygenation gas into the wastewater in the aeration chamber to support growth of the aerobic bacteria,
a clarifier chamber in which wastewater from the aeration chamber flows upwardly toward an outlet pipe through which the wastewater flows from the wastewater treatment plant, said clarifier chamber being defined by a partition in the form of an inverted, truncated cone into the bottom of which the wastewater flows from the aeration chamber, and
a current pattern in the aeration chamber, the current pattern flowing upwardly from a position close to the bottom and the side wall of the aeration chamber in a direction perpendicular to the bottom of the aeration chamber and parallel to the side wall of the aeration chamber, then around the partition which defines the clarifier chamber, then downwardly along the opposite side wall to the bottom and then across the bottom under the opening to the clarifier chamber and around the side wall of the aeration chamber adjacent the bottom of the chamber to keep solids from settling on the bottom of the aeration chamber.
24. The wastewater treatment plant of claim 7 wherein said means for injecting comprises an injection system for creating an injection area adjacent to the intersection of said side wall and said bottom wall.
25. The wastewater treatment plant of claim 24 wherein said injection system comprises multiple diffusers.
US09/617,749 1997-07-14 2000-07-17 Current and aeration system for wastewater plant Expired - Lifetime USRE39203E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/617,749 USRE39203E1 (en) 1997-07-14 2000-07-17 Current and aeration system for wastewater plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/892,681 US5785854A (en) 1997-07-14 1997-07-14 Current and aeration system for wastewater plant
US09/617,749 USRE39203E1 (en) 1997-07-14 2000-07-17 Current and aeration system for wastewater plant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/892,681 Reissue US5785854A (en) 1997-07-14 1997-07-14 Current and aeration system for wastewater plant

Publications (1)

Publication Number Publication Date
USRE39203E1 true USRE39203E1 (en) 2006-07-25

Family

ID=25400355

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/892,681 Ceased US5785854A (en) 1997-07-14 1997-07-14 Current and aeration system for wastewater plant
US09/617,749 Expired - Lifetime USRE39203E1 (en) 1997-07-14 2000-07-17 Current and aeration system for wastewater plant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/892,681 Ceased US5785854A (en) 1997-07-14 1997-07-14 Current and aeration system for wastewater plant

Country Status (1)

Country Link
US (2) US5785854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513995B2 (en) 2007-07-27 2009-04-07 Jesse Alan James Air driven particle recirculator for a septic tank outlet baffle or filter assembly
US7708259B2 (en) 2007-02-23 2010-05-04 Jesse Alan James Self-standing weighted diffuser assembly
US20100155328A1 (en) * 2007-05-10 2010-06-24 O'regan Jr Patrick T Systems, methods and components for water treatment and remediation

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785854A (en) 1997-07-14 1998-07-28 Mckinney; Jerry Current and aeration system for wastewater plant
US6096203A (en) * 1998-09-11 2000-08-01 Aqua Partners Ltd. Wastewater treatment system
US6030534A (en) * 1999-06-10 2000-02-29 De Lima; Daniel Three dimensional continuous loop reactor
US6217761B1 (en) 1999-07-29 2001-04-17 Delta Environmental Products, Inc. Wastewater treatment system preventing the build up of solids beneath the clarifier opening
US6358411B1 (en) 2000-05-19 2002-03-19 Mckinney Jerry L. Wastewater treatment plant
US6426004B1 (en) * 2000-09-14 2002-07-30 Basf Corporation Continuous flow completely mixed waste water treatment method
US6322055B1 (en) 2000-10-02 2001-11-27 Eco-Oxygen Technologies, Llc Gas dissolving apparatus and method
DE10139383B4 (en) * 2001-08-10 2006-06-01 Infineon Technologies Ag chip module
US6773593B2 (en) * 2002-03-01 2004-08-10 Richard Nils Young Continuous flow reactor wastewater treatment plant
US6668556B2 (en) 2002-04-18 2003-12-30 Eco Oxygen Technologies, Llc. Gas transfer energy recovery and effervescence prevention apparatus and method
CN1239406C (en) * 2003-02-13 2006-02-01 上海达源环境科技工程有限公司 Biochemical reactor for treating sewage
US6949187B2 (en) * 2003-06-17 2005-09-27 Smith Danny R Wastewater treatment apparatus and system
US7320749B2 (en) * 2004-02-09 2008-01-22 Eco-Oxygen Technologies, Llc Method and apparatus for control of a gas or chemical
US7513994B2 (en) * 2005-10-31 2009-04-07 Jerry L. Mckinney 2002 Trust Aeration vessel and aerator assembly for use in a wastewater treatment system
US20070102335A1 (en) * 2005-11-02 2007-05-10 Mckinney Jerry L Apparatus and method for denitrification of treated water from aerobic wastewater treatment systems
US20070215542A1 (en) * 2006-01-20 2007-09-20 Mckinney Jerry L Apparatus and method for denitrification of treated water from aerobic wastewater treatment systems
US7794592B2 (en) * 2006-06-29 2010-09-14 Ralph Brown Wastewater disinfection apparatus and methods
WO2008140229A2 (en) * 2007-05-10 2008-11-20 Joong Chun Kwon A settling tank having an aeration part in its inner space
CA2761861C (en) * 2009-05-15 2020-04-28 Consolidated Treatment Systems, Inc. Wastewater treatment system
US9156718B2 (en) 2013-03-14 2015-10-13 Robert F. Silva Wastewater treatment system
US10669177B1 (en) 2017-06-14 2020-06-02 Stallion Oilfield Services Ltd. Apparatus and method for recycling blackwater and greywater at oil and gas well sites
US10519055B1 (en) 2018-07-02 2019-12-31 George E. Johnson, III Aerobic wastewater treatment systems and methods of fabrication
USD910142S1 (en) * 2018-11-20 2021-02-09 Rena Quality Group As Sludge separator with a single water/oil membrane separator loop
US11365538B2 (en) * 2019-03-01 2022-06-21 Unetlanvhi Holdings Llc Cesspool and liner
RU201979U1 (en) * 2020-03-03 2021-01-26 Виталий Игоревич Залыгин SEPTIC

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987186A (en) 1957-11-21 1961-06-06 Yeomans Brothers Co Apparatus for treating waste materials
US3126333A (en) 1964-03-24 Step a
US3347381A (en) 1966-08-26 1967-10-17 Mead Corp Waste treatment
US3837494A (en) 1972-08-16 1974-09-24 B Stevenson Sewage treatment apparatus
US3923657A (en) 1974-12-31 1975-12-02 Kenneth F Roser Combined septic tank inlet pipe sight glass end plug and tank aerator system
US3923656A (en) 1973-12-17 1975-12-02 Multi Flo Inc Package aerobic waste treatment system
US3951817A (en) 1974-06-26 1976-04-20 Jet Aeration Company Sewage treatment tank and tube settler
US4160723A (en) 1976-05-10 1979-07-10 Kovacs Andrew J Method and apparatus for removal of pollutants from waste water
US4238338A (en) 1979-03-05 1980-12-09 Sanilogical Corporation Apparatus for the treatment of sewage
US4246114A (en) 1978-11-15 1981-01-20 Multi-Flo, Inc. Aerobic waste treatment package
US4259182A (en) * 1979-07-26 1981-03-31 Houston Systems Manufacturing Co. Waste treatment apparatus
US4272057A (en) * 1979-03-28 1981-06-09 Delta Dynamics Corporation Valve and fastener therefor
US4337152A (en) 1978-09-27 1982-06-29 Frebar Holding Ag Aeration apparatus and method
US4391002A (en) 1979-07-26 1983-07-05 Karl Kassbohrer Fahrzeugwerke Gmbh Water-closet for vehicles, particularly motor coaches
US4608157A (en) 1982-06-14 1986-08-26 Norwalk Wastewater Equipment Company Wastewater treatment plant
US4650577A (en) 1985-09-16 1987-03-17 Delta Process Equipment Co., Inc. Apparatus for treating and purifying waste water
US4664795A (en) 1985-03-25 1987-05-12 William A. Stegall Two-stage waste water treatment system for single family residences and the like
US4710295A (en) 1984-08-09 1987-12-01 Robert Zabel Septic tank filters
US4834879A (en) 1985-03-25 1989-05-30 Stegall William A Two-stage waste water treatment system for single family residences and the like
US4929349A (en) 1988-08-24 1990-05-29 Beckman William J Bio-filtration apparatus and method for wastewater treatment
US4983285A (en) 1986-06-04 1991-01-08 Nolen H Eugene Individual wastewater treatment plant
US5221470A (en) 1991-12-16 1993-06-22 Mckinney Jerry L Apparatus for treating waste water
US5254246A (en) 1991-07-16 1993-10-19 Sonia Rivelli Water reclamation system
US5266239A (en) 1992-06-17 1993-11-30 Drewery T Gig Diffuser assembly for an aeration system of a wastewater treatment plant
US5490935A (en) 1994-01-11 1996-02-13 Guy; Monroe W. Method for treating wastewater
US5766459A (en) * 1996-02-08 1998-06-16 Carl E. Adams, Jr. Integrated wastewater treatment system with induced sludge velocity
US5785854A (en) 1997-07-14 1998-07-28 Mckinney; Jerry Current and aeration system for wastewater plant
WO2000015566A1 (en) 1998-09-11 2000-03-23 Aqua Partners, Ltd. Wastewater treatment system
WO2000015322A1 (en) 1998-09-11 2000-03-23 Aqua Partners, Ltd. Wastewater treatment system with air pump/control panel platform
USD423638S (en) 1999-03-22 2000-04-25 Aqua Partners, Ltd. Aerobic treatment tank design
USD424659S (en) 1999-03-23 2000-05-09 Aqua Partners, Ltd. Aerobic treatment tank

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126333A (en) 1964-03-24 Step a
US2987186A (en) 1957-11-21 1961-06-06 Yeomans Brothers Co Apparatus for treating waste materials
US3347381A (en) 1966-08-26 1967-10-17 Mead Corp Waste treatment
US3837494A (en) 1972-08-16 1974-09-24 B Stevenson Sewage treatment apparatus
US3923656A (en) 1973-12-17 1975-12-02 Multi Flo Inc Package aerobic waste treatment system
US3951817A (en) 1974-06-26 1976-04-20 Jet Aeration Company Sewage treatment tank and tube settler
US3923657A (en) 1974-12-31 1975-12-02 Kenneth F Roser Combined septic tank inlet pipe sight glass end plug and tank aerator system
US4160723A (en) 1976-05-10 1979-07-10 Kovacs Andrew J Method and apparatus for removal of pollutants from waste water
US4337152A (en) 1978-09-27 1982-06-29 Frebar Holding Ag Aeration apparatus and method
US4246114A (en) 1978-11-15 1981-01-20 Multi-Flo, Inc. Aerobic waste treatment package
US4238338A (en) 1979-03-05 1980-12-09 Sanilogical Corporation Apparatus for the treatment of sewage
US4272057A (en) * 1979-03-28 1981-06-09 Delta Dynamics Corporation Valve and fastener therefor
US4259182A (en) * 1979-07-26 1981-03-31 Houston Systems Manufacturing Co. Waste treatment apparatus
US4391002A (en) 1979-07-26 1983-07-05 Karl Kassbohrer Fahrzeugwerke Gmbh Water-closet for vehicles, particularly motor coaches
US4608157A (en) 1982-06-14 1986-08-26 Norwalk Wastewater Equipment Company Wastewater treatment plant
US4710295A (en) 1984-08-09 1987-12-01 Robert Zabel Septic tank filters
US4664795A (en) 1985-03-25 1987-05-12 William A. Stegall Two-stage waste water treatment system for single family residences and the like
US4834879A (en) 1985-03-25 1989-05-30 Stegall William A Two-stage waste water treatment system for single family residences and the like
US4650577A (en) 1985-09-16 1987-03-17 Delta Process Equipment Co., Inc. Apparatus for treating and purifying waste water
US4983285A (en) 1986-06-04 1991-01-08 Nolen H Eugene Individual wastewater treatment plant
US4929349A (en) 1988-08-24 1990-05-29 Beckman William J Bio-filtration apparatus and method for wastewater treatment
US5254246A (en) 1991-07-16 1993-10-19 Sonia Rivelli Water reclamation system
US5221470B1 (en) 1991-12-16 1997-02-25 Jerry L Mckinney Apparatus for treating waste water
US5221470A (en) 1991-12-16 1993-06-22 Mckinney Jerry L Apparatus for treating waste water
US5266239A (en) 1992-06-17 1993-11-30 Drewery T Gig Diffuser assembly for an aeration system of a wastewater treatment plant
US5490935A (en) 1994-01-11 1996-02-13 Guy; Monroe W. Method for treating wastewater
US5766459A (en) * 1996-02-08 1998-06-16 Carl E. Adams, Jr. Integrated wastewater treatment system with induced sludge velocity
US5785854A (en) 1997-07-14 1998-07-28 Mckinney; Jerry Current and aeration system for wastewater plant
WO2000015566A1 (en) 1998-09-11 2000-03-23 Aqua Partners, Ltd. Wastewater treatment system
WO2000015322A1 (en) 1998-09-11 2000-03-23 Aqua Partners, Ltd. Wastewater treatment system with air pump/control panel platform
USD423638S (en) 1999-03-22 2000-04-25 Aqua Partners, Ltd. Aerobic treatment tank design
USD424659S (en) 1999-03-23 2000-05-09 Aqua Partners, Ltd. Aerobic treatment tank

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Wastewater Technology," Report No. S40-8-3, pp. 1-27, 32-34. National Sanitation Foundation, Ann Arbor, Michigan, Dec. 1990, pp. 1-27 and 32-34.
Brochure: "Aerobic Treatment System," 4 pages. Hoot Aerobic Systems, Inc., Lake Charles, Louisiana, Feb. 1999.
Brochure: "Class I Aerobic Systems for Residential and Commercial," 4 pages. Hydro-Action, Inc., Kountze, Texas, 1994.
Brochure: "Home Plant Upflow Filter," 2 pages. Jet Inc.; Beaumont, Texas, 1978.
Brochure: "New Improved Zabel Multi-Purpose Filter, " 2 pages. Zabel Industries, Inc., New Albany, Indiana.
Brochure: "Oldham Incorporated Sewage Treatment Systems: Aerated Sewage Treatment System for Individual Residences," 6 pages. Robert R. Oldham, Inc./Murphy Cormier General Contractors, Inc., Lake Charles, Louisiana.
Brochure: "Residential & Commercial Sewage Treatment System," 4 pages. Nayadic, Inc., Dayton, Ohio.
Brochure: "Single Home FAST Wastewater Treatment System," 4 pages. Bio-Microbics, Inc., 1996.
Brochure: "Singulair Bio-Kinetic Wastewater Treatment System," 4 pages. 1995.
Brochure: "The Clear Choice: Whitewater Mechnical Sewage Treatment System," 4 pages. Delta Fiberglass & Environmental Products, Inc., Denham Springs, Louisiana.
Brochure: "When Experience Counts," 6 pages. Clearstream Wastewater Systems, Inc., Beaumont, Texas.
Clearstream Wastewater Systems, Inc. brochure on Clearstresam Wastewater Treatment System, 4 pages. Clearstream Wastewater Systems, Inc., Beaumont, Texas.
Drawing: "Singulair Model 900 System Installation and Mounting Details, " Norweco, Sep. 1, 1990.
Flier: "Aqua Safe," 2 pages. Ecological Tanks, Inc., Downsville, Louisiana.
Flier: "Home Wastewater Treatment Plant Specifications," 2 pages. Jet Inc., Cleveland, Ohio,1980.
Flier: "Introducing Set-N-Go," 2 pages. Hydro-Action, Inc., Beaumont, Texas.
Flier: "Southern Aerobic Systems Quick & Easy SM500 T & P," 2 pages. Southern Manufacturing Co., Port Arthur, Texas.
Nayadic Wastewater Treatment Systems Brochure, 2-sided sheet showing wastewater plant. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708259B2 (en) 2007-02-23 2010-05-04 Jesse Alan James Self-standing weighted diffuser assembly
US20100155328A1 (en) * 2007-05-10 2010-06-24 O'regan Jr Patrick T Systems, methods and components for water treatment and remediation
US8246829B2 (en) 2007-05-10 2012-08-21 O'regan Jr Patrick T Systems and methods for water treatment and remediation
US7513995B2 (en) 2007-07-27 2009-04-07 Jesse Alan James Air driven particle recirculator for a septic tank outlet baffle or filter assembly

Also Published As

Publication number Publication date
US5785854A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
USRE39203E1 (en) Current and aeration system for wastewater plant
US5374353A (en) Aeration train and aeration apparatus for biological purification of wastewater
US5316671A (en) Submersible aeration train and aeration apparatus for biological purification of sewage
EP1313548B1 (en) Apparatus and method for oxygenating wastewater
KR100409056B1 (en) Aerobic treatment method and treatment tank of sewage
US4618426A (en) Retrievable jet mixing systems
US20070181494A1 (en) Growth Media Wastewater Treatment Reactor
US5874003A (en) Wastewater treatment apparatus with floating clarifier
CA1038090A (en) Reactor for biological water treatment
US6217761B1 (en) Wastewater treatment system preventing the build up of solids beneath the clarifier opening
US6165359A (en) High strength wastewater treatment system
US5772886A (en) Aquaculture process
US6096203A (en) Wastewater treatment system
EP0112095A1 (en) Aqueous liquid treatment process and apparatus
US6224773B1 (en) Wastewater treatment system with enhanced directional flow
US5811011A (en) Biological treatment of wastewater
US4451373A (en) Ring channel aeration apparatus and method
US4202762A (en) Process and device for the aeration of waste water
US6224041B1 (en) Splash plate structure for aerators
US5133907A (en) Liquid circulating device
US4734197A (en) Jet aerator header assemblies and methods for use thereof in total, partial, and non-barriered oxidation ditches
ES2223076T3 (en) COMPREHENSIVE WATER TREATMENT SYSTEM WITH Induced FAN SPEED.
EP0039204A2 (en) Devices for the gasification of liquids and liquid treatment plants including said devices
RU2220915C2 (en) Installation for biochemical purification of sewage
GB2261432A (en) Treatment plant

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 12