USRE38939E1 - Interlocking segmented coil array - Google Patents

Interlocking segmented coil array Download PDF

Info

Publication number
USRE38939E1
USRE38939E1 US09561826 US56182600A USRE38939E1 US RE38939 E1 USRE38939 E1 US RE38939E1 US 09561826 US09561826 US 09561826 US 56182600 A US56182600 A US 56182600A US RE38939 E1 USRE38939 E1 US RE38939E1
Authority
US
Grant status
Grant
Patent type
Prior art keywords
coil
coils
extending
portions
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09561826
Inventor
Roy Lee Kessinger, Jr.
Paul Anthony Stahura
Paul Eric Receveur
Karl David Dockstader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinetic Art and Tech Corp
Original Assignee
Kinetic Art and Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Abstract

Disclosed is a Segmented Coil Array (“SCA”) for use in rotary electromotive devices, such as motors and generators, which employ multiple coils operating within an axial gap magnetic structure. Individual conductor coils have offset circumferentially extending portions so as to allow interlocking of adjacent coils radially extending portions to form a circular array in which all of the coils' working conductors, which are those in the axial magnetic field, can be oriented in the same plane. This construction allows minimum magnet gap spacing, thus, maximizing the available magnetic flux. The resulting SCA may easily be commuted as a three-phase motor, actuator, or generator. The invention also provides a structure whereby multiple coil arrays and associated magnetic rotors may be alternately stacked in layers so as to further increase the total coil working area within a motor or generator of a given diameter.

Description

FIELD OF THE INVENTION

This present invention relates generally to electrical generator or motor structures and more specifically to brushless electromotive devices of the type which employ a flat coil array or structure operating within an axially-oriented magnetic field having flux lines mostly perpendicular to the working conductor portion of the coils. This may include disc or pancake rotary motors as well as linear motors having such flat coils and magnetic structure.

BACKGROUND OF THE INVENTION

Motors employing disc-shaped coil armatures and brush commutation have been in use since the late 1950's. Brushless disc-type motors were later developed, employing rotating magnets, coil stators and electronic commutation. Such motors have been used in large numbers in audio and video tape recorders and computer disc drives. In such a motor, a magnetic rotor disc with alternating North/South pole pieces rotates above and/or below a plane containing several flat, stator coils lying adjacent one another. Current flowing in the conductor wires of the coils interacts with the alternating magnetic flux lines of the disc, producing Lorentz forces perpendicular to the radially directed conductors and thus tangential to the axis of rotation. While current flows through the entire coil, only the radial extending portions of the conductors (called the working conductors) contribute torque to the rotor. See, for example, U.S. Pat. Nos. 3,988,024; 4,361,776; 4,371,801; and 5,146,144. A variation of this arrangement is known in which the circumferential portions (nonworking conductors) of the wire-wound coils overlap each other. See, for example, U.S. Pat. Nos. 4,068,143; 4,420,875; 4,551,645; and 4,743,813. While this arrangement allows closer packing of the working conductors, it also requires that the gap between the rotor's magnets and flux return be about twice as thick as would be required for a single thickness of a non-overlapping coil, thus reducing the magnetic flux density and thus reducing the motor's efficiency.

SUMMARY OF THE INVENTION

In view of the well known disadvantages in the above-mentioned prior art, it is an object of the present invention to provide a novel coil structure which more efficiently provides electromotive interaction between these new coils and the magnets within a rotary motor or generator of the type having a generally flat, ring-shaped coil structure and employing an axial gap magnet structure, such as in disc or pancake motors, while minimizing the thickness of the coil and magnet flux gap. Specifically, the invention relates to the construction and shape of the individual coils making up a coil array (circular or arc-shaped arrangement of coils) so as to allow interlocking or overlapping of multiple coils to form a thin disc coil array having double the density of, but not significantly more thickness than, non-overlapping coil arrays. The radially extending conductor portions of each coil all lie in a first plane while the circumferentially extending portions of each coil's conductors lie above and below said first plane.

Another object of the present invention is to maximize the total length of the working conductors within a circular coil array by overlapping three adjacent coils, so as to maximize the electromotive interaction for a motor or generator of a given diameter. For any given device diameter, conductor cross-sectional area, and magnetic flux density, this technique maximizes the torque which may be produced by a motor, or the voltage produced by a generator.

Another object of the invention is to provide a mechanism whereby multiple coil arrays may be closely stacked with corresponding magnetic rotors in alternating layers so as to increase the total coil area within a motor or generator of a given diameter. This increased coil area allows increased interaction between coils and magnets, improving the power conversion with the motor or generator.

BRIEF DESCRIPTION OF THE DRAWINGS

While this specification concludes with claims particularly pointing out and distinctly claiming the subject matter which is now regarded as the invention, it is believed that the broader aspects of the invention, as well as several of the features and advantages thereof, may be better understood by reference to the following detailed description of presently preferred embodiments of the invention when taken in connection with the accompanying drawings in which:

FIG. 1a is an illustration of a prior art (planer) coil assembly;

FIG. 1b is an illustration of a prior art magnet rotor associated with the coil assembly of FIG. 1a;

FIG. 2 is an illustration of another prior art (partially overlapping) coil assembly;

FIG. 3 is an illustration of a single wire-wound coil according to this invention;

FIG. 4 is an illustration of three coils of FIG. 3, overlapped in their proper orientation according to this invention;

FIG. 5 is an illustration of a Segmented Coil Array (“SCA”) coil platter, with a partial cutaway showing the multiple internal coils of FIG. 3, according to this invention;

FIG. 6 is an enlarged cross-sectional illustration of the SCA plater of FIG. 5;

FIG. 7 is an illustration of three coils of an alternative embodiment of the present invention, overlapped in their proper orientation according to this invention;

FIG. 8 is an illustration an alternate form of coil having lower resistive losses;

FIG. 9 illustrates a basic electromotive device showing three nested coils in their proper orientation to two adjacent magnet rotors; and

FIG. 10 is an illustration of three coaxially stacked SCA coil platters of FIG. 5 suitable for use in an electromotive device.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings and particularly to FIG. 1, there is shown a prior art planer coil assembly 10 and a magnet rotor 11 which may be used to make a typical prior art disc-type motor. This coil assembly 10 consists of several individual coils 13, 13′, 13″ arranged in a circular pattern, each coil 13 having two radially extending conductor portions or legs 14, 14′, an inner circumferentially extending leg 15 and an outer circumferentially extending leg 16, all lying in a single plane. In a motor utilizing such a coil assembly, the magnet rotor 11, having alternating North/South poles 18, 19 arranged in a corresponding circular pattern and affixed to a central shaft (not shown), rotates in a plane closely adjacent to, but spaced slightly above and/or below, the plane containing the coils 13, 13′, 13″. While two magnet rotors 11 may be used, one on either side of the coil assembly 10, only one may be used if a magnetic flux return, such as a soft iron disc (not shown), is placed on the other side of the coil assembly opposite the rotor. In use, electrical current in the radially extending conductors 14,14′ of the coil assembly 10 interacts with the alternating magnetic flux lines from the north 18 and south 19 poles of the rotor, producing Lorentz forces perpendicular to the radial conductors 14,14′ and thus tangential to the rotor's 11 axis of rotation. While current flows through the entire coil 13, only the radial conductor legs 14, 14′ (called the working conductors) contribute torque to the rotor 11 while the non-working legs 15, 16 merely complete a current path.

FIG. 2 shows a somewhat different prior art coil assembly 20 in which the working conductor legs 22, 22′ of the wire-wound coil 23 overlap the adjacent coils 21, 25. Likewise, the radial legs 24, 26 of coil 25 overlap adjacent coils 23, 27. While this overlapping arrangement allows denser packing of the working conductors 22, 24, 26, it also requires that the spacing or gap between the rotor's magnets and flux return be twice as wide as would be required for a single thickness of the coil shown in FIG. 1.

FIG. 3 illustrates one individual coil 30 constructed according to the present invention. The coil 30 comprises round or flat conductor wire spirally wound in a keystone or trapezoidal shape defining a central open space 33. The open space 33 is bounded by two radially extending side portions or working legs 37 lying in a first plane, an outer circumferentially extending base portion 35 and an inner circumferentially extending base portion 39 lying in a second plane, parallel to but spaced apart from and above the first plane. As will be explained later, the open space 33 must be wide enough to accommodate two adjacent working legs 37. The electrically conducting coil leads 34, 36 extending from the outer circumference of the coil provide a means for applying an electrical current through the coil from an external source (not shown). Near each end of the radially extending legs 37 are offsetting bends 31 and 32 that provide the transition from the second plane to the first plane. These offsetting bends 31 and 32 are an important feature of the present invention and are required for the desired high density packing arrangement presented in FIG. 4 below. Between the offsetting bends 31 and 32 is working portion 38 of the coil's radially extending legs 37 to which magnetic flux is applied during use by an adjacent magnet rotor 11. The length l of this working portion 38 is called the working length. Preferably, the working length l of the individual coils are optimized for maximum torque or voltage production by ensuring that such working length l is about 42% of the distance from the center of the coil platter to the outer point of the coil working length, which distance is called the critical radius of the platter.

As one example of a preferred embodiment, FIG. 4 shows three typical coils 42, 44, 46 which would be arranged with 45 others in the same manner to form an assembly of 48 coils for this particular diameter array. The coils are arranged such that the working portions 38 of each coil are all in the same first plane and the central open space 33 of one coil 44 (between its working legs 37) is filled by one working leg 37′ from each of the adjacent coils 42, 46. The rest of the coil 44 (mostly the inner 39 and outer 35 circumferentially extending portions) cannot reside in the same first plane because it would require parts of different coils to pass through the same space. This is the reason the offsetting bends 31 and 32 are important, so that the ends will lie in a second (and third) plane whereby the coils may be nested to achieve a high density.

A complete array of coils, affixed to each other and/or to a suitable structural material to form a coil platter (or an arc-shaped portion of the total coil platter) may be referred to as a Segmented Coil Array (“SCA”). A complete coil platter 50 is depicted in FIG. 5. (This particular illustration does not show the coil leads 34, 36 for clarity). This SCA platter 50 is composed of 48 individual coils 30 molded into an epoxy resin or other easily moldable material for support, which optionally may be further strengthened by also molding in layers of fiber reinforcing fabric. Since the inner 39 and outer 35 ends of each coil 30 lie in planes slightly above and below a first plane containing the working legs 37, the molded platter 50 has a thin center face 54 with a thicker inner rim 52 and outer Tim 56. Any other even numbers of coils other than 48 may also be used in an SCA, depending on the electrical or mechanical properties desired.

It has been discovered that for a given SCA diameter, the working length of the individual coils may be optimized for maximum torque production, in a motor, or voltage production, in a generator. This is done by making the coil working length 42% of the critical radius. This critical radius 58 is indicated in FIG. 5 and is defined as the distance from the center of the coil platter to the outermost points of the working length, before reaching the outer rim 56.

A cross section of a portion of the coil platter 50 of FIG. 5 is illustrated in FIG. 6. Preferably, the exterior surface of the center face 54 is coated with one or two layers of PFTE 62, 64 to provide abrasion resistance and low friction characteristics. Similarly, one or two pieces of thin fiberglass cloth 63, 65 may be added over the coils, under PFTE, to further increase strength and stiffness of the platter.

FIG. 7 illustrates three coils of an alternative coil configuration 90. An SCA formed with alternative coil configuration 90 is comprised of a first and a second multiplicity of coils of equal number. The coils of the first multiplicity of coils (e.g. coils 91, 93) are formed and circumferentially oriented to lie in a first plane. The coils of the second multiplicity of coils are formed such that the working legs 37 of each coil lie in a first plane, and the outer circumferentially extending base portion 35 and inner circumferentially extending base portion 39 of each coil lie outside the first plane. As previously described with regard to the coil configuration embodiment depicted in FIG. 3, offsetting bends 31 and 32 near each end of the radially extending legs 37 of the coils of the second multiplicity of coils provide the transition of the base portions 35 and 39 from the first plane to outside the first plane. FIG. 7 depicts the angles of the offsetting bends 31 and 32 as being approximately 90 degrees in this alternative coil configuration 90, but any angle of the offsetting bends 31 and 32 sufficient to allow the first and second multiplicity of coils to nest as depicted such that the working legs 37 of all coils of both the first and second multiplicity of coils lie substantially in a single plane is acceptable.

FIG. 8 illustrates yet another alternate coil configuration 70 useful with the present invention and having lower electrical losses than coil 30 above. The coil 70 comprises flat conductor wire or ribbon (i.e. having a rectangular cross-section) spirally wound to form a basic keystone or trapezoidal shape surrounding a central open space 73, much like coil 30 above. The open space 73 is, like in coil 30, bounded by two radially extending portions or working legs 77 lying in a first plane, an outer circumferentially extending base portion 75 and an inner circumferentially extending portion 79 lying in a second plane, parallel to but spaced apart from the first plane. In contrast to the offsetting bends 31 of coil 30 that provide a gradual transition from the first plane of the radial legs to the second plane of the base portions, the low-loss coil 70 is machined after winding so that there are abrupt offsetting steps 71 near each end of the radially extending legs 77. Further, sufficient material is machined away from the radially extending legs 77 so that, at least over the working length 78, the legs 77 have a smaller cross-sectional area than the base portions 75, 79. The electrical resistance in the larger base portions 75, 79 of coil 70 will be less than in corresponding base portions 35, 39 of coil 30, when both have the same sized working legs, thereby reducing the I2R losses of coil 70. As explained earlier, the open space 73 must be wide enough to accommodate two adjacent working legs 77 to achieve the high density nesting shown in FIG. 4. Coil leads would typically extend from the outer circumference of the coil, but are not shown here to improve clarity.

In operation within a typical electromotive device, a circular coil platter 50 is exposed to an axially directed magnetic flux produced by a magnet rotor 11, i.e. flux perpendicular to the plane containing the coils' working lengths. One such way of providing this flux is illustrated in FIG. 9 in which a magnet rotor 11 (which could be composed of permanent magnet segments or electromagnets and which would be affixed to a central rotatable shaft, not shown) is positioned adjacent one or both sides of the coil platter to form a basic electromotive device 80. If only one magnet 11 is used in a particular device, some type of flux return, such as a soft iron disc, should be placed adjacent the opposite side of the coil platter. Here, only three coils 42, 44, 46 of an entire platter 50 of 48 coils 30 are shown for clarity in this example. As the coils are appropriately energized (by any well known control circuit, not shown), a rotating force or torque is produced in the magnet rotor(s). Depending on the results desired and the corresponding mechanical arrangement, the magnet rotor may cause a shaft to revolve at high speed or merely turn a small angle at high torque.

As illustrated in FIG. 10, it is beneficial to stack multiple coil platters 50, 50′, 50″ along a common central axis with alternating layers of magnetic rotors 11. This arrangement increases the total working area, and thus the power, within an electromotive device of given diameter. For clarity, the coil leads and magnet rotors are again not shown in FIG. 10. The details of various possible mechanical arrangements to adapt the present invention to common industrial devices are so well known that they need not be discussed here.

While the present invention has been described in terms more or less specific to preferred embodiments, it is expected that various alterations, modifications, or permutations thereof will be readily apparent to those skilled in the art. For example, the invention may be embodied in an electrical generator as well as a motor. Instead of a circular coil array, the coils of the invention may be formed into a linear array or a partial circle rather than a complete circular array. Therefore, it should be understood that the invention is not to be limited to the specific features shown or described, but it is intended that all equivalents be embraced within the spirit and scope of the invention as defined by the appended claims.

Claims (30)

1. A segmented coil array for use in rotary electromotive devices with one or two magnet rotors, such as motors and generators, of the type which employ an axial gap magnetic structure, composed of an even multiple of individual wire-wound coils, each coil having substantially the same structure and size and comprising circumferentially extending base portions and radially extending side portions, the radially extending side portions and circumferentially extending base portions joined at their respective ends to define a generally trapezoidal shape: the coil array formed into a ring of partially overlapped alternating coils such that the radially extending side portions of each coil are coplanar.
2. The coil array of claim 1 wherein each individual coil has offsetting bends near each end of said radially extending side portions which cause the circumferentially extending base portions of the coil to lie outside the plane containing the radially extending side portions so as to allow partial overlapping of each coil by its two adjacent coils.
3. A segmented coil array, according to claim 2, in which each coil's circumferentially extending base portions and radially extending side portions define a space containing one radially extending portion from each of its two adjacent coils thereby doubling the density of the coil's working conductors.
4. The coil array of claim 1 wherein a plurality of the individual coils have offsetting bends near each end of said radially extending side portions which cause the circumferentially extending base portions of the coil to lie outside the plane containing the radially extending side portions so as to allow partial overlapping of each coil by at least two adjacent coils.
5. A segmented coil array, according to claim 1, in which the individual coils are over-molded with a moldable material to form a ring of suitable structural integrity and heat tolerance.
6. The segmented coil array of claim 5 in which the moldable material is epoxy.
7. The segmented coil array of claim 5 additionally comprising layers of fiber reinforcing fabric.
8. A segmented coil array, according to claim 1, herein the coils are oriented to form a linear array.
9. A segmented coil array, according to claim 1, wherein the coils are oriented to form a partial ring.
10. The coil array of claim 1 A segmented coil array for use in rotary electromotive devices with one or two magnet rotors, such as motors and generators, of the type which employ an axial gap magnetic structure, composed of an even multiple of individual wire-wound coils, each coil having substantially the same structure and size and comprising circumferentially extending base portions and radially extending side portions, the radially extending side portions and circumferentially extending base portions joined at their respective ends to define a generally trapezoidal shape: the coil array formed into a ring of partially overlapped alternating coils such that the radially extending side portions of each coil are coplanar, wherein the individual coils are formed such that the radially extending side portions of a coil have a smaller cross-sectional electrical conductor area than at least one of the circumferentially extending base portions.
11. The coil array of claim 1, wherein the multiple individual wire-wound coils A rotary electromotive device comprising two rotors, at least one of which comprises a magnet rotor, said two rotors sandwiching therebetween a segmented coil array to provide two axial magnetic gaps, said segmented coil array being composed of an even multiple of individual wire-wound coils, each coil having substantially the same structure and size and comprising circumferentially extending base portions and radially extending side portions, the radially extending side portions and circumferentially extending base portions joined at their respective ends to define a generally trapezoidal shape, the coil array being formed into a ring of partially overlapping alternating coils such that the radially extending side portions of each coil are coplanar, said coils being affixed to each other to form a coil platter, having a central axis and known inner and outer diameters, in which the radially extending coil portions are the working conductors, and the working length of said conductors is being approximately 42% of the distance between the central axis of the coil platter and the outer diameter of the coil's working length, thereby optimizing the array for maximum torque, when used as a motor, or voltage production, when used in a generator.
12. The coil array of claim 1, wherein the coil array is operably located in a rotary electromotive device, such as a motor or generator, the motor or generator having alternating layers of magnetic material to produce an axial gap magnetic structure, and further having several additional coil arrays arranged in layers of electromagnetic coil arrays which are stacked so as to further increase the total coil area within said electromotive device, each layer of coil structure operating in a separate axial magnetic flux gap formed by the layers of magnetic material.
13. The device of claim 12 wherein said magnetic material is a disc shaped permanent magnet rotor affixed to a rotatable shaft.
14. The device of claim 12 wherein said magnetic material is a disc shaped electromagnet rotor affixed to a rotatable shaft.
15. A segmented coil array for use in rotary electromotive devices, such as motors and generators, of the type which employ an axial gap magnetic structure, comprising an even multiple of identically shaped individual wire-wound coils, each coil comprising circumferentially extending base portions, and radially extending side portions joined at their respective ends to form a trapezoid shape, each side portion having offsetting bends at each end of said side portion adjacent to each base portion so that said base portions lie in a plane parallel to said side portions; the coil array formed by arranging a first set of coils into a ring with side portions being adjacent, and overlapping a second set of coils such that the radially extending side portions of each set of coils are all coplanar and the offsetting bends of alternate coils are oriented in different directions so that the base portion of the first set of coils are parallel to the base portions of the second set of coils.
16. A segmented coil array, according to claim 15, in which the individual coils are over-molded with a moldable material to form a ring of suitable structural integrity and heat tolerance.
17. The segmented coil array of claim 16 in which the moldable material is epoxy.
18. The segmented coil array of claim 15 additionally comprising layers of fiber reinforcing fabric.
19. The coil array of claim 15 A segmented coil array for use in rotary electromotive devices, such as motors and generators, of the type which employ an axial gap magnetic structure, comprising an even multiple of identically shaped individual wire-wound coils, each coil comprising circumferentially extending base portions, and radially extending side portions joined at their respective ends to form a trapezoid shape, each side portion having offsetting bends at each end of said side portion adjacent to each base portion so that said base portions lie in a plane parallel to said side portions; the coil array formed by arranging a first set of coils into a ring with side portions being adjacent, and overlapping a second set of coils such that the radially extending side portions of each set of coils are all coplanar and the offsetting bends of alternate coils are oriented in different directions so that the base portions of the first set of coils are parallel to the base portions of the second set of coils, wherein the individual coils are formed such that the radially extending side portions of a coil have a smaller cross-sectional electrical conductor area than at least one of the circumferentially extending base portions.
20. The coil array of claim 15, wherein the multiple A segmented coil array for use in rotary electromotive devices, such as motors and generators, of the type which employ an axial gap magnetic structure, comprising an even multiple of identically shaped individual wire-wound coils, each coil comprising circumferentially extending base portions, and radially extending side portions joined at their respective ends to form a trapezoid shape, each side portion having offsetting bends at each end of said side portion adjacent to each base portion so that said base portions lie in a plane parallel to said side portions; the coil array being formed by arranging a first set of coils into a ring with side portions being adjacent, and overlapping a second set of coils such that the radially extending side portions of each set of coils are all coplanar and the offsetting bends of alternate coils are oriented in different directions so that the base portions of the first set of coils are parallel to the base portions of the second set of coils and slightly above and below the co-planar radially extending side portions, the individual wire-wound coils being affixed to each other to form a coil platter, having a central axis and known inner and outer diameters, in which the radially extending side portions include a working length, and the working length is approximately 42% of the distance between the central axis of the coil platter and the outer diameter of the coil's working length, thereby optimizing the array for maximum torque, when used in a motor, or voltage production, when used in a generator.
21. In a method of manufacturing a stator for an axial gap electrical machine, the steps comprising
spiral winding a flat ribbon conductor into a plurality of coils having radially extending sides and circumferential ends in substantially the same structure and size around a central void;
forming at least one portion of the plurality of spiral wound coils to offset their circumferential ends from their radially extending sides by machining the radially extending sides of said at least one portion of coils to provide said offset of their circumferential ends; and
arranging the coils into a circumferentially extending stator with their radially extending sides lying generally coplanar by overlapping said at least one portion of coils in the arrangement with their radially extending side portions lying in the central voids of the remaining portion of the unformed coils and with their offset circumferential ends overlapping the circumferential ends of the remaining portion of the unformed coils.
22. A segmented coil array for use in rotary electromotive devices of the type which employ an axial gap magnetic structure, composed of a plurality of individually wound coils comprised of flat ribbon conductor, each coil comprising circumferentially extending base portions and radially extending side portions, the radially extending side portions and circumferentially extending base portions being joined at their respective ends to define a generally trapezoidal shape; a portion of individually wound coils being machined to offset their circumferentially extending base portions from their radially extending side portions, the coil array being formed into a ring of partially overlapped alternating coils such that the radially extending side portions of each coil are coplanar.
23. The coil array of claim 22, wherein the individual coils are formed such that the circumferentially extending base portions of a coil have a larger cross-sectional area than one of the radially extending side portions.
24. The coil array of claim 22 wherein at least one circumferentially extending base portion has less electrical resistance than the radially extending side portions.
25. The coil array of claim 22 wherein each individual coil has offsets near each end of said radially extending side portions which cause the circumferentially extending base portions of the coil to lie outside the plane containing the radially extending side portions so as to allow partial overlapping of each coil by its two adjacent coils.
26. A coil array, according to claim 25, in which each coil's circumferentially extending base portions and radially extending side portions define a space containing one radially extending portion from each of its two adjacent coils thereby doubling the density of the coil's working conductors.
27. A coil array, according to claim 22, in which the individual coils are over-molded with a moldable material to form a coil platter with structural integrity and heat tolerance.
28. The coil array of claim 27 in which the moldable material is epoxy.
29. The coil array of claim 27 comprising at least one layer of fiber reinforcing fabric incorporated in the coil platter.
30. The coil array of claim 22, wherein the multiple individual wound coils are affixed to each other form a coil platter, having a central axis and known inner and outer diameters, in which the radially extending coil portions are the working conductors, and the working length of said conductors is approximately 42% of the distance between the central axis of the coil platter and the outer diameter of the coil's working length.
US09561826 1996-05-21 2000-04-28 Interlocking segmented coil array Expired - Lifetime USRE38939E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08651973 US5744896A (en) 1996-05-21 1996-05-21 Interlocking segmented coil array
US09561826 USRE38939E1 (en) 1996-05-21 2000-04-28 Interlocking segmented coil array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09561826 USRE38939E1 (en) 1996-05-21 2000-04-28 Interlocking segmented coil array

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08651973 Reissue US5744896A (en) 1996-05-21 1996-05-21 Interlocking segmented coil array

Publications (1)

Publication Number Publication Date
USRE38939E1 true USRE38939E1 (en) 2006-01-24

Family

ID=24615009

Family Applications (2)

Application Number Title Priority Date Filing Date
US08651973 Expired - Lifetime US5744896A (en) 1996-05-21 1996-05-21 Interlocking segmented coil array
US09561826 Expired - Lifetime USRE38939E1 (en) 1996-05-21 2000-04-28 Interlocking segmented coil array

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08651973 Expired - Lifetime US5744896A (en) 1996-05-21 1996-05-21 Interlocking segmented coil array

Country Status (8)

Country Link
US (2) US5744896A (en)
EP (1) EP0903001A4 (en)
JP (1) JP2000511399A (en)
KR (2) KR20000016004A (en)
CN (1) CN1093697C (en)
CA (1) CA2255958C (en)
RU (1) RU2226312C2 (en)
WO (1) WO1997044880A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040002677A1 (en) * 2001-12-11 2004-01-01 Gentsler Curtis C. Alternate site gene therapy
US20060145558A1 (en) * 2004-05-28 2006-07-06 Toshiaki Kashihara Alternator for a vehicle
US20060284513A1 (en) * 2005-06-20 2006-12-21 Purvines Stephen H Electric motor stator
US20070103025A1 (en) * 2005-10-25 2007-05-10 Maxon Motor Ag Electric motor with multilayered rhombic single coils made of wire
US20100253173A1 (en) * 2007-09-14 2010-10-07 Koji Miyata Axial gap type coreless rotating machine
US20110027084A1 (en) * 2009-07-31 2011-02-03 Andrew Rekret Novel turbine and blades
US20120001502A1 (en) * 2010-07-01 2012-01-05 Yee-Chun Lee Multi-unit Modular Stackable Switched Reluctance Motor System with Parallely Excited Low Reluctance Circumferential Magnetic Flux loops for High Torque Density Generation
US20130062889A1 (en) * 2010-03-23 2013-03-14 Adaptive Generators As Variable electrical generator
US20130093280A1 (en) * 2011-10-17 2013-04-18 GM Global Technology Operations LLC Multi-filar bar conductors for electric machines
US20130093281A1 (en) * 2011-10-17 2013-04-18 Gb Global Technology Operations Llc Bar conductor shapes for electric machines

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744896A (en) * 1996-05-21 1998-04-28 Visual Computing Systems Corp. Interlocking segmented coil array
US6281614B1 (en) * 1997-08-01 2001-08-28 Wolfgang Hill Multiple phase electric machine with a space-optimized turn-to-turn winding
US6885678B2 (en) * 1999-04-14 2005-04-26 Verizon Services Corp. Telecommunications network
US6208056B1 (en) * 1997-09-08 2001-03-27 Active Power, Inc. Cartridge armatures for electro-dynamic machines
US6140734A (en) * 1998-04-03 2000-10-31 Nikon Corporation Of Japan Armature with regular windings and having a high conductor density
GB2336250B (en) * 1998-04-09 2003-03-12 John Richard Padley Radial magnetic field electricity generator
US6118202A (en) * 1998-05-11 2000-09-12 Active Power, Inc. High-efficiency inductor-alternator
US5982069A (en) * 1998-06-30 1999-11-09 Rao; Dantam K. Axial gap machine phase coil having tapered conductors with increasing width in radial direction
US6046518A (en) * 1999-01-21 2000-04-04 Williams; Malcolm R. Axial gap electrical machine
EP1294516A1 (en) * 2000-04-12 2003-03-26 Jore Corporation Power work tools having a slim profile
EP1280260B1 (en) 2001-05-24 2011-09-21 Arjuna Indraeswaran Rajasingham Axial gap electrical machine
EP1346381B1 (en) * 2000-12-11 2009-04-01 Philips Electronics N.V. Band coil
US6570273B2 (en) * 2001-01-08 2003-05-27 Nikon Corporation Electric linear motor
JP2002247823A (en) * 2001-02-15 2002-08-30 Chiba Seimitsu:Kk Magnetic levitation type motor
US7863784B2 (en) * 2005-08-15 2011-01-04 Apex Drive Laboratories, Inc Axial flux permanent magnet machines
US6930433B2 (en) * 2003-04-16 2005-08-16 Apex Drives Laboratories, Inc. Brushless electro-mechanical device
US6552460B2 (en) * 2001-03-08 2003-04-22 Motile, Inc. Brushless electro-mechanical machine
US7839047B2 (en) * 2001-05-24 2010-11-23 Arjuna Indraeswaran Rajasingham Axial gap electrical machine
US7098566B2 (en) * 2001-05-24 2006-08-29 Rajasingham Arjuna Indraes War Axial gap electrical machine
US7142434B2 (en) 2002-01-16 2006-11-28 Rockwell Automation Technologies, Inc. Vehicle drive module having improved EMI shielding
US7187548B2 (en) * 2002-01-16 2007-03-06 Rockwell Automation Technologies, Inc. Power converter having improved fluid cooling
US6865080B2 (en) * 2002-01-16 2005-03-08 Rockwell Automation Technologies, Inc. Compact fluid cooled power converter supporting multiple circuit boards
US6965514B2 (en) 2002-01-16 2005-11-15 Rockwell Automation Technologies, Inc. Fluid cooled vehicle drive module
US7032695B2 (en) * 2002-01-16 2006-04-25 Rockwell Automation Technologies, Inc. Vehicle drive module having improved terminal design
US7187568B2 (en) * 2002-01-16 2007-03-06 Rockwell Automation Technologies, Inc. Power converter having improved terminal structure
US6982873B2 (en) * 2002-01-16 2006-01-03 Rockwell Automation Technologies, Inc. Compact vehicle drive module having improved thermal control
US6972957B2 (en) * 2002-01-16 2005-12-06 Rockwell Automation Technologies, Inc. Modular power converter having fluid cooled support
US7061775B2 (en) * 2002-01-16 2006-06-13 Rockwell Automation Technologies, Inc. Power converter having improved EMI shielding
US7177153B2 (en) 2002-01-16 2007-02-13 Rockwell Automation Technologies, Inc. Vehicle drive module having improved cooling configuration
US6909607B2 (en) * 2002-01-16 2005-06-21 Rockwell Automation Technologies, Inc. Thermally matched fluid cooled power converter
US6898072B2 (en) * 2002-01-16 2005-05-24 Rockwell Automation Technologies, Inc. Cooled electrical terminal assembly and device incorporating same
US6894418B2 (en) * 2002-07-30 2005-05-17 Comprehensive Power, Inc. Nested stator coils for permanent magnet machines
US6882077B2 (en) * 2002-12-19 2005-04-19 Visteon Global Technologies, Inc. Stator winding having cascaded end loops
US6787961B2 (en) * 2002-12-19 2004-09-07 Visteon Global Technologies, Inc. Automotive alternator stator assembly with varying end loop height between layers
US6759781B1 (en) * 2003-02-14 2004-07-06 American Superconductor Corporation Rotor assembly
US6768239B1 (en) * 2003-06-23 2004-07-27 Magnetic Power-Motion, Llc Electromotive devices using notched ribbon windings
US7084548B1 (en) 2003-07-11 2006-08-01 Gabrys Christopher W Low cost high speed electrical machine
US20050035678A1 (en) * 2003-08-11 2005-02-17 Ward Terence G. Axial flux motor mass reduction with improved cooling
US7262536B2 (en) * 2003-08-11 2007-08-28 General Motors Corporation Gearless wheel motor drive system
US7332837B2 (en) * 2003-08-11 2008-02-19 General Motors Corporation Cooling and handling of reaction torque for an axial flux motor
JP4532864B2 (en) * 2003-09-01 2010-08-25 住友重機械工業株式会社 3-phase linear motor
JP4582448B2 (en) * 2003-12-02 2010-11-17 Neomaxエンジニアリング株式会社 θ-Y-X stage
US6966198B2 (en) * 2003-12-12 2005-11-22 Visteon Global Technologies, Inc. Air-cycle air conditioning system for commercial refrigeration
US7081696B2 (en) 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
US20060038461A1 (en) * 2004-08-19 2006-02-23 Gabrys Christopher W Optimized air core armature
US7411325B1 (en) 2004-10-20 2008-08-12 Revolution Electric Motor Company, Inc. High efficiency combination motor and drive
US7508157B1 (en) 2005-01-18 2009-03-24 Gabrys Christopher W Line synchronous air core motor
US8186975B2 (en) * 2005-08-24 2012-05-29 Metropolitan Industries, Inc. Low profile pump with first and second rotor arrangement
US7608965B2 (en) * 2005-09-01 2009-10-27 Wisconsin Alumni Research Foundation Field controlled axial flux permanent magnet electrical machine
JP4616145B2 (en) * 2005-10-11 2011-01-19 本田技研工業株式会社 motor
US7750515B1 (en) 2005-10-25 2010-07-06 Gabrys Christopher W Industrial air core motor-generator
US7619345B2 (en) * 2006-01-30 2009-11-17 American Superconductor Corporation Stator coil assembly
US7471026B2 (en) * 2006-03-13 2008-12-30 Isca Innovatons, Llc Brushless electric motor
US7902700B1 (en) 2006-04-03 2011-03-08 Gabrys Christopher W Low harmonic loss brushless motor
US20080088200A1 (en) 2006-06-08 2008-04-17 Jonathan Ritchey Poly-phasic multi-coil generator
US20070284939A1 (en) * 2006-06-12 2007-12-13 Honeywell International Aircraft electric brake and generator therefor
US7719147B2 (en) 2006-07-26 2010-05-18 Millennial Research Corporation Electric motor
US20080061948A1 (en) * 2006-08-18 2008-03-13 Daniel Perez System and method for communicating with gate operators via a power line
JP4699961B2 (en) * 2006-08-30 2011-06-15 本田技研工業株式会社 Rotating electric machine coil and a method for producing the same, and the rotary electric machine and a manufacturing method thereof
GB0617989D0 (en) * 2006-09-13 2006-10-18 Denne Phillip R M Improvements in electrical machines
US20080094186A1 (en) * 2006-10-04 2008-04-24 Viking Access Systems, Llc Apparatus and method for monitoring and controlling gate operators via power line communication
US20080106370A1 (en) * 2006-11-02 2008-05-08 Viking Access Systems, Llc System and method for speech-recognition facilitated communication to monitor and control access to premises
JP5362188B2 (en) 2007-03-29 2013-12-11 キヤノン電子株式会社 Magnetic body detection sensor
US8823238B2 (en) * 2007-04-03 2014-09-02 Hybridauto Pty Ltd Winding arrangement for an electrical machine
US7646132B2 (en) * 2007-05-02 2010-01-12 Empire Magnetics Inc. Arcuate coil winding and assembly for axial gap electro-dynamo machines (EDM)
US7841164B2 (en) * 2007-09-19 2010-11-30 Honeywell International Inc. Direct metering fuel system with an integral redundant motor pump
US7573173B1 (en) * 2007-09-28 2009-08-11 Aximet Technology, Inc. Apparatus for axial magnetic field electric motor
US20090085719A1 (en) * 2007-09-28 2009-04-02 Daniel Perez System and method for monitoring and controlling a movable barrier operator utilizing satellite communication capabilities
WO2009060038A3 (en) 2007-11-07 2009-08-20 Frank Pommerening Electric motor or generator of the disc type
US8129880B2 (en) * 2007-11-15 2012-03-06 GM Global Technology Operations LLC Concentrated winding machine with magnetic slot wedges
US7816875B2 (en) * 2008-01-24 2010-10-19 Viking Access Systems, Llc High torque gearless actuation at low speeds for swing gate, roll-up gate, slide gate, and vehicular barrier operators
US20090188166A1 (en) * 2008-01-24 2009-07-30 Hassan Taheri System for gearless operation of a movable barrier utilizing lorentz forces
WO2009100426A3 (en) * 2008-02-08 2009-10-15 Empire Magnetics Inc. Nested serpentine winding for an axial gap electric dynamo machine
US7821168B2 (en) * 2008-02-10 2010-10-26 Empire Magnetics Inc. Axial gap dynamo electric machine with magnetic bearing
WO2009100436A3 (en) * 2008-02-10 2009-10-08 Empire Magnetics Inc. Winding for an axial gap electro dynamo machine
US8384263B2 (en) * 2008-02-14 2013-02-26 Hitachi, Ltd. Rotating electrical machine having a compact stator
US7816879B2 (en) * 2008-02-19 2010-10-19 Viking Access Systems, Llc High torque movable barrier actuation at low speeds utilizing a hub motor
US20090211160A1 (en) * 2008-02-26 2009-08-27 Ali Tehranchi Access device with a photovoltaic housing utilized to generate power
FR2930690A1 (en) * 2008-04-29 2009-10-30 Julien Gillonnier Ironless spiral coil integrated electrical machine e.g. rotary type electrical machine, for bicycle, has movable parts or fixed part coupled to actuator when machine serves as generator to produce alternating current at terminals
US20100084938A1 (en) * 2008-08-15 2010-04-08 Millennial Research Corporation Regenerative motor and coil
EP2166644A1 (en) * 2008-09-18 2010-03-24 Siemens Aktiengesellschaft Group of three stator windings for a stator of an electric machine, a stator arrangement, a generator, and wind turbine
FR2937093B1 (en) * 2008-10-10 2013-10-11 Vincent Genissieux rotary machine rhombuses deformable electromagnetic device
JP2012509055A (en) 2008-11-12 2012-04-12 スマートモーター アーエス Method for manufacturing a stator section for an electric machine, and electromechanical
EP2213533B1 (en) * 2009-01-28 2012-03-14 Alenia Aeronautica S.p.A. Braking system for the undercarriage of an aircraft
EP2213538A1 (en) * 2009-01-28 2010-08-04 Alenia Aeronautica S.p.A. Braking system for the undercarriage of an aircraft
US9337695B2 (en) * 2010-02-22 2016-05-10 GE Energy Conversion Technology LTD. Single-layer coil with one bent endwinding and one straight endwinding
EP2226923B1 (en) * 2009-03-03 2015-06-10 GE Energy Power Conversion Technology Limited Coils
JP2010252408A (en) * 2009-04-10 2010-11-04 Masaaki Iwatani Coil component
US20100289616A1 (en) * 2009-05-18 2010-11-18 Ali Tehranchi Movable barrier system adapted to utilize biometric technology to identify and authorize access to premises
KR101001030B1 (en) * 2010-06-04 2010-12-15 (주)설텍 Permanet magnet generator of out rotor type and method for manufacturing permanet magnet generator of out rotor type
US20120067676A1 (en) * 2010-09-17 2012-03-22 Brammo, Inc. Vehicle wheel braking system
EP2466731B1 (en) * 2010-12-15 2013-06-12 Infranor Holding S.A. Synchronous motor with permanent magnets
CN102097906B (en) * 2011-01-11 2012-12-26 陈国宝 Multilayer coreless coil permanent magnet motor
WO2012113159A1 (en) * 2011-02-25 2012-08-30 深圳市安托山特种机电有限公司 Rare-earth permanent magnetic coreless power generator set
EP2493056A1 (en) * 2011-02-28 2012-08-29 Siemens Aktiengesellschaft Electrical machine, in particular an electrical generator
WO2012148905A3 (en) * 2011-04-25 2013-01-17 Morningside Technology Ventures Ltd. Polymeric solar concentrator and solar thermal device incorporating same
FR2975546B1 (en) * 2011-05-16 2014-05-02 Bernard Perriere Turbine generatrix of electric current
EP2717442A4 (en) * 2011-05-26 2016-03-09 Toyota Motor Co Ltd Coil correction method and coil correction apparatus
JP2013102659A (en) * 2011-11-10 2013-05-23 Toru Masuzawa Lorentz motor
RU2506688C2 (en) * 2011-12-05 2014-02-10 Сергей Михайлович Есаков Magnetoelectric generator
CN102592881B (en) * 2011-12-09 2015-07-15 沈阳工业大学 Disc type laminated gyromagnetic transversely-blowing vacuum arc extinguishing chamber
CN102522259B (en) * 2011-12-09 2015-07-15 沈阳工业大学 Disc-type overlapping gyromagnetic longitudinal blowing vacuum arc extinguish chamber
CN102522256B (en) * 2011-12-09 2015-07-15 沈阳工业大学 Disc-type overlapping gyromagnetic vacuum arc extinguish chamber
CN102496518B (en) * 2011-12-09 2015-04-15 沈阳工业大学 Disk-type gyromagnetic vacuum arc extinguish chamber
CN102522258B (en) * 2011-12-09 2015-07-15 沈阳工业大学 Disc-type gyromagnetic transverse blowing vacuum arc extinguish chamber
CN102522257B (en) * 2011-12-09 2015-07-15 沈阳工业大学 Disk-type gyromagnet longitudinal-blowing vacuum arc extinguish chamber
US20150229194A1 (en) * 2012-08-27 2015-08-13 Albus Technologies Ltd. Rotor with magnet pattern
CN103840588B (en) * 2012-11-26 2016-08-17 直得科技股份有限公司 Type coreless linear motor coil assembly structure and a coil unit
US9148047B2 (en) * 2012-11-30 2015-09-29 Chieftek Precision Co., Ltd. Coil assembly having separation plates for iron less linear motor
KR101437258B1 (en) * 2013-01-09 2014-09-03 고려대학교 산학협력단 Armature for coreless linear motor and coreless linear motor using the same
CN103312070B (en) * 2013-05-29 2016-07-13 黄国灿 A novel solenoid
US9214837B2 (en) 2013-12-13 2015-12-15 Arm Limited Electric motor with plural stator components
US20160013694A1 (en) * 2014-07-10 2016-01-14 Metropolitan Industries, Inc. Deeply nested coil arrays for motors and generators
CN104638795A (en) * 2015-02-03 2015-05-20 吕周安 Stator winding structure of brushless coreless disk permanent magnetic motor and motor with the stator winding structure

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215876A (en) * 1963-04-22 1965-11-02 Nichols Ind Inc Generator units including provision for generating from flux leakage
US3226586A (en) 1959-02-05 1965-12-28 Printed Motors Inc Axial airgap rotary machines
US3348086A (en) 1963-11-20 1967-10-17 Fujiya Denki Kabushiki Kaisha Flat coreless direct current motor
US3678314A (en) 1970-06-17 1972-07-18 Alastair Howroyd Carter Discoidal electric motor
US3686521A (en) 1971-04-07 1972-08-22 Kollmorgen Corp Magnetic motors
US3700944A (en) * 1971-11-08 1972-10-24 Ford Motor Co Disc-type variable reluctance rotating machine
US3790835A (en) * 1971-03-10 1974-02-05 Matsushita Electric Ind Co Ltd Disc armature
US3988024A (en) * 1974-06-14 1976-10-26 Tokyo Shibaura Electric Co., Ltd. Turntable apparatus
US3999092A (en) * 1974-04-04 1976-12-21 Canadian General Electric Company Limited Permanent magnet synchronous dynamoelectric machine
US4007390A (en) * 1973-07-26 1977-02-08 Papst-Motoren Kg Brushless D-C motor
US4068143A (en) * 1973-12-19 1978-01-10 General Electric Company Discoidal winding for dynamoelectric machines
GB1581350A (en) 1978-03-14 1980-12-10 Campbell P Electrical motor
JPS56121359A (en) 1980-02-28 1981-09-24 Nippon Radiator Co Ltd Armature for flat motor and manufacture thereof
JPS56153962A (en) 1980-04-28 1981-11-28 Nippon Radiator Co Ltd Manufacture of armature for flat motor
US4319152A (en) 1976-07-12 1982-03-09 Gils Adrianus W Van Laminated winding for electric machines
JPS57135645A (en) 1981-02-13 1982-08-21 Mitsubishi Electric Corp Polyphase armature coil
US4361776A (en) * 1979-07-11 1982-11-30 Sony Corporation Coil assembly for flat brushless motor
US4371801A (en) * 1978-10-11 1983-02-01 General Electric Company Method and apparatus for output regulation of multiple disk permanent magnet machines
US4420875A (en) * 1979-12-05 1983-12-20 Mavilor Systemes Method of mounting and casting a flat rotor
JPS6051447A (en) * 1983-08-29 1985-03-22 Takahashi Yoshiteru Disk type brushless motor with preferable efficiency of superposed armature coil type
US4551645A (en) * 1981-06-04 1985-11-05 Fuji Photo Film Co., Ltd. Disc type brushless motor
JPS62193543A (en) 1986-02-19 1987-08-25 Hitachi Ltd Moving-coil type linear motor
US4743813A (en) * 1985-10-15 1988-05-10 Mavilor Systemes S.A. Direct current motor with electronic commutation circuit and encoder-controlled winding power
US4839543A (en) * 1988-02-04 1989-06-13 Trilogy Systems Corporation Linear motor
US4868443A (en) 1987-04-18 1989-09-19 Lothar Rossi Tachogenerator for electric machines
US5087844A (en) 1989-11-07 1992-02-11 Hitachi Metals, Ltd. Linear motor
US5146144A (en) * 1990-06-08 1992-09-08 Eastman Kodak Company Electric motor
US5168185A (en) * 1990-10-09 1992-12-01 Hitachi Metals, Ltd. Swing-type actuator
US5304884A (en) * 1988-01-19 1994-04-19 Olympus Optical Company Limited Molded armature
EP0633563A2 (en) 1988-05-04 1995-01-11 M4 Data Limited Tape drive machines
US5396140A (en) * 1993-05-28 1995-03-07 Satcon Technology, Corp. Parallel air gap serial flux A.C. electrical machine
US5397953A (en) * 1993-11-17 1995-03-14 The United States Of America As Represented By The Secretary Of The Navy Stator for disc type electric motor
US5589722A (en) * 1993-04-16 1996-12-31 Teac Corporation Sheet coil motor and method of fabricating the same
US5619087A (en) 1992-03-18 1997-04-08 Kabushiki Kaisha Toshiba Axial-gap rotary-electric machine
US5744896A (en) * 1996-05-21 1998-04-28 Visual Computing Systems Corp. Interlocking segmented coil array
US5767600A (en) 1997-02-27 1998-06-16 Whiteley; Eric Modular motor

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226586A (en) 1959-02-05 1965-12-28 Printed Motors Inc Axial airgap rotary machines
US3215876A (en) * 1963-04-22 1965-11-02 Nichols Ind Inc Generator units including provision for generating from flux leakage
US3348086A (en) 1963-11-20 1967-10-17 Fujiya Denki Kabushiki Kaisha Flat coreless direct current motor
US3678314A (en) 1970-06-17 1972-07-18 Alastair Howroyd Carter Discoidal electric motor
US3790835A (en) * 1971-03-10 1974-02-05 Matsushita Electric Ind Co Ltd Disc armature
US3686521A (en) 1971-04-07 1972-08-22 Kollmorgen Corp Magnetic motors
US3700944A (en) * 1971-11-08 1972-10-24 Ford Motor Co Disc-type variable reluctance rotating machine
US4007390A (en) * 1973-07-26 1977-02-08 Papst-Motoren Kg Brushless D-C motor
US4068143A (en) * 1973-12-19 1978-01-10 General Electric Company Discoidal winding for dynamoelectric machines
US3999092A (en) * 1974-04-04 1976-12-21 Canadian General Electric Company Limited Permanent magnet synchronous dynamoelectric machine
US3988024A (en) * 1974-06-14 1976-10-26 Tokyo Shibaura Electric Co., Ltd. Turntable apparatus
US4319152A (en) 1976-07-12 1982-03-09 Gils Adrianus W Van Laminated winding for electric machines
GB1581350A (en) 1978-03-14 1980-12-10 Campbell P Electrical motor
US4371801A (en) * 1978-10-11 1983-02-01 General Electric Company Method and apparatus for output regulation of multiple disk permanent magnet machines
US4361776A (en) * 1979-07-11 1982-11-30 Sony Corporation Coil assembly for flat brushless motor
US4420875A (en) * 1979-12-05 1983-12-20 Mavilor Systemes Method of mounting and casting a flat rotor
JPS56121359A (en) 1980-02-28 1981-09-24 Nippon Radiator Co Ltd Armature for flat motor and manufacture thereof
JPS56153962A (en) 1980-04-28 1981-11-28 Nippon Radiator Co Ltd Manufacture of armature for flat motor
JPS57135645A (en) 1981-02-13 1982-08-21 Mitsubishi Electric Corp Polyphase armature coil
US4551645A (en) * 1981-06-04 1985-11-05 Fuji Photo Film Co., Ltd. Disc type brushless motor
JPS6051447A (en) * 1983-08-29 1985-03-22 Takahashi Yoshiteru Disk type brushless motor with preferable efficiency of superposed armature coil type
US4743813A (en) * 1985-10-15 1988-05-10 Mavilor Systemes S.A. Direct current motor with electronic commutation circuit and encoder-controlled winding power
JPS62193543A (en) 1986-02-19 1987-08-25 Hitachi Ltd Moving-coil type linear motor
US4868443A (en) 1987-04-18 1989-09-19 Lothar Rossi Tachogenerator for electric machines
US5304884A (en) * 1988-01-19 1994-04-19 Olympus Optical Company Limited Molded armature
US4839543A (en) * 1988-02-04 1989-06-13 Trilogy Systems Corporation Linear motor
JPH01264558A (en) 1988-02-04 1989-10-20 Trilogy Syst Corp Linear motor
EP0633563A2 (en) 1988-05-04 1995-01-11 M4 Data Limited Tape drive machines
US5087844A (en) 1989-11-07 1992-02-11 Hitachi Metals, Ltd. Linear motor
US5146144A (en) * 1990-06-08 1992-09-08 Eastman Kodak Company Electric motor
US5168185A (en) * 1990-10-09 1992-12-01 Hitachi Metals, Ltd. Swing-type actuator
US5619087A (en) 1992-03-18 1997-04-08 Kabushiki Kaisha Toshiba Axial-gap rotary-electric machine
US5589722A (en) * 1993-04-16 1996-12-31 Teac Corporation Sheet coil motor and method of fabricating the same
US5396140A (en) * 1993-05-28 1995-03-07 Satcon Technology, Corp. Parallel air gap serial flux A.C. electrical machine
US5397953A (en) * 1993-11-17 1995-03-14 The United States Of America As Represented By The Secretary Of The Navy Stator for disc type electric motor
US5744896A (en) * 1996-05-21 1998-04-28 Visual Computing Systems Corp. Interlocking segmented coil array
US5767600A (en) 1997-02-27 1998-06-16 Whiteley; Eric Modular motor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040002677A1 (en) * 2001-12-11 2004-01-01 Gentsler Curtis C. Alternate site gene therapy
US20060145558A1 (en) * 2004-05-28 2006-07-06 Toshiaki Kashihara Alternator for a vehicle
US20060284513A1 (en) * 2005-06-20 2006-12-21 Purvines Stephen H Electric motor stator
US7345398B2 (en) * 2005-06-20 2008-03-18 Kurz-Kasch, Inc. Electric motor stator
US20070103025A1 (en) * 2005-10-25 2007-05-10 Maxon Motor Ag Electric motor with multilayered rhombic single coils made of wire
US7671504B2 (en) * 2005-10-25 2010-03-02 Maxon Motor Ag Electric motor with multilayered rhombic single coils made of wire
US8299676B2 (en) * 2007-09-14 2012-10-30 Shin-Etsu Chemical Co., Ltd. Axial gap type coreless rotating machine
US20100253173A1 (en) * 2007-09-14 2010-10-07 Koji Miyata Axial gap type coreless rotating machine
US20110027084A1 (en) * 2009-07-31 2011-02-03 Andrew Rekret Novel turbine and blades
US20130062889A1 (en) * 2010-03-23 2013-03-14 Adaptive Generators As Variable electrical generator
US8878373B2 (en) * 2010-03-23 2014-11-04 Adaptive Generators As Variable electrical generator
US20120001502A1 (en) * 2010-07-01 2012-01-05 Yee-Chun Lee Multi-unit Modular Stackable Switched Reluctance Motor System with Parallely Excited Low Reluctance Circumferential Magnetic Flux loops for High Torque Density Generation
US20130093280A1 (en) * 2011-10-17 2013-04-18 GM Global Technology Operations LLC Multi-filar bar conductors for electric machines
US20130093281A1 (en) * 2011-10-17 2013-04-18 Gb Global Technology Operations Llc Bar conductor shapes for electric machines
US8866361B2 (en) * 2011-10-17 2014-10-21 GM Global Technology Operations LLC Bar conductor shapes for electric machines

Also Published As

Publication number Publication date Type
EP0903001A4 (en) 2001-06-13 application
JP2000511399A (en) 2000-08-29 application
CN1093697C (en) 2002-10-30 grant
KR20000016004A (en) 2000-03-25 application
KR100421726B1 (en) 2004-06-23 grant
US5744896A (en) 1998-04-28 grant
EP0903001A1 (en) 1999-03-24 application
WO1997044880A1 (en) 1997-11-27 application
CA2255958A1 (en) 1997-11-27 application
CN1218585A (en) 1999-06-02 application
RU2226312C2 (en) 2004-03-27 grant
CA2255958C (en) 2002-11-05 grant

Similar Documents

Publication Publication Date Title
US3360668A (en) Armature winding for rotary electrical machines
US5982074A (en) Axial field motor/generator
US6407466B2 (en) Electric motor or generator
US3500095A (en) Multilayer disc armature for dynamo electric machine
US6828710B1 (en) Airgap armature
US4197475A (en) Direct current motor with double layer armature windings
US4488075A (en) Alternator with rotor axial flux excitation
US6664704B2 (en) Electrical machine
US4883981A (en) Dynamoelectric machine having ironless stator coil
US20080211326A1 (en) Inner rotor type permanent magnet excited transverse flux motor
US20060022544A1 (en) Stator and brushless motor
US6445105B1 (en) Axial flux machine and method of fabrication
US4677332A (en) Electric motor having auxiliary portions distributed at a pitch which is an odd number sub-multiple of the pitch of active portions
US20020074887A1 (en) Permanent magnet type rotor and permanent magnet type rotary electrical machine
US6369483B1 (en) Electric machine with a single pole winding
US4130769A (en) Brushless DC motor
US4852245A (en) Toothless stator electrical machine construction method
US4645961A (en) Dynamoelectric machine having a large magnetic gap and flexible printed circuit phase winding
US5866965A (en) Variable reluctance motor having foil wire wound coils
US3999092A (en) Permanent magnet synchronous dynamoelectric machine
US4709180A (en) Toothless stator construction for electrical machines
US4633149A (en) Brushless DC motor
US5955808A (en) Multi-phase electric machine with offset multi-polar electric pole units
US4703211A (en) Slotless brushless DC motor
US6894418B2 (en) Nested stator coils for permanent magnet machines

Legal Events

Date Code Title Description
SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12