USRE37595E1 - Cutting insert for cutting and grooving tools - Google Patents

Cutting insert for cutting and grooving tools Download PDF

Info

Publication number
USRE37595E1
USRE37595E1 US08/971,340 US97134097A USRE37595E US RE37595 E1 USRE37595 E1 US RE37595E1 US 97134097 A US97134097 A US 97134097A US RE37595 E USRE37595 E US RE37595E
Authority
US
United States
Prior art keywords
insert
ridge portions
recesses
insert according
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/971,340
Inventor
Lars Lindstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9201364A external-priority patent/SE508121C2/en
Application filed by Sandvik AB filed Critical Sandvik AB
Priority to US08/971,340 priority Critical patent/USRE37595E1/en
Application granted granted Critical
Publication of USRE37595E1 publication Critical patent/USRE37595E1/en
Assigned to SANDVIK INTELLECTUAL PROPERTY HB reassignment SANDVIK INTELLECTUAL PROPERTY HB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDVIK AB
Assigned to SANDVIK INTELLECTUAL PROPERTY AKTIEBOLAG reassignment SANDVIK INTELLECTUAL PROPERTY AKTIEBOLAG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDVIK INTELLECTUAL PROPERTY HB
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/04Cutting-off tools
    • B23B27/045Cutting-off tools with chip-breaking arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2205/00Fixation of cutting inserts in holders
    • B23B2205/02Fixation using an elastically deformable clamping member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/124Screws
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/22Cutters, for shaping including holder having seat for inserted tool
    • Y10T407/2272Cutters, for shaping including holder having seat for inserted tool with separate means to fasten tool to holder
    • Y10T407/2282Cutters, for shaping including holder having seat for inserted tool with separate means to fasten tool to holder including tool holding clamp and clamp actuator
    • Y10T407/2286Resiliently biased clamp jaw
    • Y10T407/2288Integral with holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/24Cutters, for shaping with chip breaker, guide or deflector
    • Y10T407/245Cutters, for shaping with chip breaker, guide or deflector comprising concave surface in cutting face of tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/25Cutters, for shaping including cut off tool

Definitions

  • the present invention relates to a cutting insert for turning and grooving tools, primarily for grooving operations in metal workpieces.
  • the insert could also be useful for cutting off rods, tubes or other rotationally symmetrical details.
  • Such cutting inserts are provided with a cutting edge formed by the transition between the top surface or rake surface of the insert and its forward clearance face.
  • a dimpled chipbreaker and the confining walls thereof are designed so as to form the chip narrower than the groove such that more efficiently manageable safe chips can be obtained. Chip disposal should become safer, more efficient and less costly. With such inserts, it should become possible to generate a finished groove in one pass of the workpiece, such as a crankshaft.
  • FIG. 1 is a perspective view of an insert according to the present invention
  • FIG. 2 is a side view of the insert of FIG. 1;
  • FIG. 3 is a top view of the insert of FIG. 1;
  • FIG. 4 is a front view of the insert of FIG. 1;
  • FIG. 5 is a cross-sectional view along the line A—A in FIG. 3;
  • FIG. 6 is a cross-sectional view along the line B—B in FIG. 3;
  • FIG. 7 is a cross-sectional view along the line C—C in FIG. 3;
  • FIG. 8 is a perspective view of a holder for the insert
  • FIG. 9 is a partial front view of the insert located in the tip-seat of the holder of FIG. 8;
  • FIG. 10 is a view of a chip obtained from chipforming by the insert of FIGS. 1 - 7 .
  • the insert is in the shape of a polygonal body of generally parallepipedic shape. It comprises two mainly plane-parallel side surfaces 11 , 12 , opposed top and bottom surfaces 14 and 13 , respectively, two end surfaces 15 , 16 , and a shoulder 17 .
  • the front portion of the insert is provided with a main cutting edge 18 and a chip forming area 19 .
  • the insert is intended to be secured to a holder body 20 (FIG. 8) provided with an integral clamping arm 21 .
  • the top surface 14 is broken at the vicinity of the shoulder 17 so that an upper surface portion 14 a forms an acute angle with the remainder of the surface 14 .
  • the insert 10 is intended to be removably held in a holder, which includes the holder body 20 having an integral clamping arm 21 in a front portion 22 of the holder body 20 and an insert receiving recess 23 in which the insert 10 is to be located.
  • the insert receiving recess 23 communicates at an inner end thereof with an elongated slit 24 which terminates in a circular recess 25 .
  • a clamping screw 26 extends into the holder 20 through the clamping arm 21 and through the slit 24 .
  • the clamping arm 21 flexes downwardly about the recess 23 and urges the clamping arm 21 into firm clamping abutment with the upper surface 14 of the insert. More specifically, a nose portion of the clamping arm 21 is somewhat inclined downwardly so that the nose matches the inclination of the upper surface portion 14 a of the insert 10 .
  • the bottom surface 13 of the insert is intended to be a first support surface for the insert against the holder body and a portion of the bottom surface 13 is parallel with a neutral plane P (FIG. 2) defined by the axial feed direction of the machine. More specifically, the bottom surface 13 includes two distinct flat surface portions 13 a and 13 d, with two inclined surfaces 13 b and 13 c therebetween. The inclined surfaces 13 b and 13 c are intended to abut with correspondingly inclined surfaces in the insert site of the holder as shown in FIG. 9 . As appears from FIG. 9, the surfaces 13 a and 13 d are not active support surfaces.
  • the top surface 14 constitutes a second support surface for the insert against the holder body 20 . The top surface 14 is oriented parallel with the flat bottom surface portions 13 a and 13 d.
  • the cutting edge 18 is straight and is formed along the intersecting line of a clearance face 16 and a primary land 27 .
  • the clearance face 16 which is the front end surface of the insert, forms an acute angle ⁇ , about 1°-15° with a normal/N drawn to the primary land 27 (FIG. 2 ).
  • the primary land 27 coincides with the neutral plane P.
  • the primary land 27 is bordered radially inwardly by an array of spaced recesses or grooves 28 extending on the rake face of the insert starting from the primary land 27 .
  • the width of the primary land 27 varies along the edge 18 such that the width of the primary land 27 is smaller at those portions located next to the front end portions of each recess 28 whereas the width is larger at inclined rake surface portions 29 located therebetween (FIG. 3 ).
  • the maximum width of each recess 28 is preferably larger than the distance between the depressions.
  • Each recess 28 has a depth initially increasing in a direction away from said primary land and thereafter decreasing in that direction.
  • centrally provided oval-shaped recesses 28 having a longitudinal extension, extending perpendicularly from the cutting edge 18 , that is several times larger than the width of the respective recess 28 . Additionally there is, on each side of the central group of oval-shaped recesses 28 , a recess 30 having a larger width and shorter length than each of the central recesses 28 .
  • a recess 31 which curves inwardly and downwardly from the primary land surface 27 and then curves upwardly to form a rear wall or chip deflector surface 32 .
  • the chip deflector surface 32 terminates in a plateau 33 located approximately at the same level as the neutral plane P.
  • the chipforming area 19 additionally includes a pair of ridges one of which extends from the outer periphery of a respective one of the recesses 30 . More specifically, a front ridge portion 34 a and 34 b are so formed that they converge rearwardly, and they extend rearwardly to the point where they meet with rear ridge portions 35 a and 35 b which are mutually parallel and extend essentially perpendicularly from the cutting edge 18 .
  • the front ridge portions 34 a and 34 b are formed with a top surface that is raised rearwardly until the location where the front ridge portion 34 a, 34 b intersects with the rear, straight rear ridge portions 35 a, 35 b at which intersection the top surface of the rear ridge portion has a level that remains constant further rearwardly.
  • the level of the upper surface of the rear ridge portions 35 a, 35 b is located somewhat above, and generally parallel to, the plane P.
  • the ridges As aforesaid, it is ensured that the chip remains in contact with the forward ridge portions 34 a, 34 b and that the central portion of the chip is urged deeper into the recess 31 . This arrangement further ensures that the total width of the chip is made narrower and becomes more easily manageable so that no harm is made from the chip to the side wails of the groove which is to be formed by the insert during cutting in a metal workpiece.
  • the forward end of the insert 10 additionally is provided with side cutting edges 36 a and 36 b, which merge rearwardly to an intermediate position along the insert, while intersecting with the primary land surface 27 which extends along both the main cutting edge 18 and along the side cutting edges 36 a, 36 b.
  • the clearance faces of the side cutting edges 36 a, 36 b are designated 11 a and 11 b. Each clearance face 11 a, 11 b intersects with the land surface 27 at an acute angle ⁇ (FIG. 6 ).
  • the chip forming area By virtue of the particular construction of the chip forming area as aforesaid, it is possible to obtain desirable clock-shaped chips 37 such as shown in FIG. 10 . These chips 37 can be obtained at a feed rate of 0.30 mm/revolution. If no proper chip deflection area is provided on the upper rake surface of the insert, chips obtained would otherwise be difficult to manage. Also, at moderate feed rates, the chip forming area of this invention effectively contributes to the control and removal of such chips. When large feeds are used, the chip will be pressed against the rear wall 32 of recess 31 which forces the chip to be bent in a favorable manner.
  • the embodiment described above also results in a certain reduction of the cutting forces because the grooves or recesses 28 , 30 reduce the contact area and increase the positive rake angle. Due to the fact that a reduced contact area is obtained, a relatively low heat generation is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The present invention relates to a turning insert that comprises a generally rectangularly shaped body having a front end surface with a main cutting edge at the intersection between the front end surface and an upper land area. A chipforming area is provided in the forward portion of the upper surface and is shaped in the form of a number of distinctly provided recesses and ridges in order to promote improved chip control and to obtain narrower chips in grooving operations.

Description

This application is a continuation of application Ser. No. 08/747,407, filed Nov. 12, 1996 now abandoned, and a reissue of application Ser. No. 853,232, filed Apr. 28, 1993, now U.S. Pat. No. 5,375,948.
BACKGROUND AND SUMMARY OF THE PRESENT INVENTION
The present invention relates to a cutting insert for turning and grooving tools, primarily for grooving operations in metal workpieces. The insert could also be useful for cutting off rods, tubes or other rotationally symmetrical details. Such cutting inserts are provided with a cutting edge formed by the transition between the top surface or rake surface of the insert and its forward clearance face.
In metal cutting operations, the breaking of the chip and the shape of the chip are often of great importance for an undisturbed production. In modem, high production machines and tools, there is great demand for an efficient chip removal and good chip control. This is of special importance in such high-production machines in which a series of different tools are performing different operations in a continuous sequence. It is not unusual that in such operations the chips may become tangled and wrap around the workpiece or the tool. This creates problems in subsequent operations, especially if automated workpiece handling equipment is involved. These difficulties are compounded when it comes to camshaft or crankshaft turning where several grooves are generated in one operation. The end result is usually high production costs due to expansive machine downtime to clear chips or repair tools.
In view of the above and related difficulties with prior art inserts and tools, it is a purpose of the present invention to provide an improved type of turning insert that is formed so as to optimize chip control for the specific demands and conditions of the difficult operations referred to above.
In accordance with the present invention, a dimpled chipbreaker and the confining walls thereof are designed so as to form the chip narrower than the groove such that more efficiently manageable safe chips can be obtained. Chip disposal should become safer, more efficient and less costly. With such inserts, it should become possible to generate a finished groove in one pass of the workpiece, such as a crankshaft.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
These and other objects have been achieved by shaping the insert as described hereinafter in connection with the appended drawings, wherein like members bear like reference numerals and wherein:
FIG. 1 is a perspective view of an insert according to the present invention;
FIG. 2 is a side view of the insert of FIG. 1;
FIG. 3 is a top view of the insert of FIG. 1;
FIG. 4 is a front view of the insert of FIG. 1;
FIG. 5 is a cross-sectional view along the line A—A in FIG. 3;
FIG. 6 is a cross-sectional view along the line B—B in FIG. 3;
FIG. 7 is a cross-sectional view along the line C—C in FIG. 3;
FIG. 8 is a perspective view of a holder for the insert;
FIG. 9 is a partial front view of the insert located in the tip-seat of the holder of FIG. 8; and
FIG. 10 is a view of a chip obtained from chipforming by the insert of FIGS. 1-7.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
An insert 10 according to the invention is shown in the drawing figures. The insert is in the shape of a polygonal body of generally parallepipedic shape. It comprises two mainly plane- parallel side surfaces 11, 12, opposed top and bottom surfaces 14 and 13, respectively, two end surfaces 15, 16, and a shoulder 17. The front portion of the insert is provided with a main cutting edge 18 and a chip forming area 19. The insert is intended to be secured to a holder body 20 (FIG. 8) provided with an integral clamping arm 21. The top surface 14 is broken at the vicinity of the shoulder 17 so that an upper surface portion 14a forms an acute angle with the remainder of the surface 14.
With reference to FIG. 8, the insert 10 is intended to be removably held in a holder, which includes the holder body 20 having an integral clamping arm 21 in a front portion 22 of the holder body 20 and an insert receiving recess 23 in which the insert 10 is to be located. The insert receiving recess 23 communicates at an inner end thereof with an elongated slit 24 which terminates in a circular recess 25. A clamping screw 26 extends into the holder 20 through the clamping arm 21 and through the slit 24. When the screw 26 is threaded into the holder, the clamping arm 21 flexes downwardly about the recess 23 and urges the clamping arm 21 into firm clamping abutment with the upper surface 14 of the insert. More specifically, a nose portion of the clamping arm 21 is somewhat inclined downwardly so that the nose matches the inclination of the upper surface portion 14a of the insert 10.
The bottom surface 13 of the insert is intended to be a first support surface for the insert against the holder body and a portion of the bottom surface 13 is parallel with a neutral plane P (FIG. 2) defined by the axial feed direction of the machine. More specifically, the bottom surface 13 includes two distinct flat surface portions 13a and 13d, with two inclined surfaces 13b and 13c therebetween. The inclined surfaces 13b and 13c are intended to abut with correspondingly inclined surfaces in the insert site of the holder as shown in FIG. 9. As appears from FIG. 9, the surfaces 13a and 13d are not active support surfaces. The top surface 14 constitutes a second support surface for the insert against the holder body 20. The top surface 14 is oriented parallel with the flat bottom surface portions 13 a and 13 d.
The cutting edge 18 is straight and is formed along the intersecting line of a clearance face 16 and a primary land 27. The clearance face 16, which is the front end surface of the insert, forms an acute angle α, about 1°-15° with a normal/N drawn to the primary land 27 (FIG. 2). The primary land 27 coincides with the neutral plane P.
The primary land 27 is bordered radially inwardly by an array of spaced recesses or grooves 28 extending on the rake face of the insert starting from the primary land 27. The width of the primary land 27 varies along the edge 18 such that the width of the primary land 27 is smaller at those portions located next to the front end portions of each recess 28 whereas the width is larger at inclined rake surface portions 29 located therebetween (FIG. 3). The maximum width of each recess 28 is preferably larger than the distance between the depressions. Each recess 28 has a depth initially increasing in a direction away from said primary land and thereafter decreasing in that direction. There are a number of the centrally provided oval-shaped recesses 28 having a longitudinal extension, extending perpendicularly from the cutting edge 18, that is several times larger than the width of the respective recess 28. Additionally there is, on each side of the central group of oval-shaped recesses 28, a recess 30 having a larger width and shorter length than each of the central recesses 28.
Also formed in the top surface 14 of the insert is a recess 31, which curves inwardly and downwardly from the primary land surface 27 and then curves upwardly to form a rear wall or chip deflector surface 32. The chip deflector surface 32 terminates in a plateau 33 located approximately at the same level as the neutral plane P.
The chipforming area 19 additionally includes a pair of ridges one of which extends from the outer periphery of a respective one of the recesses 30. More specifically, a front ridge portion 34a and 34b are so formed that they converge rearwardly, and they extend rearwardly to the point where they meet with rear ridge portions 35a and 35b which are mutually parallel and extend essentially perpendicularly from the cutting edge 18. Furthermore, the front ridge portions 34a and 34b are formed with a top surface that is raised rearwardly until the location where the front ridge portion 34a, 34b intersects with the rear, straight rear ridge portions 35a, 35b at which intersection the top surface of the rear ridge portion has a level that remains constant further rearwardly. The level of the upper surface of the rear ridge portions 35a, 35b is located somewhat above, and generally parallel to, the plane P.
By arranging the ridges as aforesaid, it is ensured that the chip remains in contact with the forward ridge portions 34a, 34b and that the central portion of the chip is urged deeper into the recess 31. This arrangement further ensures that the total width of the chip is made narrower and becomes more easily manageable so that no harm is made from the chip to the side wails of the groove which is to be formed by the insert during cutting in a metal workpiece.
The forward end of the insert 10 additionally is provided with side cutting edges 36a and 36b, which merge rearwardly to an intermediate position along the insert, while intersecting with the primary land surface 27 which extends along both the main cutting edge 18 and along the side cutting edges 36a, 36b. The clearance faces of the side cutting edges 36a, 36b are designated 11a and 11b. Each clearance face 11a, 11b intersects with the land surface 27 at an acute angle β (FIG. 6).
By virtue of the particular construction of the chip forming area as aforesaid, it is possible to obtain desirable clock-shaped chips 37 such as shown in FIG. 10. These chips 37 can be obtained at a feed rate of 0.30 mm/revolution. If no proper chip deflection area is provided on the upper rake surface of the insert, chips obtained would otherwise be difficult to manage. Also, at moderate feed rates, the chip forming area of this invention effectively contributes to the control and removal of such chips. When large feeds are used, the chip will be pressed against the rear wall 32 of recess 31 which forces the chip to be bent in a favorable manner.
The embodiment described above also results in a certain reduction of the cutting forces because the grooves or recesses 28, 30 reduce the contact area and increase the positive rake angle. Due to the fact that a reduced contact area is obtained, a relatively low heat generation is obtained.
The principles, preferred embodiments and mode of operation of the present invention have been described. Variations and changes may be made and are contemplated within the invention to the extent such variation and changes fail within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A generally rectangularly shaped metal cutting insert for turning and grooving operations, comprising upper and lower front-to-rear extending surfaces, two oppositely disposed side surfaces interconnecting said upper and lower front-to-rear extending surfaces, and front and rear end surfaces each intersecting said upper and lower front-to-rear extending surfaces and said side surfaces, a front portion of said upper surface including a main cutting edge formed by the intersection between said upper surface and said front surface, a chipforming area disposed inside of said main cutting edge and a chip breaking rear wall disposed inside of said chipforming area and extending upwardly therefrom, the chipforming area being formed by a plurality of first recesses centrally located on the upper surface, each of said recesses being located at a predetermined distance inside the said cutting edge and having an elongated extension in a direction parallel with a longitudinal extension of the insert, second recesses shorter in length along the longitudinal extension of the insert being arranged on either side of said centrally provided first recesses, a flat land area being provided between said main cutting edge and said first and second recesses, the chipforming area including a further recess which curves inwardly and downwardly from said flat land area at a smaller depth than the a depth of said first and second recesses, said further recess curving upwardly to form said chip breaking rear wall the , lateral extension edges of the said further recess being confined defined by two first ridge portions that converge rearwardly and merge at a rearward point extend rearwardly in a converging manner toward each other, said two first ridge portions merging at rearward points thereof with respective integral second ridge portions, said second ridge portions extending essentially perpendicularly with respect to said main cutting edge.
2. An insert according to claim 1, wherein said first and second recesses are distinctly provided from each other, and a flat land area is provided between the main cutting edge and said first and second recesses .
3. An insert according to claim 2, wherein the rear said chip breaking rear wall terminates rearwardly in a plateau located approximately at the same a level as of a neutral plane containing said flat land area.
4. An insert according to claim 2, wherein the a width of the said flat land area varies along the said main cutting edge such that said width is smaller at a portion in front of the a forward end of each of said first recesses than said width is at portions in front of intermediate rake surfaces located between adjacent ones of said first recesses.
5. An insert according to claim 1, wherein said first ridge portions extend from the an outer periphery of said second recesses, and said second ridge portions extending extend to the a forward slope of a shoulder provided rearwardly of said chip breaking rear wall.
6. An insert according to claim 5, wherein said first ridge portions are each formed with a top surface inclined upwards to intersect with a top surface of said rear second ridge portions.
7. An insert according to claim 6, wherein the a level of the top surface of the rear said second ridge portions is located at a level above and generally parallel to the a level of a neutral plane containing said flat land area.
8. An insert according to claim 1, wherein said first ridge portions are each formed with a top surface inclined upwards to intersect with a top surface of said rear second ridge portions.
9. An insert according to claim 8, wherein the a level of the top surface of the rear said second ridge portions is located at a level above and generally parallel to the a level of a neutral plane containing said flat land area.
10. An insert according to claim 9, wherein the rear said chip breaking rear wall terminates rearwardly in a plateau located approximately at the same a level as of a neutral plane containing said flat land area.
11. An insert according to claim 1, wherein the lateral extension of the further recess is confined by first ridge portions that converge rearwardly and merge at a rearward point with integral second ridge portions, said second ridge portions extending essentially perpendicularly with respect to said main cutting edge.
12. An insert according to claim 1, wherein the insert is provided with side cutting edges extending from the forward end, which converge rearwardly to an intermediate position along the insert.
13. An insert according to claim 1, wherein the insert is provided with side cutting edges extending from the forward end, which converge rearwardly to an intermediate position along the insert.
14. A generally rectangularly shaped metal cutting insert for turning and grooving operations, comprising upper and lower surfaces, two oppositely disposed side surfaces interconnecting the upper and lower surfaces, and front and rear end surfaces each intersecting the upper and lower surfaces and the side surfaces, a front portion of the upper surface including a main cutting edge formed by the intersection between the upper surface and the from surface, a chipforming area disposed inside of the main cutting edge and a chip breaking rear wall disposed inside of the chipforming area and extending upwardly therefrom, the chipforming area being formed by a plurality of first recesses centrally located on the upper surface, each of the recesses being located at a predetermined distance inside the main cutting edge and having an elongated extension in a direction parallel with a longitudinal extension of the insert, a flat land area being provided between the main cutting edge and the first recesses, the chipforming area including a further recess which curves inwardly and downwardly from the flat land area at a smaller depth than a depth of the first recesses, the further recess curving upwardly to form the chip breaking rear wall, lateral edges of the further recess being defined by two first ridge portions that extend rearwardly in a converging manner toward each other, said two first ridge portions merging at rearward points thereof with respective integral second ridge portions, the second ridge portions extending essentially perpendicularly with respect to the main cutting edge.
15. An insert according to claim 14, wherein the chip breaking rear wall terminates rearwardly in a plateau located approximately at a level of a neutral plane containing the flat land area.
16. An insert according to claim 14, wherein a width of the flat land area varies along the main cutting edge such that the width is smaller at a portion in front of a forward end of each of the first recesses than the width is at portions of intermediate rake surfaces located between adjacent ones of the first recesses.
17. An insert according to claim 14, wherein the first ridge portions are each formed with a top surface inclined upwards to intersect with a top surface of the second ridge portions.
18. An insert according to claim 17, wherein a level of the top surface of the second ridge portions is located at a level above and generally parallel to a level of a neutral plane containing the flat land area.
19. An insert according to claim 14, wherein the chip breaking rear wall terminates rearwardly in a plateau located approximately at a level of a neutral plane containing the flat land area.
20. An insert according to claim 14, wherein the insert is provided with side cutting edges extending from the forward end, which converge rearwardly to an intermediate position along the insert.
US08/971,340 1992-04-30 1997-11-17 Cutting insert for cutting and grooving tools Expired - Lifetime USRE37595E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/971,340 USRE37595E1 (en) 1992-04-30 1997-11-17 Cutting insert for cutting and grooving tools

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE9201364A SE508121C2 (en) 1992-04-30 1992-04-30 Cutter for turning and groove knitting tools
SE9201364 1992-04-30
US08/053,232 US5375948A (en) 1992-04-30 1993-04-28 Cutting insert for cutting and grooving tools
US74740796A 1996-11-12 1996-11-12
US08/971,340 USRE37595E1 (en) 1992-04-30 1997-11-17 Cutting insert for cutting and grooving tools

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/053,232 Reissue US5375948A (en) 1992-04-30 1993-04-28 Cutting insert for cutting and grooving tools

Publications (1)

Publication Number Publication Date
USRE37595E1 true USRE37595E1 (en) 2002-03-19

Family

ID=27355678

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/971,340 Expired - Lifetime USRE37595E1 (en) 1992-04-30 1997-11-17 Cutting insert for cutting and grooving tools

Country Status (1)

Country Link
US (1) USRE37595E1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235475A1 (en) * 2002-06-19 2003-12-25 Manchester Tool Company Cutting insert
US20070077130A1 (en) * 2005-10-03 2007-04-05 Ley Joseph J Cutting insert for effective chip control
US20080240875A1 (en) * 2007-03-30 2008-10-02 Mitsubishi Materials Corporation Cutting insert
US20080240874A1 (en) * 2007-03-30 2008-10-02 Mitsubishi Materials Corporation Cutting insert
US20100067992A1 (en) * 2006-10-31 2010-03-18 Kyocera Corporation Cutting Insert
US20110303070A1 (en) * 2010-06-09 2011-12-15 Maschinenfabrik Liezen Und Giesserei Ges.M.B.H., Insert and saw blade with a plurality of inserts of this type
US20130129437A1 (en) * 2010-08-04 2013-05-23 Ceramtec Gmbh Cutting tool for recessing and grooving
US20130183109A1 (en) * 2010-05-27 2013-07-18 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using them
EP2327494B1 (en) 2009-11-27 2015-10-21 Schaeffler Technologies AG & Co. KG Cutting tool and method for manufacturing a cutting tool
US20160271703A1 (en) * 2013-10-29 2016-09-22 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using them
USD824438S1 (en) * 2015-12-29 2018-07-31 Korloy Inc. Grooving insert for a machine tool
US20190143419A1 (en) * 2016-04-27 2019-05-16 Sumitomo Electric Hardmaetal Corp. Cutting insert
US20190240737A1 (en) * 2018-02-05 2019-08-08 Iscar, Ltd. Grooving insert having rearwardly pointing arrowhead-shaped chip former
US20210205895A1 (en) * 2018-05-24 2021-07-08 No Screw Ltd. Tool and cutting insert for internal cooling, and methos of manufacturing thereof
US11701714B2 (en) 2017-02-03 2023-07-18 Sandvik Intellectual Property Ab Method of machining a groove

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1459989A (en) 1974-04-24 1976-12-31 Sandvik Ab Cutting tools or inserts for chip-forming machining of work- pieces
US4273480A (en) 1977-10-17 1981-06-16 Ngk Spark Plug Co., Ltd. Throwaway tip
US4778311A (en) 1986-05-07 1988-10-18 Seco Tools Ab Cutting insert
US4844668A (en) * 1986-08-18 1989-07-04 Sandvik Ab Turning insert
DE3819415A1 (en) 1988-06-07 1989-12-14 Karl Heinz Arnold Gmbh Cutting-off tip
US4934879A (en) * 1987-01-09 1990-06-19 Nederlandse Hardmetaal Fabrieken B.V. Cutting tool for chip cutting metal work
US4969779A (en) * 1989-02-10 1990-11-13 Iscar Ltd. Cutting insert
US4973204A (en) * 1987-08-07 1990-11-27 Wlajko Mihic Arrangement in cutting inserts, especially for turning tools
US4988242A (en) * 1988-09-22 1991-01-29 Sandvik Ab Cutting insert for chip forming machining
US4992007A (en) 1987-10-14 1991-02-12 Iscar Ltd. Cutting insert and a tool holder therefor
US4992008A (en) * 1987-10-02 1991-02-12 Iscar Ltd. Cutting insert
US5074720A (en) * 1989-06-22 1991-12-24 Seco Tools Ab Cutting insert for chip forming machining
US5156502A (en) * 1989-09-07 1992-10-20 Iscar Ltd. Cutting insert
US5360298A (en) * 1992-04-28 1994-11-01 Sandvik Ab Tool for cut-off or similar turning operations

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1459989A (en) 1974-04-24 1976-12-31 Sandvik Ab Cutting tools or inserts for chip-forming machining of work- pieces
US4273480A (en) 1977-10-17 1981-06-16 Ngk Spark Plug Co., Ltd. Throwaway tip
US4778311A (en) 1986-05-07 1988-10-18 Seco Tools Ab Cutting insert
US4844668A (en) * 1986-08-18 1989-07-04 Sandvik Ab Turning insert
US4934879A (en) * 1987-01-09 1990-06-19 Nederlandse Hardmetaal Fabrieken B.V. Cutting tool for chip cutting metal work
US4973204A (en) * 1987-08-07 1990-11-27 Wlajko Mihic Arrangement in cutting inserts, especially for turning tools
US4992008A (en) * 1987-10-02 1991-02-12 Iscar Ltd. Cutting insert
US4992007A (en) 1987-10-14 1991-02-12 Iscar Ltd. Cutting insert and a tool holder therefor
DE3819415A1 (en) 1988-06-07 1989-12-14 Karl Heinz Arnold Gmbh Cutting-off tip
US4988242A (en) * 1988-09-22 1991-01-29 Sandvik Ab Cutting insert for chip forming machining
US4969779A (en) * 1989-02-10 1990-11-13 Iscar Ltd. Cutting insert
US5074720A (en) * 1989-06-22 1991-12-24 Seco Tools Ab Cutting insert for chip forming machining
US5156502A (en) * 1989-09-07 1992-10-20 Iscar Ltd. Cutting insert
US5360298A (en) * 1992-04-28 1994-11-01 Sandvik Ab Tool for cut-off or similar turning operations

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000510A3 (en) * 2002-06-19 2004-09-23 Manchester Tool Co Cutting insert
US6796752B2 (en) * 2002-06-19 2004-09-28 Manchester Tool Company Cutting insert
US20030235475A1 (en) * 2002-06-19 2003-12-25 Manchester Tool Company Cutting insert
US20070077130A1 (en) * 2005-10-03 2007-04-05 Ley Joseph J Cutting insert for effective chip control
US7278805B2 (en) * 2005-10-03 2007-10-09 Kennametal Inc. Cutting insert for effective chip control
US8137035B2 (en) * 2006-10-31 2012-03-20 Kyocera Corporation Cutting insert
US20100067992A1 (en) * 2006-10-31 2010-03-18 Kyocera Corporation Cutting Insert
US20080240875A1 (en) * 2007-03-30 2008-10-02 Mitsubishi Materials Corporation Cutting insert
US20080240874A1 (en) * 2007-03-30 2008-10-02 Mitsubishi Materials Corporation Cutting insert
US7665933B2 (en) * 2007-03-30 2010-02-23 Mitsubishi Materials Corporation Cutting insert
EP2327494B1 (en) 2009-11-27 2015-10-21 Schaeffler Technologies AG & Co. KG Cutting tool and method for manufacturing a cutting tool
EP2327494B2 (en) 2009-11-27 2021-07-21 Schaeffler Technologies AG & Co. KG Cutting tool
US20130183109A1 (en) * 2010-05-27 2013-07-18 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using them
US9108248B2 (en) * 2010-05-27 2015-08-18 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using them
US20110303070A1 (en) * 2010-06-09 2011-12-15 Maschinenfabrik Liezen Und Giesserei Ges.M.B.H., Insert and saw blade with a plurality of inserts of this type
US9511431B2 (en) * 2010-06-09 2016-12-06 Boehlerit Gmbh & Co.Kg. Insert and saw blade with a plurality of inserts of this type
US10478902B2 (en) 2010-08-04 2019-11-19 Ceramtec Gmbh Cutting tool for recessing and grooving
US20130129437A1 (en) * 2010-08-04 2013-05-23 Ceramtec Gmbh Cutting tool for recessing and grooving
US9475123B2 (en) * 2010-08-04 2016-10-25 Ceramtec Gmbh Cutting tool for recessing and grooving
US20160271703A1 (en) * 2013-10-29 2016-09-22 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using them
US10029311B2 (en) * 2013-10-29 2018-07-24 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using them
USD824438S1 (en) * 2015-12-29 2018-07-31 Korloy Inc. Grooving insert for a machine tool
US20190143419A1 (en) * 2016-04-27 2019-05-16 Sumitomo Electric Hardmaetal Corp. Cutting insert
US10717136B2 (en) * 2016-04-27 2020-07-21 Sumitomo Electric Hardmetal Corp. Cutting insert
US11701714B2 (en) 2017-02-03 2023-07-18 Sandvik Intellectual Property Ab Method of machining a groove
US20190240737A1 (en) * 2018-02-05 2019-08-08 Iscar, Ltd. Grooving insert having rearwardly pointing arrowhead-shaped chip former
US10384268B1 (en) * 2018-02-05 2019-08-20 Iscar, Ltd. Grooving insert having rearwardly pointing arrowhead-shaped chip former
US20210205895A1 (en) * 2018-05-24 2021-07-08 No Screw Ltd. Tool and cutting insert for internal cooling, and methos of manufacturing thereof

Similar Documents

Publication Publication Date Title
US5375948A (en) Cutting insert for cutting and grooving tools
USRE37595E1 (en) Cutting insert for cutting and grooving tools
JP4616483B2 (en) Cutting insert
US5246315A (en) Cutting insert and cutting tool for a peeling operation
EP0857531B1 (en) Indexable insert
JP4489874B2 (en) Cutting tips for machining to form chips
US4629372A (en) Chip-controlling insert
US6238147B1 (en) Cutting insert for grooving
EP0119175B1 (en) Thread cutting insert
US5423639A (en) Cutting insert for chipforming machining of workpieces
EP0355834B1 (en) Thread cutting throw-away tip
EP0436637B1 (en) Cutting insert with chip control
EP1212161B1 (en) Cutting insert for grooving
WO1989001375A1 (en) Arrangement in cutting inserts, especially for turning tools
AU642224B2 (en) Cutting insert with chip control
EP0159747B1 (en) Cutoff insert
EP0906165B1 (en) Cutting insert for grooving operations
KR20000016399A (en) Cut/insert body for forming groove

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SANDVIK INTELLECTUAL PROPERTY HB,SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK AB;REEL/FRAME:016290/0628

Effective date: 20050516

Owner name: SANDVIK INTELLECTUAL PROPERTY HB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK AB;REEL/FRAME:016290/0628

Effective date: 20050516

AS Assignment

Owner name: SANDVIK INTELLECTUAL PROPERTY AKTIEBOLAG,SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK INTELLECTUAL PROPERTY HB;REEL/FRAME:016621/0366

Effective date: 20050630

Owner name: SANDVIK INTELLECTUAL PROPERTY AKTIEBOLAG, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDVIK INTELLECTUAL PROPERTY HB;REEL/FRAME:016621/0366

Effective date: 20050630

FPAY Fee payment

Year of fee payment: 12