USRE37464E1 - Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability - Google Patents
Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability Download PDFInfo
- Publication number
- USRE37464E1 USRE37464E1 US08/675,787 US67578796A USRE37464E US RE37464 E1 USRE37464 E1 US RE37464E1 US 67578796 A US67578796 A US 67578796A US RE37464 E USRE37464 E US RE37464E
- Authority
- US
- United States
- Prior art keywords
- air
- heat
- ducting
- conditioner
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002274 desiccant Substances 0.000 title claims abstract description 86
- 238000011084 recovery Methods 0.000 title description 6
- 238000005057 refrigeration Methods 0.000 claims abstract description 84
- 230000008929 regeneration Effects 0.000 claims abstract description 71
- 238000011069 regeneration method Methods 0.000 claims abstract description 71
- 238000012546 transfer Methods 0.000 claims abstract description 46
- 230000006835 compression Effects 0.000 claims abstract description 32
- 238000007906 compression Methods 0.000 claims abstract description 32
- 230000003750 conditioning effect Effects 0.000 claims abstract description 10
- 239000003507 refrigerant Substances 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 43
- 238000010438 heat treatment Methods 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 34
- 230000001143 conditioned effect Effects 0.000 claims description 31
- 238000007791 dehumidification Methods 0.000 claims description 25
- 230000001172 regenerating effect Effects 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 18
- 230000000153 supplemental effect Effects 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 230000032258 transport Effects 0.000 claims description 7
- 230000017525 heat dissipation Effects 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000001502 supplementing effect Effects 0.000 claims 2
- 239000000110 cooling liquid Substances 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000005496 tempering Methods 0.000 claims 1
- 239000002918 waste heat Substances 0.000 description 35
- 239000012530 fluid Substances 0.000 description 10
- 238000005192 partition Methods 0.000 description 8
- 238000004378 air conditioning Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/00075—Indoor units, e.g. fan coil units receiving air from a central station
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
- F24F12/001—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
- F24F12/002—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
- F24F12/003—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/06—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/001—Compression cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F2003/003—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems with primary air treatment in the central station and subsequent secondary air treatment in air treatment units located in or near the rooms
- F24F2003/005—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems with primary air treatment in the central station and subsequent secondary air treatment in air treatment units located in or near the rooms with a single air duct for transporting treated primary air from the central station to air treatment units located in or near the rooms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/144—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/1458—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/1458—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
- F24F2003/1464—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators using rotating regenerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
- F24F12/001—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
- F24F12/002—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
- F24F2012/005—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/102—Rotary wheel combined with a heat pipe
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1028—Rotary wheel combined with a spraying device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
- F24F2203/1036—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1068—Rotary wheel comprising one rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/56—Cooling being a secondary aspect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Definitions
- This invention relates to a versatile multi-use stand-alone dehumidifier unit adapted to pre-condition air in conjunction with, but not necessarily with refrigeration systems, whereby optimum humidity is attained in differing climatic conditions, waste heat being used when available for efficiency in the operation of both the dehumidification means and the refrigeration air conditioning means when combined therewith.
- Humidity has its effect upon building construction, as high humidity reduces the presence of mold and mildew, and can be controlled to levels which contribute to the elimination of bacteria propagating environments, For example, refrigeration air conditioner systems in humid environments are often inadequate with respect to acceptable humidity control, with or without refrigeration incorporated therein. And, in wet environments refrigeration air conditioner systems utilizing refrigerant cooled air coils are often overtaxed and their efficiency adversely affected.
- Humidity control becomes in important factor, not only as related to human comfort, health and to structural deterioration etc., but also as to adequacy of dehumidification and its efficient application. Accordingly, it is a general object of this invention to provide a versatile humidification controlling heat recovery unit adaptable to efficient operation in diverse climatic conditions, standing alone and/or in combination with air refrigeration systems.
- a feature of this stand-alone air pre-conditioner unit when combined with air conditioned refrigeration systems is increased efficiency of the refrigeration system while recovering waste heat therefrom that is advantageously employed in the efficient operation of said stand-alone air pre-conditioner unit.
- the fan-coil unit is readily adapted to optimum placement proximate to the conditioned space, while the compressor-condenser unit is adapted to optimum (remote) placement for noise abatement and servicing access. Accordingly, it is an object of this invention to provide a dehumidifier/humidifier with so-called Ductless or Mini-Split installations, and in the form of stand-alone air pre-conditioner units. That is, the air pre-conditioner unit or units disclosed herein is each a complete dehumidifier that is convertible to various air conditioning forms. Being “stand-alone” this pre-conditioner unit is operable independently, or it is operable in combination with refrigeration air conditioner systems.
- this stand-alone air pre-conditioner is adapted to be converted in its air ducting and in its heat source application, it being an object to provide internal ducting modifications that are compatible with variations in the application of outside air and exhaust air, as circumstances require with regard to prevailing environmental conditions.
- the process of dehumidification with desiccant adds heat to the column of air being treated, it being an object to remove this heat before it reaches the refrigeration cooling coil, and for this purpose a heat pipe is employed with its hot end in the dehumidified air side of the desiccant, in this embodiment a desiccant wheel.
- the cold side of the heat pipe is in the aforesaid second or third column of air and the heat absorbed therefrom and exhausted.
- evaporative cooling of said second or third column of air can precede the heat pipe adsorption of heat extracted from the first column of supply air.
- the desiccant wheel absorbs moisture from exhaust air and humidifies outside incoming air, and the heat pipe will automatically reverse its direction of heat flow and extracts heat from exhaust air and using it to pre-heat incoming cold air.
- the process of dehumidifying with desiccant requires the regeneration or strengthening of the weakened moisture laden desiccant.
- This process requires the application of heat to said second column of regeneration air, heat being available from the heat pipe that transfers heat from said first column of dehumidified air to said second column of regeneration air (or the third air column) and/or from any supplementary heat source.
- there are two supplementary heat sources one a heater means per se, and the other a waste heat transfer means from combined equipment.
- said heater means is a direct gas fired heater or an electric heater
- said waste heat transfer means is a condenser coil of a refrigeration compressor-condenser unit used in combination with this or a number of these stand-alone air pre-conditioner unit.
- a primary objective of this invention is to provide an air pre-conditioner unit that is convertible so as to have the capability of several ducting configurations, to be employed as circumstances require. Accordingly, there is a first ducting assigned solely to the aforesaid first column of air that is dehumidified, there is a second ducting for desiccant regeneration and exhausted, there is a third ducting for utilizing and/or removal of heat from the dehumidified air column, and there is a fourth ducting that is shared with the aforesaid second and third ducting; the second ducting column solely for desiccant regeneration, and the third column solely for removal of heat and exhausted.
- the above stated ducting conversions are achieved by providing partitions applied to the permanent duct structures, as will be described, to rout the air columns as required. There are no partitions applied to the first mentioned air column. However, partitions are applied to the second, third and fourth mentioned ductings.
- the second and third mentioned air column ductings are partitioned as shown in FIG. 10 so as to implement split outside air flow continuity through the third mentioned ducting to exhaust, and parallel flow through the second mentioned ducting to exhaust, said split outside air rejoining for exhaust.
- the same second and third mentioned air column ductings are partitioned as shown in FIG.
- FIG. 11 so as to implement outside air flow continuity through the third mentioned ducting, then through the fourth mentioned ducting and then through the second mentioned ducting to exhaust.
- the basic convertible air pre-conditioner unit is shown in FIG. 1 without the partitions, fourth duct and modules that are employed to implement the operative configurations shown in FIGS. 10 and 11.
- the size of the refrigeration unit or compressor unit condenser coil is substantially reduced, which is a cost saving feature.
- the condenser coils in series the total refrigerant flow is diverted, first to be cooled by the aforementioned second column of regeneration air for maximized heat absorption and then to the compressor unit condenser coil of substantially reduced and smaller size, whereby considerably less energy is expended to complete the condensing-cooling process and with a comensurate cost saving in the use of energy.
- An object of this invention is to advantageously combine the instant air pre-conditioner unit with refrigeration-condenser units that supply usable refrigerant to fan-coil units.
- efficiency of the compressor-condenser unit is increased while removing waste heat of compression therefrom. Said waste heat is then supplemented in the air pre-conditioner unit and used for regenerating the dilute desiccant.
- a feature of this refrigerant circuit is the second condenser in parallel or in series, the latter being preferred and having the advantage of removing heat so that the compressor-condenser unit operates more efficiently by rejecting heat at lower condenser temperature and pressure, and with the result that a smaller condenser coil can be used.
- This waste heat use circuit is applicable to both conventional fan-coil and compressor units, and to separate min-split units, as shown herein.
- the air pre-conditioner unit is versatile in its application to both old and new construction, with or without refrigeration air conditioning, and with or without dehumidification, it being an object of this invention to provide dehumidification where it is desired or previously difficient, and in whatever climatic condition. Return air from the air conditioned space together with a minimum of outside air is pre-conditioned and a maximum of outside air is returned through fan-coil refrigeration units. It is an object of this invention to provide a pre-conditioner unit that coordinates the air flow columns while dehumidifying the air delivered through the fan-coil refrigeration units in the air conditioned space.
- Another feature of this invention is the use of evaporative cooling to improve the heat pipe function of removing heat from the first mentioned ducting. This feature is implemented when relatively dry outside or return air is available. An evaporation module is installed as will be described, to close an access opening provided therefor.
- the inventive concept herein disclosed provides a versatile air pre-conditioner that is adapted to be implemented in various configurations as a stand-alone unit, in that it is self sufficient, if need be, to humidify or dehumidify incoming air. Outside air and/or return air from conditioned space is processed, with or without refrigeration, to be dehumidified in hot-wet climate, and humidified in cold-dry climate conditions.
- the structural configuration of this air pre-conditioner can vary widely, as to size, shape and disposition of the ducting means therein, and characterized by two dedicated ducting means, and at least one additional ducting means that processes waste heat from the desiccant dehumification process employed therein, the quantity of said waste heat being adequate but lacking in temperature.
- a supplemental heater means is provided to furnish the difference for effective regeneration of weakened desiccant.
- the need for supplemental heat is greatly reduced when this air pre-conditioner is combined with a refrigeration system wherein substantial amount of heat is available from the waste heat of compression.
- a maximum amount of heat is taken from the condenser circuit of the refrigeration system, by placing a second condenser coil in parallel or preferably in series therewith, the advantage of which has been described.
- a feature of this invention is the singular unit design that is convertible to many installation requirements and situations, a compact design without wasted space and utilized to best advantage with energy savings by maximum use of waste heat from whatever heat source and especially from the condenser circuit of the associated refrigeration air conditioning system.
- FIG. 1 is a longitudinal side view of the basic multi-use air pre-conditioner in its non implemented condition, this and the following drawing figures being schematic.
- FIGS. 2, 3 and 4 are sectional views taken as indicated by lines 2 — 2 , 3 — 3 and 4 — 4 on FIG. 1 .
- FIG. 5 is a longitudinal side view of a duct (ducting means D) that is adapted to the basic structure of FIG. 1 to rout regeneration air as may be required.
- FIGS. 6 and 7 are sectional views taken as indicated by lines 6 — 6 and 7 — 7 on FIG. 5 and similar to FIGS. 3 and 4 in that they include the corresponding structure of FIG. 1 .
- FIG. 8 is a perspective fragmentary section of a heat pipe configuration employed herein as the heat transfer means; and P FIG. 9 is an enlarged fragmentary sectional view showing an improved finned heat pipe and its internal heat flow.
- FIGS. 10 and 11 are each longitudinal side views of the basic structure of FIG. 1, illustrating the two conversions of this pre-conditioner as they are implemented by the partitions, ducts, and modules applied thereto.
- FIG. 12 is an illustration of a desiccant wheel as it is used herein, to show the movement and areas thereof applied to dehumification and to regeneration (normal application).
- FIG. 13 is a view of the pre-conditioner implemented as it is in FIG. 10, showing it in working combination with a fan-coil compressor package unit air conditioner, and with a second condenser coil in parallel with the condenser coil of the compressor section of the package unit.
- FIG. 14 is an enlarged view of the evaporative cooler module as it is shown employed in FIGS. 11, 13 and 15 .
- FIG. 15 is a view of the pre-conditioner implemented as it is in FIG. 11, showing it in working combination with a ductless or mini-split combination of a fan unit and a compressor-condenser unit, and with a second condenser coil in series with the condenser coil of the latter unit thereof.
- FIG. 16 is a schematic of a typical system installation involving fan-coil compressor package units as shown in FIG. 13, the air pre-conditioner being implemented as shown in FIG. 13 .
- FIG. 17 is a schematic of a typical system installation involving ductless or mini-split units as shown in FIG. 15, the air pre-conditioner being implemented as shown in FIG. 15 .
- the multi-use air pre-conditioner PC is shown in its basic non implemented and ready to operate condition, comprised generally of a first ducting means A dedicated to humidification and dehumidification of a column of air, a second ducting means B dedicated to regenerating weakened desiccant when operating in the dehumidification mode, a third ducting means C utilized with a heat transfer means T to remove heat from the first mentioned ducting means, and a fourth adaptable ducting means D that is shared with ducting means B and C and utilized with said heat transfer means T and return air through ducting means C and ducting means B for regeneration.
- the second ducting means B houses heater means H that supplements the waste heat of absorption from heat transfer means T, and from the refrigeration condenser coil when it is implemented.
- An evaporative cooling means E is provided for insertion into the ducting means C so as to increase the effectiveness of the heat transfer means T.
- Placement spaces for opening and closures therefor, and for ducting means D and module E are provided in the ducting means B and C, as will be described as they are incorporated in each of said means to implement the functions required.
- Desiccant dehumidification is carried out by a desiccant wheel W with diametrically opposite segments thereof rotated by motor means M through the cross sections of ducts A and B, as shown.
- the ducting means A dedicated to the dehumidification of a column of air is clearly shown in FIG. 1 as a longitudinally disposed through duct for left to right air flow.
- the ducting means A has an intake section 10 , an air processing section 11 , a heat transfer section 12 , and a discharge section 13 .
- the intake section is open to receive outside air or to receive return air from the conditioned air space, and either receives blower air or preferably houses the intake fan F 1 for delivery of an air column through the desiccant wheel W and heat transfer means T and discharge from section 13 as supply air to conditioned space.
- the ducting means B dedicated to regeneration by a column of air is clearly shown in FIG. 1 as a longitudinally through duct for reverse right to left air flow.
- a feature of this invention is that the ducting means B is contiguous to and disposed alongside the ducting means A and is substantially coextensive with said ducting means A.
- the ducting means B has an intake section 15 alongside section 13 of means A, an air processing section 16 alongside section 11 of means A, and a discharge section 17 alongside section 10 of means A.
- ducting means B has a waste heat section 18 and a supplemental heat section 19 intermediate the sections 15 and 16 thereof.
- the section 18 houses the heater means T and the The section 19 houses the supplemental heater means H.
- the ducting means A is essentially an imperforate duct
- the ducting means B is characterized by flow control means spaces for openings, and closures, and air column directing means, as follows:
- the intake section 15 is open laterally in at least one and preferably two directions, a first direction to receive blower air from duct C, and a second direction to receive recirculated waste heat air through duct D.
- the ducting means B overlies the ducting means A
- the ducting means C next described, underlies said ducting means A, in which case the intake section 15 has a first downwardly disposed flow control means 21 space (see FIG. 2) which is initially open or can be opened to the duct C and/or to an intake fan F 2 .
- the intake section 15 has a second upwardly disposed flow control means 22 space (see FIG.
- the discharge section 17 of ducting means B is an imperforate duct directed downwardly alongside the intake section 10 of means A to exhaust at 23 (see FIG. 2 ).
- the ducting means C transports the regeneration air column either directly through the ducting means B or indirectly though the waste heat transfer means T, and alternately to exhaust at 23 ′ (see FIG. 1 ).
- Means C is a longitudinally disposed duct for reverse right to left flow and is contiguous to and disposed alongside of the ducting means A and is substantially coextensive with said ducting means A.
- the ducting means C has an intake section 25 alongside 13 of means A, a heat transfer section 26 , and a discharge section 27 alongside section 10 of means A.
- the intake section 25 is open to receive outside air or to receive return air from the conditioned air space, and either receives blower air or preferably houses the intake fan F 2 for delivery of the regeneration air column through the desiccant wheel W, and alternately through the heat transfer means T to discharge from exhaust at 23 or 23 ′.
- ducting means C is characterized by placement spaces for openings and closures, and air column directors, and air processing modules, as follows:
- the intake section 25 is open laterally and/or endwise in at least one and preferably several places, to split off blower air from fan F 2 and to exhaust air at 23 ′, or to recirculate said blower air through duct D next described.
- the ducting means C underlies the ducting means A and has a first laterally disposed flow control means 28 space (see FIG. 4) which is initially open or can be opened to duct B, at the delivery side of fan F 2 .
- the discharge 23 ′ at section 27 is disposed alongside the duct B discharge 23 , there being a second flow control means 29 space (see FIGS. 2 and 3) which is initially open or can be opened to exhaust at 23 ′, and there being a third flow control means space 30 (see FIGS.
- the flow control means 30 space is indicated by a bracket in FIG. 1, the exhausts at 23 and 23 ′ discharging side by side as shown in FIG. 3 .
- the ducting means C and ducting means B are initially in open or can be in open communication through a coupler duct means 31 that extends between the flow means 28 space of duct C and the means 21 space of duct B (see FIGS. 1, 2 and 4 ).
- the ducting means D recirculates regeneration air from ducting means C to the ducting means B for the addition thereto of supplemental heat by means H and waste compressor heat.
- the recirculated air first absorbs heat at the waste heat transfer means T.
- Ducting means D is a longitudinally disposed duct for left to right flow of an air column and is contiguous to and disposed alongside of the ducting means B and is substantially coextensive with said ducting means B.
- Means D is essentially an air transfer duct that wraps around the left end of ducting means A and C and coextensively overlies the ducting means B.
- the ducting means D is characterized by an intake section 32 alongside the discharge section 27 of means C, and a discharge section 33 alongside of the intake section 15 of means B. Like the means B and C, ducting means D is characterized by flow control means spaces for openings and closures, and for air column directors, as follows:
- the intake section 32 is open endwise and/or laterally into a vertical riser 34 that turns right into a horizontal duct 35 overlying the duct B.
- the discharge section 33 continues from duct 35 and opens downwardly at the top of section 15 of duct B.
- a feature is the replaceability of means D, essentially an attachment used as and when required.
- Humidity conditioning herein is by a desiccant dehumidifying means, preferably of the wheel type W as shown.
- Wheel W can vary in form as may be required, and is shown as a rotating cylinder 36 of the regenerating type having a dehumidifying segment 37 in the intake air ducting means A, and having a regenerating segment 38 in the exhaust air ducting means B.
- Proportionate use of these two segments is variable and depends upon the volumetric flow ratio of the two opposing air streams and the available temperature of regeneration air immediately prior to entering the regenerating segment 38 (see FIG. 12 ). The higher the regeneration temperature, the smaller the area needed for segment 38 for regeneration and the larger is the available area of segment 37 for enhanced flow capacity at a given face velocity.
- this ratio is 2 to 1
- approximately two thirds of the desiccant wheel is devoted to segment 37 for dehumidification by absorbing moisture, while one third is devoted to segment 38 for regeneration of the weakened moisture saturated by desiccant.
- Regeneration of weakened desiccant is by means of heated or tempered air delivered through ducting means B, wherein waste heat is recovered from the refrigeration means and supplemental heat is applied by heating means H as needed to achieve the desired inlet regenerating air temperature to segment 38 .
- the desiccant wheel W is shown in FIG. 12 as a packed-type cylinder comprising a suitable air permeable desiccant material of, for example, alumina, silica gel, lithium chloride or suitable hygroscopic polymers, and the like.
- the heat transfer means T removes the heat resulting from absorption of moisture into the desiccant and is positioned immediately downstream from the desiccant wheel section 37 .
- the means T is in the form of heat pipes 42 characterized by a hot end 40 for the absorption of heat, and by a cold end 41 for the dissipation of heat. In other words, there is a “heat in” end 40 and a “heat out” end 41 .
- the heat-in end 40 is placed in the ducting means A following moisture absorption by the desiccant, while the heat-out end 41 is placed in the ducting means C for dissipation of heat into exhaust air at 23 ′.
- the heat pipes 42 are short lengths of heat conductive tubing sealed at their opposite ends, having fitting tubular wick lining 43 and charged with a refrigerant 44 , a gas-liquid.
- a temperature differential between the ends of each pipe 42 causes the refrigerant 44 therein to migrate by capillary action to the warmer end where evaporation thereof takes place and absorbs heat.
- the resultant refrigerant vapor then returns through the hollow tube center of the wick lining 43 and to the cooler end 41 of the pipe 42 where it gives up the heat carried thereby, by condensing into the wick lining 43 , and repeating the cycle.
- the heat transfer process is efficient, as the heat pipes 42 are sealed and have no moving parts, and require little or no maintenance. As shown in FIG. 9, the heat pipes 42 are finned at 45 for efficient heat energy transfer.
- the heater means H completes the heating requirement for effective regeneration of the desiccant in segment 37 of the desiccant wheel W.
- Means H is a gas fired or an electric powered furnace that heats the column of air passing through duct B and through the regenerative segment of the wheel W.
- Means H is thermostatically controlled and brings the column of air to regenerating temperature, whether pre-heated by waste heat or not. The amount of available waste heat will determine the required capacity of the heater means H, and in practice the application of waste heat at section 18 of the ducting means B preceeds the application of supplemental heat by said means H.
- the evaporative cooler means E conditions the cold ends of the heat pipes 42 for effective dissipation of heat energy absorbed by the hot ends 41 thereof.
- the means E involves a spray bar 46 supplied with an evaporative liquid, water, by a pump 47 drawing said liquid from a sump 48 .
- the sump 48 provides a closure for a flow control means 49 space provided therefor in the bottom side of ducting means C, and supports the spray bar 46 upstream of the bank of heat pipes 42 to evaporatively cool the cold “heat-out” ends 41 thereof.
- the evaporative cooler module E is installed as and when required.
- the heat pipes 42 function as shown in the drawings to support the dehumidification process performed by this air pre-conditioner. However, during the winter and similar cold weather, the heat pipes 42 function automatically in a reverse direction of heat transfer, achieved by deactivating the heater means H and also the evaporative cooling module E, but retaining full operation of the desiccant wheel W, thereby pre-heating and humidifying incoming air through ducting means A.
- FIG. 10 of the drawings A basic condition 1 implementation of the air pre-conditioner PC is shown in FIG. 10 of the drawings, wherein the structural combination of ducting means A, B and C is made functional for stand-alone operation of the unit to dehumidify a conditioned space.
- OSA outside air
- a flow splitter member 50 being installed in the flow means space 28 to divert a portion of the air flow into the coupler duct means 31 for delivery through flow means 21 space and into the intake section 15 of ducting means B.
- the ducting means A is dedicated to and dehumidifies the conditioned air space, taking in return air at intake section 10 , and delivering supply air (SA) at discharge section 13 .
- SA supply air
- the flow means 22 space of ducting means B is closed by a corner member 51 that turns the split off portion of the fan driven air column to flow through the heater means H and regeneration segment 37 of the desiccant wheel W.
- the remaining portion of the split air flow is driven through the bank of heat pipes 42 of the heat transfer means T to remove heat of absorption from the dehumidification process in ducting means A.
- Air flow through and exhaust from the ducting means C is by means of a closure member 52 installed in the flow means 49 space, and by a corner member 53 installed in the flow means 30 space. Accordingly, discharge of duct C is at exhaust 23 ′.
- FIG. 11 of the drawings A condition 2 dehumidification heat recovery implementation of the air pre-conditioner PC is shown in FIG. 11 of the drawings, wherein the structural combination of ducting means A, B, C and D is made functional for stand-alone operation of the unit to dehumidify an air conditioned space. Additionally, waste heat recovery is assisted by the evaporative cooler module E.
- the ducting means A is dedicated to and dehumidifies the conditioned air space, taking in return air (RA) or outside air (OSA) at air intake section 10 , and delivering supply air (SA) at discharge section 13 .
- RA return air
- OSA outside air
- SA supply air
- outside air (OSA), or return air (RA) is delivered to ducting means C by the fan F 2 , a closure member 54 being installed in flow means 28 space, and a closure member 55 being installed in flow means 29 space, so as to confine air flow through the duct C and through the bank of heat pipes 42 dissipating waste heat from the dehumidifying process.
- the ducting means D is incorporated in the unit structure, or installed as an attachment, with its intake section 32 open from the flow means 30 space, and with its discharge section 33 open into the flow means 22 space of the ducting means B.
- a corner member 56 is installed in the flow control means 21 space to close the coupling duct 31 and to direct air flow through the supplemental heater means H and through the regeneration segment of the desiccant wheel W.
- the discharge section 17 discharges the air flow alongside the discharge section 27 of duct C for exhaust at 23 alongside the exhaust of duct C at 23 ′.
- the evaporative cooler module E is installed in the placement space 49 , closing the same, and operating to evaporatively cool the heat dissipating ends 41 of the heat pipes 42 , so as to enhance their efficient operation.
- FIG. 13 of the drawings A package air conditioner combination utilizing basic implementation is shown in FIG. 13 of the drawings, wherein refrigeration waste heat of compression assists the desiccant regeneration process, with recovery of waste heat of absorption in the dehumidification process.
- the use of placement spaces and splitter member 50 and corner member 51 and 53 is as above described and shown in the embodiment of FIG. 10, and the evaporative cooler module E is installed as a closure for placement space 49 as in the embodiment of FIG. 11 .
- This is another basic implementation wherein heat of compression from the package unit air conditioner, an A/C unit, is advantageously employed as a primary source of heat for regenerating weakened desiccant.
- the A/C unit is self contained and includes a fan F 3 driven by a motor M 1 for drawing return air (RA) from the air conditioned space.
- a portion of said return air is split off at 55 and delivered by fan F 3 to the ducting means B and C, as above described, and subsequently exhausted at 23 and 23 ′.
- the compressor 57 delivers hot compressed refrigerant fluid through a primary condenser coil 58 for maximum heat extraction in the waste heat section 18 of ducting means B.
- a secondary condenser coil 58 ′ is in fluid parallel with coil 57 that is in the A/C unit for assuring complete condensation of said fluid.
- the condensed fluid is coalesced in a receiver 59 and then passed through a thermal expansion valve 60 for heat extraction in the refrigeration coil 61 .
- Coil 58 ′ of reduced size is cooled by a blower 62 .
- Supply air (SA) from the ducting means A is returned to the air conditioned space through the A/C unit ahead of its filter 63 , and delivered as supply air (SA) by the fan F 3 .
- SA supply air
- FIG. 15 of the drawings A split compressor and fan-coil combination utilizing basic implementation is shown in FIG. 15 of the drawings, wherein refrigeration waste heat of compression assists the desiccant regeneration process, with recovery of waste heat of absorption in the dehumidification process.
- the use of placement spaces and closure members 54 and 55 and corner member 56 is as above described and shown in the embodiment of FIG. 11, and the evaporative cooler module E is installed as a closure for placement space 29 as in the embodiment of FIG. 11 .
- This is another basic implementation wherein heat of compression from the mini-split compressor unit 65 is advantageously employed as a primary source of heat for regenerating weakened desiccant.
- the refrigeration system is split into the compressor unit 65 and the fan-coil unit 65 ′ with a fan F 4 driven by a motor M 2 for drawing return air (RA) from the air conditioned space.
- a portion of said return air is split off at 55 and delivered by fan F 2 to the ducting means C, as above described, and subsequently exhausted at 23 .
- the compressor 66 delivers hot compressed refrigerant fluid through a primary condenser coil 67 for maximum heat extraction in the waste heat section 18 of ducting means B.
- a secondary condenser coil 68 is in fluid series with coil 67 and is of substantially reduced size in the compressor unit 65 , for assuring complete condensation of said fluid.
- the condensed fluid is coalesced in a receiver 69 and then passed through a thermal expansion valve 70 for heat extraction in the refrigeration coil 71 .
- the coil 68 is cooled by a blower 72 .
- Supply air (SA) from the ducting means A is returned to the air conditioned space through the fan-coil unit 65 ′ ahead of its filter 73 , and delivered as supply air (SA) by the fan F 4 thereof.
- SA supply air
- Maximized heat extraction by coil 67 significantly reduces the size requirement of the heater means H, the regeneration air being previously heated by the heat transfer means T.
- a feature of this series condenser configuration is that the maximum heat extraction at coil 67 , minimizes the size requirement for the compressor unit coil 68 , with a comensurate reduction in energy required of the compressor unit to cool the same.
- the air pre-conditioner PC as it is shown in FIG. 1 and as implemented in FIG. 10, is combined with a multiplicity of package air conditioners A/C as shown in FIG. 16 of the drawings.
- one pre-conditioner PC can serve at least three A/C units.
- the FIG. 10 implementation takes in outside air OSA by means of fan F 1 to be dehumidified and discharged as supply air SA; and takes in return air RA by means of fan F 2 for transfer of heat out of said supply air and discharged as exhaust air at 23 ′.
- FIG. 11 can be substituted for the basic FIG. 10 implementation, as it is later described.
- the air pre-conditioner PC now under consideration is in fluid circuit, in parallel as shown, with one of the multiplicity of air refrigeration package unit A/C via a pressure and a return line 70 and 71 .
- Supply air SA from the pre-conditioner PC is delivered to each A/C package unit via a duct 72 , where it is refrigerated for discharge into an air conditioned space S 1 -S 3 via supply air ducts 73 .
- Distribution ducts 74 are employed if and when required.
- a minimum of outside air OSA enters through the air pre-conditioner PC; and as and when required a maximum of outside air OSA is supplemented by a blower fan F 4 .
- Return air RA from air space S 1 -S 3 is via ducting 75 to the intake fan F 2 of the pre-conditioner PC for heat dissipation and exhaust at 23 ′.
- the air pre-conditioner PC as it is shown in FIG. 1 and as implemented in FIG. 11, is combined with a multiplicity of “ductless” or “Mini-split” refrigeration air conditioning systems comprised of separate compressor units C/C and fan-coil units F/C, as shown in FIG. 17 of the drawings.
- one pre-conditioner PC can serve at least three mini-split systems as shown.
- the FIG. 11 implementation takes in outside air OSA by means of fan F 1 to be dehumidified and discharged as supply air SA; and takes in return air RA by means of fan F 2 for transfer of heat out of supply air SA and for absorption of waste heat of compression from a compressor unit C/C, and discharge or exhaust at 23 .
- FIG. 10 can be substituted for the basic FIG. 11 implementation, as it is previously described.
- the air pre-conditioner PC now under consideration is in fluid circuit, series as shown, with one of the multiplicity of compressor units C/C via a pressure line and return line 80 and 81 .
- Supply air SA from the pre-conditioner PC is delivered to each fan-coil unit F/C via a duct 82 , where it is refrigerated for discharge directly into an air conditioned space S 1 -S 3 via its discharge 83 .
- distribution ducts are not required.
- a minimum of outside air OSA enters through the air pre-conditioner PC; and as and when required a maximum of outside air OSA is supplemented by a blower fan F 5 .
- Return air RA from air space S 1 -S 3 is via ducting 85 to the intake fan F 2 of the pre-conditioner PC for heat dissipation and exhaust at 23 .
- mini-split C/C-F/C and A/C package configurations are described as “air conditioners”, some or all in a given building system can also be operated as heat pumps.
- Heat pumps are known to provide capability for reversing cycle, as by means of a reversing valve (not shown) reversing flow between the evaporator and condensing coils. Since the pre-conditioner PC conditions outside air OSA, and since the heating winter cycle will require humidification of outside air, refrigerant waste heat from the condenser coil at the compressor of unit C/C will extract heat by connecting it as a heat pump, the hook-up of FIG. 13 is preferred over the series hook-up of FIG.
- control means for the air pre-conditioner PC can be a suitable microprocessor humidistat, to control the desiccant wheel, evaporative sprays, heater H application, and compressor waste heat, and also the air circulation fans F 1 -F 5 .
- This pre-conditioned air alone or as combined with the several types of refrigeration air conditioners will benefit economically by employing the total availability of waste heat and by applying dehumification where it increases efficiency in both the dehumification and refrigeration processes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Central Air Conditioning (AREA)
Abstract
Description
Claims (43)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/675,787 USRE37464E1 (en) | 1992-08-24 | 1996-07-05 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/933,782 US5325676A (en) | 1992-08-24 | 1992-08-24 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
US08/675,787 USRE37464E1 (en) | 1992-08-24 | 1996-07-05 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/933,782 Reissue US5325676A (en) | 1992-08-24 | 1992-08-24 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37464E1 true USRE37464E1 (en) | 2001-12-11 |
Family
ID=25464494
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/933,782 Ceased US5325676A (en) | 1992-08-24 | 1992-08-24 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
US08/675,787 Expired - Lifetime USRE37464E1 (en) | 1992-08-24 | 1996-07-05 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/933,782 Ceased US5325676A (en) | 1992-08-24 | 1992-08-24 | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability |
Country Status (1)
Country | Link |
---|---|
US (2) | US5325676A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040060315A1 (en) * | 2001-02-28 | 2004-04-01 | Munters Corporation | Desiccant refrigerant dehumidifier systems |
US20040089003A1 (en) * | 2000-05-15 | 2004-05-13 | Manuel Amaral | Temperature control method and device in a motor vehichle passenger compartment |
US6751964B2 (en) | 2002-06-28 | 2004-06-22 | John C. Fischer | Desiccant-based dehumidification system and method |
US6854279B1 (en) | 2003-06-09 | 2005-02-15 | The United States Of America As Represented By The Secretary Of The Navy | Dynamic desiccation cooling system for ships |
US20050133195A1 (en) * | 2003-12-23 | 2005-06-23 | Cohand Technology Co., Ltd. | Heat exchanger using water liquid and vapor phases transformation to enhance heat exchange performance |
US20050268903A1 (en) * | 2004-06-08 | 2005-12-08 | Bassilakis Harry C | Variable volumetric flow heat exchanger for an air-to-air heat recovery system |
US20080083232A1 (en) * | 2006-10-09 | 2008-04-10 | Korea Institute Of Science And Technology | Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same |
WO2009049673A1 (en) * | 2007-10-17 | 2009-04-23 | Hansa Ventilatoren- Und Maschinenbau Neumann Gmbh | Method and air conditioning and ventilation system for air conditioning a room |
US20100127089A1 (en) * | 2007-05-15 | 2010-05-27 | Espec Corp. | Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus |
US20100242507A1 (en) * | 2009-03-24 | 2010-09-30 | Milton Meckler | Dynamic outside air management system and method |
US7886986B2 (en) | 2006-11-08 | 2011-02-15 | Semco Inc. | Building, ventilation system, and recovery device control |
US20120180982A1 (en) * | 2011-01-19 | 2012-07-19 | Venmar Ces, Inc. | Heat pump system having a pre-processing module |
US9109808B2 (en) | 2013-03-13 | 2015-08-18 | Venmar Ces, Inc. | Variable desiccant control energy exchange system and method |
US9234665B2 (en) | 2010-06-24 | 2016-01-12 | Nortek Air Solutions Canada, Inc. | Liquid-to-air membrane energy exchanger |
US20160018116A1 (en) * | 2012-12-05 | 2016-01-21 | Commonwealth Scientific And Industrial Research Organisation | Compact Desiccant Cooling System |
US9618272B2 (en) | 2012-07-12 | 2017-04-11 | Carrier Corporation | Temperature and humidity independent control air conditioning system and method |
US9772124B2 (en) | 2013-03-13 | 2017-09-26 | Nortek Air Solutions Canada, Inc. | Heat pump defrosting system and method |
US9810439B2 (en) | 2011-09-02 | 2017-11-07 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
US9816760B2 (en) | 2012-08-24 | 2017-11-14 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
US9885486B2 (en) | 2010-08-27 | 2018-02-06 | Nortek Air Solutions Canada, Inc. | Heat pump humidifier and dehumidifier system and method |
US10274210B2 (en) | 2010-08-27 | 2019-04-30 | Nortek Air Solutions Canada, Inc. | Heat pump humidifier and dehumidifier system and method |
US10350536B2 (en) | 2016-11-09 | 2019-07-16 | Climate By Design International, Inc. | Reverse flow dehumidifier and methods of operating the same |
US10352628B2 (en) | 2013-03-14 | 2019-07-16 | Nortek Air Solutions Canada, Inc. | Membrane-integrated energy exchange assembly |
US10393443B1 (en) * | 2013-09-23 | 2019-08-27 | Neal Energy Management, Llc | Rooftop packaged heating, ventilating and air conditioning system utilizing phase change materials |
US10584884B2 (en) | 2013-03-15 | 2020-03-10 | Nortek Air Solutions Canada, Inc. | Control system and method for a liquid desiccant air delivery system |
US10603627B2 (en) | 2018-01-17 | 2020-03-31 | Ingersoll-Rand Industrial U.S., Inc. | Hybrid low dew point compressed air dryer |
US10712024B2 (en) | 2014-08-19 | 2020-07-14 | Nortek Air Solutions Canada, Inc. | Liquid to air membrane energy exchangers |
US10782045B2 (en) | 2015-05-15 | 2020-09-22 | Nortek Air Solutions Canada, Inc. | Systems and methods for managing conditions in enclosed space |
US10808951B2 (en) | 2015-05-15 | 2020-10-20 | Nortek Air Solutions Canada, Inc. | Systems and methods for providing cooling to a heat load |
US10962252B2 (en) | 2015-06-26 | 2021-03-30 | Nortek Air Solutions Canada, Inc. | Three-fluid liquid to air membrane energy exchanger |
US11092349B2 (en) | 2015-05-15 | 2021-08-17 | Nortek Air Solutions Canada, Inc. | Systems and methods for providing cooling to a heat load |
US20220074663A1 (en) * | 2020-09-04 | 2022-03-10 | Yong Zhang | Heat Pump Dryer |
US11408681B2 (en) | 2013-03-15 | 2022-08-09 | Nortek Air Solations Canada, Iac. | Evaporative cooling system with liquid-to-air membrane energy exchanger |
US11892193B2 (en) | 2017-04-18 | 2024-02-06 | Nortek Air Solutions Canada, Inc. | Desiccant enhanced evaporative cooling systems and methods |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5564281A (en) * | 1993-01-08 | 1996-10-15 | Engelhard/Icc | Method of operating hybrid air-conditioning system with fast condensing start-up |
US5551245A (en) * | 1995-01-25 | 1996-09-03 | Engelhard/Icc | Hybrid air-conditioning system and method of operating the same |
US5526651A (en) * | 1994-07-15 | 1996-06-18 | Gas Research Institute | Open cycle desiccant cooling systems |
US5826641A (en) * | 1994-10-27 | 1998-10-27 | Aaon, Inc. | Air conditioner with heat wheel |
US5517828A (en) * | 1995-01-25 | 1996-05-21 | Engelhard/Icc | Hybrid air-conditioning system and method of operating the same |
US5791153A (en) * | 1995-11-09 | 1998-08-11 | La Roche Industries Inc. | High efficiency air conditioning system with humidity control |
US5758509A (en) * | 1995-12-21 | 1998-06-02 | Ebara Corporation | Absorption heat pump and desiccant assisted air conditioning apparatus |
US5761925A (en) * | 1995-12-21 | 1998-06-09 | Ebara Corporation | Absorption heat pump and desiccant assisted air conditioner |
US5816065A (en) * | 1996-01-12 | 1998-10-06 | Ebara Corporation | Desiccant assisted air conditioning system |
US5718122A (en) * | 1996-01-12 | 1998-02-17 | Ebara Corporation | Air conditioning system |
US5761923A (en) * | 1996-01-12 | 1998-06-09 | Ebara Corporation | Air conditioning system |
US5791157A (en) * | 1996-01-16 | 1998-08-11 | Ebara Corporation | Heat pump device and desiccant assisted air conditioning system |
US5758508A (en) * | 1996-02-05 | 1998-06-02 | Larouche Industries Inc. | Method and apparatus for cooling warm moisture-laden air |
US5727394A (en) * | 1996-02-12 | 1998-03-17 | Laroche Industries, Inc. | Air conditioning system having improved indirect evaporative cooler |
US6018953A (en) * | 1996-02-12 | 2000-02-01 | Novelaire Technologies, L.L.C. | Air conditioning system having indirect evaporative cooler |
US5950442A (en) * | 1996-05-24 | 1999-09-14 | Ebara Corporation | Air conditioning system |
JPH09318127A (en) * | 1996-05-24 | 1997-12-12 | Ebara Corp | Air-conditioning system |
JPH109633A (en) | 1996-06-20 | 1998-01-16 | Ebara Corp | Air-conditioning system |
US6029467A (en) * | 1996-08-13 | 2000-02-29 | Moratalla; Jose M. | Apparatus for regenerating desiccants in a closed cycle |
DE19637156C2 (en) * | 1996-09-12 | 1999-02-25 | Zae Bayern Bayerisches Zentrum Fuer Angewandte Energieforschung Ev | Process for air conditioning with a closed absorption chiller in combination with an open sorption chiller |
JPH1096542A (en) * | 1996-09-24 | 1998-04-14 | Ebara Corp | Air conditioning system |
MY117922A (en) | 1996-12-27 | 2004-08-30 | Ebara Corp | Air conditioning system |
US5761915A (en) * | 1997-03-12 | 1998-06-09 | Fedders Corporation | Method and apparatus for supplying conditioned fresh air to an indoor area |
WO1998043024A1 (en) | 1997-03-25 | 1998-10-01 | Ebara Corporation | Air conditioning system |
JP2968232B2 (en) | 1997-04-11 | 1999-10-25 | 株式会社荏原製作所 | Air conditioning system and operating method thereof |
JP2994303B2 (en) | 1997-04-11 | 1999-12-27 | 株式会社荏原製作所 | Air conditioning system and operating method thereof |
JP2968231B2 (en) | 1997-04-11 | 1999-10-25 | 株式会社荏原製作所 | Air conditioning system |
DE69829387T2 (en) * | 1997-05-16 | 2006-04-13 | Work Smart Energy Enterprises, Inc. | HIGHLY EFFICIENT AIR CONDITIONING AIR CONDITIONING |
US5953926A (en) * | 1997-08-05 | 1999-09-21 | Tennessee Valley Authority | Heating, cooling, and dehumidifying system with energy recovery |
JP2971843B2 (en) | 1997-10-09 | 1999-11-08 | 株式会社荏原製作所 | Dehumidifying air conditioner |
US5931016A (en) * | 1997-10-13 | 1999-08-03 | Advanced Thermal Technologies, Llc | Air conditioning system having multiple energy regeneration capabilities |
JP2968241B2 (en) | 1997-10-24 | 1999-10-25 | 株式会社荏原製作所 | Dehumidifying air conditioning system and operating method thereof |
WO1999022181A1 (en) | 1997-10-24 | 1999-05-06 | Ebara Corporation | Dehumidifying air-conditioning system |
JPH11262621A (en) | 1998-03-17 | 1999-09-28 | Ebara Corp | Dehumidifying air conditioner |
WO2000000774A1 (en) * | 1998-06-30 | 2000-01-06 | Ebara Corporation | Heat exchanger, heat pump, dehumidifier, and dehumidifying method |
US6370900B1 (en) | 1998-09-16 | 2002-04-16 | Ebara Corporation | Dehumidifying air-conditioning apparatus and dehumidifying air-conditioning system |
DE10010022B8 (en) * | 1999-03-02 | 2012-11-29 | ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. | Sorption-based air conditioning |
JP3034867B1 (en) * | 1999-05-25 | 2000-04-17 | 株式会社カンキョー | Dehumidifier |
US6185952B1 (en) | 1999-07-01 | 2001-02-13 | International Business Machines Corporation | Refrigeration system for cooling chips in test |
US6196469B1 (en) | 1999-07-28 | 2001-03-06 | Frederick J Pearson | Energy recycling air handling system |
SE516900C2 (en) * | 2000-04-18 | 2002-03-19 | Munters Europ Ab | Method and apparatus for heat and moisture exchange between two air streams and method for controlling said device |
US6739142B2 (en) | 2000-12-04 | 2004-05-25 | Amos Korin | Membrane desiccation heat pump |
US6539728B2 (en) | 2000-12-04 | 2003-04-01 | Amos Korin | Hybrid heat pump |
ITVI20010021A1 (en) * | 2001-01-25 | 2002-07-25 | Federico Rossetto | METHOD FOR AIR CONDITIONING OF ENVIRONMENTS AND AIR CONDITIONING UNITS SUITABLE TO CREATE SUCH METHOD |
US6789618B2 (en) | 2001-09-05 | 2004-09-14 | Frederick J. Pearson | Energy recycling air handling system |
WO2003067156A2 (en) * | 2002-02-06 | 2003-08-14 | Jose Moratalla | Desiccant dehumidification system |
DE10215587B4 (en) * | 2002-04-10 | 2006-03-23 | Stiebel Eltron Gmbh & Co. Kg | Device for freezing a heat exchanger apparatus |
US7104082B1 (en) * | 2003-02-06 | 2006-09-12 | Jose Moratalla | Dehumidification and temperature control system |
JP3864982B2 (en) * | 2005-05-30 | 2007-01-10 | ダイキン工業株式会社 | Air conditioning system |
US7654101B2 (en) * | 2007-12-07 | 2010-02-02 | Shapiro Ian M | Split-air stream air conditioning with desiccant dehumidification |
US7958738B2 (en) * | 2008-06-06 | 2011-06-14 | Colmac Coil Mfg., Inc. | Direct expansion ammonia refrigeration system and a method of direct expansion ammonia refrigeration |
US8453474B2 (en) * | 2009-07-27 | 2013-06-04 | Nissan North America, Inc. | Vehicle air handling system |
US8943848B2 (en) | 2010-06-16 | 2015-02-03 | Reznor Llc | Integrated ventilation unit |
WO2012032608A1 (en) * | 2010-09-07 | 2012-03-15 | 富士通株式会社 | Air-conditioning system |
US9976822B2 (en) * | 2012-03-22 | 2018-05-22 | Nortek Air Solutions Canada, Inc. | System and method for conditioning air in an enclosed structure |
US11079122B2 (en) | 2013-03-04 | 2021-08-03 | Johnson Controls Technology Company | Modular liquid based heating and cooling system |
JP2014210223A (en) * | 2013-04-17 | 2014-11-13 | 三菱電機株式会社 | Air conditioner |
US10538302B2 (en) * | 2014-03-06 | 2020-01-21 | Riteaire Marine Llc | Marine vessel dehumidification system |
US11091244B2 (en) | 2014-03-06 | 2021-08-17 | Riteaire Marine Llc | Marine vessel dehumidification system |
WO2016085894A2 (en) * | 2014-11-24 | 2016-06-02 | Ducool Usa Inc. D/B/A Advantix Systems | System and method for autonomous management of water content of a fluid |
KR101655370B1 (en) * | 2014-11-24 | 2016-09-08 | 한국과학기술연구원 | Desiccant cooling system |
MY189419A (en) * | 2015-06-22 | 2022-02-10 | Dutch Innovation In Air Treat Bv | Building provided with an air treatment system |
KR101749194B1 (en) * | 2015-11-18 | 2017-06-20 | 주식회사 경동나비엔 | Air-conditioner capable of heating and humidity control and the method thereof |
KR101664791B1 (en) * | 2015-11-18 | 2016-10-12 | 주식회사 경동나비엔 | Air-conditioner capable of ventilation and humidity control and the method thereof |
US10578348B2 (en) * | 2017-01-18 | 2020-03-03 | Heatcraft Refrigeration Products Llc | System and method for reducing moisture in a refrigerated room |
US10722839B2 (en) * | 2018-01-26 | 2020-07-28 | Ingersoll-Rand Industrial U.S., Inc. | Parallel split flow combination gas dryer |
US11231211B2 (en) * | 2019-04-02 | 2022-01-25 | Johnson Controls Technology Company | Return air recycling system for an HVAC system |
US11597255B2 (en) | 2020-03-25 | 2023-03-07 | Pony Al Inc. | Systems and methods for cooling vehicle components |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2957321A (en) | 1958-07-18 | 1960-10-25 | Munters Carl Georg | Air conditioning apparatus |
US2959930A (en) | 1956-10-23 | 1960-11-15 | Munters Carl Georg | Air conditioning systems |
US2968165A (en) | 1955-12-22 | 1961-01-17 | Norback Per Gunnar | Air conditioning method and apparatus |
US3200606A (en) | 1964-06-29 | 1965-08-17 | John B Hewett | Air conditioning systems |
US3470708A (en) | 1967-10-12 | 1969-10-07 | Inst Gas Technology | Solid-adsorbent air-conditioning device |
US3828528A (en) | 1971-02-23 | 1974-08-13 | Gas Dev Corp | Adiabatic saturation cooling machine |
US4474021A (en) | 1982-02-02 | 1984-10-02 | Joel Harband | Heat pump apparatus and method |
US4730461A (en) | 1987-06-05 | 1988-03-15 | Milton Meckler | Multi-zone cold storage variable air volume air conditioning system |
US4738120A (en) | 1987-09-21 | 1988-04-19 | Lin Win Fong | Refrigeration-type dehumidifying system with rotary dehumidifier |
US4739624A (en) | 1987-02-20 | 1988-04-26 | Milton Meckler | Multi-zone thermal energy storage variable air volume hydronic heat pump system |
US4841733A (en) | 1988-01-07 | 1989-06-27 | Dussault David R | Dri-Pc humidity and temperature controller |
US4887438A (en) | 1989-02-27 | 1989-12-19 | Milton Meckler | Desiccant assisted air conditioner |
US4930322A (en) * | 1989-09-11 | 1990-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Advanced heat pump |
US4941324A (en) | 1989-09-12 | 1990-07-17 | Peterson John L | Hybrid vapor-compression/liquid desiccant air conditioner |
US4952283A (en) * | 1988-02-05 | 1990-08-28 | Besik Ferdinand K | Apparatus for ventilation, recovery of heat, dehumidification and cooling of air |
US5040375A (en) * | 1987-02-12 | 1991-08-20 | Von Dobeln Wilhelm E G | Method and device for conditioning of a gas |
US5170633A (en) | 1991-06-24 | 1992-12-15 | Amsted Industries Incorporated | Desiccant based air conditioning system |
US5251458A (en) * | 1991-08-19 | 1993-10-12 | Tchernev Dimiter I | Process and apparatus for reducing the air cooling and water removal requirements of deep-level mines |
US5353606A (en) * | 1991-10-15 | 1994-10-11 | Yoho Robert W | Desiccant multi-fuel hot air/water air conditioning unit |
US5373704A (en) * | 1990-04-17 | 1994-12-20 | Arthur D. Little, Inc. | Desiccant dehumidifier |
-
1992
- 1992-08-24 US US07/933,782 patent/US5325676A/en not_active Ceased
-
1996
- 1996-07-05 US US08/675,787 patent/USRE37464E1/en not_active Expired - Lifetime
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968165A (en) | 1955-12-22 | 1961-01-17 | Norback Per Gunnar | Air conditioning method and apparatus |
US2959930A (en) | 1956-10-23 | 1960-11-15 | Munters Carl Georg | Air conditioning systems |
US2957321A (en) | 1958-07-18 | 1960-10-25 | Munters Carl Georg | Air conditioning apparatus |
US3200606A (en) | 1964-06-29 | 1965-08-17 | John B Hewett | Air conditioning systems |
US3470708A (en) | 1967-10-12 | 1969-10-07 | Inst Gas Technology | Solid-adsorbent air-conditioning device |
US3828528A (en) | 1971-02-23 | 1974-08-13 | Gas Dev Corp | Adiabatic saturation cooling machine |
US4474021A (en) | 1982-02-02 | 1984-10-02 | Joel Harband | Heat pump apparatus and method |
US5040375A (en) * | 1987-02-12 | 1991-08-20 | Von Dobeln Wilhelm E G | Method and device for conditioning of a gas |
US4739624A (en) | 1987-02-20 | 1988-04-26 | Milton Meckler | Multi-zone thermal energy storage variable air volume hydronic heat pump system |
US4730461A (en) | 1987-06-05 | 1988-03-15 | Milton Meckler | Multi-zone cold storage variable air volume air conditioning system |
US4738120A (en) | 1987-09-21 | 1988-04-19 | Lin Win Fong | Refrigeration-type dehumidifying system with rotary dehumidifier |
US4841733A (en) | 1988-01-07 | 1989-06-27 | Dussault David R | Dri-Pc humidity and temperature controller |
US4952283A (en) * | 1988-02-05 | 1990-08-28 | Besik Ferdinand K | Apparatus for ventilation, recovery of heat, dehumidification and cooling of air |
US4887438A (en) | 1989-02-27 | 1989-12-19 | Milton Meckler | Desiccant assisted air conditioner |
US4930322A (en) * | 1989-09-11 | 1990-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Advanced heat pump |
US4941324A (en) | 1989-09-12 | 1990-07-17 | Peterson John L | Hybrid vapor-compression/liquid desiccant air conditioner |
US5373704A (en) * | 1990-04-17 | 1994-12-20 | Arthur D. Little, Inc. | Desiccant dehumidifier |
US5170633A (en) | 1991-06-24 | 1992-12-15 | Amsted Industries Incorporated | Desiccant based air conditioning system |
US5251458A (en) * | 1991-08-19 | 1993-10-12 | Tchernev Dimiter I | Process and apparatus for reducing the air cooling and water removal requirements of deep-level mines |
US5353606A (en) * | 1991-10-15 | 1994-10-11 | Yoho Robert W | Desiccant multi-fuel hot air/water air conditioning unit |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040089003A1 (en) * | 2000-05-15 | 2004-05-13 | Manuel Amaral | Temperature control method and device in a motor vehichle passenger compartment |
US6823683B2 (en) * | 2000-05-15 | 2004-11-30 | Peugeot Citroen Automobiles Sa | Method and apparatus for regulating the temperature of a motor vehicle cabin |
US7047751B2 (en) * | 2001-02-28 | 2006-05-23 | Munters Corporation | Desiccant refrigerant dehumidifier systems |
US20050050906A1 (en) * | 2001-02-28 | 2005-03-10 | Munters Corporation | Desiccant refrigerant dehumidifier systems |
US20040060315A1 (en) * | 2001-02-28 | 2004-04-01 | Munters Corporation | Desiccant refrigerant dehumidifier systems |
US6751964B2 (en) | 2002-06-28 | 2004-06-22 | John C. Fischer | Desiccant-based dehumidification system and method |
US6854279B1 (en) | 2003-06-09 | 2005-02-15 | The United States Of America As Represented By The Secretary Of The Navy | Dynamic desiccation cooling system for ships |
US20050133195A1 (en) * | 2003-12-23 | 2005-06-23 | Cohand Technology Co., Ltd. | Heat exchanger using water liquid and vapor phases transformation to enhance heat exchange performance |
US7089997B2 (en) * | 2003-12-23 | 2006-08-15 | Cohand Technology Co., Ltd. | Heat exchanger using water liquid and vapor phases transformation to enhance heat exchange performance |
US20050268903A1 (en) * | 2004-06-08 | 2005-12-08 | Bassilakis Harry C | Variable volumetric flow heat exchanger for an air-to-air heat recovery system |
US7334632B2 (en) * | 2004-06-08 | 2008-02-26 | Bassilakis Harry C | Variable volumetric flow heat exchanger for an air-to-air heat recovery system |
US20080083232A1 (en) * | 2006-10-09 | 2008-04-10 | Korea Institute Of Science And Technology | Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same |
US9383116B2 (en) * | 2006-10-09 | 2016-07-05 | Korea Institute Of Science And Technology | Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same |
US7886986B2 (en) | 2006-11-08 | 2011-02-15 | Semco Inc. | Building, ventilation system, and recovery device control |
US8973383B2 (en) * | 2007-05-15 | 2015-03-10 | Espec Corp. | Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus |
US10012400B2 (en) | 2007-05-15 | 2018-07-03 | Espec Corp. | Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus |
US20100127089A1 (en) * | 2007-05-15 | 2010-05-27 | Espec Corp. | Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus |
US9885485B2 (en) | 2007-05-15 | 2018-02-06 | Espec Corp. | Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus |
WO2009049673A1 (en) * | 2007-10-17 | 2009-04-23 | Hansa Ventilatoren- Und Maschinenbau Neumann Gmbh | Method and air conditioning and ventilation system for air conditioning a room |
US20100242507A1 (en) * | 2009-03-24 | 2010-09-30 | Milton Meckler | Dynamic outside air management system and method |
US12111072B2 (en) | 2010-06-24 | 2024-10-08 | Nortek Air Solutions Canada, Inc. | Liquid-to-air membrane energy exchanger |
US9234665B2 (en) | 2010-06-24 | 2016-01-12 | Nortek Air Solutions Canada, Inc. | Liquid-to-air membrane energy exchanger |
US10274210B2 (en) | 2010-08-27 | 2019-04-30 | Nortek Air Solutions Canada, Inc. | Heat pump humidifier and dehumidifier system and method |
US9885486B2 (en) | 2010-08-27 | 2018-02-06 | Nortek Air Solutions Canada, Inc. | Heat pump humidifier and dehumidifier system and method |
US9920960B2 (en) | 2011-01-19 | 2018-03-20 | Nortek Air Solutions Canada, Inc. | Heat pump system having a pre-processing module |
US8915092B2 (en) * | 2011-01-19 | 2014-12-23 | Venmar Ces, Inc. | Heat pump system having a pre-processing module |
US20120180982A1 (en) * | 2011-01-19 | 2012-07-19 | Venmar Ces, Inc. | Heat pump system having a pre-processing module |
US11761645B2 (en) | 2011-09-02 | 2023-09-19 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
US9810439B2 (en) | 2011-09-02 | 2017-11-07 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
US10928082B2 (en) | 2011-09-02 | 2021-02-23 | Nortek Air Solutions Canada, Inc. | Energy exchange system for conditioning air in an enclosed structure |
US9618272B2 (en) | 2012-07-12 | 2017-04-11 | Carrier Corporation | Temperature and humidity independent control air conditioning system and method |
US9816760B2 (en) | 2012-08-24 | 2017-11-14 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
US11035618B2 (en) | 2012-08-24 | 2021-06-15 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
US11732972B2 (en) | 2012-08-24 | 2023-08-22 | Nortek Air Solutions Canada, Inc. | Liquid panel assembly |
US9696048B2 (en) * | 2012-12-05 | 2017-07-04 | Commonwealth Scientific And Industrial Research Organisation | Compact desiccant cooling system |
US20160018116A1 (en) * | 2012-12-05 | 2016-01-21 | Commonwealth Scientific And Industrial Research Organisation | Compact Desiccant Cooling System |
US10634392B2 (en) | 2013-03-13 | 2020-04-28 | Nortek Air Solutions Canada, Inc. | Heat pump defrosting system and method |
US10480801B2 (en) | 2013-03-13 | 2019-11-19 | Nortek Air Solutions Canada, Inc. | Variable desiccant control energy exchange system and method |
US9772124B2 (en) | 2013-03-13 | 2017-09-26 | Nortek Air Solutions Canada, Inc. | Heat pump defrosting system and method |
US9109808B2 (en) | 2013-03-13 | 2015-08-18 | Venmar Ces, Inc. | Variable desiccant control energy exchange system and method |
US9909768B2 (en) | 2013-03-13 | 2018-03-06 | Nortek Air Solutions Canada, Inc. | Variable desiccant control energy exchange system and method |
US11300364B2 (en) | 2013-03-14 | 2022-04-12 | Nortek Air Solutions Canada, Ine. | Membrane-integrated energy exchange assembly |
US10352628B2 (en) | 2013-03-14 | 2019-07-16 | Nortek Air Solutions Canada, Inc. | Membrane-integrated energy exchange assembly |
US10584884B2 (en) | 2013-03-15 | 2020-03-10 | Nortek Air Solutions Canada, Inc. | Control system and method for a liquid desiccant air delivery system |
US11598534B2 (en) | 2013-03-15 | 2023-03-07 | Nortek Air Solutions Canada, Inc. | Control system and method for a liquid desiccant air delivery system |
US11408681B2 (en) | 2013-03-15 | 2022-08-09 | Nortek Air Solations Canada, Iac. | Evaporative cooling system with liquid-to-air membrane energy exchanger |
US10393443B1 (en) * | 2013-09-23 | 2019-08-27 | Neal Energy Management, Llc | Rooftop packaged heating, ventilating and air conditioning system utilizing phase change materials |
US10712024B2 (en) | 2014-08-19 | 2020-07-14 | Nortek Air Solutions Canada, Inc. | Liquid to air membrane energy exchangers |
US10808951B2 (en) | 2015-05-15 | 2020-10-20 | Nortek Air Solutions Canada, Inc. | Systems and methods for providing cooling to a heat load |
US10782045B2 (en) | 2015-05-15 | 2020-09-22 | Nortek Air Solutions Canada, Inc. | Systems and methods for managing conditions in enclosed space |
US11815283B2 (en) | 2015-05-15 | 2023-11-14 | Nortek Air Solutions Canada, Inc. | Using liquid to air membrane energy exchanger for liquid cooling |
US11143430B2 (en) | 2015-05-15 | 2021-10-12 | Nortek Air Solutions Canada, Inc. | Using liquid to air membrane energy exchanger for liquid cooling |
US11092349B2 (en) | 2015-05-15 | 2021-08-17 | Nortek Air Solutions Canada, Inc. | Systems and methods for providing cooling to a heat load |
US10962252B2 (en) | 2015-06-26 | 2021-03-30 | Nortek Air Solutions Canada, Inc. | Three-fluid liquid to air membrane energy exchanger |
US10350536B2 (en) | 2016-11-09 | 2019-07-16 | Climate By Design International, Inc. | Reverse flow dehumidifier and methods of operating the same |
US11892193B2 (en) | 2017-04-18 | 2024-02-06 | Nortek Air Solutions Canada, Inc. | Desiccant enhanced evaporative cooling systems and methods |
US11684891B2 (en) | 2018-01-17 | 2023-06-27 | Ingersoll-Rand Industrial U.S., Inc. | Hybrid low dew point compressed air dryer |
US10603627B2 (en) | 2018-01-17 | 2020-03-31 | Ingersoll-Rand Industrial U.S., Inc. | Hybrid low dew point compressed air dryer |
US11298652B2 (en) * | 2018-01-17 | 2022-04-12 | Ingersoll-Rand Industrial U.S., Inc. | Hybrid low dew point compressed air dryer |
US12053739B2 (en) | 2018-01-17 | 2024-08-06 | Ingersoll-Rand Industrial U.S., Inc. | Hybrid low dew point compressed air dryer |
US20220074663A1 (en) * | 2020-09-04 | 2022-03-10 | Yong Zhang | Heat Pump Dryer |
US11788791B2 (en) * | 2020-09-04 | 2023-10-17 | Yong Zhang | Heat pump dryer |
Also Published As
Publication number | Publication date |
---|---|
US5325676A (en) | 1994-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37464E1 (en) | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability | |
US4887438A (en) | Desiccant assisted air conditioner | |
US4910971A (en) | Indirect air conditioning system | |
US8631661B2 (en) | Energy recovery enhanced condenser reactivated desiccant refrigerant dehumidifier | |
US9885486B2 (en) | Heat pump humidifier and dehumidifier system and method | |
CN1153933C (en) | Dehumidifying air-conditioning system and method of operating the same | |
US5782104A (en) | Integrated air conditioning system with hot water production | |
US6199394B1 (en) | Air conditioning system | |
CN103075770B (en) | Rotating wheel dehumidification device utilizing indoor exhaust evaporation cooling and use method of rotating wheel dehumidification device | |
CN108758807A (en) | The multi-staged air deep dehumidification apparatus of ultra-low dew point environment | |
CN1162093A (en) | Air-conditioning system | |
CN103328904A (en) | Heat pump system having a pre-processing module | |
US20100281893A1 (en) | Desiccant dehumidifier utilizing hot water for reactivation, and related method | |
US10274210B2 (en) | Heat pump humidifier and dehumidifier system and method | |
CN106765685A (en) | A kind of heat pump driven indirect evaporating-cooling return air full heat recovery fresh air processing unit | |
CN105805868B (en) | Regenerate backheat dehumidifying heat pump system and its operation method | |
CN104864525A (en) | Fresh air treatment device capable of indirect evaporative cooling | |
WO1995028609A1 (en) | Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability | |
JPH1163871A (en) | Dehumidifying air-conditioning system | |
US11815286B1 (en) | Dual-wheel HVAC system and method having improved dew point control | |
JPH10205816A (en) | Air conditioner and air conditioning system | |
CN108361869A (en) | A kind of heat pump driven solution dehumidification-regeneration air processing system | |
CN221526771U (en) | Heating device and rotary dehumidification system | |
JP3765930B2 (en) | Dehumidification air conditioner and dehumidification air conditioning system | |
KR19980067581A (en) | Cooling heating system with combined air heat source heat pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: DESIGN BUILD SYSTEMS, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MECKLER, MILTON;REEL/FRAME:013417/0757 Effective date: 20021007 |
|
AS | Assignment |
Owner name: MECKLER TECHNOLOGIES LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DESIGN BUILD SYSTEMS;REEL/FRAME:016182/0819 Effective date: 20050314 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: DESIGN BUILD SYSTEMS, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MECKLER TECHNOLOGIES LLC;REEL/FRAME:018679/0488 Effective date: 20061127 |