USRE37435E1 - Supervision control system - Google Patents

Supervision control system Download PDF

Info

Publication number
USRE37435E1
USRE37435E1 US08810977 US81097797A USRE37435E US RE37435 E1 USRE37435 E1 US RE37435E1 US 08810977 US08810977 US 08810977 US 81097797 A US81097797 A US 81097797A US RE37435 E USRE37435 E US RE37435E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
cell
cells
received
virtual
identified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08810977
Inventor
Shuji Yoshimura
Satoshi Kakuma
Naoki Aihara
Yasuhiro Aso
Masami Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L12/5602Bandwidth control in ATM Networks, e.g. leaky bucket
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3081ATM peripheral units, e.g. policing, insertion or extraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5629Admission control
    • H04L2012/5631Resource management and allocation
    • H04L2012/5636Monitoring or policing, e.g. compliance with allocated rate, corrective actions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS
    • H04L2012/5646Cell characteristics, e.g. loss, delay, jitter, sequence integrity
    • H04L2012/5651Priority, marking, classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS
    • H04L2012/5646Cell characteristics, e.g. loss, delay, jitter, sequence integrity
    • H04L2012/5652Cell construction, e.g. including header, packetisation, depacketisation, assembly, reassembly

Abstract

A supervision control system for an ATM cell switching system counts the number of cells transmitted from a subscriber in a predetermined duration unit, attaches a sign to the cells when the counted value exceeds a predetermined value, and discards the cells to which the sign is attached when a buffer does not have enough capacity during a cell multiplexation.

Description

This application is a continuation of application Ser. No. 07/780,121, filed Oct. 19, 1991, now abandoned.

BACKGROUND OF THE INVENTION

This invention pertains to a supervision control system for supervising the inflow of cells to an ATM switching system.

The ATM switching system switches cells having fifty-four (54) bytes split from various data, such as voice data, image data and other numerical data, and transmits in a multiplexed form the various data at different transmission speed. Of the fifty-four (54) bytes in a cell, forty-eight (48) bytes form an information field and six (6) bytes form a header part. Of the four (4) bytes, i.e. thirty-two (32) bits, in the header part excluding two (2) bytes forming a tag, twenty-eight (28) bits indicate a VPI/VCI (virtual path identifier/virtual channel identifier), two (2) bits indicate a PT (payload type), one (1) indicates a CLP (cell loss priority) and one (1) bit is for a RES (reserve).

A buffer in a multiplexer for these cells can experience an overflow when an unexpected number of cells flow in. Since overflowing cells are discarded, the communications quality is deteriorated. Although such a problem can be avoided by using a buffer having a larger capacity, a larger delay results, which is critical in transmitting voice data, image data, and so forth.

Therefore, a buffer is required in which the occurrence of an overflow and its effect are minimized.

DESCRIPTION OF THE RELATED ART

FIG. 1 is a block diagram of an ATM switching system.

As shown in FIG. 1, a plurality of terminals (TE) 10 are connected through respective terminal adapters (TA) 9 to one of plural network terminators (NT) 8 in an ATM switching system.

The network terminators (NT) 8 are connected through respective interoffice trunks 6 to one (1) of plural broadband remote switching units (BRSU) 7.

The broadband remote switching units (BRSU) 7 are connected to one (1) of a plurality of central offices (CO) 5.

The interoffice trunks 6 interconnect the central offices (CO) 5. The interoffice trunks 6 and subscriber lines are high speed transmission paths, such as an optical transmission path e.g. comprising a SONET (Synchronous Optical Network), having bands of one hundred fifty-five mega-herts (155 MHz), six hundred twenty-two mega-herts (622 MHz) or higher.

FIG. 2 shows a cell configuration.

As described earlier, voice data, image data, numerical data, etc. from the terminals (TE) 10 are split into cells having fifty-four (54) bytes. Because one (1) word is defined to comprise two (2) bytes, a cell has twenty-seven (27) words. As shown in FIG. 2, of the fifty-four (54) bytes in a cell, forty-eight (48) bytes form an information field and six (6) bytes form a header part. Of the six (6) bytes, i.e. forty-eight (48) bits, in the header part, two (2) bytes, i.e. sixteen (16) bits, form a tag, twenty-eight (28) bits indicate a VPI/VCI (virtual path identifier/virtual channel identifier), two (2) bits indicate a PT (payload type), one (1) bit indicates a CLP (cell loss priority) and one (1) bit is for a RES (reserve).

The network terminators (NT) 8 send the cells to the broadband remote switching unit (BRSU) 7.

The terminal adapters (TA) 9 receive cells from corresponding terminals (TE) 10 through the network terminators (NT) 8 and send the decelled voice data, image data, numerical data, etc. to the terminals (TE) 10.

FIG. 3 is a block diagram of one (1) of the broadband remote switching units (BRSU) 7.

A multiplexer/demultiplexer (MDX) 12 multiplexes cells asynchronously inputted from subscribers through a buffer and transmitted over a plurality of subscriber line trunks 11, which are connected to respective subscriber lines. A concentrator switch (CSW) 13 switches the multiplexed cells. A multiplexer/demultiplexer (MDX) 14 demultiplexes the switched cells over to an appropriate one (for the predetermined central office) of a plurality of interoffice trunks 15, which form interoffice cell transmission paths.

The multiplexer/demultiplexer (MDX) 14 multiplexes cells asynchronously inputted from correspondent subscribers through a buffer and transmitted over the interoffice trunks 15. The concentrator switch (CSW) 13 switches the multiplexed cells. The multiplexer/demultiplexer (MDX) 12 demultiplexes the switched cells over to an appropriate one (for the predetermined subscriber) of a plurality of subscriber line trunks 11.

A local processor interface (LPIF) 16 connects a local processor (LPR) 17 with the concentrator switch (CSW) 13 and multiplexers/demultiplexers (MDXs) 12 and 14.

When a larger number of cells flow into the multiplexer/demultiplexer (MDX) 12, its buffer causes some cells to overflow. Therefore, a virtual path is set at a call-up by having a subscriber declare his cell transmission band and by judging whether or not the cells can be multiplexed in the declared band.

In this case, if this subscriber sends cells over the declared band, cells from other subscribers who share the same buffer with this subscriber are also discarded.

That is, if any subscriber sends cells over the declared band, a large ill-effect occurs such that cells from other subscribers are also discarded.

SUMMARY OF THE INVENTION

This invention pertains to a supervision control system for supervising the inflow of cells to an ATM switching system.

It aims at avoiding a congestion state caused by a cell inflow over a band declared by a subscriber.

It configures a supervision control apparatus for an ATM (Asynchronous Transmission Mode) cell switching system comprising a supervisor and a multiplexer. The supervisor further comprises a cell counter and a judge. The cell counter counts cells transmitted from a subscriber in a predetermined duration unit. The judge attaches a sign to the cells when the value counted by the cell counter exceeds a predetermined value. The multiplexer discards the cells to which the sign is attached when a buffer does not have enough capacity during a cell multiplexation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an ATM switching system;

FIG. 2 shows a cell configuration;

FIG. 3 is a block diagram of one (1) of the broadband remote switching units (BRSU) 7;

FIG. 4 is a block diagram of this invention;

FIG. 5A is a block diagram of parts pertinent to a first embodiment of this invention;

FIG. 5B illustrates an example of cell discarding;

FIG. 6 is a block diagram of a subscriber line trunk pertinent to a second embodiment of this invention;

FIG. 7 is a block diagram of the supervisor and the selection control processor pertinent to the second embodiment of this invention; and

FIG. 8 illustrates the input interface of a multiplexer.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

A supervision control system of this invention prioritizes discarding of cells overflowing from a buffer by attaching a high cell-loss-priority sign to cells flowing in over a band declared by a subscriber, thereby minimizing ill-effects to other subscribers.

FIG. 4 is a block diagram of this invention.

The supervision control apparatus for an ATM (Asynchronous Transmission Mode) cell switching system comprises a supervisor 23 and a multiplexer 24. A supervisor 23 further comprises a cell counter 21 and a judge 22. The cell counter 21 counts cells transmitted from a subscriber in a predetermined duration unit. The judge 22 attaches a sign to the cells when the value counted by the cell counter 21 exceeds a predetermined value. The multiplexer 24 discards the cells to which the sign is attached when a buffer does not have enough capacity during a cell multiplexation.

That is, the cell counter 21 in the supervisor 23 counts cells flowing in from a subscriber in a predetermined duration unit. The judge 22 in the supervisor 23 judges whether or not the cells are flowing in over the band declared by the subscriber and attaches a sign to a predetermined bit in the excess cells flowing in over the declared band. The multiplexer 24 multiplexes the cells having the sign for their transmission when its buffer has the capacity to handle them. However, the multiplexer 24 discards them with high priority, when neither the buffer in the multiplexer 24 itself nor the buffer in a concentrator switch, or in a demultiplexer, connected to the multiplexer 24 has a capacity to handle the cells, thereby ensuring the multiplexation and transmission of cells having no such sign inputted from other subscribers.

Alternatively, the judge 22 in the supervisor 23 can set a first judging threshold and a second judging threshold. The first judging threshold corresponds to a band declared by a subscriber. The second judging threshold is set higher than the first judging threshold. The judge 22 attaches a sign to the inflowing cells from a subscriber in excess of the first judging threshold, and discards the inflowing cells from the subscriber in excess of the second judging threshold.

That is, the judge 22 sets the first and second judging thresholds in correspondence with a band declared by a subscriber. The judge 22 attaches a sign to the excess inflowing cells over the first judging threshold by appropriately marking the CLP (cell loss priority) bit or the RES (reserve) bit of the cell, thereby prioritizing the discarding of such cells, when neither the buffer in the multiplexer 24 itself nor the buffer in a concentrator switch, or in a demultiplexer, connected to the multiplexer 24 has a capacity to handle the cells. The judge 22 always discards the inflowing cells in excess of the second judging threshold, because they are likely to cause an overflow in the buffer.

Embodiments of this invention are explained in further detail by referring to some of the attached drawings.

First Embodiment

FIG. 5A is a block diagram of parts pertinent to a first embodiment of this invention.

Subscriber line terminators 31-1 through 31-m each paired with the corresponding one of interfacers 32-1 through 32-m are equivalent to subscriber line trunks connecting subscribers to the ATM cell switching system. A multiplexer 34 receives cells from subscribers by way of the subscriber line terminators 31-1 through 31-m and the interfacers 32-1 through 32-m. Supervisors 33-1 through 33-m respectively supervise cell inflows to the multiplexer 34 via the subscriber line terminators 31-1 through 31-m and the interfacers 32-1 through 32-m.

When a subscriber calls up, he declares the band to be occupied. A processor 37 reads from a cell its VCI (virtual channel identifier) for specifying the switchers and the subscriber and its VPI (virtual path identifier) for specifying the paths among the switchers, and notifies the supervisors 33-1 through 33-m of the VCI/VPI and the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit.

The supervisors 31-1 through 33-m count the number of cells having particular VCIs/VPIs in the predetermined duration units, and attach a sign to the cells in excess of the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit, for example, by marking the CLP (cell loss priority) bit in those cells.

FIG. 5B illustrates an example of cell discarding.

Alternatively, the supervisors 33-1 through 33-m can attach a sign to the cells in excess of the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit, by marking the RES (reserve) bit in those cells, as shown in FIG. 5B.

The multiplexer 34 has a buffer. It multiplexes cells from subscribers and supplies the multiplexed cells to a concentrator switch 35. However, it multiplexes cells having the sign marked in their CLP bit or in their RES bit only when the buffer has enough capacity, and discards them with high priority when the buffer does not have enough capacity. This ensures the multiplexation of cells from subscribers transmitted within the declared bands.

Also, even when the buffer in the multiplexer 34 has enough capacity to handle the cells, the buffer at an input terminal or at an output terminal of a device connected in a later stage, such as the concentrator switch 35 and a demultiplexer on the receiving side, discards the cells, if it does not have enough capacity.

Also, the supervisors 33-1 through 33-m can attach a sign to the cells in excess of a first judging threshold equivalent to the maximum number of cells, set in correspondence with the subscriber declared band, passing through in a predetermined duration unit, by marking either the CLP bit or the RES bit in those cells. The multiplexer 34 prioritizes the discarding of those cells having the sign, when its buffer lacks enough capacity. Other devices connected in later stages discard cells similarly, when their respective buffers lack enough capacity. When the number of cells passing through in a predetermined duration unit further increases and reaches a second judging threshold, the multiplexer 34 can be made to perform a control such that the excess cells over the second judging threshold are discarded regardless of the available capacity of the buffer in the multiplexer 34. The local processor interface 36 notifies the local processor 37 of the results of processing by the supervisors 33-1 through 33-m.

Second Embodiment

FIG. 6 is a block diagram of a subscriber line trunk pertinent to a second embodiment of this invention.

A subscriber line 41 such as a SONET based optical transmission path transmits cells in light signals. A light-electricity (electro-optic/optoelectric) converter (EO/OE) 42 converts the cells in light signals to cells in electric signals and supplies the converted cells through a terminator 43 and an interfacer 44 to a selection control processor 46. A local processor 52 notifies a supervisor 45 through a local processor interface 51 of a VCI/VPI and first and second judging thresholds set correspondingly to a subscriber declared band. An alternative arrangement can be made such that the processor notifies the supervisor 45 of a subscriber declared band and the supervisor 45 sets first and second judging thresholds accordingly.

The supervisor 45 counts the number of cells having a particular VCI/VPI passing through the interfacer 44 in a predetermined duration unit for a comparison with the first and second judging thresholds. The supervisor 45 has the selection control processor 46 turn on e.g. the CLP bit in the header part of the cells exceeding the first judging threshold, so that discarding of those cells is prioritized when the buffer of a multiplexer 49, or the buffer of a device connected in a later stage, lacks enough capacity. Also, the supervisor 45 has the selection control processor 46 turn on e.g. the RES bit in the header part of the cells exceeding the second judging threshold, so that those cells are supplied to the multiplexer 49 as empty cells, thereby causing those cells to be discarded anyway regardless of the available capacity in the buffer of the multiplexer 49. This is because the multiplexer 49 does not send empty cells to a concentrator switch 50.

FIG. 7 is a block diagram of the supervisor 45 and the selection, control processor 46 pertinent to the second embodiment of this invention.

A buffer 55 delays cells in correspondence with the delays caused by respective supervisions.

A memory 56 counts the number of cells passing through in a predetermined duration unit.

Memories 57 and 58 respectively store first and second judging thresholds.

A memory 59 measures an elapse of the predetermined duration unit.

A memory 60 stores duration unit data.

When the supervisor 45 commences its operations, a processor CC instructs selectors 65, 66 and 69 to select their “b” side inputs and to output them to respective address terminals of memories 57, 58 and 60, which receive data from the processor CC as respective data inputs. The processor CC supplies to “b” side inputs of selectors 65, 66 and 69 an address by which memories 57, 58 and 60 are accessed. The processor CC accesses memories 57, 58 and 60 to have them respectively store the first judging threshold, the second judging threshold and the duration unit data.

When the supervisor 45 commences its operations, the processor CC also instructs selectors 67 and 68 to select their “a” side inputs and to output, so that memory 59 receives an address and data from the processor CC. Memory 59 stores as its initial data duration unit data similar to those stored in memory 60. The processor stores data to be stored in memories 57, 58, 59 and 60 at respective addresses corresponding to VPIs/VCIs.

When the supervisor 45 commences its operations, memory 60 is reset and its stored data are initialized to zero (0).

That is, the processor CC supplies the first and second judging thresholds set correspondingly to the subscriber declared band, the duration unit data indicating the supervision cycle and the addresses corresponding to the subscriber assigned VPIs/VCIs. Memory 57 stores the first judging threshold. Memory 58 stores the second judging threshold. Memory 60 stores the duration unit data. Although all the duration unit data can be set the same, they can be set in correspondence with the subscriber characteristics. This is because pass-through cells sent from a subscriber in a burst need to be counted over a comparatively long period of time, whereas those sent from another in a more or less constant speed can be counted over a relatively short period of time.

Meanwhile, when the supervisor 45 commences its operation, selectors 63, 65 and 66 select their “a” side inputs, so that the memories 56, 57 and 58 are accessed by using the VPIs/VCIs in the header part of cells as addresses. Selector 64 has memory 56 count the number of cells passing through by having an incrementer 70 increment the value by one (1) in an address region of memory 56 corresponding to the VPIs/VCIs.

Selector 68 has memory 59 store duration unit data stored in memory 60, each time the value stored in memory 59 becomes zero (0). A decrementer 71 decrements the value stored in memory 59 by one (1). When the value stored in memory 59 reaches zero (0), memory 56 clears its address regions corresponding to the VPIs/VCIs set in correspondence with the duration unit data. That is, memory 56 counts cells passing through in predetermined units in the address fields corresponding to their VPIs/VCIs. Then, memory 59 again stores duration unit data stored in memory 60, again.

A counter 72 generates respective addresses for managing duration units e.g. up to the maximum value of the VPIs/VCIs. Although this is not shown in the drawings, the counter 72 receives a clock signal, accesses memory 59, each time its own value is incremented by one (1), by using the incremented value as the address, and decrements the value stored in memory 59 by one (1). At this time, selector 67 selects its “b” side input and selector 68 selects its “c” side input.

A count cycle [from zero (0) to next zero (0)] in the counter 72 becomes the basis of the duration unit data stored in the memory 60. The values obtained by multiplying the count cycle by the duration unit data become duration units corresponding to the VPIs/VCIs.

When the value stored in memory 59 accessed by value of the counter 72 becomes zero (0), selector 68 switches its selection from “c” side input to “b” side input, thereby loading the duration unit data in memory 60, again.

The counting by the counter 72 enables the addresses corresponding to all the VPIs/VCIs to be specified, thereby realizing duration units to be managed.

Ordinarily, selectors 63, 65, and 66 select their “a” side inputs, access the corresponding address each time a cell passes through, and perform the following operations.

The count value of the cells passing through stored in memory 56 is supplied to the comparator 61 through the incrementer 70. The comparator 61 receives the first judging threshold stored in memory 57 and the second judging threshold stored in memory 58. When the number of cells passing through is less than the first and second thresholds, the comparator 61 does not control the selector 62 and cells passing through the buffer 55 also pass through selector 62 without any obstruction. Also, when the number of cells passing through is more than the first threshold but less than the second threshold, the excess cells over the first judging threshold are transmitted after selector 62 turns on the CLP bit in the header part of those cells. Finally, when the number of cells passing through is more than the second judging threshold, selector 62 converts the excess cells over the second judging threshold to empty cells, where all the bits are zero (0). The comparator 61 notifies the processor CC of the result of respective processings.

Because selector 62 supplies cells to the multiplexer for cell multiplexation, cells with the CLP bit on are discarded when the buffer lacks the capacity. Since cells from other subscribers are within their declared bands, even if a subscriber sends cells in excess of his declared band, ill-effects on other subscribers are minimized. When the numbers of cells from other subscribers are small, i.e. when the buffer has enough capacity, the multiplexer multiplexes even the cells with their CLP bit on.

Cells far exceeding the declared band are discarded, e.g. through an empty cell conversion, to avoid discarding of cells from other subscribers within their declared bands.

In the first and second embodiments of this invention, the supervisors 23, 33-1 through 33-m, and 45 output cells in which all the bits are zero (0) to multiplexers 24, 34 and 49, where these cells are actually discarded. However, this invention is not limited to such a configuration.

FIG. 8 illustrates the input interface of a multiplexer.

As shown in FIG. 8, the multiplexers 24, 34 and 49 can use an input interface such that a “Data Line” comprises sixteen (16) bits, a “Cell Frame” comprises one (1) bit, an “Enable” comprises one (1) bit and a “Parity” comprises one (1) bit. The “Data Line” is a signal line for transmitting the cell width. “Cell Frame” is a signal line specifying the head end of each cell by a pulse indicating a “Cell Slot”. “Enable” is a signal line specifying the cells' effectiveness. “Parity” is a data error scanning line.

When the numbers of cells are more than the second threshold, the supervisors 23, 33-1 through 33-m and 45 turn off “Enable” without performing any data control. The multiplexers 23, 34 and 49 discard cells without multiplexing them when their “Enable” is off.

This invention is not limited to those embodiments, but instead can be applied in various derivative forms. For instance, it goes without saying that counting of the number of cells passing through by memory 56 can be substituted by counting by an ordinary counter.

Further, this invention can be applied also to any cell switching system, in addition to an ATM cell switching system.

As explained earlier, this invention causes an ATM switching system to have its cell counter 21 in its supervisor 23 to count the cells inputted from respective subscribers. When the judge 22 discovers that the number of cells inputted from a particular subscriber exceeds his declared band, the judge 22 attaches a sign to the excess cells to be sent to the multiplexer 24 e.g. by turning on their CLP bit. When its buffer has enough capacity, the multiplexer 24 ordinarily multiplexes the cells. However, when its buffer lacks it, the multiplexer 24 prioritizes the discarding of these cells. Thus, even if its buffer lacks enough capacity, the multiplexer 24 prioritizes the multiplexation of cells from other subscribers, as long as such cells are within their declared bands. Hence, this invention produces a distinct advantage of eliminating a possible ill-effect on others when a particular subscriber sends his cells beyond his declared band, while maintaining the best communication quality by avoiding unnecessary cell discarding.

Alternatively, this invention can be structured such that first and second judging thresholds are used for an even finer cell discarding control. That is, a sign is attached to excess cells over the first judging threshold e.g. by turning on the CLP bit, and excess cells over the second judging threshold are converted to empty cells and discarded. As a result, cells exceeding a declared band by a narrow margin can be multiplexed ordinarily depending on the availability of buffering capacity, while cells exceeding a declared band by a wide band are discarded to minimize the ill-effect on other subscribers.

Thus, this invention is effective in reduction of discarding cells within declared bands and in preventing a deterioration in communications quality by supervising cells flowing in an ATM cell switching system.

Claims (98)

What is claimed is:
1. A supervision control method for an asynchronous transmission mode cell switching system comprising the steps of:
(a) storing a plurality of bandwidth data which are pre-assigned to a plurality of sources of cells, and are stored in memory regions at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
(a b) counting cells having one of the plurality of identified virtual connections formed by a particular virtual channel identifier and a particular virtual path identifier transmitted from a subscriber in a predetermined duration unit, by incrementing a count value stored in a one of the memory region regions having an address uniquely accessed with said particular virtual channel identifier and said particular virtual path identifier;
(b c) attaching a sign to the cells when the count value incremented in said step (a b) exceeds a predetermined value; and
(c d) discarding the cells to which said sign is attached when a buffer does not have enough capacity to multiplex the cells.
2. A supervision control method for an asynchronous transmission mode cell switching system comprising the steps of:
(a) counting cells having a particular virtual channel identifier and a particular virtual path identifier received from a subscriber in a predetermined unit by incrementing a count value stored in a memory region having an address uniquely accessed with said particular virtual channel identifier and said particular virtual path identifier;
(b) attaching a sign to the cells when the count value incremented in said step (a) exceeds a first predetermined value;
(c) discarding the excess cells over a second predetermined value when the count value incremented in said step (a) exceeds the second predetermined value; and
(d) discarding the excess cells over the first predetermined value, to which the sign is attached in said step (b), when a buffer does not have enough capacity to multiplex the cells.
3. The supervision control method according to claim 2, wherein said step (b) attaches based on the first predetermined value as a number of peak cells in the predetermined duration unit; and
wherein said step (a) comprises the substep of designating the first and second predetermined values based on a designation received from the subscriber.
4. A supervision control apparatus for an asynchronous transmission mode cell switching system comprising:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, the bandwidth data being stored at addresses thereof, each address being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter including a memory to store a count value at an address uniquely accessed with one of the plurality of identified virtual connections formed by a particular virtual channel identifier and a particular virtual path identifier, for counting cells having said particular virtual channel identifier and said particular virtual path identifier transmitted from a subscriber in a predetermined duration unit by incrementing the count value;
a judge circuit for attaching a sign to the cells when the count value incremented by said cell counter exceeds a predetermined value; and
a multiplexer for discarding the cells to which the sign is attached when a buffer does not have enough capacity to multiplex the cells.
5. The supervision control apparatus according to claim 4, wherein said judge circuit comprises a selector to switch when said sign is attached to a cell.
6. A supervision control apparatus for a cell switching system comprising:
a cell counter including a memory to store a count value at an address uniquely accessed with a particular virtual channel identifier and a particular virtual path identifier, for counting cells having said particular virtual channel identifier and said particular virtual path identifier transmitted from a subscriber in a predetermined duration unit;
a judge circuit for attaching a sign to the cells when the count value incremented by said cell counter exceeds a first predetermined value;
a selector for discarding the excess cells over a second predetermined value when the count value incremented by said cell counter exceeds the second predetermined value; and
a multiplexer for discarding the excess cells over the first predetermined value, to which said sign is attached by said judge circuit, when a buffer does not have enough capacity to multiplex the cells.
7. The supervision control apparatus according to claim 6,
wherein said first predetermined value is a number of average cells in said predetermined duration unit and said second predetermined value is a number of peak cells in said predetermined duration unit; and
wherein said system further comprises a receiver for receiving a designation from the subscriber to designate the first and second predetermined values.
8. The supervision control apparatus for an asynchronous transmission mode cell switching system according to claim 6, wherein said selector outputs “0” upon discarding the cells.
9. A supervision control method in which cells, each including a header field with an identified virtual connection, are received from a plurality of sources, comprising:
storing a plurality of bandwidth data which are pre-assigned to the sources of the cells and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
marking the received cell to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
10. A supervision control method according to claim 9, wherein said monitoring comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
11. A supervision control method, according to claim 9, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
12. A supervision control apparatus in which cells, each including a header field with an identified virtual connection, are received from a plurality of sources, comprising:
a memory to store a plurality of bandwidth data which are pre-assigned to the sources of the cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
13. A supervision control apparatus according to claim 12, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
14. A supervision control apparatus according to claim 12, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
15. A supervision control apparatus in which cells, each including a header field with an identified virtual connection, are received from a plurality of sources, comprising:
memory means for storing a plurality of bandwidth data which are pre-assigned to the sources of the cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitor means for monitoring a transmission rate on the identified virtual connection of a received cell;
comparing means for comparing the monitored transmission rate of said monitor means with the bandwidth data stored at an address of said memory means corresponding to the identified virtual connection of the received cell; and
mark means for marking the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
16. A supervision control apparatus according to claim 15, wherein said monitor means counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
17. A supervision control apparatus according to claim 15, further comprising discard means for discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
18. A supervision control apparatus, comprising:
a buffer memory to receive and store a cell including a header field with an identified virtual connection;
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
19. A supervision control apparatus according to claim 18, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
20. A supervision control apparatus according to claim 18, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when said buffer memory has less capacity than an operative capacity to store the received cell.
21. A supervision control apparatus, comprising:
a receiver to receive a cell including a header field with an identified virtual connection;
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
22. A supervision control apparatus according to claim 21, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
23. A supervision control apparatus according to claim 21, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
24. A supervision control apparatus, comprising:
a receiver to receive a cell including a header field with an identified virtual connection and a cell loss priority bit indicating a cell loss priority;
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the cell loss priority bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
25. A supervision control apparatus according to claim 24, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
26. A supervision control apparatus according to claim 24, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
27. A supervision control apparatus in which a cell including a header field with an identified virtual connection and a cell loss priority bit indicating a cell loss priority, is received from a source, comprising:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of the received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at an address of said memory corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the cell loss priority bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
28. A supervision control apparatus according to claim 27, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
29. A supervision control apparatus according to claim 27, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
30. A supervision control method, comprising:
receiving a cell including a header field with an identified virtual connection;
storing a plurality of bandwidth data which are pre-assigned to a plurality of sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the identified virtual connection of the received cell; and
marking the received cell to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
31. A supervision control method according to claim 30, wherein said monitoring step comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
32. A supervision control method according to claim 30, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
33. A supervision control method, comprising:
receiving a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority;
storing a plurality of bandwidth data which are pre-assigned to a plurality of sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the identified virtual connection of the received cell; and
marking the bit to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
34. A supervision control method according to claim 33, wherein said monitoring step comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
35. A supervision control method according to claim 33, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
36. A supervision control method in which cells, each including a header field with an identified virtual connection and a bit indicating a cell loss priority, are received, comprising:
storing a plurality of bandwidth data which are pre-assigned to sources of the cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
monitoring a transmission rate on the identified virtual connection of a received cell;
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the identified virtual connection of the received cell; and
marking the bit to indicate a higher cell loss priority when the monitored transmission rate of the received cell exceeds a rate corresponding to the bandwidth data.
37. A supervision control method according to claim 36, wherein said monitoring comprises counting a number of the received cells having the same identified virtual connection in a predetermined duration unit.
38. A supervision control method according to claim 36, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
39. A switching system which receives a cell including a header field with an identified virtual connection, comprising:
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection specified by a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to the identified virtual connection.
40. A switching system according to claim 39, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
41. A switching system according to claim 39, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
42. A switching system which receives a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority, comprising:
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to the identified virtual connection.
43. A switching system according to claim 42, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
44. A switching system according to claim 42, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
45. A switching system, comprising:
an interface to receive a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority;
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the bit to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to an output of the identified virtual connection.
46. A switching system according to claim 45, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
47. A switching system according to claim 45, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
48. A switching system, comprising:
an interface to receive a cell including a header field with an identified virtual connection;
a supervisor, including:
a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections;
a cell counter to monitor a transmission rate on the identified virtual connection of a received cell;
a comparator to compare the monitored transmission rate of said cell counter with the bandwidth data stored at a memory address corresponding to the identified virtual connection of the received cell; and
a judge circuit to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data; and
a switch to direct the cell from said supervisor to an output of the identified virtual connection.
49. A switching system according to claim 48, wherein said cell counter counts a number of the received cells having the same identified virtual connection in a predetermined duration unit.
50. A switching system according to claim 48, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
51. A supervision control method in which a cell having a header field with an identified virtual connection, is received from a source, comprising:
storing a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at memory addresses, each of the memory addresses being operatively accessed based on one of a plurality of identified virtual connections; and
marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the stored bandwidth data for the received cell.
52. A supervision control method according to claim 51, wherein said marking comprises counting the number of the received cells having the same identified virtual connection in a predetermined duration unit.
53. A supervision control method according to claim 51, further comprising discarding the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity for buffering the received cell.
54. A supervision control method according to claim 51, wherein said marking comprises:
monitoring a transmission rate on the identified virtual connection specified by a received cell; and
comparing the transmission rate with the bandwidth data stored at the memory address corresponding to the specified identified virtual connection.
55. A supervision control apparatus in which a cell having a header field with an identified virtual connection, is received from a source, comprising a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at an address of the memory corresponding to the identified virtual connection of the received cell.
56. A supervision control apparatus according to claim 55, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
57. A supervision control apparatus according to claim 55, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
58. A supervision control apparatus according to claim 55, wherein said supervisor further includes:
a cell counter to monitor a transmission rate on the identified virtual connection specified by a received cell;
a comparator, coupled to said memory and said cell counter, to compare the monitored transmission rate of said cell counter with the bandwidth data stored in said memory at the address corresponding to the identified virtual connection in the header field of the received cell; and
a judge circuit, coupled to said comparator, to mark the received cell to indicate a higher cell loss priority when the monitored transmission rate exceeds a rate corresponding to the bandwidth data.
59. A switching system which receives a cell including a header field with an identified virtual connection, comprising:
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at the address of the memory corresponding to the identified virtual connection of the received cell; and
a switch to direct the cell from said supervisor to the identified virtual connection.
60. A switching system according to claim 59, wherein said supervisor includes a cell counter to count a number of received cells having the same identified virtual connection in a predetermined duration unit.
61. A switching system according to claim 59, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
62. A switching system which receives a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority, comprising:
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at the address of the memory corresponding to the identified virtual connection of the received cell; and
a switch to direct the cell from said supervisor to the identified virtual connection.
63. A switching system according to claim 62, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
64. A switching system according to claim 62, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
65. A switching system located along an identified virtual connection, comprising:
an interface to receive a cell including a header field with an identified virtual connection and a bit indicating a cell loss priority;
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the bit to indicate a higher cell loss priority when the monitored transmission rate corresponding to the bandwidth data stored at an address of the memory corresponding to the identified virtual connection in the header field of the received cell; and
a switch, to direct the cell from said supervisor to an output of the identified virtual connection.
66. A switching system according to claim 65, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
67. A switching system according to claim 65, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
68. A switching system, comprising:
an interface to receive a cell including a header field with an identified virtual connection;
a supervisor including a memory to store a plurality of bandwidth data which are pre-assigned to sources of cells, and are stored at addresses thereof, each of the addresses being operatively accessed based on one of a plurality of identified virtual connections, said supervisor marking the received cell to indicate a higher cell loss priority when a transmission rate of the received cell exceeds a rate corresponding to the bandwidth data stored at an address of the memory corresponding to the identified virtual connection of the received cell; and
a switch to direct the cell from said supervisor to an output of the identified virtual connection.
69. A switching system according to claim 68, wherein said supervisor includes a cell counter to count a number of the received cells having the same identified virtual connection in a predetermined duration unit.
70. A switching system according to claim 68, further comprising a discard circuit to discard the received cell which has been marked to indicate a higher cell loss priority when a buffer has less capacity than an operative capacity to store the received cell.
71. A supervision control method, according to claim 1, wherein each of the cells is of fixed length.
72. A supervision control apparatus according to claim 4, wherein each of the cells is of fixed length.
73. A supervision control method, according to claim 9, wherein each of the cells is of fixed length.
74. A supervision control apparatus, according to claim 12, wherein each of the cells is of fixed length.
75. A supervision control apparatus, according to claim 15, wherein each of the cells is of fixed length.
76. A supervision control apparatus, according to claim 18, wherein each of the cells is of fixed length.
77. A supervision control apparatus, according to claim 21, wherein each of the cells is of fixed length.
78. A supervision control apparatus, according to claim 24, wherein each of the cells is of fixed length.
79. A supervision control apparatus, according to claim 27, wherein each of the cells is of fixed length.
80. A supervision control method, according to claim 30, wherein each of the cells is of fixed length.
81. A supervision control method, according to claim 33, wherein each of the cells is of fixed length.
82. A supervision control method, according to claim 36, wherein each of the cells is of fixed length.
83. A switching system, according to claim 39, wherein each of the cells is of fixed length.
84. A switching system, according to claim 42, wherein each of the cells is of fixed length.
85. A switching system, according to claim 45, wherein each of the cells is of fixed length.
86. A switching system, according to claim 48, wherein each of the cells is of fixed length.
87. A supervision control method, according to claim 51, wherein each of the cells is of fixed length.
88. A supervision control apparatus, according to claim 55, wherein each of the cells is of fixed length.
89. A switching system, according to claim 59, wherein each of the cells is of fixed length.
90. A switching system, according to claim 62, wherein each of the cells is of fixed length.
91. A switching system, according to claim 65, wherein each of the cells is of fixed length.
92. A switching system, according to claim 68, wherein each of the cells is of fixed length.
93. A supervision control method according to claim 9, wherein said storing comprises storing bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
94. A supervision control apparatus according to claim 12, wherein said memory stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
95. A supervision control apparatus according to claim 15, wherein said memory means stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
96. A supervision control method according to claim 51, wherein said storing comprises storing bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
97. A supervision control method, according to claim 55, wherein said memory stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
98. A switching system, according to claim 59, wherein said memory stores bandwidth data which is declared from the source of the received cell prior to transmitting the received cell from the source.
US08810977 1990-10-19 1997-02-27 Supervision control system Expired - Lifetime USRE37435E1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2-279153 1990-10-19
JP27915390A JP3128654B2 (en) 1990-10-19 1990-10-19 Monitoring control method, the monitoring control device and switching systems
US78012191 true 1991-10-19 1991-10-19
US08261890 US5394396A (en) 1990-10-19 1994-06-17 Supervision control system
US08810977 USRE37435E1 (en) 1990-10-19 1997-02-27 Supervision control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08810977 USRE37435E1 (en) 1990-10-19 1997-02-27 Supervision control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08261890 Reissue US5394396A (en) 1990-10-19 1994-06-17 Supervision control system

Publications (1)

Publication Number Publication Date
USRE37435E1 true USRE37435E1 (en) 2001-11-06

Family

ID=17607190

Family Applications (2)

Application Number Title Priority Date Filing Date
US08261890 Expired - Lifetime US5394396A (en) 1990-10-19 1994-06-17 Supervision control system
US08810977 Expired - Lifetime USRE37435E1 (en) 1990-10-19 1997-02-27 Supervision control system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08261890 Expired - Lifetime US5394396A (en) 1990-10-19 1994-06-17 Supervision control system

Country Status (5)

Country Link
US (2) US5394396A (en)
EP (1) EP0481505B1 (en)
JP (1) JP3128654B2 (en)
CA (1) CA2053734C (en)
DE (2) DE69129887T2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574195B2 (en) * 2000-04-19 2003-06-03 Caspian Networks, Inc. Micro-flow management
US20040223456A1 (en) * 2001-03-06 2004-11-11 Deepak Mansharamani System for fabric packet Control
US6968392B1 (en) * 2000-06-29 2005-11-22 Cisco Technology, Inc. Method and apparatus providing improved statistics collection for high bandwidth interfaces supporting multiple connections
US20070053286A1 (en) * 2005-09-01 2007-03-08 Microsoft Corporation Router congestion management
US8547843B2 (en) 2006-01-20 2013-10-01 Saisei Networks Pte Ltd System, method, and computer program product for controlling output port utilization

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257145A (en) * 1991-02-12 1992-09-11 Hitachi Ltd Method and device for packet flow rate control
JPH05122238A (en) * 1991-10-28 1993-05-18 Fujitsu Ltd Police system in atm exchange
WO1995003657A1 (en) * 1993-07-21 1995-02-02 Fujitsu Limited Atm exchange
US5528763A (en) * 1993-09-14 1996-06-18 International Business Machines Corporation System for admitting cells of packets from communication network into buffer of attachment of communication adapter
US5448564A (en) * 1994-01-31 1995-09-05 Advanced Micro Devices, Inc. Modular architecture for fast-packet network
US6134218A (en) * 1994-04-28 2000-10-17 Pmc-Sierra (Maryland), Inc. Many dimensional congestion detection system and method
JP2757779B2 (en) * 1994-06-21 1998-05-25 日本電気株式会社 Buffer priority control system
EP0700229B1 (en) 1994-08-22 2006-06-28 Fujitsu Limited Connectionless communications system, test method, and intra-station control system
DE69533353T2 (en) * 1995-05-01 2005-09-01 Koninklijke Kpn N.V. Communication system with marking system
EP0872086A4 (en) * 1995-07-19 2001-07-18 Fujitsu Network Communications Method and apparatus for discarding frames in a communications device
US5870538A (en) 1995-07-19 1999-02-09 Fujitsu Network Communications, Inc. Switch fabric controller comparator system and method
JPH0974420A (en) * 1995-09-06 1997-03-18 Fujitsu Ltd Band control system
WO1997010656A1 (en) 1995-09-14 1997-03-20 Fujitsu Network Communications, Inc. Transmitter controlled flow control for buffer allocation in wide area atm networks
JP3652759B2 (en) * 1995-11-27 2005-05-25 富士通株式会社 Packet flow rate monitor and control system
CN1112001C (en) 1995-12-26 2003-06-18 三星电子株式会社 Multi-channel duplexing device and method for asynchronous transmitted ATM signal elements
WO1997026737A1 (en) 1996-01-16 1997-07-24 Fujitsu Limited A reliable and flexible multicast mechanism for atm networks
DE19602337A1 (en) * 1996-01-23 1997-07-24 Siemens Ag A method of treating overload situations in ATM networks
JPH09224034A (en) * 1996-02-19 1997-08-26 Fujitsu Ltd Overflow processing system for counter value and cell flow-in control system
US5838661A (en) * 1996-03-27 1998-11-17 Cirrus Logic, Inc. Method and arrangement for shutting off a receive channel in a data communications system
JPH09266484A (en) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp Atm exchange
US5828653A (en) * 1996-04-26 1998-10-27 Cascade Communications Corp. Quality of service priority subclasses
US5748905A (en) 1996-08-30 1998-05-05 Fujitsu Network Communications, Inc. Frame classification using classification keys
JPH10150445A (en) * 1996-11-19 1998-06-02 Fujitsu Ltd Cell loss detection method
US6097698A (en) 1996-12-16 2000-08-01 Cascade Communications Corporation Cell loss balance system and method for digital network
WO1998027664A1 (en) * 1996-12-18 1998-06-25 Aiwa Co., Ltd. Radio receiver, radio receiving method, and audio transmitter
JP3077647B2 (en) * 1997-11-04 2000-08-14 日本電気株式会社 Concentrator type atm switch system
US6426943B1 (en) * 1998-04-10 2002-07-30 Top Layer Networks, Inc. Application-level data communication switching system and process for automatic detection of and quality of service adjustment for bulk data transfers
JP3045150B2 (en) * 1998-07-22 2000-05-29 日本電気株式会社 Atm quality monitoring device and quality monitoring method and atm exchange device of the communication
FI106504B (en) * 1998-10-06 2001-02-15 Nokia Networks Oy The data segmentation method in a telecommunications system
JP2000196621A (en) 1998-12-28 2000-07-14 Nec Corp Asynchronous transfer mode multiplexer and cell rejecting method
US7142507B1 (en) 1999-02-25 2006-11-28 Nippon Telegraph And Telephone Corporation Traffic monitoring equipment and system and method for datagram transfer
WO2001001634A1 (en) 1999-06-24 2001-01-04 Fujitsu Limited Dynamic virtual channel manager
JP3896879B2 (en) * 2002-03-22 2007-03-22 日本電気株式会社 Traffic monitoring system
US7142513B2 (en) 2002-05-23 2006-11-28 Yea-Li Sun Method and multi-queue packet scheduling system for managing network packet traffic with minimum performance guarantees and maximum service rate control

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769811A (en) 1986-12-31 1988-09-06 American Telephone And Telegraph Company, At&T Bell Laboratories Packet switching system arranged for congestion control
US4769810A (en) 1986-12-31 1988-09-06 American Telephone And Telegraph Company, At&T Bell Laboratories Packet switching system arranged for congestion control through bandwidth management
EP0293314A1 (en) 1987-05-26 1988-11-30 ETAT FRANCAIS représenté par le Ministre des PTT (Centre National d'Etudes des Télécommunications) Method and system for controlling the flow of data packets
EP0310173A1 (en) 1987-09-30 1989-04-05 Philips Patentverwaltung GmbH Circuit arrangement for avoiding overload in a broadband switching system
US4849968A (en) 1985-09-06 1989-07-18 Washington University Buffer management system
JPH0290834A (en) 1988-09-28 1990-03-30 Hitachi Ltd Atm channel equipment and atm line terminal equipment
US4918687A (en) 1987-09-23 1990-04-17 International Business Machines Corporation Digital packet switching networks
EP0366635A1 (en) 1988-10-28 1990-05-02 Telefonaktiebolaget L M Ericsson Method and apparatus for preventing transmission of data packets with a greater intensity than a predetermined value on anyone of a number of channels on a common transmission link
US4942569A (en) 1988-02-29 1990-07-17 Kabushiki Kaisha Toshiba Congestion control method for packet switching apparatus
EP0383660A1 (en) 1989-02-17 1990-08-22 Alain Girard Rate reservation in an asynchronous packet network
EP0384758A2 (en) 1989-02-22 1990-08-29 Kabushiki Kaisha Toshiba Call admission control method and cell flow monitoring method in the same method
US4956839A (en) 1988-07-22 1990-09-11 Hitachi, Ltd. ATM switching system
EP0387958A1 (en) 1989-03-16 1990-09-19 AT&T NETWORK SYSTEMS INTERNATIONAL B.V. Method of ATD (asynchronous time division) switching of data packets and an arrangement for implementing this method
US4964119A (en) 1988-04-06 1990-10-16 Hitachi, Ltd. Method and system for packet exchange
US4970720A (en) 1988-03-17 1990-11-13 Kabushiki Kaisha Toshiba Packet communication exchange including dummy packet transmission
US4993024A (en) 1987-05-26 1991-02-12 L'etat Francais Represente Par Le Ministre Des Ptt Centre National D'etudes Des Telecommunications 5Cnet System and process for controlling the flow of either data packets or channel signals in an asynchronous time multiplexer
US5007043A (en) 1989-02-03 1991-04-09 Koninklijke Ptt Nederland N.V. Method for transmitting, via a plurality of asynchronously time-divided transmission channels, a flow of data cells, the state of a counter for each transmission channel being kept up to date in accordance with the number of data cells per unit of time
US5029164A (en) 1990-04-13 1991-07-02 Digital Equipment Corporation Congestion avoidance in high-speed network carrying bursty traffic
US5038345A (en) 1989-10-30 1991-08-06 Amp Incorporated Traffic pattern information for a local area network
US5062106A (en) 1989-03-14 1991-10-29 Kokusai Denshin Denwa Co., Ltd. ATM exchange system
US5084867A (en) 1989-09-19 1992-01-28 Fujitsu Limited Routing method and routing system for switching system having a plurality of paths
US5130985A (en) 1988-11-25 1992-07-14 Hitachi, Ltd. Speech packet communication system and method
US5132966A (en) 1989-03-23 1992-07-21 Nec Corporation Call control with transmission priority in a packet communication network of an atm type
US5138607A (en) 1989-06-20 1992-08-11 Alcatel Cit Method and device for evaluating the throughput of virtual circuits employing an asynchronous time-division multiplexed transmission channel
US5140588A (en) 1989-09-29 1992-08-18 Siemens Aktiengesellschaft Circuit for calculating the quantity of message signals supplied to an atm switching during virtual connections
US5140584A (en) 1989-03-01 1992-08-18 Kabushiki Kaisha Toshiba Packet communication system and method of controlling same
US5142653A (en) 1990-08-08 1992-08-25 Siemens Aktiengesellschaft Method and circuit arrangement for determining the quality of virtual connections through an asynchronous transfer mode switching equipment
US5166894A (en) 1990-02-13 1992-11-24 Nippon Telegraph And Telephone Corp. Method and apparatus for cell loss rate estimation, call admission control, and buffer/link capacity designing in integrated network
US5179557A (en) 1989-07-04 1993-01-12 Kabushiki Kaisha Toshiba Data packet communication system in which data packet transmittal is prioritized with queues having respective assigned priorities and frequency weighted counting of queue wait time
US5233606A (en) 1991-08-02 1993-08-03 At&T Bell Laboratories Arrangement for controlling shared-buffer-memory overflow in a multi-priority environment
US5267232A (en) 1990-08-31 1993-11-30 Kabushiki Kaisha Toshiba Method of controlling data transmission in ATM network with cell loss priority level
US5280483A (en) 1990-08-09 1994-01-18 Fujitsu Limited Traffic control system for asynchronous transfer mode exchange
US5315591A (en) 1991-11-23 1994-05-24 Cray Communications Limited Method and apparatus for controlling congestion in packet switching networks
US5390176A (en) 1991-04-10 1995-02-14 U.S. Philips Corporation Low delay or low loss switch for ATM
US5392280A (en) 1994-04-07 1995-02-21 Mitsubishi Electric Research Laboratories, Inc. Data transmission system and scheduling protocol for connection-oriented packet or cell switching networks
US5448567A (en) 1993-07-27 1995-09-05 Nec Research Institute, Inc. Control architecture for ATM networks
US5504744A (en) 1994-03-09 1996-04-02 British Telecommunications Public Limited Company Broadband switching network
US5706288A (en) 1996-03-27 1998-01-06 Pmc-Sierra, Inc. Available bit rate scheduler
US5784358A (en) 1994-03-09 1998-07-21 Oxford Brookes University Broadband switching network with automatic bandwidth allocation in response to data cell detection
US5850385A (en) 1991-09-24 1998-12-15 Kabushiki Kaisha Toshiba Cell loss rate sensitive routing and call admission control method
US5867494A (en) 1996-11-18 1999-02-02 Mci Communication Corporation System, method and article of manufacture with integrated video conferencing billing in a communication system architecture
US5956340A (en) 1997-08-05 1999-09-21 Ramot University Authority For Applied Research And Industrial Development Ltd. Space efficient fair queuing by stochastic Memory multiplexing

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849968A (en) 1985-09-06 1989-07-18 Washington University Buffer management system
US4769811A (en) 1986-12-31 1988-09-06 American Telephone And Telegraph Company, At&T Bell Laboratories Packet switching system arranged for congestion control
US4769810A (en) 1986-12-31 1988-09-06 American Telephone And Telegraph Company, At&T Bell Laboratories Packet switching system arranged for congestion control through bandwidth management
EP0293314A1 (en) 1987-05-26 1988-11-30 ETAT FRANCAIS représenté par le Ministre des PTT (Centre National d'Etudes des Télécommunications) Method and system for controlling the flow of data packets
US4896316A (en) 1987-05-26 1990-01-23 L'etat Francais, Represente Par Le Ministre Des Ptt Centre National D'etudes Des Telecommunications (Cnet) Method and system of control of flow of data packets
US4993024A (en) 1987-05-26 1991-02-12 L'etat Francais Represente Par Le Ministre Des Ptt Centre National D'etudes Des Telecommunications 5Cnet System and process for controlling the flow of either data packets or channel signals in an asynchronous time multiplexer
US4918687A (en) 1987-09-23 1990-04-17 International Business Machines Corporation Digital packet switching networks
EP0310173A1 (en) 1987-09-30 1989-04-05 Philips Patentverwaltung GmbH Circuit arrangement for avoiding overload in a broadband switching system
US5007048A (en) 1987-09-30 1991-04-09 U.S. Philips Corporation Circuit arrangement for avoiding overload in a wideband switching system
US4942569A (en) 1988-02-29 1990-07-17 Kabushiki Kaisha Toshiba Congestion control method for packet switching apparatus
US4970720A (en) 1988-03-17 1990-11-13 Kabushiki Kaisha Toshiba Packet communication exchange including dummy packet transmission
US4964119A (en) 1988-04-06 1990-10-16 Hitachi, Ltd. Method and system for packet exchange
US4956839A (en) 1988-07-22 1990-09-11 Hitachi, Ltd. ATM switching system
JPH0290834A (en) 1988-09-28 1990-03-30 Hitachi Ltd Atm channel equipment and atm line terminal equipment
US5014260A (en) 1988-10-28 1991-05-07 Telefonaktiebolaget L M Ericsson Method and apparatus for preventing transmission of data packets with a greater intensity than a predetermined value on any one of a number of channels on a common transmission link
EP0366635A1 (en) 1988-10-28 1990-05-02 Telefonaktiebolaget L M Ericsson Method and apparatus for preventing transmission of data packets with a greater intensity than a predetermined value on anyone of a number of channels on a common transmission link
US5130985A (en) 1988-11-25 1992-07-14 Hitachi, Ltd. Speech packet communication system and method
US5007043A (en) 1989-02-03 1991-04-09 Koninklijke Ptt Nederland N.V. Method for transmitting, via a plurality of asynchronously time-divided transmission channels, a flow of data cells, the state of a counter for each transmission channel being kept up to date in accordance with the number of data cells per unit of time
EP0381275B1 (en) 1989-02-03 1994-03-30 Koninklijke PTT Nederland N.V. Method for transmitting, via a plurality of asynchronously time-divided transmission channels, a flow of data cells, the state of a counter for each transmission channel being kept up to date in accordance with the number of data cells per unit of time
EP0383660A1 (en) 1989-02-17 1990-08-22 Alain Girard Rate reservation in an asynchronous packet network
US5081620A (en) 1989-02-17 1992-01-14 French State Represented By Minister Of The Post, Telecommunications & Space (Centre National D'etudes Des Telecommunications) Bit rate reservation in an asynchronous packet network
EP0384758A2 (en) 1989-02-22 1990-08-29 Kabushiki Kaisha Toshiba Call admission control method and cell flow monitoring method in the same method
US4984264A (en) 1989-02-22 1991-01-08 Kabushiki Kaisha Toshiba Call admission control method and cell flow monitoring method in the same method
US5140584A (en) 1989-03-01 1992-08-18 Kabushiki Kaisha Toshiba Packet communication system and method of controlling same
US5062106A (en) 1989-03-14 1991-10-29 Kokusai Denshin Denwa Co., Ltd. ATM exchange system
US5050163A (en) 1989-03-16 1991-09-17 At&T Bell Laboratories Method of ATD (asynchronous time division) switching of data packets and an arrangement for implementing this method
EP0387958A1 (en) 1989-03-16 1990-09-19 AT&T NETWORK SYSTEMS INTERNATIONAL B.V. Method of ATD (asynchronous time division) switching of data packets and an arrangement for implementing this method
US5132966A (en) 1989-03-23 1992-07-21 Nec Corporation Call control with transmission priority in a packet communication network of an atm type
US5138607A (en) 1989-06-20 1992-08-11 Alcatel Cit Method and device for evaluating the throughput of virtual circuits employing an asynchronous time-division multiplexed transmission channel
US5179557A (en) 1989-07-04 1993-01-12 Kabushiki Kaisha Toshiba Data packet communication system in which data packet transmittal is prioritized with queues having respective assigned priorities and frequency weighted counting of queue wait time
US5084867A (en) 1989-09-19 1992-01-28 Fujitsu Limited Routing method and routing system for switching system having a plurality of paths
US5140588A (en) 1989-09-29 1992-08-18 Siemens Aktiengesellschaft Circuit for calculating the quantity of message signals supplied to an atm switching during virtual connections
US5038345A (en) 1989-10-30 1991-08-06 Amp Incorporated Traffic pattern information for a local area network
US5166894A (en) 1990-02-13 1992-11-24 Nippon Telegraph And Telephone Corp. Method and apparatus for cell loss rate estimation, call admission control, and buffer/link capacity designing in integrated network
US5029164A (en) 1990-04-13 1991-07-02 Digital Equipment Corporation Congestion avoidance in high-speed network carrying bursty traffic
US5142653A (en) 1990-08-08 1992-08-25 Siemens Aktiengesellschaft Method and circuit arrangement for determining the quality of virtual connections through an asynchronous transfer mode switching equipment
US5280483A (en) 1990-08-09 1994-01-18 Fujitsu Limited Traffic control system for asynchronous transfer mode exchange
US5267232A (en) 1990-08-31 1993-11-30 Kabushiki Kaisha Toshiba Method of controlling data transmission in ATM network with cell loss priority level
US5390176A (en) 1991-04-10 1995-02-14 U.S. Philips Corporation Low delay or low loss switch for ATM
US5233606A (en) 1991-08-02 1993-08-03 At&T Bell Laboratories Arrangement for controlling shared-buffer-memory overflow in a multi-priority environment
US5850385A (en) 1991-09-24 1998-12-15 Kabushiki Kaisha Toshiba Cell loss rate sensitive routing and call admission control method
US5315591A (en) 1991-11-23 1994-05-24 Cray Communications Limited Method and apparatus for controlling congestion in packet switching networks
US5448567A (en) 1993-07-27 1995-09-05 Nec Research Institute, Inc. Control architecture for ATM networks
US5504744A (en) 1994-03-09 1996-04-02 British Telecommunications Public Limited Company Broadband switching network
US5784358A (en) 1994-03-09 1998-07-21 Oxford Brookes University Broadband switching network with automatic bandwidth allocation in response to data cell detection
US5392280A (en) 1994-04-07 1995-02-21 Mitsubishi Electric Research Laboratories, Inc. Data transmission system and scheduling protocol for connection-oriented packet or cell switching networks
US5706288A (en) 1996-03-27 1998-01-06 Pmc-Sierra, Inc. Available bit rate scheduler
US5867494A (en) 1996-11-18 1999-02-02 Mci Communication Corporation System, method and article of manufacture with integrated video conferencing billing in a communication system architecture
US5956340A (en) 1997-08-05 1999-09-21 Ramot University Authority For Applied Research And Industrial Development Ltd. Space efficient fair queuing by stochastic Memory multiplexing

Non-Patent Citations (54)

* Cited by examiner, † Cited by third party
Title
1990 Int'l Zurich Seminar on Digital Communications, The Policing Function in an ATM Network, Denissen, F. et al, Mar. 5-8, 1990, pp. 131-144.
A. Gravey et al., Analysis of a Priority Queue with Delay and/or Loss Sensitive Customers, Oct. 9-11, 1990, The 7th International Teletraffic Congress Seminar, Morristown, NJ.
B. A. Makrucki, A Study of Source Traffic Management and Buffer Allocation in ATM Networks, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
B. T. Doshi et al., Congestion Control for Bursty Data in High Speed Wide Area Packet Networks: In-Call Parameter Negotiations, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
B. T. Doshi, A B-ISDN/ATM Network Congestion Control Architecture, and its Performance with Complementary End-Terminal Flow and Error Controls, Oct. 9-11, 1990, The 7th International Teletraffic Congress Seminar, Morristown, NJ.
B-ISDN Technical Workshop, Underlying Issues and Objectives, and an Overall Control Framework, For ATM Resource and Traffic Management, A.E. Eckberg, Phoenix, Arizona, Mar. 19-21, 1991.
Computer Communications Review, Virtual Clock: A New Traffic Control Algorithm for Packet Switching Netowrks, L. Zhang, vol. 20, No. 4, SIGCOMM '90 Symposium, pp. 19-29, Sep. 24-27, 1990.
D. W. Petr et al., Optimal Threshold-Based Discarding for Queue Overload Control, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
D.M. Lucantoni et al, Selective Cell Discard Mechanisms for a B-ISDN Congrestion Control Architecture, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
E. P. Rathgeb, Policing Mechanisms for ATM Networks Modeling and Performance Comparison, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
F. Bonomi et al., Priority on Cell Service and on Cell Loss in ATM Switching, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
F. Borgonovo et al., Policing in ATM Networks: An Alternative Approach, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
F. Vakil et al., Shutter: A Flow Control Scheme for ATM Networks, Oct. 9-11, 1990, ITC Seminar, Morristown, NJ.
Flow Control in Computer Networks, Experiments In Congestion Control Techniques, J.C. Majithia, Ph.D., et al 1979, pp. 211-234.
IEEE Communications Magazine, New Directions In Communications (or Which Way to the Information Age?), Jonathan S. Turner, Oct., 1986, vol. 24, No. 10, pp. 8-15.
IEEE Globecom '91, Tagging Versus Strict Rate Enforcement in ATM Networks, A. Gravey et al, Phoenix, Arizona, vol. 1, Dec. 2-5, 1991, pp, 9.5.1-9.5.5.
IEEE INFOCOM '90, Comparative Performance Study of Space Priority Mechanisms for ATM Networks, Hans Kroner, Jun. 3-7, 1990, pp. 1136-1143.
IEEE Journal on Selected Areas in Communications, Voice Packetization and Compression in Broadband ATM Networks, K. Sriram et al, vol. 9, No. 3, Apr., 1991, pp. 294-304.
IEEE Journal on Selected Areas in Communications, vol. 9, No. 3, Priority Management in ATM Switching Nodes, H. Kroner et al, Apr. 1991, pp. 418-427.
IEEE Network Magazine, Toward A Broadband Congestion Control Strategy, C. Anthony Cooper et al, May 1990, pp. 18-23.
IEEE Pacific RIM Conference on Communications, Computers and Signal Processing, Priority Queuing Strategies for Traffic Control at an ATM Integrated Broadband Switching System, Arthur Y-M, Lin et al, May 9-10, 1991, pp. 429-432.
IEEE Transactions On Comunications, Flow Control: A Comparative Survey, Mario Gerla et al, vol. Com. 28, No. 4, Apr. 1980, pp. 553-574.
International Conference on Communications, Open Issues Regarding the Universal Application of ATM for Multiplexing and switching in the B-ISDN, M. Decina, Jun. 23-26, 1991, vol. 3 of 3, pp. 39.4.1-39.4.7.
International Switching Symposium 1987, Proceedings: Synchronization Aspects of ATD-IBC Networks, F. van den Dool, Mar. 15-20, 1987, vol. 4 of 4, pp. B12.1.1-B12.1.5.
Int'l Journal of Digital and Analog Communication Systems, A Congestion Measure for Call Admission and Traffic Engineering for Multi-Layer Multi-Rate Traffic, J.Y. Hui, vol. 3, Apr.-Jun., 1990, pp. 127-135.
Int'l Journal of Digital and Analog Communication Systems, A Connection Acceptance Algorithm for ATM Networks Based on Mean and Peak Bit Rates, E. Wallmeier, Apr.-Jun., 1990, vol. 3, pp. 143-153.
Int'l Journal of Digital and Analog Communication Systems, a Reasonable Solution to the Broadband Congestion Control Problem, C.A. Cooper et al, vol. 3, Apr.-Jun., 1990, pp. 103-115.
Int'l Journal of Digital and Analog Communication Systems, Admission Control over Mixed Traffic in ATM Networks, A. Lombardo et al, Apr.-Jun., 1990, vol. 3, pp. 155-159.
Int'l Journal of Digital and Analog Communication Systems, An Approach to Controlling Congestion in ATM Networks, A.E. Eckberg, Jr., et al., Apr.-Jun. 1990, vol. 3, No. 2, pp. 199-209.
Int'l Journal of Digital and Analog Communication Systems, An Architecture for Integrated Networks that Guarantees Quality of Service, A.A. Lazar et al, vol. 3, Apr.-Jun., 1990, pp. 229-238.
Int'l Journal of Digital and Analog Communication Systems, ATM Traffic Control for Guaranteed Performance, R. Kositpaiboon et al, vol. 3, Apr.-Jun., 1990, pp. 117-125.
Int'l Journal of Digital and Analog Communication Systems, Considerations in ATM Switching System Traffic Control, K. Murakami et al, Apr.-Jun., 1990, vol. 3, pp. 137-142.
Int'l Journal of Digital and Analog Communication Systems, Dynamic Capacity Management in the BISDN, J. Burgin, vol. 3, Apr.-Jun., 1990, pp. 161-165.
Int'l Journal of Digital and Analog Communication Systems, Priority Cell Discarding for Overload Control in BISDN/ATM Networks: An Analysis Framework, D.W. Petr et al, vol. 3, Apr.-Jun., 1990, pp. 219-227.
Int'l Journal of Digital and Analog Communication Systems, The "Leaky Bucket' Policing Method in the ATM (Asynchronous Transfer Mode) Network, G. Niestegge, Apr.-Jun., 1990, vol. 3, pp. 187-197.
Int'l Journal of Digital and Analog Communication Systems, The ‘Leaky Bucket’ Policing Method in the ATM (Asynchronous Transfer Mode) Network, G. Niestegge, Apr.-Jun., 1990, vol. 3, pp. 187-197.
Int'l Journal of Digital and Analog Communication Systems, Traffic Characteristics and a Congestion Control Scheme for an ATM Network, M. Hirano et al, vol. 3, Apr.-Jun., 1990, pp. 211-217.
ITC Specialist Seminar, Bandwidth Management: A Congestion Control Strategy for Broadband Packet Networks-Characterizing the Throughput-Burstiness Filter, A.E. Eckberg, et al, Adelaide, 1989, Paper No. 4.4, pp. 1-8.
ITC Specialist Seminar, Bandwidth Management: A Congestion Control Strategy for Broadband Packet Networks—Characterizing the Throughput-Burstiness Filter, A.E. Eckberg, et al, Adelaide, 1989, Paper No. 4.4, pp. 1-8.
IXV Int'l Switching Symposium, The Spacing Policer, An Algorithm for Efficient Peak Bit Rate Control in ATM Networks, Eugene Wallmeier et al, Yokohama, Japan, Oct. 25-30, 1992, vol. 2, pp. 22-26.
J. Hyman et al., Real-Time Scheduling of Switching Nodes Based on Asynchronous Time Sharing, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
K. Sriram et al., Voice Packetization and Compression in Broadband ATM Networks, Oct. 9-11, The 7th ITC Seminar, Morristown, NJ.
Kos Tutufor, On Admission Control and Policing in an ATM Based Network, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
N. M. Mitrou et al., Cell-Level Statistical Multiplexing in ATM Networks: Analysis, Dimensioning and Call-Acceptance Control w.r.t. QOS Criteria, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
N. Yin et al., Implication of Dropping Packets from the Front of a Queue, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
P. Boyer, A Congrestion Control for the ATM, Oct. 9-11, 1990, The 7th ITC Seminar, Morristown, NJ.
Proceedings of the 11th Int'l Teletraffic Congress, Approximations for Bursty (and Smoothed) Arrival Queuing Delays Based on Generalized Peakedness, A.E. Eckberg, Jr., Kyoto, Japan (ITC-11), Sep. 4-11, 1985, pp. 331-335.
Proceedings of the 13th International Teletraffic Congress (ITC), Mixing Time and Loss Priorities in a Single Server Queue, A. Gravey et al, Jun. 1991, pp. 147-152.
T1 Contribution T1S1.5/90-96, Working Group T1S1.5 Contribution, B-ISDN/ATM Congestion Control Capabilities, A.E. Eckberg, Apr. 16-20, 1990, pp. 1-6.
The Institute of Electronics, Information and Communication Engineers, K. Asatani, et al, vol. J72-B-I, No. 11, pp. 886-895, Nov. 1989.
The Institute of Electronics, Information and Communication Engineers, K. Sato, et al, vol. J72-B-I, No. 11, pp. 904-916, Nov. 1989.
The Int'l Symposium on Subscriber Loops and Services (ISSLS '88), The "Policing Function" to Control User Access in ATM Networks -Definition and Implementation-, W. Kowalk, et al, pp. 12.2.1-12.2.6.
The Int'l Symposium on Subscriber Loops and Services (ISSLS '88), The "Policing Function" to Control User Access in ATM Networks —Definition and Implementation—, W. Kowalk, et al, pp. 12.2.1-12.2.6.
XIII International Switching Symposium, An ATM Switching System Based on a Distributed Control Architecture, Takeo Koinuma, et al, Stockholm, Sweden, May 27-Jun. 1, 1990, vol. 5, pp. 21-26.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574195B2 (en) * 2000-04-19 2003-06-03 Caspian Networks, Inc. Micro-flow management
US6968392B1 (en) * 2000-06-29 2005-11-22 Cisco Technology, Inc. Method and apparatus providing improved statistics collection for high bandwidth interfaces supporting multiple connections
US20040223456A1 (en) * 2001-03-06 2004-11-11 Deepak Mansharamani System for fabric packet Control
US7719963B2 (en) * 2001-03-06 2010-05-18 Pluris, Inc. System for fabric packet control
US20070053286A1 (en) * 2005-09-01 2007-03-08 Microsoft Corporation Router congestion management
US7558200B2 (en) * 2005-09-01 2009-07-07 Microsoft Corporation Router congestion management
US8547843B2 (en) 2006-01-20 2013-10-01 Saisei Networks Pte Ltd System, method, and computer program product for controlling output port utilization

Also Published As

Publication number Publication date Type
EP0481505B1 (en) 1998-07-29 grant
CA2053734A1 (en) 1992-04-20 application
JP3128654B2 (en) 2001-01-29 grant
US5394396A (en) 1995-02-28 grant
EP0481505A3 (en) 1992-10-28 application
CA2053734C (en) 2002-08-27 grant
DE69129887D1 (en) 1998-09-03 grant
DE69129887T2 (en) 1999-01-14 grant
EP0481505A2 (en) 1992-04-22 application
JPH04156026A (en) 1992-05-28 application

Similar Documents

Publication Publication Date Title
US5982748A (en) Method and apparatus for controlling admission of connection requests
US5487061A (en) System and method for providing multiple loss and service priorities
US5253247A (en) Traffic control method and traffic control system for controlling cell traffic in an asynchronous transfer mode communication network
US5864539A (en) Method and apparatus for a rate-based congestion control in a shared memory switch
US5274641A (en) ATM communication system
US6487171B1 (en) Crossbar switching matrix with broadcast buffering
US4707831A (en) Packet switching system
US5282203A (en) Method of and system for controlling packet-rate in communication network
US6449274B1 (en) Apparatus for high speed communication system
US5526344A (en) Multi-service switch for a telecommunications network
US5712851A (en) Adaptive time slot scheduling apparatus and method utilizing a linked list mechanism
US5784358A (en) Broadband switching network with automatic bandwidth allocation in response to data cell detection
US6259698B1 (en) Input buffer controller using back-pressure signals in ATM switches and a method for determining the logical queue size
US5142653A (en) Method and circuit arrangement for determining the quality of virtual connections through an asynchronous transfer mode switching equipment
US6175570B1 (en) Method and an apparatus for shaping the output traffic in a fixed length cell switching network node
US6600741B1 (en) Large combined broadband and narrowband switch
US6049541A (en) Distributed telecommunications switching system and method
US6144636A (en) Packet switch and congestion notification method
US5999518A (en) Distributed telecommunications switching system and method
US6683872B1 (en) Variable rate digital switching system
US5818815A (en) Method and an apparatus for shaping the output traffic in a fixed length cell switching network node
US6754206B1 (en) Distributed telecommunications switching system and method
US5600641A (en) Voice circuit emulation system in a packet switching network
US5623492A (en) Methods and systems for managing bandwidth resources in a fast packet switching network
US20030002517A1 (en) Communications apparatus and communications control method

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12