New! View global litigation for patent families

USRE36991E - Biosensor and method for producing the same - Google Patents

Biosensor and method for producing the same Download PDF

Info

Publication number
USRE36991E
USRE36991E US09375705 US37570599A USRE36991E US RE36991 E USRE36991 E US RE36991E US 09375705 US09375705 US 09375705 US 37570599 A US37570599 A US 37570599A US RE36991 E USRE36991 E US RE36991E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
layer
solution
electrode
enzyme
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09375705
Inventor
Tomohiro Yamamoto
Mariko Miyashita
Toshihiko Yoshioka
Satoko Tsuji (nee Fujisawa)
Shiro Nankai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHC Holdings Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode

Abstract

A biosensor for rapid quantification of a specific component contained in various biological samples with high accuracy has an electrically insulating base, an electrode system including a working electrode and a counter electrode formed on one face of the insulating base, and a reaction layer formed on the insulating base in close contact with the electrode system. The reaction layer contains at least a hydrophilic polymer, a buffer and an enzyme which is separated from the buffer.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a biosensor capable of rapidly quantifying a specific component in a sample solution with high accuracy in a simplified manner, and to a method for producing the same.

2. Description of the Related Art

Various types of biosensor have heretofore been proposed as a system for quantifying the specific component in the sample solution without requiring diluting or stirring of the sample solution.

As an example of such biosensors, a glucose Sensor will be described in the following paragraphs. In general, a system combining glucose oxidase with an enzyme electrode or a hydrogen peroxide electrode is already known as a method of quantifying glucose utilizing the enzyme electrode. The glucose oxidase selectively oxidizes a substrate, i.e., β-D-glucose into D-glucono-δ-lactone by using oxygen as an electron acceptor. During this reaction, oxygen is reduced into hydrogen peroxide. By measuring the amount of the oxygen consumed in this reaction by an oxygen electrode, or by measuring the amount of the hydrogen peroxide produced in this reaction by a hydrogen peroxide electrode which utilizes a platinum electrode or the like, the glucose in the sample solution can be quantified.

By the above-mentioned method, the measurement is however adversely influenced with a concentration of the dissolved oxygen depending on the subject of the measurement. Further, the measurement is made completely impossible under a condition lacking oxygen. A type of the glucose sensor that does not use oxygen as the electron acceptor but uses a metal complex or an organic compound such as potassium ferricyanide, a derivative of ferrocene or a derivative of quinone as the electron acceptor has therefore been developed. With this type of biosensor, by oxidizing a reductant of the electron acceptor produced as the result of the enzyme reaction by the electrode, the concentration of the glucose can be determined based on the current consumed for this oxidation reaction. This manner of measurement is not limited to glucose but has been widely applied for the quantification of substrates other than glucose.

As an example of this type of biosensor, a glucose sensor is known (Japanese Laid-Open Patent Publication No. Hei 1-114,747) which will be described below.

The disclosed biosensor has a configuration comprising an electrical insulating base provided with an electrode system including a working electrode and a counter electrode, a filter layer composed of polycarbonate porous film, an electron acceptor carrying layer, an enzyme carrying layer, a buffer carrying layer, and a developing layer composed of woven cellulose, which are sequentially laminated on the insulating base by placing some space from the electrode system. In this configuration, the above-mentioned carrying layers are prepared by impregnating cellulosic porous films with aqueous solutions of the electron acceptor, the enzyme, and the buffer, and then drying the impregnated bodies.

The operation of this glucose sensor is as follows.

The sample solution titrated on the developing layer is first passed to the buffer carrying layer, whereby the pH value of the sample solution is adjusted to a pH value that can give the highest activity to the enzyme by the buffering action of the buffer. Next, the glucose in the sample solution reacts specifically with the glucose oxidase in the enzyme carrying layer. At the same time, the electron acceptor, such as potassium ferricyanide in the electron acceptor carrying layer, is reduced by the electron produced by the above-mentioned reaction to produce potassium ferrocyanide. The amount of the produced potassium ferrocyanide is directly proportional to the concentration of glucose contained in the sample solution. After the substances having a large molecular weight such as protein which disturb the electrode reaction contained in the sample solution are filtered off by the filter layer, the sample solution reaches the electrode system provided on the insulating base. In order to prevent erroneous measurement, part of the electrode system is covered with the insulating layer. By measuring the value of the current for oxidizing the potassium ferrocyanide produced in the sample solution by the electrode system it is possible to determine the glucose concentration of the sample solution.

the configuration of such prior art sensors, however, there is an inconvenience that an adverse influence is given to the responsive current, because wetting of the surface of the insulating base including the electrode system with the sample solution is not necessarily uniform and thus bubbles are retained between the porous body of the filter layer and the insulating base. Further, if the sample solution contains substances liable to be absorbed in the electrode or substances having an electrode activity, there would be a case wherein the response of the sensor is adversely influenced.

As a method for overcoming the above-mentioned inconveniences, the following biosensor is proposed and disclosed in Japanese Laid-Open Patent Publication No. Hei 2-062,952.

In the disclosed configuration, the sensor comprises an electrically insulating base, an electrode system composed of a working electrode, a counter electrode and a reference electrode formed on the insulating base by means of screen printing or the like, and a reaction layer including a hydrophilic polymer, an oxido-reductase, an electron acceptor, and a buffer as well if required, formed on the electrode system in a manner that the reaction layer is in close contact with the electrode system.

When the sample solution containing the substrate is titrated on the reaction layer, the reaction layer dissolves in the sample solution which is thereby adjusted to a pH value at which the highest enzyme activity is achieved by the buffering action of the buffer, the enzyme reacts with the substrate, and the electron acceptor is reduced. After the completion of the enzyme reaction, the reduced electron acceptor is electrochemically oxidized, and the concentration of the substrate contained in the sample solution is derived from the value Of the current consumed for oxidizing the electron acceptor.

In the above-mentioned configuration of the prior art sensor, if the biosensor is moistened, the buffer would be partly mixed with the enzyme to induce a chemical interaction, thereby lowering the enzyme activity and deteriorating the storing property of the biosensor.

SUMMARY OF THE INVENTION

It is therefore a primary object of the present invention to provide a biosensor that can be applied to quantification of a specific component contained in various biological samples in a rapid and simple manner with high accuracy.

It is another object of the present invention to provide a biosensor that can be stored for a long period of time, and can be utilized in quality control of foodstuffs as well as in clinical tests.

It is still another object of the present invention to provide a method for producing such biosensors while avoiding a possible mixing of an enzyme with a buffer during its manufacturing process.

The present invention provides a biosensor comprising,

an electrical insulating base,

an electrode system including at least a working electrode and a counter electrode which are provided on a face of the insulating base, and

a reaction layer formed on the insulating base in close contact with the electrode system; wherein

the reaction layer contains at least a hydrophilic polymer, an enzyme and a buffer, and

the enzyme being separated from the buffer.

In a preferred embodiment of the present invention, the reaction layer preferably comprises at least two layers, wherein a first layer is in contact with the electrode system and contains the enzyme and the hydrophilic polymer, and a second layer contains the buffer. It is also preferable for the second layer to comprise a lipid of amphipathic (lipophilic and hydrophilic) property.

In another preferred embodiment of the present invention, the reaction layer preferably comprises at least two layers, wherein a first layer is in contact with the electrode system and contains the buffer and the hydrophilic polymer, and a second layer contains the enzyme. It is also preferable for the second layer to comprise a hydrophilic polymer being soluble in an organic solvent that does not dissolve the hydrophilic polymer contained in the first layer.

It is preferable for the reaction layer of the biosensor in accordance with the present invention to contain an electron acceptor.

The present invention also provides a biosensor, wherein the reaction layer preferably comprises at least three layers, and a first layer contains the buffer and the hydrophilic polymer, and a second layer contains the enzyme and the hydrophilic polymer. It is also preferable for the second layer to further comprise an electron acceptor.

Another preferred embodiment of the present invention further comprises a layer containing a lipid, especially an amphipathic lipid, placed to the outermost part of the reaction layer.

In a further preferred embodiment of the present invention, the biosensor comprises a layer consisting essentially of a hydrophilic polymer placed in close contact with the electrode system.

In still another preferred embodiment of the present invention, the layer containing the buffer and the hydrophilic polymer is in close contact with a layer containing the enzyme and the hydrophilic polymer, wherein the hydrophilic polymers are different from each other, and wherein the hydrophilic polymer contained in the upper layer is soluble in an organic solvent that does not dissolve the hydrophilic polymer contained in the underlying layer.

The present invention also provides a method for producing a biosensor which comprises the steps of:

forming a first layer containing an enzyme and a hydrophilic polymer by using water as the medium on a face of an insulating base in close contact with an electrode system including at least a working electrode and a counter electrode which are provided on the insulating base; and

forming a second layer containing a buffer on the first layer by using an organic solvent as the medium that does not dissolve the hydrophilic polymer.

In a preferred embodiment of the above-mentioned method, the step of forming the first layer comprises spreading an aqueous solution which dissolves the enzyme and the hydrophilic polymer on the insulating base and drying the spread solution, wherein the step of forming the second layer comprises spreading a solution obtained by dispersing the buffer in an organic solvent solution of a lipid and drying the spread solution.

In another preferred embodiment of the present invention, the step of forming the first layer comprises spreading an aqueous solution which dissolves the enzyme and the hydrophilic polymer on the insulating base and drying the spread solution, wherein the step of forming the second layer comprises spreading a solution obtained by dispersing the buffer in an organic solvent solution of the hydrophilic polymer on the first layer and drying the spread solution.

The present invention also provides a method for producing a biosensor which comprises the steps of:

forming a first layer containing a buffer and a hydrophilic polymer by using water as the medium on a face of an insulating base in close contact with an electrode system including at least a working electrode and a counter electrode provided on the insulating base; and

forming a second layer containing a hydrophilic polymer and an enzyme on the first layer by using an organic solvent as the medium that does not dissolve the hydrophilic polymer contained in the first layer.

In a preferred embodiment of the present invention, the step of forming the first layer comprises spreading an aqueous solution which dissolves the buffer and the hydrophilic polymer on the insulating base and drying the spread solution, wherein the step of forming the second layer comprises spreading an organic solvent solution of the hydrophilic polymer on the first layer and drying the spread solution, and further dropping an aqueous solution of the enzyme on the second layer and drying the dropped solution.

It is preferable that the above-mentioned aqueous solution which dissolves the enzyme and the hydrophilic polymer further dissolves an electron acceptor.

In the same manner, it is also preferable that the above-mentioned aqueous solution of the enzyme further dissolves an electron acceptor.

Further, it is preferable that the method further comprises a step of forming a third layer by spreading an organic solvent solution of a lipid over the second layer and drying the spread solution.

While novel features of the invention are set forth in the preceding, the invention, both as to organization and content, can be further understood and appreciated, along with other objects and features thereof, from the following detailed description and example when taken in conjunction with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional side view showing an essential part of a biosensor prepared in accordance with Example 1 of the present invention.

FIG. 2 is an exploded perspective view of the biosensor shown in FIG. 1 removed of its reaction layer.

FIG. 3 is a cross-sectional side view showing an essential part of a biosensor prepared in accordance with Example 2 of the present invention.

FIG. 4 is a cross-sectional side view showing an essential part of a biosensor prepared in accordance with Example 3 of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following paragraphs, embodiments of the biosensor and method for producing the same in accordance with the present invention will be described in detail with reference to the attached drawings.

As described in the above, the biosensor of the present invention has a configuration that the reaction layer formed on the electrode system on the insulating base is in close contact with the electrode system, and contains at least the hydrophilic polymer, the enzyme and the buffer, wherein the enzyme is separated from the buffer. Since the reaction layer contains the buffer, even in the case wherein the pH value of the sample solution does not coincide with the pH value which gives the highest enzyme activity, the pH value of the sample solution is automatically adjusted to the pH value which gives the highest activity to the enzyme when the sample solution reaches the buffer contained in the reaction layer. Therefore, there is no need for previously adjusting the pH value of the sample solution with a buffer or the like and it is possible to measure the concentration of the specific component in the sample solution by a simple operation.

Further, by separating the enzyme from the buffer in the reaction layer, it is possible to prevent a partial mixing of the buffer with the enzyme attributable to a possible wetting or moistening of the biosensor and a lowering of the activity of the enzyme attributable to the chemical interaction induced by the mixing, and thus to maintain the enzyme at a condition that stabilizes the enzyme during the storing period of the biosensor.

In the biosensor prepared in accordance with the present invention, the layer containing the buffer is in close contact with the layer containing the enzyme, but the hydrophilic polymers contained in both layers are different from each other. By selecting the hydrophilic polymer contained in the upper layer as the one that is soluble in an organic solvent which does not dissolve the hydrophilic polymer contained in the underlying layer, a direct contact of the buffer with the enzyme can effectively be avoided during the manufacturing process of the biosensor.

The biosensor having the above-mentioned configuration can be obtained by the following manufacturing processes.

One of the processes comprises the steps of forming a first layer composed of the enzyme and the hydrophilic polymer on the insulating base, which is in close contact with the electrode system, by using water as a medium, and forming a second layer containing the buffer on the first layer by using an organic solvent as the medium that does not dissolve the hydrophilic polymer contained in the first layer.

The other process comprises steps of forming a first layer composed of the buffer and the hydrophilic polymer on the insulating base, being in close contact with the electrode system, by using water as a medium, and forming a second layer composed of the enzyme and the hydrophilic polymer on the first layer by using an organic solvent as the medium that does not dissolve the first mentioned hydrophilic polymer.

It is preferable that the biosensor of the present invention has a layer containing a lipid that facilitates an infusion of the sample solution into the reaction layer. In addition to lecithin (phosphatidyl cholin) used in the following examples, an amphipathic (lipophilic and hydrophilic) lipid such as phospholipids, exemplified as phosphatidyl serine, phosphatidyl ethanolamine and the like, are preferable as the lipid.

As the hydrophilic polymer for forming the reaction layer, in addition to carboxymethyl cellulose and polyvinyl pyrrolidone which are used in the following examples, there are exemplified polyvinyl alcohol, water soluble cellulose derivatives such as ethyl cellulose and hydroxypropyl cellulose; gelatin, polyacrylic acid and its salts, starch and its derivatives, maleic anhydride and its salts, polyacrylamide, methacrylate resin, poly-2-hydroxyethyl methacrylate.

Although the description on the following examples is limited to the two-electrode system composed only of the working electrode and the counter electrode, a more accurate measurement can be performed by employing a three-electrode system also including a reference electrode.

In addition to potassium ferricyanide used in the following examples, p-benzoquinone, phenadine methosulfate and ferrocene can be used as the electron acceptor.

As the buffer, any buffer that can demonstrate a pH value which gives the highest activity to the employed enzyme such as any salts of citric acid can freely be used in addition to the phosphate buffer used in the examples.

The present invention can widely be applied to any reaction system where an enzyme participates, such as alcohol sensor, sucrose sensor, and cholesterol sensor, in addition to the exemplified glucose sensor, lactic acid sensor and glucose sensor. In these cases, alcohol oxidase, lactic acid dehydrogenase, cholesterol oxidase, cholesterol dehydrogenase, xanthine oxidase, and an amino acid oxidase can be used in compliance with the specific substance to be quantified, in addition to the fructose dehydrogenase, lactic acid oxidase and glucose oxidase.

As described in the above, the biosensor of the present invention can be applied to the quantification of the specific component contained in the various biological samples in a rapid and simple manner with a high accuracy. Further, since the biosensor can be stored for a long period of time, its value of utilization is great in quality control of foodstuffs as well as in clinical tests.

EXAMPLE 1

(Fructose Sensor I)

FIG. 1 is a cross-sectional side view showing a fructose sensor prepared in accordance with an embodiment of the present invention with its cover and a spacer omitted, and FIG. 2 is an exploded perspective view of the fructose sensor with its reaction layer omitted.

An insulating base i is made of polyethylene terephthalate. On the insulating base 1, there are provided lead wires 2 and 3 of silver by means of screen printing. An electrode system including a working electrode 4 and a counter electrode 5 is also formed on the insulating base 1 by printing an electrically-conductive carbon paste containing a resin binder. Further, an insulating layer 6 is formed on the insulating base 1 by printing an insulating paste. The insulating layer 6 maintains areas of the exposed regions of the working electrode 4 and the counter electrode 5 constant, and partly covers the lead wires 2 and 3.

After the electrode region was prepared in this manner, a mixed aqueous solution composed of an aqueous solution (0.5 wt %) of a hydrophilic polymer, sodium salt of carboxymethyl cellulose (hereinafter referred to CMC) which dissolved fructose dehydrogenase (EC1. 1. 99. 11.; hereinafter referred to FDH) as an enzyme and potassium ferricyanide as an electron acceptor, was dropped on the electrode system. By being dried in a hot air dryer at 40° C. for 10 minutes, an FDH-potassium ferricyanide-CMC layer 7 was formed.

On the FDH-potassium ferricyanide-CMC layer 7, there was dropped a dispersion prepared by dispersing microcrystals of potassium dihydrogenphosphate and dipotassium hydrogenphosphate as a buffer in a toluene solution (0.5 wt %) of lecithin as a dispersing medium, which was then dried to form a buffer-lecithin layer 8. Since toluene used as the solvent for forming the layer 8 did not dissolve CMC in the underlying layer, a direct contact of the buffer in the layer 8 with the enzyme in the layer 7 was effectively avoided. Further, by the provision of the layer containing an amphipathic lipid such as lecithin on the surface of the reaction layer, an infusion of the sample solution from the surface into the reaction layer can be made with ease. As described in the above, the reaction layer of the fructose sensor was formed.

The manufacturing process of the biosensor can be simplified by dropping the mixed solutions containing the hydrophilic polymer, the enzyme and the electron acceptor, each in a stroke, and by the subsequent drying. The temperature range during the drying step is preferably from 20° C. to 80° C. which does not lead to a deactivation of the enzyme but is sufficient for completing the drying in a short period of time.

After forming the reaction layer in the above-mentioned manner, the fructose sensor was completed by adhering a cover 14 and a spacer 13 to the insulating base in a positional relationship shown by single dot-dash-lines in FIG. 2. By a simple operation of bringing the sample solution to a contact with a sample supplying inlet 15 provided on a tip of the sensor, the sample solution can easily be introduced into the reaction layer region. Since the supplying amount of the sample solution is dependent on the volume of a space formed by the cover 14 and the spacer 13, there is no need of measuring the supplying amount beforehand.

Further, evaporation of the sample solution can be minimized during the measurement thereby enabling a measurement of high accuracy. In FIG. 2, a reference numeral 16 designates an air inlet opening provided on the cover 14. When a transparent resin is used as the material for constituting the cover 14 and the spacer 13, it is possible to easily observe the condition of the reaction layer and the state of introducing the sample solution from the outside.

Two minutes after supplying 3 μl of a fructose standard solution as the sample solution to the fructose sensor thus prepared through the sample supplying inlet 15, a pulse voltage of +0.5 V on the basis of the voltage at the counter electrode was applied to the working electrode. Then the anodic current value 5 seconds after the application was measured.

When the sample solution reached the reaction layer, the sample solution dissolved the buffer-lecithin layer 8 to have a desirable pH value, and subsequently dissolved the FDH-potassium ferricyanide-CMC layer 7. During this process, the fructose contained in the sample solution was oxidized so by the FDH, and then the potassium ferricyanide was reduced to a potassium ferrocyanide by shifting of electrons by the oxidation. Next, by the application of the above-mentioned pulse voltage, a current was generated for oxidizing the produced potassium ferrocyanide, and this current value corresponded to the concentration of fructose contained in the sample solution.

The activity of the enzyme employed in the fructose sensor demonstrates its maximum value at pH 4.5 at 37° C. Since the fructose standard solution is substantially neutral, when the standard solution reaches the buffer-lecithin layer 8, its pH value is adjusted to 4.5, thereby making the enzyme activity highest. Further, by separating the buffer from the enzyme, it is possible to improve the storing property of the sensor.

The response obtained with the thus prepared fructose sensor to the fructose standard solution demonstrates a linear relationship for the fructose concentration, and the linear relationship can be maintained in storage for a long period of time.

In the above-mentioned example, in place of the buffer-lecithin layer 8, another buffer-hydrophilic polymer layer may be formed by spreading a solution prepared by dispersing the buffer in a solution of a hydrophilic polymer dissolved in an organic solvent which does not dissolve the CMC contained in the underlying layer, such as an ethanol solution of polyvinyl pyrrolidone, followed by drying.

EXAMPLE 2

(Fructose Sensor II)

In a manner similar to that in Example 1, an electrode system composed of the working electrode 4 and the counter electrode 5 was formed on the insulating base 1 made of polyethylene terephthalate by means of screen printing, as shown by FIG. 3. By dropping an aqueous solution (0.5 wt %) of CMC on the electrode system and then drying, a CMC layer was formed. Next, an aqueous solution of the enzyme FDH and the electron acceptor potassium ferricyanide was spread over the CMC layer and then dried to form an FDH-potassium ferricyanide-CMC layer 7. In this case however, the CMC, the FDH as well as the potassium ferricyanide were partially mixed together and formed in a thin film of a thickness of several microns. That is, when the above-mentioned aqueous solution was dropped on the CMC layer, the previously formed CMC layer was once dissolved and then formed a layer 7 in a state partly mixed with the enzyme and the like during the subsequent drying process.

In this case however, since no stirring or the like operation was performed, a completely mixed state was not brought about but a state wherein the surface of the electrode system was covered only with the CMC was brought about by this process. Since the enzyme, the electron acceptor and the like are prevented from a direct contact with the surface of the electrode system in this manner, it is considered that

(i) there is a low possibility of an absorption of protein on the surface of the electrode system and a change in the characteristics of the electrode system by a chemical action of a substance having an oxidizing ability such as potassium ferricyanide, and

(ii) as a result, it is possible to obtain a sensor having a sensor response with high accuracy.

On this FDH-potassium ferricyanide-CMC layer 7, a dispersion prepared by dispersing microcrystals of potassium dihydrogenphosphate and dipotassium hydrogenphosphate, as the buffer, in an ethanol solution of polyvinyl pyrrolidone (hereinafter referred to PVP) as the hydrophilic polymer in 0.5 wt % was dropped to cover the layer 7 completely, and then dried to form a buffer-PVP layer 10. Since the ethanol employed in forming the layer 10 does not dissolve the CMC contained in the underlying layer, a direct contact of the enzyme in the layer 7 with the buffer contained in the layer 10 can effectively be avoided.

By dropping a toluene solution of lecithin in 0.5 wt % on the buffer-PVP layer 10 and then drying the dropped solution, a lecithin layer 9 was formed on the layer 10. In the above-mentioned manner, a reaction layer of the fructose sensor shown in FIG. 3 was formed.

By combining the insulating base formed with the reaction layer with a spacer 13 and a cover 14 shown by FIG. 2 in a similar manner to that in Example 1, the fructose sensor of this example was completed.

By the provision of the buffer-PVP layer 10, even in a case of selecting a fruit Juice and the like containing solid components such as fruit flesh or pulp as the sample solution, a possible absorption of the above-mentioned flesh or pulp on the surface of the electrode system and its adverse influence on the response of the sensor can effectively be prevented by this buffer-PVP layer, and at the same time, the pH value of the sample solution can be made to a pH value that gives the maximum activity to the enzyme.

The fructose sensor thus prepared demonstrates a rapid and a highly accurate response and has an excellent storing property because the buffer is separated from the enzyme as in Example 1.

EXAMPLE 3

(Lactic Acid Sensor)

In a manner similar to that in Example 1, an electrode system was formed on the insulating base 1 made of polyethylene terephthalate by means of screen printing, as shown by FIG. 4. By dropping an aqueous solution (0.5 wt %) of CMC, which also dissolved the buffer, potassium dihydrogenphosphate and dipotassium hydrogenphosphate, on the electrode system and then drying, a buffer-CMC layer 11 was formed. Next, an ethanol solution (0.5 wt %) of PVP was spread over the buffer-CMC layer 11 so that it covered the layer, and then dried to form a PVP layer. An aqueous solution of lactic acid oxidase (available from TOYOBO Co., Ltd., hereinafter referred to LOD) as an enzyme and potassium ferricyanide as an electron acceptor was spread over the PVP layer and then dried. In this case, however, since the PVP layer was partly dissolved in the above-mentioned aqueous solution, an LOD-potassium ferricyanide-PVP layer 12 was formed. Further, since the ethanol employed for forming the PVP layer did not dissolve the CMC contained in the underlying layer, the PVP layer was not mixed with the buffer, and the buffer was completely separated from the enzyme.

By dropping a toluene solution of lecithin in 0.5 wt % on the LOD-potassium ferricyanide-PVP layer 12 and by subsequent drying, a lecithin layer 9 was formed. In the above-mentioned manner, a reaction layer of a lactic acid sensor was formed. FIG. 4 is a configuration of the reaction layer of the lactic acid sensor.

After forming the reaction layer in the above-mentioned manner, the lactic acid sensor of this example was completed by combining the insulating base formed with the reaction layer with a spacer 13 and a cover 14 shown by FIG. 2 in a unitary body in a manner similar to that in Example 1.

Three (3) μl of a sample solution prepared by diluting lactic acid with pure water to have a predetermined concentration was supplied to the lactic acid sensor thus prepared through a sample supplying inlet 15 thereof. The sample solution rapidly reached a region of air outlet 16 to dissolve the reaction layer on the electrode system.

When supplied with a sample solution, the reaction layer was immediately dissolved in the sample solution, and the buffer contained in the buffer-CMC layer 11 was dissolved in the sample solution to give a desired pH value to the sample solution.

One minute after the supply of the sample solution, a pulse voltage of +0.5 V on the basis of the voltage at the counter electrode 5 was applied to the working electrode 4 and the anodic current value 5 seconds after the application was measured. As a result of the measurement, a response current value proportional to the concentration of lactic acid in the sample solution was obtained.

Since the optimum pH of the enzyme employed in the lactic acid sensor is in a range from 6 to 7 but the standard solution of lactic acid is more acidic than the value in the range, it is possible to derive the maximum activity of the enzyme by causing the sample solution to reach the buffer-CMC layer and thus adjusting pH value of the sample solution from 6 to 7. Further, since the buffer is separated from the enzyme, the lacti acid sensor has an excellent storing property.

EXAMPLE 4

(Glucose Sensor I)

In a manner similar to that in Example 1, an electrode system identical with the electrode region shown in FIG. 1 was formed on the insulating base 1 made of polyethylene terephthalate by means of screen printing. By dropping an aqueous solution (0.5 wt %) of CMC, which also dissolved the buffer, potassium dihydrogenphosphate and dipotassium hydrogenphosphate, on the electrode system and then drying, a buffer-CMC layer was formed. Next, an ethanol solution prepared by dispersing lipid-modified glucose oxidase (hereinafter referred to as lipid-modified GOD) as an enzyme and potassium ferricyanide as an electron acceptor was spread over the buffer-CMC layer to cover the layer and then dried to form a lipid-modified GOD-potassium ferricyanide layer. After a reaction layer was formed in the above-mentioned manner, it was combined with a spacer 13 and a cover 14 shown by FIG. 2 in a unitary body, whereby the glucose sensor of this example was completed.

The above-mentioned lipid-modified GOD can be obtained by adding glucose oxidase (available from TOYOBO Co., Ltd.) to a solution prepared by dispersing an amphipathic lipid, DC-3-12L in water, standing still at 4° C. for 1.5 days, and freeze-drying the stood product. The lipid-modified GOD is easily dispersible in an organic solvent without being agglomerated, and is also soluble in water.

EXAMPLE 5

(Glucose Sensor II)

In a manner similar to that in Example 1, an electrode system identical with the electrode system shown in FIG. 1 was formed on the insulating base 1 made of polyethylene terephthalate by means of screen printing.

After producing the electrode system in the above-mentioned manner, a buffer-potassium ferricyanide-CMC layer was formed by dropping an aqueous solution of CMC in 0.5 wt %, which also dissolved potassium dihydrogenphosphate and dipotassium hydrogenphosphate as a buffer, and potassium ferricyanide as an electron acceptor, on the electrode system, followed by drying. Next, a benzene solution of lipid-modified GOD as the enzyme was spread over to cover the buffer-potassium ferricyanide-CMC layer, and then dried to form a lipid-modified GOD layer. After forming a reaction layer on the insulating base in the above-mentioned manner, the insulating base was combined with a spacer 13 and a cover 14 shown by FIG. 2 in a unitary body in a manner similar to that in Example 1, whereby the glucose sensor of this example was completed.

In the foregoing embodiments, although the electrode system was formed by means of screen printing with an electrically-conductive paint, it may alternately be formed by sputtering of platinum. In this case, the potassium ferricyanide employed as the electron acceptor can be dispensed with; in this enzyme reaction, hydrogen peroxide generated by reducing the oxygen in the substrate solution in proportion to the concentration of lactic acid (or glucose) can be detected by the platinum electrodes, thereby quantifying the concentration of the lactic acid (or glucose).

It is understood that various other modifications will be apparent to and can be readily made by those skilled in the art to which this invention pertains without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be construed as encompassing all the features of patentable novelty that reside in the present invention, including all features that would be treated as equivalents thereof, by those skilled in the art to which this invention pertains.

Claims (19)

What is claimed is:
1. A method for producing a biosensor comprising the steps of:
forming a first layer containing an enzyme and a hydrophilic polymer by using water as the medium on a face of an insulating base in close contact with an electrode system including a working electrode and a counter electrode which are provided on said insulating base; and
forming a second layer containing a buffer on said first layer by using an organic solvent solution of a lipid which does not dissolve said hydrophilic polymer.
2. The method for producing a biosensor in accordance with claim 1, wherein said step of forming the first layer comprises spreading an aqueous solution which dissolves the enzyme and the hydrophilic polymer on the insulating base and drying the spread solution, and wherein said step of forming the second layer comprises spreading a solution obtained by dispersing the buffer in an organic solvent solution and drying the spread solution.
3. The method for producing a biosensor in accordance with claim 2, wherein said aqueous solution which dissolves the enzyme and the hydrophilic polymer further dissolves an electron acceptor.
4. A method for producing a biosensor comprising the steps of:
forming a first layer containing a buffer and a hydrophilic polymer by using water as the medium on a face of an insulating base in close contact with an electrode system including a working electrode and a counter electrode provided on said insulating base; and
forming a second layer containing a hydrophilic polymer and an enzyme on said first layer by using an organic solvent as the medium that does not dissolve said hydrophilic polymer contained in the first layer.
5. The method for producing a biosensor in accordance with claim 4, wherein said step of forming the first layer comprises spreading an aqueous solution which dissolves the buffer and the hydrophilic polymer on the insulating base and drying the spread solution, and wherein said step of forming the second layer comprises spreading an organic solvent solution of the hydrophilic polymer on the first layer and drying the spread solution, and further dropping an aqueous solution of the enzyme on the second layer and drying the dropped solution.
6. The method for producing a biosensor in accordance with claim 5, wherein said aqueous solution of the enzyme further dissolves an electron acceptor.
7. The method for producing a biosensor in accordance with claim 5, further comprising a step of forming a third layer by spreading an organic solvent solution of a lipid over the second layer and drying the spread solution.
8. A method for producing a biosensor comprising:
a first step of spreading an aqueous solution containing a hydrophilic polymer and a buffer on an insulating base in close contact with an electrode system including a working electrode and a counter electrode provided on a face of said insulating base and drying the spread solution, and
a second step of spreading an organic solvent solution containing at least an enzyme and a hydrophilic polymer over the layer and drying the spread solution.
9. The method for producing a biosensor in accordance with claim 8, wherein either of said aqueous solution employed in said first step on the organic solvent solution employed in said second step further contains an electron acceptor.
10. The method for producing a biosensor in accordance with claim 9, wherein the organic solvent solution employed in said second step further contains a hydrophilic polymer.
11. A method for producing a biosensor comprising the steps of:
forming a first layer containing an enzyme and a hydrophilic polymer by using water as the medium on a face of an insulating base in close contact with an electrode system including a working electrode and a counter electrode which are provided on said insulating base; and
forming a second layer containing a buffer on said first layer by using an organic solvent solution of a hydrophilic polymer, which solvent does not dissolve said hydrophilic polymer contained in the first layer.
12. The method for producing a biosensor in accordance with claim 11, further comprising a step of forming a third layer by spreading an organic solvent solution of a lipid over the second layer and drying the spread solution.
13. The method for producing a biosensor in accordance with claim 11, wherein said step of forming the first layer comprises spreading an aqueous solution which dissolves the enzyme and the hydrophilic polymer on the insulating base and drying the spread solution, and wherein said step of forming the second layer comprises spreading a solution obtained by dispersing the buffer in the organic solvent solution and drying the spread solution.
14. The method for producing a biosensor in accordance with claim 13, wherein said aqueous solution which dissolves the enzyme and the hydrophilic polymer further dissolves an electron acceptor. .[.15. The method for producing a biosensor in accordance with claim 13, wherein said aqueous solution which dissolves the enzyme and the hydrophilic polymer
further dissolves an electron acceptor..].16. A biosensor comprising:
an electrical insulating base,
an electrode system including a working electrode and a counter electrode which are provided on a face of said insulating base, and
a reaction layer formed on said insulating base in close contact with said electrode system; wherein
said reaction layer is a laminate of at least two layers, and wherein a first reaction layer is in contact with said electrode system and contains an enzyme, an electron acceptor and a hydrophilic polymer, and a second reaction layer is on top of said first reaction layer and contains a buffer and a lipid,
said enzyme being separated from said buffer. 17. A biosensor comprising,
an electrical insulating base,
an electrode system including a working electrode and a counter electrode which are provided on a face of said insulating base, and
a reaction layer formed on said insulating base in close contact with said electrode system; wherein
said reaction layer is a laminate of at least two layers, and wherein a first reaction layer is in contact with said electrode system and contains an enzyme and an electron acceptor and a second reaction layer is on top of said first reaction layer and contains a buffer and a hydrophilic
polymer, said enzyme being separated from said buffer. 18. A biosensor comprising,
an electrical insulating base,
an electrode system including a working electrode and a counter electrode which are provided on a face of said insulating base and
a reaction layer formed on said insulating base in close contact with said electrode system; wherein
said reaction layer is a laminate of at least three layers, and wherein a first reaction layer is in contact with said electrode system and contains an enzyme and an electron acceptor, a second reaction layer is on top of said first reaction layer and contains a buffer and a hydrophilic polymer and a third reaction layer is on top of said second reaction layer and contains a lipid,
said enzyme being separated from said buffer. .Iadd.19. A method for producing a biosensor comprising the steps of:
forming a first layer containing a buffer and a hydrophilic polymer by using water as the medium on a face of an insulating base in close contact with an electrode system including a working electrode and counter electrode provided on said insulating base; and forming a second layer containing a lipid-modified enzyme on said first layer by using an organic solvent as the medium that does not dissolve said hydrophilic polymer contained in the first layer..Iaddend..Iadd.20. The method for producing a biosensor in accordance with claim 19, wherein said step of forming the first layer comprises spreading an aqueous solution which dissolves the buffer and the hydrophilic polymer on the insulating base and drying the spread solution, and wherein said step of forming the second layer comprises spreading an organic solvent solution of the lipid-modified enzyme on the first layer and drying the spread solution..Iaddend..Iadd.21. The method for producing a biosensor in accordance with claim 20, wherein said aqueous solution further dissolves an electron acceptor..Iaddend..Iadd.22. The method for producing a biosensor in accordance with claim 20, wherein said organic solvent solution of the lipid-modified enzyme is dispersed with an electron acceptor..Iaddend..Iadd.23. The method for producing a biosensor in accordance with claim 19, wherein said step of forming the first layer comprises spreading an aqueous solution which dissolves the buffer and the hydrophilic polymer on the insulating base and drying the spread solution, and wherein said step of forming the second layer comprises spreading an organic solvent dispersed with the lipid-modified enzyme on the first layer and drying the spread solution..Iaddend..Iadd.24. The method for producing a biosensor in accordance with claim 23, wherein said aqueous
solution further dissolves an electron acceptor..Iaddend..Iadd.25. The method for producing a biosensor in accordance with claim 23, wherein said organic solvent solution is further dispersed with an electron acceptor..Iaddend..Iadd.26. A biosensor comprising:
an electrical insulating base,
an electrode system including a working electrode and a counter electrode which are provided on a face of said insulating base, and
a reaction layer formed on said insulating base in close contact with said electrode system;
wherein said reaction layer is a laminate of at least two layers, and
wherein a first layer is in contact with said electrode system and contains a buffer and a hydrophilic polymer, and a second layer is on top of said first layer and contains a lipid-modified enzyme, said enzyme being separated from said buffer..Iaddend..Iadd.27. The biosensor in accordance with claim 26, wherein said first layer contains an electron acceptor..Iaddend..Iadd.28. The biosensor in accordance with claim 26, wherein said second layer contains an electron acceptor..Iaddend.
US09375705 1993-07-23 1999-08-13 Biosensor and method for producing the same Expired - Lifetime USRE36991E (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18258393 1993-07-23
JP5-182583 1993-07-23
US08277556 US5658443A (en) 1993-07-23 1994-07-19 Biosensor and method for producing the same
US09375705 USRE36991E (en) 1993-07-23 1999-08-13 Biosensor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09375705 USRE36991E (en) 1993-07-23 1999-08-13 Biosensor and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08277556 Reissue US5658443A (en) 1993-07-23 1994-07-19 Biosensor and method for producing the same

Publications (1)

Publication Number Publication Date
USRE36991E true USRE36991E (en) 2000-12-19

Family

ID=16120827

Family Applications (2)

Application Number Title Priority Date Filing Date
US08277556 Expired - Lifetime US5658443A (en) 1993-07-23 1994-07-19 Biosensor and method for producing the same
US09375705 Expired - Lifetime USRE36991E (en) 1993-07-23 1999-08-13 Biosensor and method for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08277556 Expired - Lifetime US5658443A (en) 1993-07-23 1994-07-19 Biosensor and method for producing the same

Country Status (3)

Country Link
US (2) US5658443A (en)
EP (1) EP0636879B1 (en)
DE (2) DE69429640T2 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030155237A1 (en) * 2001-11-16 2003-08-21 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20040031682A1 (en) * 2001-11-16 2004-02-19 Wilsey Christopher D. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US20050147811A1 (en) * 2002-12-17 2005-07-07 Richard Baron Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same
US20050232968A1 (en) * 2002-09-26 2005-10-20 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US20060178689A1 (en) * 2001-06-12 2006-08-10 Dominique Freeman Tissue penetration device
US20090056120A1 (en) * 1999-10-04 2009-03-05 Bhullar Raghbir S Biosensor and method of making
US20090304772A1 (en) * 2002-09-26 2009-12-10 Advanced Bio Prosthetic Surfaces, A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Implantable materials having engineered surfaces and method of making same
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7651596B2 (en) 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7977112B2 (en) 2003-06-20 2011-07-12 Roche Diagnostics Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8632583B2 (en) 2011-05-09 2014-01-21 Palmaz Scientific, Inc. Implantable medical device having enhanced endothelial migration features and methods of making the same
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8679517B2 (en) 2002-09-26 2014-03-25 Palmaz Scientific, Inc. Implantable materials having engineered surfaces made by vacuum deposition and method of making same
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8728563B2 (en) 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9937298B2 (en) 2008-12-16 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9424125D0 (en) * 1994-11-23 1995-01-18 Univ Cranfield Electrochemical sensor and novel media for bioelectrochemical reactions
JP3498105B2 (en) * 1995-04-07 2004-02-16 アークレイ株式会社 Sensors, measuring methods of using the manufacturing method and sensor
US6214612B1 (en) * 1996-03-07 2001-04-10 Matsushita Electric Industrial Co., Ltd. Cholesterol sensor containing electrodes, cholesterol dehydrogenase, nicotinamide adenine dinucleotide and oxidized electron mediator
US6020047A (en) * 1996-09-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Polymer films having a printed self-assembling monolayer
US5922550A (en) * 1996-12-18 1999-07-13 Kimberly-Clark Worldwide, Inc. Biosensing devices which produce diffraction images
JP3487396B2 (en) * 1997-01-31 2004-01-19 松下電器産業株式会社 Biosensor and method of manufacturing the same
JP3394262B2 (en) 1997-02-06 2003-04-07 イー.ヘラー アンド カンパニー Small volume in vitro analyte sensor
US6180288B1 (en) 1997-03-21 2001-01-30 Kimberly-Clark Worldwide, Inc. Gel sensors and method of use thereof
US6059946A (en) * 1997-04-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Biosensor
JP3297630B2 (en) * 1997-07-28 2002-07-02 松下電器産業株式会社 Biosensor
JP3375040B2 (en) * 1997-07-29 2003-02-10 松下電器産業株式会社 Determination of the substrate
US6764581B1 (en) * 1997-09-05 2004-07-20 Abbott Laboratories Electrode with thin working layer
EP1017998B1 (en) 1997-09-26 2009-04-15 SPHERE Medical Limited Micro-structured bio-sensor, use of said bio-sensor and method for immobilising bio-catalysts
US6060256A (en) 1997-12-16 2000-05-09 Kimberly-Clark Worldwide, Inc. Optical diffraction biosensor
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
ES2255168T3 (en) * 1998-07-16 2006-06-16 Sapporo Immuno Diagnostic Laboratory Method of assay of L-phenylalanine and L-phenylalanine sensor.
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6582583B1 (en) 1998-11-30 2003-06-24 The United States Of America As Represented By The Department Of Health And Human Services Amperometric biomimetic enzyme sensors based on modified cyclodextrin as electrocatalysts
US6221579B1 (en) 1998-12-11 2001-04-24 Kimberly-Clark Worldwide, Inc. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
US6579673B2 (en) 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors
CA2305922C (en) 1999-08-02 2005-09-20 Bayer Corporation Improved electrochemical sensor design
US6841052B2 (en) 1999-08-02 2005-01-11 Bayer Corporation Electrochemical-sensor design
WO2001020316A1 (en) * 1999-09-13 2001-03-22 Matsushita Electric Industrial Co., Ltd. Process for producing lipid-modified enzyme and biosensor
DE60024965T2 (en) 1999-10-05 2006-07-13 Matsushita Electric Industrial Co., Ltd., Kadoma glucose sensor
US6399295B1 (en) 1999-12-17 2002-06-04 Kimberly-Clark Worldwide, Inc. Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
DE60019547T2 (en) 1999-12-27 2005-10-06 Matsushita Electric Industrial Co., Ltd., Kadoma biosensor
US7527821B2 (en) * 2000-05-02 2009-05-05 Smiths Detection Inc. Sensor fabricating method
US6723371B2 (en) * 2000-06-01 2004-04-20 Bioptik Technology, Inc. Process for preparing an electrochemical test strip
EP2096435B1 (en) 2000-11-30 2014-11-12 Panasonic Healthcare Co., Ltd. Method of quantifying substrate
US7267750B2 (en) * 2001-01-17 2007-09-11 Matsushita Electric Industrial Co., Ltd. Biosensor
US6821410B2 (en) * 2001-03-07 2004-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and method of substrate quantification
EP1398626A4 (en) * 2001-06-14 2004-09-22 Matsushita Electric Ind Co Ltd Biosensor
US7102752B2 (en) 2001-12-11 2006-09-05 Kimberly-Clark Worldwide, Inc. Systems to view and analyze the results from diffraction-based diagnostics
US8367013B2 (en) 2001-12-24 2013-02-05 Kimberly-Clark Worldwide, Inc. Reading device, method, and system for conducting lateral flow assays
US20030119203A1 (en) 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
US7485453B2 (en) * 2002-05-03 2009-02-03 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7771922B2 (en) 2002-05-03 2010-08-10 Kimberly-Clark Worldwide, Inc. Biomolecule diagnostic device
US7214530B2 (en) 2002-05-03 2007-05-08 Kimberly-Clark Worldwide, Inc. Biomolecule diagnostic devices and method for producing biomolecule diagnostic devices
US7118855B2 (en) * 2002-05-03 2006-10-10 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
JP3624292B2 (en) * 2002-05-13 2005-03-02 松下電器産業株式会社 Activity signal measuring apparatus and method for measuring a biological sample
GB0216039D0 (en) * 2002-07-11 2002-08-21 Hypoguard Ltd Enzyme electrodes and method of manufacture
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
US7169550B2 (en) * 2002-09-26 2007-01-30 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7640083B2 (en) 2002-11-22 2009-12-29 Monroe David A Record and playback system for aircraft
US7247500B2 (en) 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
US20040197819A1 (en) 2003-04-03 2004-10-07 Kimberly-Clark Worldwide, Inc. Assay devices that utilize hollow particles
US7851209B2 (en) 2003-04-03 2010-12-14 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in assay devices
US20050112703A1 (en) 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US7713748B2 (en) 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US7943089B2 (en) 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
WO2005078437A1 (en) 2004-02-06 2005-08-25 Bayer Healthcare Llc Electrochemical biosensor
JP2007523326A (en) 2004-02-06 2007-08-16 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Species that may be oxidized as an internal standard for biosensors, and method of use
US7138041B2 (en) * 2004-02-23 2006-11-21 General Life Biotechnology Co., Ltd. Electrochemical biosensor by screen printing and method of fabricating same
US7521226B2 (en) 2004-06-30 2009-04-21 Kimberly-Clark Worldwide, Inc. One-step enzymatic and amine detection technique
WO2007083693A1 (en) * 2006-01-23 2007-07-26 Matsushita Electric Industrial Co., Ltd. Pyrophosphoric acid sensor and snp typing sensor utilizing the same
EP3187866A1 (en) 2007-12-10 2017-07-05 Ascensia Diabetes Care Holdings AG Electrochemical test sensor
US20100160755A1 (en) * 2008-12-24 2010-06-24 Edwards Lifesciences Corporation Polyelectrolytes as Sublayers on Electrochemical Sensors
JP5691187B2 (en) * 2010-02-10 2015-04-01 ソニー株式会社 Microchip and its manufacturing method for nucleic acid amplification reaction
US8808532B2 (en) * 2011-01-20 2014-08-19 Medtronic Minimed, Inc Electrode compositions for use with analyte sensors
CN103454321B (en) * 2013-03-28 2015-09-09 利多(香港)有限公司 A method of manufacturing a biosensor
CN103412012B (en) * 2013-03-28 2015-09-09 利多(香港)有限公司 biological sensor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537915A1 (en) * 1985-10-24 1987-04-30 Kessler Manfred Method for the electrochemical measurement of hydrogen
EP0251915A2 (en) * 1986-06-27 1988-01-07 Terumo Kabushiki Kaisha Enzyme sensor
JPH01114747A (en) * 1987-10-29 1989-05-08 Matsushita Electric Ind Co Ltd Biosensor
JPH0262952A (en) * 1988-01-29 1990-03-02 Matsushita Electric Ind Co Ltd Biosensor and its production
WO1990005910A1 (en) * 1988-11-14 1990-05-31 I Stat Corp Wholly microfabricated biosensors and process for the manufacture and use thereof
US5120420A (en) * 1988-03-31 1992-06-09 Matsushita Electric Industrial Co., Ltd. Biosensor and a process for preparation thereof
EP0502504A1 (en) * 1991-03-04 1992-09-09 Matsushita Electric Industrial Co., Ltd. A biosensor utilizing enzyme and a method for producing the same
US5192415A (en) * 1991-03-04 1993-03-09 Matsushita Electric Industrial Co., Ltd. Biosensor utilizing enzyme and a method for producing the same
US5229282A (en) * 1989-11-24 1993-07-20 Matsushita Electric Industrial Co., Ltd. Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
US5512159A (en) * 1992-01-21 1996-04-30 Matsushita Electric Industrial Co. Ltd. Biosensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537915A1 (en) * 1985-10-24 1987-04-30 Kessler Manfred Method for the electrochemical measurement of hydrogen
EP0251915A2 (en) * 1986-06-27 1988-01-07 Terumo Kabushiki Kaisha Enzyme sensor
JPH01114747A (en) * 1987-10-29 1989-05-08 Matsushita Electric Ind Co Ltd Biosensor
JPH0262952A (en) * 1988-01-29 1990-03-02 Matsushita Electric Ind Co Ltd Biosensor and its production
US5120420B1 (en) * 1988-03-31 1999-11-09 Matsushita Electric Ind Co Ltd Biosensor and a process for preparation thereof
US5120420A (en) * 1988-03-31 1992-06-09 Matsushita Electric Industrial Co., Ltd. Biosensor and a process for preparation thereof
WO1990005910A1 (en) * 1988-11-14 1990-05-31 I Stat Corp Wholly microfabricated biosensors and process for the manufacture and use thereof
US5229282A (en) * 1989-11-24 1993-07-20 Matsushita Electric Industrial Co., Ltd. Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
EP0502504A1 (en) * 1991-03-04 1992-09-09 Matsushita Electric Industrial Co., Ltd. A biosensor utilizing enzyme and a method for producing the same
US5192415A (en) * 1991-03-04 1993-03-09 Matsushita Electric Industrial Co., Ltd. Biosensor utilizing enzyme and a method for producing the same
US5512159A (en) * 1992-01-21 1996-04-30 Matsushita Electric Industrial Co. Ltd. Biosensor

Cited By (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8551308B2 (en) 1999-10-04 2013-10-08 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
US20090056120A1 (en) * 1999-10-04 2009-03-05 Bhullar Raghbir S Biosensor and method of making
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US20060178689A1 (en) * 2001-06-12 2006-08-10 Dominique Freeman Tissue penetration device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
US9658183B2 (en) 2001-11-16 2017-05-23 Roche Diabetes Care, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US9017543B2 (en) 2001-11-16 2015-04-28 Roche Diagnostics Operations, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US20030155237A1 (en) * 2001-11-16 2003-08-21 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20090242428A1 (en) * 2001-11-16 2009-10-01 Wilsey Christopher D Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US7276147B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US20070170054A2 (en) * 2001-11-16 2007-07-26 Roche Diagnostics Operations, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US20070170055A2 (en) * 2001-11-16 2007-07-26 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20070161070A1 (en) * 2001-11-16 2007-07-12 Wilsey Christopher D Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US20040031682A1 (en) * 2001-11-16 2004-02-19 Wilsey Christopher D. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7988644B2 (en) * 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8845549B2 (en) 2002-04-19 2014-09-30 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8808201B2 (en) 2002-04-19 2014-08-19 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8157748B2 (en) 2002-04-19 2012-04-17 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US9339612B2 (en) 2002-04-19 2016-05-17 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8235915B2 (en) 2002-04-19 2012-08-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8636673B2 (en) 2002-04-19 2014-01-28 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8562545B2 (en) 2002-04-19 2013-10-22 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8366637B2 (en) 2002-04-19 2013-02-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US9907502B2 (en) 2002-04-19 2018-03-06 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8496601B2 (en) 2002-04-19 2013-07-30 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8491500B2 (en) 2002-04-19 2013-07-23 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8709066B2 (en) 2002-09-26 2014-04-29 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces comprising a pattern of features and method of making same
US8268340B2 (en) 2002-09-26 2012-09-18 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US20050232968A1 (en) * 2002-09-26 2005-10-20 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US8932347B2 (en) 2002-09-26 2015-01-13 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US8679517B2 (en) 2002-09-26 2014-03-25 Palmaz Scientific, Inc. Implantable materials having engineered surfaces made by vacuum deposition and method of making same
US9272077B2 (en) 2002-09-26 2016-03-01 Palmaz Scientific, Inc. Implantable materials having engineered surfaces and method of making same
US8147859B2 (en) 2002-09-26 2012-04-03 Advanced Bio Prosthetic Surfaces, Ltd. Implantable material having patterned surface of raised elements and photochemically altered elements and method of making same
US20090304772A1 (en) * 2002-09-26 2009-12-10 Advanced Bio Prosthetic Surfaces, A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Implantable materials having engineered surfaces and method of making same
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US9638658B2 (en) 2002-10-04 2017-05-02 Roche Diabetes Care, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US7175897B2 (en) 2002-12-17 2007-02-13 Avery Dennison Corporation Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same
US20050147811A1 (en) * 2002-12-17 2005-07-07 Richard Baron Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7879618B2 (en) 2003-06-20 2011-02-01 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent strips
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US8222044B2 (en) 2003-06-20 2012-07-17 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8293538B2 (en) 2003-06-20 2012-10-23 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8859293B2 (en) 2003-06-20 2014-10-14 Roche Diagnostics Operations, Inc. Method for determining whether a disposable, dry regent, electrochemical test strip is unsuitable for use
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US7749437B2 (en) 2003-06-20 2010-07-06 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent stripes
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8083993B2 (en) 2003-06-20 2011-12-27 Riche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7829023B2 (en) 2003-06-20 2010-11-09 Roche Diagnostics Operations, Inc. Test strip with vent opening
US7892849B2 (en) 2003-06-20 2011-02-22 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US7977112B2 (en) 2003-06-20 2011-07-12 Roche Diagnostics Operations, Inc. System and method for determining an abused sensor during analyte measurement
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7651596B2 (en) 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8877035B2 (en) 2005-07-20 2014-11-04 Bayer Healthcare Llc Gated amperometry methods
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US8647489B2 (en) 2005-09-30 2014-02-11 Bayer Healthcare Llc Gated voltammetry devices
US9835582B2 (en) 2005-09-30 2017-12-05 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US9110013B2 (en) 2005-09-30 2015-08-18 Bayer Healthcare Llc Gated voltammetry methods
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US9005527B2 (en) 2006-10-24 2015-04-14 Bayer Healthcare Llc Transient decay amperometry biosensors
US8470604B2 (en) 2006-10-24 2013-06-25 Bayer Healthcare Llc Transient decay amperometry
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US9717449B2 (en) 2007-10-25 2017-08-01 Dexcom, Inc. Systems and methods for processing sensor data
US9339238B2 (en) 2007-12-17 2016-05-17 Dexcom, Inc. Systems and methods for processing sensor data
US9901307B2 (en) 2007-12-17 2018-02-27 Dexcom, Inc. Systems and methods for processing sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US9149234B2 (en) 2007-12-17 2015-10-06 Dexcom, Inc. Systems and methods for processing sensor data
US9149233B2 (en) 2007-12-17 2015-10-06 Dexcom, Inc. Systems and methods for processing sensor data
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9937298B2 (en) 2008-12-16 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8728563B2 (en) 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
US8632583B2 (en) 2011-05-09 2014-01-21 Palmaz Scientific, Inc. Implantable medical device having enhanced endothelial migration features and methods of making the same
US9439789B2 (en) 2011-05-09 2016-09-13 Palmaz Scientific, Inc. Implantable medical device having enhanced endothelial migration features and methods of making the same

Also Published As

Publication number Publication date Type
EP0636879A2 (en) 1995-02-01 application
EP0636879B1 (en) 2002-01-16 grant
DE69429640D1 (en) 2002-02-21 grant
EP0636879A3 (en) 1995-04-26 application
DE69429640T2 (en) 2002-09-12 grant
US5658443A (en) 1997-08-19 grant

Similar Documents

Publication Publication Date Title
Zhao et al. Direct electron transfer at horseradish peroxidase—colloidal gold modified electrodes
US6258229B1 (en) Disposable sub-microliter volume sensor and method of making
US5332479A (en) Biosensor and method of quantitative analysis using the same
US6893552B1 (en) Microsensors for glucose and insulin monitoring
US6982027B2 (en) Biosensor
US6001239A (en) Membrane based electrochemical test device and related methods
US5582697A (en) Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5160418A (en) Enzyme electrodes and improvements in the manufacture thereof
US5650062A (en) Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
Ikeda et al. Amperometric fructose sensor based on direct bioelectrocatalysis
US20040020777A1 (en) Biosensor
US6726818B2 (en) Biosensors with porous chromatographic membranes
US6033866A (en) Highly sensitive amperometric bi-mediator-based glucose biosensor
US6416641B1 (en) Biosensor
US6287451B1 (en) Disposable sensor and method of making
US6340428B1 (en) Device and method for determining the concentration of a substrate
Zhao et al. A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications
EP0901018B1 (en) Method for quantitative measurement of a substrate
US6212417B1 (en) Biosensor
US20030000834A1 (en) Method for analyzing a biological sample
US5229282A (en) Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
US6117289A (en) Cholesterol sensor and method for producing the same
US5128015A (en) Method and apparatus for amperometric diagnostic analysis
US20030217918A1 (en) Rapid response glucose sensor
EP0359831B1 (en) Biosensor and process for its production

Legal Events

Date Code Title Description
SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:032332/0082

Effective date: 20081001

AS Assignment

Owner name: PANASONIC HEALTHCARE CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:032360/0795

Effective date: 20131127

AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC HEALTHCARE CO., LTD.;REEL/FRAME:032480/0433

Effective date: 20140301

AS Assignment

Owner name: PANASONIC HEALTHCARE HOLDINGS CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:PHC HOLDINGS CO., LTD.;REEL/FRAME:032785/0563

Effective date: 20140331

Owner name: PHC HOLDINGS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:032785/0498

Effective date: 20140331