USRE35803E - Blood lancet device for and method withdrawing blood for diagnostic purposes - Google Patents

Blood lancet device for and method withdrawing blood for diagnostic purposes Download PDF

Info

Publication number
USRE35803E
USRE35803E US08609627 US60962796A USRE35803E US RE35803 E USRE35803 E US RE35803E US 08609627 US08609627 US 08609627 US 60962796 A US60962796 A US 60962796A US RE35803 E USRE35803 E US RE35803E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
lancet
blood
puncture
device
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08609627
Inventor
Hans Lange
Dirk Bocker
Hermann Edelmann
Wolfgang Rudinger
Herbert Argauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/15192Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
    • A61B5/15194Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150175Adjustment of penetration depth
    • A61B5/150183Depth adjustment mechanism using end caps mounted at the distal end of the sampling device, i.e. the end-caps are adjustably positioned relative to the piercing device housing for example by rotating or screwing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15115Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
    • A61B5/15117Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15126Means for controlling the lancing movement, e.g. 2D- or 3D-shaped elements, tooth-shaped elements or sliding guides
    • A61B5/1513Means for controlling the lancing movement, e.g. 2D- or 3D-shaped elements, tooth-shaped elements or sliding guides comprising linear sliding guides

Abstract

Blood lancet device for withdrawing blood for diagnostic purposes, in which with the aid of a lancet drive (3) in a housing (1) a lancet holder (6) with a lancet (34) positioned in it and moveable along a predetermined, straight puncture path is moved until the tip (35) of the lancet emerges from the outlet (84), in order to produce a wound in a body part adjoining the outlet (84). The lancet holder (6) also serves to retract the lancet (34) into a position in which the tip (35) is again positioned within the housing (1).
In order to make possible a puncture involving especially little pain, the lancet drive (3) has a rotary/sliding transmission system (4) whose input side (16) is formed by a transmission member which is rotatable about an axis of rotation parallel to the predetermined puncture path. This input-side transmission member (5) of the rotary/sliding transmission system is coupled with the elastic drive element (9) of the lancet drive (3) and converts a torque transmitted to the transmission member (5) into a longitudinal displacement in the direction of the predetermined puncture path, which is transmitted to the lancet holder (6).
.Iadd.A method for withdrawing blood for diagnostic purposes using the blood lancet device is also presented..Iaddend.

Description

The invention relates to a blood lancet device for withdrawing blood for diagnostic purposes, said blood lancet device having a housing with an outlet for the tip of a lancet, a lancet holder for holding the lancet and movable within the housing along a predetermined, straight puncture path, and a lancet guide for guiding the lancet holder on the predetermined, straight puncture path. During the puncturing and retraction movement the lancet holder is moved by a lancet drive, which has an elastic drive element, commonly a metal spring. It is lockable in an initial position, in which the elastic drive element is in a tensioned state, by the use of a locking device. After the locking device is unlocked, the elastic drive element is released, and its movement is converted via the lancet drive into the puncturing movement, the lancet held in the lancet bolder being moved at high speed along the predetermined puncture path in the puncturing direction until its tip emerges from the outlet, in order to produce a wound in a body part pressed against the outlet (finger or ear lobe). Immediately thereafter the lancet is retracted by the lancet drive.

In order to obtain a small volume of blood from the finger or ear lobe for diagnostic purposes, in medical practice lancets are used, these being pricked into the appropriate body part by the doctor or laboratory personnel manually or with the use of a simple piece of apparatus. The lancet must, of course, be sharp and sterile. However, no other particularly stringent requirements are stipulated in medical practice because withdrawals of blood in individual patients are performed at long time intervals, and the puncture is performed by trained, specially educated personnel.

By contrast, the requirements relating to blood lancet devices intended for use by the patient himself are considerably more stringent. They are necessary above all to enable particularly high-risk patients groups to monitor specific analytical values in their blood on a regular basis within the scope of home-monitoring.

This applies in particular to diabetics, who must monitor their blood glucose level frequently and regularly in order to keep within specified reference limits as constantly as possible by adjusting their insulin injections to requirements, which depend on food intake, physical activity, and other factors. This is extremely important for the health of these patients and to avoid serious delayed damage, for example blindness and amputation of body parts.

For this reason small, simple to use and relatively low-cost analysis systems have been developed, usually comprising blood test strips and an accessory evaluation instrument. Although these have meant that the opportunity of analysis can now be offered to all patients without problems and at relatively low cost, self-monitoring of blood glucose values has not yet become as widespread among diabetics as one would like. A principal reason for this is the pain associated with the production of the puncture wounds necessary for the withdrawal of blood.

Numerous different blood lancet devices intended as suitable for producing the puncture wounds necessary for the withdrawal of blood easily and with relatively little pain have been developed. Examples are described in U.S. Pat. Nos. 4,442,836, 4,469,110, 4,535,769 and 4,924,897. Blood withdrawal instrument and lancet are mutually adapted, and are also described as a blood sampling system. Despite some progress, even with these known blood lancet devices intended in particular for use by the patient himself, the pain produced by the puncture is still excessive.

An object of the present invention is therefore to provide a blood lancet device which in a simple construction will perform the puncture in such a way as to lead to a reduced perception of pain.

In a blood lancet device of the type initially described this object is achieved according to a first principal aspect of the invention in that the lancet drive has a rotary/sliding transmission system which has a transmission member rotatable about an axis of rotation parallel to the predetermined puncture path and via which a torque introduced on the input side of the rotary/sliding transmission system is converted into a longitudinal displacement in the direction of the predetermined puncture path, the rotatable transmission member of the rotary/sliding transmission system is coupled with an elastic drive element, and the output-side longitudinal displacement of the rotary/sliding transmission system is transmitted to the lancet holder.

The term "transmission system" is employed here in the general sense, that is, as a kinematic device used for the coupling and conversion of movements, in the present case the movement during the release of the elastic drive element (which hereinafter without limiting the general applicability is also described as a drive spring) being converted into the movement of the lancet holder and of a lancet which is held in it preferably exchangeably.

The rotary movement of the input-side transmission member is preferably converted into a translational movement parallel with the axis of rotation of said transmission member with the aid of a cam drive mechanism, at least part of the puncturing movement and preferably also of the retraction movement being determined by a relative movement of a driver pin in a recess forming the driver cam, in which the pin travels along a driver cam formed by the recess. The recess which forms the driver cam may be provided either in the component forming the rotatable transmission member, or in an adjacent displaceable component. Correspondingly, the pin is rigidly connected either to an adjacent displaceable component or to the component forming the rotatable transmission member.

In the preferred design, the rotatable transmission member of the rotary/sliding transmission system has a cylindrical sleeve within which is located a piston-shaped part which, during longitudinal displacement in the direction of the puncture path, slides with a cylindrical outer wall within the sleeve, in which case the sleeve should be rotatable, but not displaceable in the axial direction, and the axially displaceable piston-shaped part located within it should be non-rotatable. In this case the piston-shaped part is preferably a component part of the lancet holder or firmly connected to it.

The blood lancet device according to the invention is characterised above all in that the vibrations during the puncturing and retraction movement are very slight because, apart from the lancet holder itself, no other components are accelerated and braked in the puncturing direction. Within the scope of the invention it has been found that this low level of vibration greatly contributes to a painless puncture.

Furthermore, the invention permits a simple construction of the drive with little play with few components and good guiding of the lancet holder. Vibrations during the puncturing and retraction movement are thereby largely avoided with low costs of manufacture. As was observed within the scope of the invention, this too is a major contribution towards reducing the perception of pain.

In addition, the invention allows a handy and compact construction, in which the housing preferably has an elongated shape ("pencil shape"), and its longitudinal axis runs parallel to the puncturing direction. This permits convenience of storage and simplifies operation.

According to a second principal aspect of the investigation, which should not only be regarded as a preferred embodiment but also has independent importance, the lancet drive and the holding of the lancet in the lancet holder are designed in such a way that the puncture depth at which during the puncturing movement the lancet tip emerges from the outlet varies by no more than at most 0.15 mm, preferably by at most 0.1 mm, and especially preferably by at most 0.05 mm with unchanged setting of the blood lancet device and successive puncturing movements.

The puncture depth should be easily and precisely adjustable by the user. In addition, the adjustment range preferably includes unusually low puncturing depths of between 0.5 mm and 2.0 mm, the range between 0.7 mm and 1.3 mm being of particular importance. Within the scope of the present invention it has been observed that, surprisingly, the blood volume required in medical practice for analysis, commonly between 1 and 50 μl and in the majority of cases between 10 and 30 μl, can be obtained with distinctly reduced pain in the overwhelming majority of people even at these low puncture depths, if an extremely high reproducibility of the depth of the puncture at a specific, unchanged setting of the apparatus is simultaneously ensured.

Admittedly a reproducible puncture depth is also aimed for with previously known blood lancet devices, such as that described in U.S. Pat. No. 4,442,836. Investigations in the context of the present invention have, however, shown that in all conventional blood lancet devices the variations in the puncture depth during successive puncture movements considerably exceed the previously mentioned limit values (at least about ±0.3 mm). The setting mechanism for setting the puncture depth is preferably designed so as to be adjustable stepwise, the interval between steps being at least about 0.2 mm and at most about 0.4 mm, preferably about 0.3 mm, at least within the above-mentioned preferred adjustment range (0.5 to 2.0 mm preferably 0.7 to 1.3 mm). The complete adjustment range can of course extend beyond the partial ranges mentioned and also include greater puncture depths in order to take account of the requirements of the relatively few individuals in whom an insufficient blood volume can be obtained with the deep puncture depths mentioned (for example owing to a particularly thick stratum corneum).

The reproducible puncture depth can be achieved by known mechanical means as long as relatively high-grade materials are used during manufacture and close tolerances are observed in production. However, the lancet drive described in connection with the first principal aspect of the invention is especially preferred.

A considerable improvement in the reproducibility of the puncture depth is achieved via a preferred embodiment in which the metal needle of the lancet has a positioning element and the lancet holder a stop for the positioning element, and the lancet is held in the lancet holder in such a way that the positioning element is pressed elastically against the stop.

Lancets always have a metal needle with one end ground to a point. The posterior part of the lancet needle at the opposite end from the tip is commonly enclosed in a lancet body made of a plastic material (U.S. Pat. No. 3,358,689). During manufacture the lancet needle is usually positioned in a plastic injection mould and the lancet body injected onto it. Lancets of this type are fixed in the lancet holder with the aid of the lancet body. The depth of the puncturing movement is usually limited in that, during the puncture, the anterior edge of the lancet body impinges on a stop rigidly connected with the lancet device housing in the zone of the blood lancet outlet. The puncture depth is also influenced by several tolerances. Above all, within the scope of the present invention it has been observed that the production tolerance of the position of the needle tip relative to the position of the plastic body is an important reproducibility-impairing factor.

In this proposed design the variation in the puncture depth from one lancet to another is influenced only by the tolerance of the distance between the positioning element and the tip of the metal needle. As illustrated below using examples, the positioning element can be formed by the posterior end of the needle, or by a projection positioned at a distance to one side of the needle. In this way, it is perfectly possible to maintain very close tolerances for the distance between the positioning element and the lancet tip by the usual metal working techniques.

The invention is explained in greater detail below using an example of an embodiment schematically represented in the following figures:

FIG. 1 A longitudinal sectional view of a blood lancet device;

FIG. 2 A sectional view of a blood lancet device according to FIG. 1 along the line 1--1;

FIG. 3 A sectional view of a blood lancet device according to FIG. 1 along the line 2--2;

FIG. 4 A sectional view of a blood lancet device according to FIG. 1 along the line 3--3;

FIG. 5: A side view of the lancet holder of the blood lancet device according to FIG. 1;

FIG. 6: A projection of the contours of the driver cam recess of the lancet holder according to FIG. 5 in one plane;

FIG. 7: A partially cutaway diagram of the ram and lancet holder of a blood lancet device according to FIG. 1;

FIG. 8: A perspective sectional view of the housing cylinder of a blood lancet device according to FIG. 1;

FIG. 9: A partially cutaway diagram of a sealing sleeve and sealing cap of a blood lancet device according to FIG. 1;

FIG. 10: A side view of the cylindrical sleeve of a blood lancet device according to FIG. 1;

FIG. 11: A preferred embodiment of the lancet holding device and lancet, partly in side view and partly in sectional view;

FIGS. 12 and 13: two orthogonal sectional views of an alternative preferred embodiment of the lancet holding device and lancet;

FIG. 14: A graphical representation illustrating the function of the invention.

Within the housing 1 of the blood lancet device 2 shown in FIG. 1 a lancet drive 3 is located, said drive having a rotary/sliding transmission system 4 with a rotatable input-side transmission member 5 and a lancet holder 6 displaceable in the direction of the axis of rotation A of the transmission member 5. The torque introduced on the input side 16 of the rotary/sliding transmission system 4 is produced by an elastic drive element 9 of the lancet drive 3.

In the preferred embodiment described, the elastic drive element 9 is a spirally wound coiled spring 10. This is supported against a spring stop 11 on the housing 1 with one end 12, and with the other end 13 into an axial slit 14 on the input side (right-hand side in the figure) of the transmission member 5, which takes the form of a cylindrical sleeve 15. The spirally wound coiled spring 10 is located co-axially to the axis of rotation A of the rotary/sliding transmission system 4.

Positioned within sleeve 15 is lancet holder 6. A piston-shaped part 20, whose outer diameter is somewhat smaller than the internal diameter of sleeve 15 is a component part of lancet holder 6, and with its cylindrical outer wall 20b can slide along the internal wall of sleeve 15. The internal wall of sleeve 15 thus forms a lancet guide 15b during the puncturing and retraction movement. The sleeve 15 is fixed in housing 1 regarding axial displacement, and can rotate only about axis of rotation A.

Lancet holder 6 is overall designed roughly as a hollow cylinder with an approximately constant internal diameter (FIG. 5 and FIG. 7). In the lancet take-up part 22 lancet holder 6 is provided with two notches in its casing wall 26, into which two symmetrical and roughly axially parallel tongues 27 extend. These are each connected on one side to the piston-shaped part 20. The free end of both tongues 27 is formed into a lug 29, the distance between said lugs in the non-tensioned state of tongues 27 being smaller than the internal diameter of lancet holder 6. If a lancet 34 (shown in FIG. 1) is positioned in lancet holder 6, tongues 27 with the elastically inwardly pressed lugs 29 formed on them grip lancet 34 like a pair of tongs. The posterior end of lancet 34 adjoins the face 37 of a stay 36, which is diametrically located in lancet holder 6.

As can be seen in FIG. 1, FIG. 5, FIG. 7 and FIG. 11, the casing 38 of piston-shaped part 20 is provided with a groove-shaped recess 39 with a rectangular cross-section, said recess forming a driver cam 40 for rotary/sliding transmission system 4. The line of the contours of recess 39 in one plane is shown in FIG. 6. It will be recognised that recess 39 has two cam segments 41, 42 with constant groove width. The fist cam segment 41 is formed along a circumferential line of casing 38 of cylindrical part 20, in the preferred case described the angular distance between the start 41a and the end 41b of the first cam segment 41 being about 140°. In the zone of the end 41b of the first cam segment, recess 39 changes into the second cam segment 42 which, with identical groove width, connects the start 41a and the end 41b of the first cam segment 41. In so doing the second cam segment 42 follows an arcuate course. Like the first cam segment 41, it is located symmetrically in relation to axis 44. At the start 42a the second cam segment 42 has a straight piece 45 which steadily changes into a curved piece 46 which after an apex 43 travels symmetrically to axis 44 to the end 42b. Here too the end 42b of the second cam segment 42 corresponds to the start 41a of the first cam segment. The two cam segments 41, 42 form the annularly closed driver cam 40.

Positioned on the cylindrical sleeve 15 (FIG. 1) is a roughly axially parallel elastic tongue 51 attached on one side, at the free end of which there is a driver pin 52 which points into the interior of the sleeve 15, said driver pin engaging with the recess 39 of the piston-shaped part 20 and being able to travel along the driver cam 40 formed by recess 39 via a relative movement with the piston-shaped part. The groove width of recess 39 is co-ordinated with the diameter of the cylinder of driver pin 52 in such a way that, at least over the greater part of driver cam 40, driver pin 52 is positively interlocked with recess 39. In order to set the relative movement between driver pin 52 and recess 39, a ramp-like step 54, 55 is provided ahead of the end 41b, 42b of each of the two cam segments 41, 42 in recess 39 (FIG. 6), said ramp-like step 54, 55 rising evenly from the groove base 56, then finishing with a flank 57, 68 dropping perpendicularly to groove base 56. Thus, at the end of each cam segment 41, 42 driver pin 52 comes to lodge in such a way that it can move only in the direction of the end 41b, 42b of the other cam segment 41, 42.

Positioned in the cylindrical recess 58 of the piston-shaped part 20 is a cylindrical part 60 of a ram 59 (FIG. 7). The longitudinal axis of ram 59 corresponds to the longitudinal axis of lancet holder 6 and axis of rotation A of sleeve 15. Almost along its whole longitudinal axis, the cylindrical part 60 of ram 59 has a diametrical slit 62 via which the cylindrical part 60 of the ram forms a fork 61. The distance between the two plane-parallel surfaces 63, 64 of fork 61 is co-ordinated to the thickness of stay 36 in such a way that the cylindrical part 60 of ram 59 in the piston-shaped part 20 of lancet holder 6 is axially movable, the plane-parallel surfaces 63, 64 sliding over the two surfaces 65, 66 of stay 36. On the closed side 67 of the fork 61 ram 59 changes into a bar 71 with cruciform cross-section, said bar being located in such a way that it too can slide within the cylindrical recess 58 of piston-shaped part 20. Positioned at the end of ram 59 is an operating knob 76 with a roughly square cross-section.

On the bar 71 of ram 59 there is a tongue 77 which on impinging on a stay 70 of the cylindrical sleeve 15 limits the axial displacement of the ram 59 within the lancet holder 6.

Ram 59 is positioned in the blood lancet device 2 in such a way that the operating knob 76 projects through a corresponding opening 78 in housing 1, through which ram 59 is mounted non-rotatably with respect to housing 1 (FIG. 1). A ledge 79 formed at the transition of the bar 71 to the operating knob serves as the stop on housing 1 on axial displacement of ram 59. Bar 71 is inserted through the spirally wound coiled spring 10.

If driver pin 52 of cylindrical sleeve 15 is positioned at the start 41a of the first cam segment 41 of driver cam 40, coiled spring 10 is in a non-tensionned state (FIG. 1 and FIG. 6). By rotation of cylindrical sleeve 15 to the right, driver pin 52 within driver cam 40 of the piston-shaped part 20 is moved to the end 41b of the first cam segment 41, and coiled spring 10 coupled to sleeve 15 is induced into a tensioned state. The fact that ram 59 is non-rotatably mounted in housing 1 and stay 36 is positioned within fork 61 prevents lancet holder 6 from also rotating when the sleeve 15 rotates. During this rotation of sleeve 15 to the right no longitudinal displacement is executed by lancet holder 6, since the first cam segment 41 travels along a circumferential line of piston-shaped part 20. At the end of the slope of step 54 there is a non-sloping surface segment 54a which still is a little below the top edge of the side walls of cam 40. The bending stress of tongue 51 causes driver pin 52 to be pressed against groove base 56 at the end of the first cam segment 41b. Via vertical flank 57 of step 54, sleeve 15 with driver pin 52 is prevented from being able to move back along the first cam segment 41 due to the now tensioned state of coiled spring 10.

A locking device 83 locks the cylindrical sleeve 15 in this position of the driver pin 52 (FIG. 1 and FIG. 2). If the locking device 83 is released, the spring tension of coiled spring 10 causes a torque to be transmitted to the input side 16 of the rotary/sliding transmission system 4, sleeve 15 being rotated back in the opposite direction to the former direction of rotation and driver pin 52 travelling along the second cam segment 42 (FIG. 1 and FIG. 2). In the process, on the output side 17 of the rotary/sliding transmission system 4 piston-shaped part 20, which is fixed to prevent rotary movements, is displaced longitudinally within housing 1 in the direction of outlet 84 of said housing 1 until driver pin 52 has reached apex 43 of the second cam segment 42 and the tip 35 of the lancet 34 emerges through the outlet 84. When driver pin 52 is positioned at the apex 43 of the second cam segment 42, the tip 35 of the lancet 34 has reached its maximum longitudinal displacement in the direction of the puncture path.

Because the blood lancet device is pressed against the skin with a pressure surface 82 surrounding outlet 84, the puncture depth corresponds to the distance between tip 35 and pressure surface 82 (in the direction of the puncture path).

The retraction movement of the lancet 34 is complete when the driver pin has reached the end 42b of the second cam segment 42, which is identical with the start 41a of the first cam segment 41. Before it reaches this point it slides over the slope of a second ramp-like step 55, which again has a non-sloping surface segment 55a and a vertical flank 68 at its end. The slope here is longer and less steep in order to slow down the movement as little as possible. Because of this the driver pin 52 can only continue to move only along the first cam segment 41.

The puncturing and retraction movement of lancet 34 is achieved by converting the rotary movement about the axis of rotation A of the spirally wound coiled spring 10 and of transmission member 5 into a longitudinal displacement of lancet holder 6 in the direction of the predetermined puncture path and thereafter in the opposite direction.

In an alternative embodiment of the invention it can also be provided that the interlocking of recess 39 and driver pin 52 is present only in partial sections, in particular the section between the start 41a and the apex 43 of the second cam segment 42.

In the embodiment shown in FIG. 1, housing 1 of blood lancet device 2 comprises a number of elements. The cylindrical sleeve 15 is positioned in a housing cylinder 85 open on one side. Here, cylindrical sleeve 15 projects with its face 87 out of the open end 90 of the housing cylinder 85. On casing surface 91 of housing cylinder 85 in the area of the open end 90 there are three encircling stays 92, 93, 94 (FIG. 8), the first 92 and second 93 stay with their outer edges 92a, 93a being a greater distance away from casing surface 91 than the outer edge 94a of the third stay 94. On the outer edges 92a, 93a of these two stays 92, 93, a cover ring 100 is supported, which has an opening 102 for taking a key 103 for the release of locking device 83 (FIG. 2). On the first face, which points towards lancet tip 35, cover ring 100 is open whereas the second face is provided with a circular recess, the diameter of which roughly corresponds to the diameter of casing surface 91 of housing cylinder 85. For fixing housing cylinder 85, cover ring 100 has a torsion protection device and a bead 107 which follows a course along the casing internal surface in the direction of the circumference, said bead 107 being positioned between the first stay 92 and the second stay 93 of the housing cylinder 85 (FIG. 1).

Attached flush to the open end of cover ring 100 is an intermediate ring 110, which is supported on the second stay 93 of housing cylinder 85 and, with a bead 113 following a course on the inside in the direction of the circumference, on the third stay 94 of housing cylinder 85 (FIG. 1). The intermediate ring 110 surrounds an extended collar 114 of a tension sleeve 115. The tension sleeve 115 has been axially pushed roughly in the position of the lancet take-up part 22 onto the cylindrical sleeve 15 and is fixed with this regarding displacement in the direction of the longitudinal axis. In addition, a notch 116 is provided in the casing of the cylindrical sleeve 15 along a roughly hemi-circumferential line, with which notch 116 a gripping device 117 of the tension sleeve 115 engages (FIG. 4).

For screwing on a sealing ring 120, on the end of the tension sleeve 115 facing outlet 84 there is an outer thread 121, while sealing ring 120 is provided with a corresponding internal thread 122 (FIG. 1 and FIG. 9). By means of a second internal thread 123 a sealing cap 124 with an external thread 125 is screwed into the end of sealing ring 120 facing outlet 84. Sealing cap 124 is closed at the fist face 126 with the exception of puncture opening 84, the outer surface 126a of face 126 being placed on an area of skin during the use of the blood lancet device 2. The puncture depth is set using thread 123, 125, with which sealing cap 124 and sealing ring 120 are connected.

Lancet drive 3 and adjustability via thread 123, 125 are so co-ordinated with the dimensions of the lancet 34 to be used that the puncture depth is adjustable within a desired adjustment range, which in a preferred practical embodiment ranges from 0.7 mm to 2.2 mm, successive puncture movements with unchanged setting of the blood lancet device 2 varying in respect of the puncture depth by at most 0.15 mm, preferably by at most 0.1 mm, and especially preferably by at most 0.05 mm.

In order that the user of the blood lancet device 2 can set what is, for him, the optimal puncture depth step-wise and not have to make a re-adjustment with each use, an engaging device 130 is envisaged, as FIG. 9 shows. To this end, on its casing internal surface 120a sealing ring 120 is provided with radially encircling, evenly distributed nubs 131. Between each pair of these nubs 131 there lodges an engaging tongue 132, which is fastened to sealing cap 124 on one side and parallel to the longitudinal axis on casing 127 of sealing cap 124 so that it lodges almost free of play in the free zone between two nubs 131. By twisting of sealing cap 124 and sealing ring 120 in opposite directions, the elastically formed engaging tongue 132 slides past a nub 131 and comes to lodge in the next free zone between two nubs 131. To monitor the puncture depth, sealing ring 120 bears a mark 133, with the aid of which the puncture depth set can be read off against a scale 134 on sealing cap 124.

By rotation of the sealing ring 120 of the tensioning device 137 to the right with respect to the housing cylinder 85, the tensioning sleeve 115 with the cylindrical sleeve 15, which are engaged with the catch 117 and the first face 138 of the notch 116, is also turned (FIG. 1 and FIG. 4). The blood lancet device 2 is thereby tensioned. At the start of the rotation to the right, driver pin 52 is at the start of the first cam segment 41 and travels along this to the end 41b, step 55 positively determining the direction of movement. During this rotation to the right, lancet holder 6 remains in its position in housing 1 without executing a movement. This has the advantage that during the rotation to the right the lancet tip 35 does not emerge through opening 84, and an undesirable risk of injury due to the tensioning procedure is thereby excluded.

Simultaneously with the rotation to the right the spirally wound coiled spring 10 and an elastic retraction element, which in the described preferred embodiment is similarly in the form of a spirally wound coiled spring 140, are induced into a tensioned state. In the process, return spring 140 is supported on the one hand on the housing cylinder 85 and on the other on the tensioning sleeve 115 (FIG. 1). The rotation to the right is ended by the meeting of a stop stay 149 on the housing cylinder 85 and a stop lug 151 of the cylindrical sleeve 15 (FIG. 8 and FIG. 10). In the process driver pin 52 at end 41b of the first cam segment 41 comes to lodge behind the vertical flank 57 of step 54, and an elastic locking tongue 153 (FIG. 2) of the locking device 83 snaps into a corresponding locking recess 154 positioned on the casing 85a of the housing cylinder 85 and locks the blood lancet device 2 in the tensioned state.

The tensioning device 137 therefore has an operating element 155 (in the described preferred case the sealing ring 120) accessible from outside the housing 1, said operating element being coupled with the input side 16 of the rotary/sliding transmission system 4 in such a way that, by rotation of operating element 155 with respect to the housing 1, the elastic drive element 9 of the lancet drive 3 is induced into the tensioned state (FIG. 1).

On the release of the sealing ring 120, the spring tension of the return spring 140 comes into play and turns the mutually coupled elements consisting of the tensioning sleeve 115, sealing ring 120 and sealing cap 124 back into their starting position, the rotary/sliding transmission system 4 not being moved. Because the drive sleeve 15 is engaged only on rotation to the right of sealing ring 120, a free-wheeling function is achieved. Because operating element 155, after the tensioning of the drive element 9, is returned to the starting position, it remains at rest during the puncture movement.

After the release of the locking device 83 by pressing the button 103, the puncturing procedure is initiated. In the process the elastic locking pin 153 fastened to the drive sleeve 15 is moved from the locking recess 154 of the housing cylinder 85 into the interior space of the housing cylinder 85, as a result of which the drive sleeve 15 is released for rotary movements with respect to housing 1 (FIG. 2). The mounting of button 103 is designed in such a way that when the blood lancet device 2 is non-tensioned the button is held in a depressed position. Only in the tensioned state of the coiled spring 10 is the button 103 pressed outwards. The operating status of the blood lancet device 2 can thus be ascertained from the position of the button 103. The button 103 is enclosed by the covering ring 100, by which it is also held in place with respect to the housing 1.

The spring tension of the coiled spring 10 now introduces a rotation of the drive sleeve 15 to the left. During this rotation to the left, driver pin 52 travels along the second cam segment 42 of the driver cam 40, as described.

Because the blood lancet device 2 according to the invention has a small accelerated mass in the direction of the longitudinal movement of lancet 34, the puncture is very largely vibration-free. This is an important requirement for a puncture with little pain, as was demonstrated in investigations in the context of the invention. The described guiding of the lancet holder 6 within the rotary/sliding transmission system further contributes to the vibration-free and therefore also pain-free puncture.

To replace the lancet 34, sealing ring 120 with the sealing cap 124 is screwed off by rotation to the left. By pressing on the operating knob 76, ram 59 is moved in the direction of the outlet of the housing along the axis of rotation A (FIG. 1 and FIG. 7). In the process the face 61a of the fork 61 presses on lancet 34, which is thereby ejected. The axial movement of the ram 59 is limited by the tongue 77 of the ram, said tongue impinging upon the stay 70 of the cylindrical sleeve 15. The new lancet 34 is inserted into the lancet take-up part 22 of the lancet holder 6 and pushed in as far as the first face 37 of the stay 36. In the process the ram 59 is pushed back and the lancet 34 is gripped firmly by the two lugs.

In order to obtain good reproducibility of the puncture depth with unchanged setting of the blood lancet device 2, an exactly reproducible positioning of the lancet 34 in lancet holder 6 is necessary. The preferred embodiments for holding the lancet shown in FIGS. 11 to 13 serve this purpose.

The lancet 34 shown in FIG. 11 comprises as usual a plastic body 165 and a metal needle 166. It is however of a novel design in that the posterior end 167 of the metal needle 166 projects beyond the posterior end 168 of the plastic body 165. The rearward face of the posterior end 167 serves as the positioning element 169. Said positioning element adjoins a stop 170 of the lancet holder 7, which in the case shown is formed by stay 36.

The holding of the lancet 34 in the lancet holder 6 is designed in such a way that the lancet 34 is pressed back with positioning element 169 against stop 170 (in opposition to the puncturing direction). In the embodiment shown, this is achieved in that the V-shaped recesses 171, with which the lugs 29 of the elastic tongues 27 engage, are designed and disposed in such a way that the posterior sloping surface 29a adjoins a corresponding sloping surface 171a of the recesses 171 and a force component in opposition to the puncturing direction results from the pressure of the tongues 27 in the direction of axis A.

The body 165 of the lancet 134 is preferably not round but, for example, square. Via a corresponding shape of the interior space of the lancet take-up part 22 protection against torsion is ensured.

The embodiment shown in FIGS. 12 and 13 is distinctive above all in that the needle 176 is not round in cross-section, but consists of a thin flat material. The shape of the needle can be appreciated in FIG. 12 in side view of the narrow edge, and in FIG. 13 in side view of the surface.

FIG. 12 represents a tip protection device 177a removable by rotation, said tip protection device being injected--as is also common practice with other lancets--together with the plastic body 177 on to needle 176 and removed before the lancet is used.

The needle 176 is held in a plastic body 177, which in this case also has V-shaped recesses 171 which interlock with the lugs 29 of the elastic tongues 27 of the holder 6 in the same way as in FIG. 11 to produce a resultant force component which acts on the lancet in opposition to the puncturing direction.

In this case a peg-shaped projection 178 positioned at a distance to one side of the needle 176 serves as the positioning element 169, said projection 178 adjoining a lower face 179 of the take-up part 22 of the lancet holder 6 forming the stop 170.

A lancet of this type is easily manufactured in a punching process. Said lancet is characterised by particularly close tolerances of the distance between the lancet tip 35 and the positioning element 169 and thus by a particularly good reproducibility of the puncture depth. Furthermore, the flat shape permits a relatively broad construction of the lancet tip in the plane of needle 176. In this way a relatively large blood sample volume is achieved with little pain using a small puncture depth.

As mentioned above, in the context of the present invention it was observed that, surprisingly, an adequate volume of blood by comparison with the greatly reduced puncture depths commonly used in the past can be obtained if care is simultaneously taken to ensure that the puncture depth is very accurately reproducible.

In FIG. 14 results obtained in 30 test subjects with the blood lancet device according to the invention are presented in graph form. The number N of test subjects is plotted along the x-axis, and the blood volume obtained in μl along the y-axis. The five curves show the results using puncture depths of 0.3 mm, 0.5 mm, 0.7 mm, 0.9 mm, and 1.1 mm. It is seen that using a puncture depth of 0.3 mm, inadequate blood volumes were obtained in the great majority of cases. In the case of twenty-one patients the blood volumes were below 10 μl.

On increasing the puncture depth to 0.5 mm, and even more on further increasing it to 0.7 mm or 0.9 mm, the number of patients in whom an adequate blood volume was produced increased very markedly. For example, FIG. 14 shows that using puncture depths of 0.7 mm and 0.9 mm, blood volumes of 20 μl and above were already obtained in 2/3 of the test subjects. With modern analytical equipment this volume is frequently sufficient for an exact analysis.

Using a puncture depth of 1.1 mm the blood volume obtained once again distinctly increases. In this case it is below the 20 μl limit value only in 4 patients, i.e. fewer than 15% of the total number of participants.

Bearing in mind that previously known blood lancet devices commonly operate with puncture depths in excess of 2 mm in order to obtain an adequate quantity of blood, the present results clearly show that within the scope of the invention a marked reduction in pain is achievable in the large majority of patients via a reduction in the puncture depth, and that nevertheless an adequate blood volume can be obtained.

Claims (23)

What is claimed is:
1. Blood lancet device for withdrawing blood for diagnostic purposes, comprising
a lancet (34) comprising a metal needle (166,176) with a tip (35),
a housing (1) with an outlet (84) for the tip (35) of the lancet (34),
a lancet holder (6) located within the housing and connectable to the lancet (34) for holding the lancet (34),
a lancet guide means (15b) located within the housing for guiding the lancet holder (6) for movement on a predetermined puncture path, and
a lancet drive means (3) located within the housing for moving the lancet (34) in a puncturing and retraction direction comprising
an elastic drive element (9), a locking device (83) for locking said lancet drive in a fist position in which the elastic drive element (9) is in a tensioned state and for releasing the tension of the elastic drive element (9) to accomplish a puncturing movement during which the lancet holder (6) is moved at high speed along the predetermined puncture path in a puncturing direction until the tip (35) emerges from the outlet (84) to produce a wound in a body part adjoining the outlet (84) and following which the lancet holder (6) is retracted to a position in which the tip of the lancet (34) is positioned within the housing,
the lancet drive (3) further comprising a rotary/sliding transmission system (4) with an input-side transmission member (5) rotatable about an axis of rotation (A) parallel to the predetermined puncture path and coupled to the elastic drive element (9) to be rotated thereby, and with an output-side transmission member connected to the rotatable input-side transmission member (5) for longitudinal displacing the lancet holder (6) in response to rotation of said input-side transmission member (5).
2. Blood lancet device according to claim 1, in which the rotary/sliding transmission system (4) comprising a cam drive mechanism with a recess (39) forming a driver cam (40), a driver pin (52) enagaging said recess such that at least a part of the puncturing and retraction movement is determined by a relative movement between the driver pin (52) and the recess (39), the drive pin (52) travelling along the recess (39).
3. Blood lancet device according to claim 1, in which the input-side transmission member (5) is in the form of a cylindrical sleeve (15) within which is located a piston-shaped part (20) which, during the longitudinal displacement in the direction of the puncture path, slides with a cylindrical outer wall (20b) within the sleeve (15).
4. Blood lancet device according to claim 3, in which the piston-shaped part (20) is connected to the lancet holder (6).
5. Blood lancet device according to claim 1, comprising a tensioning device (137) with an operating element (155) accessible from outside of the housing, said operating element being coupled to the input-side transmission member (5) of the rotary/sliding transmission system in such a way that the elastic drive element (9) can be brought into the tensioned state by rotation of the operating element (155) with respect to the housing (1).
6. Blood lancet device according to claim 5, in which the coupling of the operating element (155) of the tensioning device (137) with the rotary/sliding transmission system (4) has a free-wheeling mode and an elastic return element (140) in order to return the operating element (155) to the starting position after the tensioning of the drive element (9).
7. Blood lancet device according to claim 1, in which the locking device (83) comprising a locking pin (153) firmly connected with the input-side transmission member (5) and in the tensioned state of the lancet drive (3) engages with a stationary locking recess.
8. Blood lancet device according to claim 1, in which the elastic drive element (9) is a spatially wound coiled spring (10) located coaxially to the axis of rotation (A) of the rotary/sliding transmission system (4).
9. Blood lancet device for withdrawing blood for diagnostic purposes, comprising
a lancet (34) comprising a metal needle (166, 176) with a tip (35), a plastic body (165) connected to said metal needle (166, 176), and a lancet positioning means (169, 178),
a housing (1) with an outlet (84) for the tip (35) of the lancet (34),
a lancet holder (6) located within the housing and contacting the lancet (34) for holding the lancet (34) and movable within the housing (1) along a predetermined puncture path, and
a lancet drive means (3) located within the housing for moving the lancet in a puncturing direction comprising an elastic drive element (9), a transmission system driven by said elastic drive element to contact and move the lancet positioning means (169, 178) through a precisely defined maximum longitudinal displacement, and
wherein the lancet holder accurately positions the lancet positioning means (169, 178) relative to the lancet drive (3) means such that the puncture depth at which during the puncturing movement tip (35) of the lancet (34, 175) emerges from the outlet (84) varies by no more than at most ±0.15 mm with unchanged setting of the blood lancet device and successive puncturing movements.
10. Blood lancet device according to claim 9 comprising means for adjusting the puncture depth of the lancet (34) within an adjustment range which includes adjustment values of less than 2 mm.
11. Blood lancet device according to claim 10, characterized in that the adjustment range includes adjustment values of less than 1.3 mm.
12. Blood lancet device according to claim 9, comprising means for adjusting the puncture depth of the lancet (34) in steps, the interval between steps being at least 0.2 mm and at most 0.4 mm.
13. Blood lancet device according to claim 9 in which said positioning means (169, 178) is accurately located with respect to the needle (166, 176) of the lancet (34) and a stop (170) on the lancet drive means (3), and
wherein the lancet (34, 175) is held in the lancet holder (6) in such a way that the positioning means (169) is elastically pressed against the stop (170).
14. Blood lancet device according to claim 9 in which the puncture depth varies at most by ±0.1 mm.
15. Blood lancet device according to claim 14 in which said driver output member (40) is configured to have a cam segment 42 with an apex 43 which precisely defines the maximum longitudinal displacement of the needle (166, 176).
16. Blood lancet device according to claim 9 in which the puncture depth varies at most by ±0.05 mm.
17. Blood lancet device for withdrawing blood for diagnostic purposes comprising
a lancet (34) comprising a metal needle (166, 176) with a tip (35) and a plastic body (165),
a lancet holder (6) for holding the lancet (34),
a lancet drive means (3) for driving the lancet needle (166, 176) along a predetermined straight path, the driving means comprising
a driver input member rotatable about an axis parallel to the straight path, a driver output member connected to the lancet and the driver input member for converting the rotation of the driver input into longitudinal movement of the lancet along said straight path, and
means for accurately positioning the metal needle (166, 176) of the lancet (34) relative to the driving means, thereby accurately to control the puncture depth of the tip (35), the positioning means comprising a positioning means surface (169) on the needle (166, 176), a stop (170) on the lancet holder (6) for abutting the positioning means surface (169), and elastic means for pressing the positioning means surface (169) against the stop (170). .Iadd.
18. A method for withdrawing blood for diagnostic purposes by puncturing a patient using the blood lancet device of claim 1, said method comprising:
inserting the lancet into the lancet holder with a lancet positioning means surface on the lancet engaging a stop of the lancet holder which is connected to the output-side transmission member on the lancet drive means and wherein there is an elastic means for pressing the lancet positioning means surface against the stop;
holding the blood lancet device against the skin of a patient; and
actuating the lancet drive means to drive the lancet along the predetermined puncture path through a precisely defined longitudinal movement, wherein the needle tip will emerge from the blood lancet device and be driven into the skin of the patient..Iaddend..Iadd.
19. A method according to claim 18, wherein the puncture depth can be varied without changing the precisely defined longitudinal movement by changing the relative position of the fully inserted needle tip with respect to the patient's skin..Iaddend..Iadd.20. A method according to claim 18, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.15 mm with unchanged setting of the puncture depth..Iaddend..Iadd.21. A method according to claim 20, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.1 mm with unchanged setting of the puncture depth..Iaddend..Iadd.22. A method according to claim 21, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.05 mm with unchanged setting of the puncture depth..Iaddend..Iadd.23. A method according to claim 18, wherein the puncture depth can be adjusted in an adjustment range which includes values of the puncture depth below 2 mm..Iaddend..Iadd.24. A method according to claim 23, wherein the puncture depth can be adjusted in an adjustment range which includes values of the puncture depth below 1.3
mm..Iaddend..Iadd.25. A method for withdrawing blood for diagnostic purposes by puncturing a patient using the blood lancet device of claim 17, said method comprising:
inserting the lancet into the lancet holder with the lancet positioning means surface engaging the stop on the lancet and wherein the elastic means presses the lancet positioning means surface against the stop;
holding the blood lancet device against the skin of a patient; and
actuating the lancet drive means to drive the lancet along the predetermined puncture path through a precisely defined longitudinal movement, wherein the needle tip will emerge from the blood lancet device and be driven into the skin of the patient..Iaddend..Iadd.26. A method according to claim 25, wherein the puncture depth can be varied without changing the precisely defined longitudinal movement by changing the relative position of the fully inserted needle tip with respect to the patient's skin..Iaddend..Iadd.27. A method according to claim 25, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.15 mm with unchanged setting of the puncture depth..Iaddend..Iadd.28. A method according to claim 27, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.1 mm with unchanged setting of the puncture
depth..Iaddend..Iadd.9. A method according to claim 28, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.05 mm with unchanged setting of the puncture depth..Iaddend..Iadd.30. A method according to claim 25, wherein the puncture depth can be adjusted in an adjustment range which includes values of the puncture depth below 2 mm..Iaddend..Iadd.31. A method according to claim 30, wherein the puncture depth can be adjusted in an adjustment range which includes values of the puncture depth below 1.3
mm..Iaddend..Iadd.32. A method for withdrawing blood for diagnostic purposes by puncturing the skin of a patient utilizing a blood sampling system comprising a blood withdrawal instrument and disposable lancets wherein the blood withdrawal instrument comprises a housing with a needle outlet, a pressure surface surrounding the needle outlet, a drive means and a lancet holder for exchangeably holding the disposable lancets and wherein the disposable lancets comprise a metal needle embedded in a plastic body with the needle having a needle tip extending outwardly from a first end of the plastic body and a flat end accessible adjacent an opposite end of the plastic body, said method comprising:
inserting the disposable lancet, flat needle end forward, into the blood withdrawal instrument to a position in which the flat end of the needle contacts a stop on the lancet holder and in which the lancet is accurately positioned relative to the lancet holder by being pressed against the stop by elastic means;
placing the pressure surface of the blood withdrawal instrument against the skin of the patient; and
actuating the lancet drive means to have the lancet drive means move the lancet holder and the disposable lancet held therein along a predetermined puncture path through a precisely defined longitudinal displacement wherein the tip of the disposable lancet emerges from the needle outlet of the blood withdrawal instrument and past the pressure surface surrounding the outlet into the patients' skin..Iaddend..Iadd.33. A method according to claim 32 wherein the movement of the lancet holder driven by the lancet drive means and the positioning of the disposable lancet needle tip are so precise, that the puncture depth, the distance the lancet tip emerges past the pressure surface surrounding the outlet, varies by no more than at most 0.15 mm with unchanged setting of the blood withdrawal instrument and successive puncturing movements in which different lancets are inserted in the lancet holder..Iaddend..Iadd.34. A method according to claim 33, wherein the puncture depth varies by no more than at most 0.1 mm..Iaddend..Iadd.35. A method according to claim 33, wherein the puncture depth varies by no more than at most 0.05 mm..Iaddend..Iadd.36. A method according to claim 33, wherein the puncture depth of the tip of the needle of the disposable lancet can be adjusted, without a change in the defined longitudinal displacement, by changing the relative position of the pressure surface and the lancet holder..Iaddend..Iadd.37. A method according to claim 36, wherein the puncture depth may be adjusted in an adjustment range including values below 2 mm..Iaddend..Iadd.38. A method according to claim 37, wherein the adjustment range extends below 1.3 mm..Iaddend..Iadd.39. A method according to claim 32, wherein the pressing of the disposable lancet is obtained by a pair of tongue lugs extending from the lancet holder that penetrate into recesses in the plastic body of the disposable lancet for gripping the plastic body and urging the flat rear end of the needle of the disposable lancet against the stop of the lancet holder..Iaddend..Iadd.40. A method according to claim 32, wherein rotation of the disposal lancet during operation of the blood withdrawal instrument is avoided by mutually cooperating non-round shapes of an interior space of the blood withdrawal instrument and the plastic body of the disposable lancet..Iaddend..Iadd.41. The blood lancet device according to claim 9 wherein the lancet drive transmission system maintains contact with the lancet, after the movement to the defined maximum longitudinal displacement, to retract the lancet from the defined maximum displacement reversely along the puncturing direction..Iaddend..Iadd.42. The blood lancet device according to claim 9 wherein the lancet drive transmission system includes a rotatable input member and a driver output member; wherein the driver output member contacts and moves the lancet; and wherein the driver output member engages the rotatable input member to be longitudinally moved in a straight path to provide the maximum displacement in response to rotation of the rotatable input member..Iaddend..Iadd.43. The blood lancet device of claim 9 wherein the lancet holder is provided with elastic biasing means to press the lancet positioning means against an output member of the transmission system..Iaddend..Iadd.44. The blood lancet device of claim 43 wherein the lancet plastic body is provided with a plurality of recesses and wherein the lancet holder is provided with a plurality of tongue lugs that extend into the recesses to provide the biasing means to press the lancet positioning means..Iaddend..Iadd.45. The blood lancet device of claim 9 wherein the positioning means includes a surface on the lancet, which surface is in contact with and abuts an output member of the transmission system inside the lancet holder to provide the drive from the elastic drive element that moves the lancet..Iaddend..Iadd.46. The blood lancet device according to claim 9 wherein the housing and the plastic body of the lancet have mutual cooperating and contacting non-round shapes to prevent rotation of the lancet with respect to the housing during the puncturing movement of the lancet tip..Iaddend..Iadd.47. A method for withdrawing blood for diagnostic purposes by puncturing a patient using the blood lancet device of claim 43, said method comprising:
inserting the lancet into the lancet holder with the lancet positioning means engaging the output member of the transmission means and wherein the elastic biasing means presses the lancet positioning means surface against the output member;
holding the blood lancet device against the skin of a patient; and
actuating the lancet drive means to drive the lancet in the puncture direction through the precisely defined maximum longitudinal displacement, wherein the needle tip will emerge from the blood lancet device and be
driven into the skin of the patient..Iaddend..Iadd.48. A method according to claim 47, wherein the puncture depth can be varied without changing the precisely defined longitudinal displacement by changing the relative position of the fully inserted needle tip with respect to the patient's skin..Iaddend..Iadd.49. A method according to claim 47, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.15 mm with unchanged setting of the puncture depth..Iaddend..Iadd.50. A method according to claim 49, wherein the puncture depth of the needle tip into the patient varies by no more than at most 0.1 mm with unchanged setting of the puncture depth..Iaddend..Iadd.51. A method according to claim 50, wherein the puncture depth of the needle tip into the patient varies by no more then at most 0.05 mm with unchanged setting of the puncture depth..Iaddend..Iadd.52. A method according to claim 47, wherein the puncture depth can be adjusted in an adjustment range which includes values of puncture depth below 2 mm..Iaddend..Iadd.53. A method according to claim 50, wherein the puncture depth can be adjusted in an adjustment range which includes values of the puncture depth below 1.3 mm..Iaddend..Iadd.54. The blood lancet device of claim 9 wherein the lancet drive means provides a positive drive connection for the lancet to move the lancet along its predetermined path through a first movement in the puncturing direction and a subsequent stopping and retraction of the lancet back into the housing..Iaddend..Iadd.55. The blood lancet device of claim 17 wherein the lancet drive means provides a positive drive connection for the lancet to move the lancet along its predetermined path through a first movement in the puncturing direction and a subsequent stopping and retraction of the lancet back into the housing..Iaddend..Iadd.56. The method according to claim 18 wherein the lancet drive means provides a positive drive connection for the lancet to move the lancet along its predetermined path through a first movement in the puncturing direction and a subsequent stopping and retraction of the lancet back into the housing..Iaddend..Iadd.57. The method according to claim 25 wherein the lancet driver output member connection positively drives the lancet along its predetermined straight path in a first puncturing direction and subsequently stops and then retracts the lancet..Iaddend..Iadd.58. The method according to claim 32 wherein the lancet drive means also subsequently stops movement of the lancet holder and then retracts the lancet holder to withdraw..Iaddend.
US08609627 1992-04-13 1996-03-01 Blood lancet device for and method withdrawing blood for diagnostic purposes Expired - Lifetime USRE35803E (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19924212315 DE4212315A1 (en) 1992-04-13 1992-04-13 Blood lancet device for withdrawing blood for diagnostic purposes
DE4212315.1 1992-04-13
US07987612 US5318584A (en) 1992-04-13 1992-12-09 Blood lancet device for withdrawing blood for diagnostic purposes
US08609627 USRE35803E (en) 1992-04-13 1996-03-01 Blood lancet device for and method withdrawing blood for diagnostic purposes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08609627 USRE35803E (en) 1992-04-13 1996-03-01 Blood lancet device for and method withdrawing blood for diagnostic purposes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07987612 Reissue US5318584A (en) 1992-04-13 1992-12-09 Blood lancet device for withdrawing blood for diagnostic purposes

Publications (1)

Publication Number Publication Date
USRE35803E true USRE35803E (en) 1998-05-19

Family

ID=6456696

Family Applications (2)

Application Number Title Priority Date Filing Date
US07987612 Expired - Lifetime US5318584A (en) 1992-04-13 1992-12-09 Blood lancet device for withdrawing blood for diagnostic purposes
US08609627 Expired - Lifetime USRE35803E (en) 1992-04-13 1996-03-01 Blood lancet device for and method withdrawing blood for diagnostic purposes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07987612 Expired - Lifetime US5318584A (en) 1992-04-13 1992-12-09 Blood lancet device for withdrawing blood for diagnostic purposes

Country Status (5)

Country Link
US (2) US5318584A (en)
EP (2) EP0565970B1 (en)
JP (1) JP2702374B2 (en)
DE (1) DE4212315A1 (en)
ES (2) ES2154855T3 (en)

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020188224A1 (en) * 2001-06-08 2002-12-12 Roe Jeffrey N. Test media cassette for bodily fluid testing device
US6558402B1 (en) 1999-08-03 2003-05-06 Becton, Dickinson And Company Lancer
US20030088261A1 (en) * 2000-01-28 2003-05-08 Stat Medical Device Inc. Adjustable tip for a lancet device and method
US20030225430A1 (en) * 1998-06-11 2003-12-04 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US6659966B2 (en) 2001-11-15 2003-12-09 Roche Diagnostics Corporation Fluid sampling apparatus
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
US6706000B2 (en) 1997-11-21 2004-03-16 Amira Medical Methods and apparatus for expressing body fluid from an incision
EP1424040A1 (en) 2002-11-26 2004-06-02 F.Hoffmann-La Roche Ag Body fluid testing device
WO2004049945A1 (en) 2002-12-03 2004-06-17 Roche Diagnostics Gmbh Dual blade lancing test strip
US20040127929A1 (en) * 2002-12-30 2004-07-01 Roe Steven N. Flexible test strip lancet device
US20040186394A1 (en) * 2003-01-29 2004-09-23 Roe Steven N. Integrated lancing test strip
US20040227643A1 (en) * 2000-07-03 2004-11-18 Hunter Rick C. Insulated container
US20040236251A1 (en) * 2002-12-27 2004-11-25 Roe Steven N. Precision depth control lancing tip
US20040236362A1 (en) * 2003-05-20 2004-11-25 Stat Medical Devices, Inc. Adjustable lancet device and method
US20040267300A1 (en) * 2003-06-27 2004-12-30 Mace Chad Harold Lancing device
US6858015B2 (en) 2001-05-05 2005-02-22 Roche Diagnostics Operations, Inc. Blood withdrawal system
US6866675B2 (en) 2001-01-22 2005-03-15 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US20050201897A1 (en) * 2002-11-26 2005-09-15 Volker Zimmer Body fluid testing device
US20050232815A1 (en) * 2002-12-23 2005-10-20 Werner Ruhl Body fluid testing device
US20050234495A1 (en) * 2003-08-15 2005-10-20 Stat Medical Devices, Inc. Adjustable lancet device and method
US20050245845A1 (en) * 2004-04-30 2005-11-03 Roe Steven N Lancets for bodily fluid sampling supplied on a tape
US20050245844A1 (en) * 2004-05-03 2005-11-03 Mace Chad H Analyte test device
US20050251064A1 (en) * 2004-05-07 2005-11-10 Roe Jeffrey N Integrated disposable for automatic or manual blood dosing
US20050251188A1 (en) * 2004-05-06 2005-11-10 Tzer-Ming Chen Safety lancet device
US20060100543A1 (en) * 2002-12-30 2006-05-11 Raney Charles C Integrated Analytical Test Element
US20060116705A1 (en) * 2004-11-30 2006-06-01 Stat Medical Devices, Inc. Disposable or single-use lancet device and method
US7105006B2 (en) 2003-08-15 2006-09-12 Stat Medical Devices, Inc. Adjustable lancet device and method
US20060224085A1 (en) * 2003-02-13 2006-10-05 Toru Nakayama Painless blood-collecting method
US20060241669A1 (en) * 2005-04-04 2006-10-26 Stout Jeffrey T Narrow-profile lancing device
US20060241668A1 (en) * 2005-01-28 2006-10-26 Stat Medical Devices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US20070100364A1 (en) * 2005-10-28 2007-05-03 Sansom Gordon G Compact lancing apparatus
US20070095178A1 (en) * 2005-11-03 2007-05-03 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
US20070213682A1 (en) * 2006-03-13 2007-09-13 Hans-Peter Haar Penetration device, kit, and method
US20070219573A1 (en) * 2002-04-19 2007-09-20 Dominique Freeman Method and apparatus for penetrating tissue
US20070233167A1 (en) * 2004-09-04 2007-10-04 Thomas Weiss Lancing apparatus for producing a puncture wound
US20080021291A1 (en) * 2004-07-27 2008-01-24 Abbott Laboratories Integrated Lancet and Blood Glucose Meter System
US20080039887A1 (en) * 2003-11-12 2008-02-14 Facet Technologies, Llc Lancing device and multi-lancet cartridge
US7351212B2 (en) 2002-12-30 2008-04-01 Roche Diagnostics Operations, Inc. Blood acquisition suspension system
US7377904B2 (en) 2004-04-16 2008-05-27 Facet Technologies, Llc Cap displacement mechanism for lancing device and multi-lancet cartridge
US20080243159A1 (en) * 2007-03-30 2008-10-02 Stat Medical Devices, Inc. Lancet device with combined trigger and cocking mechanism and method
WO2009001049A1 (en) 2007-06-22 2008-12-31 Owen Mumford Limited Lancing devices
US7476202B2 (en) 2001-06-08 2009-01-13 Roche Diagnostics Operations, Inc. Sampling devices and methods utilizing a horizontal capillary test strip
US7488298B2 (en) 2004-10-08 2009-02-10 Roche Diagnostics Operations, Inc. Integrated lancing test strip with capillary transfer sheet
US20090054813A1 (en) * 2002-04-19 2009-02-26 Dominique Freeman Method and apparatus for body fluid sampling and analyte sensing
US20090088787A1 (en) * 2001-07-11 2009-04-02 Arkray, Inc. Lancet and lancing apparatus
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US7670352B1 (en) 2004-03-24 2010-03-02 Caribbean Medical Brokers, Inc. Adjustable tip with integrated detent for blood lancet system
US20100057119A1 (en) * 2003-11-12 2010-03-04 Facet Technologies, Llc Multi-lancet cartridge and lancing device
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US20100094326A1 (en) * 2007-07-05 2010-04-15 Blackrock Kelso Capital Corporation Multi-lancet cartridge and lancing device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US20100106174A1 (en) * 2004-06-30 2010-04-29 Facet Technologies, Llc Lancing device and multi-lancet cartridge
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US20100121366A1 (en) * 2008-10-09 2010-05-13 Thomas Weiss Lancing device
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7727168B2 (en) 1996-05-17 2010-06-01 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20100160943A1 (en) * 2008-12-18 2010-06-24 Facet Technologies, Llc Lancing device and lancet
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7758518B2 (en) 2001-06-08 2010-07-20 Roche Diagnostics Operations, Inc. Devices and methods for expression of bodily fluids from an incision
EP2213231A1 (en) 2009-01-30 2010-08-04 Roche Diagnostics GmbH Integrated body fluid meter and lancing device
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US20100256526A1 (en) * 2009-04-03 2010-10-07 Herbert Harttig Apparatus for acquiring and analyzing a blood sample
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20100274273A1 (en) * 2007-06-19 2010-10-28 Steven Schraga Lancet device with depth adjustment and lancet removal system and method
US7828749B2 (en) 1996-05-17 2010-11-09 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7841991B2 (en) 1996-05-17 2010-11-30 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
EP2289416A1 (en) 2002-12-23 2011-03-02 Roche Diagnostics GmbH Body fluid testing device
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901363B2 (en) 1996-05-17 2011-03-08 Roche Diagnostics Operations, Inc. Body fluid sampling device and methods of use
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
USD634426S1 (en) 2010-04-08 2011-03-15 Facet Technologies, Llc Lancing device
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20110092855A1 (en) * 2007-10-08 2011-04-21 Hans List Analysis system for automatic skin prick analysis
US20110098735A1 (en) * 2009-10-22 2011-04-28 Facet Technologies, Llc Lancing device with improved guidance assembly
US7935063B2 (en) 2005-03-02 2011-05-03 Roche Diagnostics Operations, Inc. System and method for breaking a sterility seal to engage a lancet
US20110112384A1 (en) * 2007-10-24 2011-05-12 Christoph Eisenhardt Medical system having consumables monitoring
US20110130782A1 (en) * 2009-07-10 2011-06-02 Kan Gil Advancement mechanism for cartridge-based devices
US7955271B2 (en) 2006-10-13 2011-06-07 Roche Diagnostics Operations, Inc. Tape transport lance sampler
US20110160759A1 (en) * 2007-02-09 2011-06-30 Stat Medical Devices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20110230905A1 (en) * 2006-10-13 2011-09-22 Roche Diagnostics Operations, Inc. Tape transport lance sampler
US8043318B2 (en) 2007-02-08 2011-10-25 Stat Medical Devices, Inc. Push-button lance device and method
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US20120022352A1 (en) * 2005-10-12 2012-01-26 Masaki Fujiwara Blood sensor, blood testing apparatus, and method for controlling blood testing apparatus
US8105347B2 (en) 2004-11-16 2012-01-31 Stat Medical Devices, Inc. Adjustable disposable/single-use blade lancet device and method
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8257380B2 (en) 2004-06-29 2012-09-04 Stat Medical Devices, Inc. Adjustabable disposable/single-use lancet device and method
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8353924B2 (en) 1999-11-02 2013-01-15 Stat Medical Devices, Inc. Single use lancet assembly
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8523784B2 (en) 2001-08-29 2013-09-03 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8591436B2 (en) 2004-04-30 2013-11-26 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8715309B2 (en) 2002-04-29 2014-05-06 Steven Schraga Lancet device
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8814896B2 (en) 1999-11-02 2014-08-26 Stat Medical Devices, Inc. Single use lancet assembly
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8870903B2 (en) 2002-02-21 2014-10-28 Facet Technologies, Llc Blood sampling device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9744312B2 (en) * 2001-06-12 2017-08-29 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9844331B2 (en) 2011-12-15 2017-12-19 Facet Technologies, Llc Latch mechanism for preventing lancet oscillation in a lancing device
USD806246S1 (en) 2016-02-25 2017-12-26 Steven Schraga Lancet cover

Families Citing this family (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009723A1 (en) * 1991-11-12 1993-05-27 Ramel Urs A Lancet device
CA2079192C (en) * 1992-09-25 1995-12-26 Bernard Strong Combined lancet and multi-function cap and lancet injector for use therewith
DE4320463A1 (en) * 1993-06-21 1994-12-22 Boehringer Mannheim Gmbh Blood lancet device for withdrawing blood for diagnostic purposes
JP3393920B2 (en) * 1993-12-09 2003-04-07 富士写真フイルム株式会社 Small amount of constant volume blood collection point garment
US5454828A (en) * 1994-03-16 1995-10-03 Schraga; Steven Lancet unit with safety sleeve
CA2551185C (en) * 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
US5514152A (en) * 1994-08-16 1996-05-07 Specialized Health Products, Inc. Multiple segment encapsulated medical lancing device
US5628764A (en) * 1995-03-21 1997-05-13 Schraga; Steven Collar lancet device
JPH08317917A (en) * 1995-05-25 1996-12-03 Advance Co Ltd Blood drawing device
US5571132A (en) * 1995-06-06 1996-11-05 International Technidyne Corporation Self activated finger lancet
US5730753A (en) * 1995-07-28 1998-03-24 Apls Co., Ltd. Assembly for adjusting pricking depth of lancet
DE19604156A1 (en) 1996-02-06 1997-08-07 Boehringer Mannheim Gmbh Cutting device for skin for painless removal of small quantities of blood
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
ES2121565T6 (en) 1996-05-17 1998-11-16 Mercury Diagnostics Inc A disposable device for use in a sampling of body fluids.
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
DE19781044B4 (en) * 1996-05-17 2005-11-17 Roche Diagnostics Operations Inc. (N.D.Ges.D.Staates Delaware), Indianapolis Method of obtaining sample of body fluid e.g. blood or interstitial fluid from body - by forming incision with lance, removing lance from incision, and applying force to skin, causing incision to bulge and sides of incision to open to force out body fluid
US5951492A (en) * 1996-05-17 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for sampling and analyzing body fluid
US6015392A (en) * 1996-05-17 2000-01-18 Mercury Diagnostics, Inc. Apparatus for sampling body fluid
WO1997042885A1 (en) * 1996-05-17 1997-11-20 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
EP0955914B1 (en) 1996-05-17 2010-02-24 Roche Diagnostics Operations, Inc. Apparatus for sampling body fluid from an incision
DE19758804B4 (en) * 1996-05-17 2009-10-08 Roche Diagnostics Operations Inc. (N.D.Ges.D.Staates Delaware), Indianapolis Blood and interstitial fluid sampling device for analysis=processing - uses lancing needle to pierce skin at rapid rate while ultrasonically kneading area to stimulate blood flow and pumping off sample
DE19758806B4 (en) * 1996-05-17 2009-06-10 Roche Diagnostics Operations Inc. (N.D.Ges.D.Staates Delaware), Indianapolis Method of obtaining sample of body fluid e.g. blood or interstitial fluid from body - by forming incision with lance, removing lance from incision, and applying force to skin, causing incision to bulge and sides of incision to open to force out body fluid
US5879311A (en) * 1996-05-17 1999-03-09 Mercury Diagnostics, Inc. Body fluid sampling device and methods of use
DE19781097B4 (en) * 1996-05-17 2006-07-20 Roche Diagnostics Operations Inc. (N.D.Ges.D.Staates Delaware), Indianapolis Blood and interstitial fluid sampling device for analysis=processing - uses lancing needle to pierce skin at rapid rate while ultrasonically kneading area to stimulate blood flow and pumping off sample
US5613978A (en) * 1996-06-04 1997-03-25 Palco Laboratories Adjustable tip for lancet device
US5741288A (en) * 1996-06-27 1998-04-21 Chemtrak, Inc. Re-armable single-user safety finger stick device having reset for multiple use by a single patient
US6071251A (en) * 1996-12-06 2000-06-06 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
JP3394262B2 (en) * 1997-02-06 2003-04-07 イー.ヘラー アンド カンパニー Small volume in vitro analyte sensor
DE19718081A1 (en) 1997-04-29 1998-11-05 Boehringer Mannheim Gmbh disposable blood lancet
US5951493A (en) * 1997-05-16 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
US5984940A (en) * 1997-05-29 1999-11-16 Atrion Medical Products, Inc. Lancet device
US5948695A (en) * 1997-06-17 1999-09-07 Mercury Diagnostics, Inc. Device for determination of an analyte in a body fluid
US5746761A (en) * 1997-07-03 1998-05-05 Arkadiy Turchin Disposable lancet for finger/heel stick
US5954738A (en) * 1997-07-31 1999-09-21 Bayer Corporation Blood sampling device with lancet damping system
US5938679A (en) * 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
US5964718A (en) 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
DE19824036A1 (en) 1997-11-28 1999-06-02 Roche Diagnostics Gmbh Analytical instrument with lancing
US6155992A (en) * 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US5871494A (en) * 1997-12-04 1999-02-16 Hewlett-Packard Company Reproducible lancing for sampling blood
US5971941A (en) * 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US6071294A (en) * 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
JP2001527216A (en) 1997-12-19 2001-12-25 アミラ メディカル Embossed test strip system
JP2000014662A (en) * 1998-01-22 2000-01-18 Terumo Corp Humor examination device
US6949111B2 (en) 1998-02-13 2005-09-27 Steven Schraga Lancet device
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6139562A (en) 1998-03-30 2000-10-31 Agilent Technologies, Inc. Apparatus and method for incising
DE59912876D1 (en) 1998-04-24 2006-01-12 Roche Diagnostics Gmbh Storage container for analytical tools
US6086545A (en) 1998-04-28 2000-07-11 Amira Medical Methods and apparatus for suctioning and pumping body fluid from an incision
US6346114B1 (en) 1998-06-11 2002-02-12 Stat Medical Devices, Inc. Adjustable length member such as a cap of a lancet device for adjusting penetration depth
US6022366A (en) * 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
GB9817662D0 (en) 1998-08-13 1998-10-07 Crocker Peter J Substance delivery
DE19840856B4 (en) * 1998-09-07 2008-04-10 Roche Diagnostics Gmbh System for recovery of a body fluid, the lancet magazine, lancet, set of lancets, lancing device and method for removing a lancet from a lancet magazine, as well as use of the system
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6210420B1 (en) 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet
DE19902601A1 (en) 1999-01-23 2000-07-27 Roche Diagnostics Gmbh Method and device for withdrawing an analytical consumable means from a storage vessel
US6197040B1 (en) 1999-02-23 2001-03-06 Lifescan, Inc. Lancing device having a releasable connector
US6045567A (en) 1999-02-23 2000-04-04 Lifescan Inc. Lancing device causing reduced pain
US7077828B2 (en) * 1999-03-05 2006-07-18 Roche Diagnostics Gmbh Device for withdrawing blood for diagnostic applications
DE19909602A1 (en) 1999-03-05 2000-09-07 Roche Diagnostics Gmbh Device for withdrawing blood for diagnostic purposes
US6306152B1 (en) 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
GB9919681D0 (en) * 1999-08-19 1999-10-20 Owen Mumsford Limited Improvements relating to medical injectors and skin prickers
DE19948759A1 (en) 1999-10-09 2001-04-12 Roche Diagnostics Gmbh Blood lancet device for withdrawing blood for diagnostic purposes
US6283982B1 (en) * 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
CA2287757A1 (en) 1999-10-29 2001-04-29 Medical Plastic Devices M.P.D. Inc. Disposable lancet
US6258112B1 (en) * 1999-11-02 2001-07-10 Steven Schraga Single use lancet assembly
US6322575B1 (en) 2000-01-05 2001-11-27 Steven Schraga Lancet depth adjustment assembly
DE10010694A1 (en) 2000-03-04 2001-09-06 Roche Diagnostics Gmbh Lancet including tipped needle with body surrounding tip
US7344546B2 (en) * 2000-04-05 2008-03-18 Pathway Medical Technologies Intralumenal material removal using a cutting device for differential cutting
KR200199396Y1 (en) * 2000-05-25 2000-10-02 이춘발 What sets with a safe structure for the blood collection needle
DE10026170A1 (en) 2000-05-26 2001-12-06 Roche Diagnostics Gmbh System for withdrawing body fluid
DE10026172A1 (en) 2000-05-26 2001-11-29 Roche Diagnostics Gmbh System for withdrawing body fluid
DE10030410C1 (en) * 2000-06-21 2002-01-24 Roche Diagnostics Gmbh Blood lancet device for withdrawing blood for diagnostic purposes
US6451040B1 (en) * 2000-09-01 2002-09-17 Bayer Corporation Adjustable endcap for lancing device
DE10047419A1 (en) 2000-09-26 2002-04-11 Roche Diagnostics Gmbh Lancet system
DE10053974A1 (en) 2000-10-31 2002-05-29 Roche Diagnostics Gmbh System for blood collection
US7575583B1 (en) 2000-11-10 2009-08-18 Steven Schraga Single use lancet device
RU2176833C1 (en) * 2000-11-30 2001-12-10 Закрытое акционерное общество Научно-производственный центр "СОЛИТОН-НТТ" Electrode material for low-temperature plasma generator
CN101366633B (en) * 2001-01-19 2011-03-30 松下电器产业株式会社 Lancet-integrated sensor, measuring device for lancet-integrated sensor, and cartridge
US7310543B2 (en) 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
US6740058B2 (en) 2001-06-08 2004-05-25 Wisconsin Alumni Research Foundation Surgical tool with integrated pressure and flow sensors
CN1287745C (en) * 2001-06-13 2006-12-06 史蒂文·施拉格 Single use lancet device
DE60218170T3 (en) * 2001-07-11 2011-02-24 Arkray, Inc. Piercing device
DE10134650B4 (en) 2001-07-20 2009-12-03 Roche Diagnostics Gmbh System for withdrawing small amounts of body fluid
US6918918B1 (en) 2001-08-14 2005-07-19 Steven Schraga Single use lancet assembly
US8048097B2 (en) * 2001-08-14 2011-11-01 Steven Schraga Single use lancet assembly
WO2003020134B1 (en) * 2001-08-29 2003-08-07 Amira Medical Wicking methods and structures for use in sampling bodily fluids
US6645219B2 (en) * 2001-09-07 2003-11-11 Amira Medical Rotatable penetration depth adjusting arrangement
US20030050627A1 (en) * 2001-09-13 2003-03-13 Taylor William C. Adjustable depth lancing device
US20040229347A1 (en) * 2001-09-17 2004-11-18 Perez Edward P. Embossed test strip system
EP1432353A1 (en) 2001-09-26 2004-06-30 Hoffman-La Roche AG Method and apparatus for sampling bodily fluid
EP1450675B1 (en) * 2001-12-07 2012-05-09 Micronix, Inc. Consolidated body fluid testing device and method
US20030109895A1 (en) * 2001-12-07 2003-06-12 Taylor William C. Keyed lancet with generic mounting compatibility
US7357808B2 (en) * 2002-01-31 2008-04-15 Facet Technologies, Llc Single use device for blood microsampling
GB0202603D0 (en) * 2002-02-05 2002-03-20 Owen Mumford Ltd Improvements relating to Lancets
DE10206254A1 (en) 2002-02-15 2003-08-28 Roche Diagnostics Gmbh System for painless blood sampling
US20070255300A1 (en) * 2004-08-19 2007-11-01 Facet Technologies, Llc Loosely coupled lancet
EP1638454B1 (en) 2003-05-30 2016-06-22 Sanofi-Aventis Deutschland GmbH Apparatus for body fluid sampling and analyte sensing
US20040039407A1 (en) * 2002-04-29 2004-02-26 Steven Schraga Lancet device
WO2003094731A1 (en) * 2002-05-07 2003-11-20 Toru Nakayama Painless blood collection method
DE10222235A1 (en) * 2002-05-16 2003-11-27 Roche Diagnostics Gmbh Blood Collection system
DE10223558A1 (en) 2002-05-28 2003-12-11 Roche Diagnostics Gmbh System useful in withdrawing blood for diagnostic purposes, has housing, lancet guide and lancet drive provided with drive spring, cocking device, drive rotor and outputs side coupling mechanism
DE60317197T2 (en) * 2002-05-31 2008-08-07 Facet Technologies, Llc Precisely guided lancet
US7838296B2 (en) * 2002-08-28 2010-11-23 Separation Technology, Inc. Methods and apparatus for ultrasonic determination of red blood cell indices
US7572237B2 (en) * 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
WO2004060160A1 (en) * 2002-12-24 2004-07-22 Roche Diagnostics Gmbh A sampling device utilizing biased capillary action
JP2004211888A (en) * 2002-12-24 2004-07-29 Inventio Ag Brake-shoe for braking cable
US7044921B2 (en) * 2003-02-03 2006-05-16 Scimed Life Systems, Inc Medical device with changeable tip flexibility
DE10312357B3 (en) * 2003-03-20 2004-07-08 Roche Diagnostics Gmbh Pricking aid for needle system for extraction of blood for medical diagnosis enclosing needle with opening for passage of needle point during puncturing of skin
US7288102B2 (en) 2003-03-20 2007-10-30 Facet Technologies, Llc Lancing device with decoupled lancet
US7494498B2 (en) * 2003-03-24 2009-02-24 Facet Technologies, Llc Lancing device with floating lancet
CN100512753C (en) 2003-04-11 2009-07-15 爱科来株式会社 Needle insertion device
US8114108B2 (en) * 2003-04-11 2012-02-14 Arkray, Inc. Lancing apparatus
US8187295B2 (en) * 2003-04-16 2012-05-29 Arkray, Inc. Puncture device
CN100473340C (en) 2003-04-16 2009-04-01 爱科来株式会社 Needle insertion device
JP4761701B2 (en) * 2003-05-21 2011-08-31 アークレイ株式会社 Adjustable lancing device lancing depth
JP2005021291A (en) * 2003-06-30 2005-01-27 Terumo Corp Puncture tool
DE10332283A1 (en) 2003-07-16 2005-02-03 Roche Diagnostics Gmbh System for withdrawing body fluid
DE10336933B4 (en) 2003-08-07 2007-04-26 Roche Diagnostics Gmbh Blood Collection system
EP1659960A2 (en) * 2003-08-20 2006-05-31 Facet Technologies, LLC Lancing device with replaceable multi-lancet carousel
US7655019B2 (en) * 2003-08-20 2010-02-02 Facet Technologies, Llc Blood sampling device
WO2005018454A9 (en) * 2003-08-20 2005-07-21 Facet Technologies Llc Multi-lancet device with sterility cap repositioning mechanism
EP1663023A4 (en) * 2003-08-20 2010-01-27 Facet Technologies Llc Lancing device with multi-lancet magazine
JP3100042U (en) * 2003-08-26 2004-04-30 アルプス電気株式会社Alps Electric Co.,Ltd. Television tuner
US7481818B2 (en) * 2003-10-20 2009-01-27 Lifescan Lancing device with a floating probe for control of penetration depth
US20050096686A1 (en) * 2003-10-31 2005-05-05 Allen John J. Lancing device with trigger mechanism for penetration depth control
US20080082117A1 (en) * 2003-11-12 2008-04-03 Facet Technologies, Llc Lancing device
CA2552385C (en) * 2003-12-29 2013-07-23 3M Innovative Properties Company Medical devices and kits including same
EP1725168B1 (en) 2004-03-06 2016-04-20 Roche Diagnostics GmbH Body fluid sampling device
US7819822B2 (en) * 2004-03-06 2010-10-26 Roche Diagnostics Operations, Inc. Body fluid sampling device
US7201723B2 (en) * 2004-03-25 2007-04-10 Roche Diagnostics Operations, Inc. Pulsating expression cap
US20050215923A1 (en) * 2004-03-26 2005-09-29 Wiegel Christopher D Fingertip conforming fluid expression cap
ES2650188T3 (en) * 2004-06-10 2018-01-17 3M Innovative Properties Company Device and kit patching
US7766845B2 (en) * 2004-06-21 2010-08-03 Roche Diagnostics Operations, Inc. Disposable lancet and lancing cap combination for increased hygiene
DE102004033219A1 (en) * 2004-07-09 2006-02-02 Roche Diagnostics Gmbh Process for the selective sterilization of diagnostic test elements
DE102004037270B4 (en) * 2004-07-31 2008-01-31 Roche Diagnostics Gmbh Blood collection system for withdrawing blood for diagnostic purposes
DE602005019073D1 (en) * 2004-09-06 2010-03-11 Terumo Corp Zenteseinstrument
CN1313053C (en) * 2004-09-15 2007-05-02 施迎敢 Needle tip drawing back type disposable safety blood taking needle and disposable ejection type safety blood taking pen
US20060069350A1 (en) * 2004-09-30 2006-03-30 Buenger David R Medical syringe injector pen
US20060069354A1 (en) * 2004-09-30 2006-03-30 Buenger David R Syringe activation device
DE102004048864A1 (en) 2004-10-07 2006-04-13 Roche Diagnostics Gmbh Analytical test element with wireless data transmission
US20060100656A1 (en) * 2004-10-28 2006-05-11 Olson Lorin P Compact lancing device
KR20070102669A (en) 2004-11-18 2007-10-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Low-profile microneedle array applicator
EP1838383B1 (en) 2004-11-18 2011-04-06 3M Innovative Properties Company Microneedle array applicator and retainer
EP1669020A1 (en) 2004-12-07 2006-06-14 Roche Diagnostics GmbH Storage case with integrated functions
JP2008523961A (en) * 2004-12-20 2008-07-10 ファセット・テクノロジーズ・エルエルシー Lancing device having a removable threaded closure
US20060178686A1 (en) * 2005-02-07 2006-08-10 Steven Schraga Single use lancet device
CN101146477B (en) 2005-03-03 2012-11-07 霍夫曼-拉罗奇有限公司 Piercing system for removing a bodily fluid
EP1865847A1 (en) * 2005-03-04 2007-12-19 Bayer HealthCare LLC Lancet-release mechanism
US9055898B2 (en) * 2005-03-04 2015-06-16 Bayer Healthcare Llc Lancet release mechanism
CN101163448A (en) * 2005-03-04 2008-04-16 拜尔保健有限公司 Lancet-release mechanism
US7695442B2 (en) * 2005-04-12 2010-04-13 Roche Diagnostics Operations, Inc. Integrated lancing test strip with retractable lancet
KR100681348B1 (en) * 2005-04-27 2007-02-09 충북대학교 산학협력단 Device for gaging of lancing depthe of lancng device
EP1743577A1 (en) * 2005-06-23 2007-01-17 Roche Diagnostics GmbH Hand-held apparatus for the analysis of bodily fluids
EP1904158B1 (en) * 2005-06-24 2013-07-24 3M Innovative Properties Company Collapsible patch with microneedle array
CN101208130B (en) 2005-06-27 2012-05-16 3M创新有限公司 Microneedle array applicator device
EP1911395B1 (en) 2005-07-29 2011-11-09 ARKRAY, Inc. Needle insertion device
EP1792568A1 (en) 2005-12-05 2007-06-06 F. Hoffmann-La Roche AG Re-usable puncturing aid and method for performing a puncture movement therewith
CN101365385B (en) 2005-12-08 2013-06-05 爱科来株式会社 Insertion needle and lancet with the same
WO2007108967A3 (en) * 2006-03-15 2007-12-06 Bayer Healthcare Llc Single-handed, reduced vibration lancing device
US20090093735A1 (en) * 2006-03-29 2009-04-09 Stephan Korner Test unit and test system for analyzing body fluids
CN101410058A (en) 2006-04-03 2009-04-15 泉株式会社 Lancet assembly
CA2647791A1 (en) * 2006-04-03 2007-10-11 Izumi-Cosmo Company, Limited Lancet assembly
WO2007124411A1 (en) * 2006-04-20 2007-11-01 3M Innovative Properties Company Device for applying a microneedle array
EP2033578A4 (en) * 2006-06-13 2010-10-06 Izumi Cosmo Co Ltd Lancet assembly
US7909842B2 (en) * 2006-06-15 2011-03-22 Abbott Diabetes Care Inc. Lancing devices having depth adjustment assembly
DE502006008281D1 (en) 2006-07-14 2010-12-23 Roche Diagnostics Gmbh Injection device with a second device function for obtaining a body fluid sample
EP1884191B1 (en) * 2006-08-02 2009-09-23 Boehringer Mannheim Gmbh Lancet system
ES2421781T3 (en) * 2006-09-04 2013-09-05 Hoffmann La Roche Lancing system for extracting a body fluid
US20080092241A1 (en) * 2006-10-11 2008-04-17 Media Machines, Inc. Provision and use of digital rights data for embedded content over networked systems
WO2008111936A1 (en) * 2007-03-12 2008-09-18 Bayer Healthcare Llc Lancet-eject mechanism
US20080287978A1 (en) * 2007-05-19 2008-11-20 Hickman Iii Charles B Medical mapping device
EP1997429B1 (en) * 2007-05-29 2011-11-23 Roche Diagnostics GmbH Flexible Lancet in a Lancet System
GB2451840B (en) 2007-08-14 2012-01-18 Owen Mumford Ltd Lancing devices
EP2039293A1 (en) * 2007-09-19 2009-03-25 F. Hoffman-la Roche AG Combination drive for a sample extraction system for obtaining a liquid sample
EP2039607A1 (en) * 2007-09-19 2009-03-25 Roche Diagnostics GmbH Joining foils with laser for sterile lancets
WO2009069720A1 (en) * 2007-11-27 2009-06-04 Arkray, Inc. Puncture device
US7766846B2 (en) 2008-01-28 2010-08-03 Roche Diagnostics Operations, Inc. Rapid blood expression and sampling
US8932314B2 (en) * 2008-05-09 2015-01-13 Lifescan Scotland Limited Prime and fire lancing device with contacting bias drive and method
US8029526B2 (en) * 2008-08-14 2011-10-04 Abbott Diabetes Care Inc. Cocking mechanism for lancing device
WO2010041474A1 (en) 2008-10-09 2010-04-15 パナソニック株式会社 Puncture needle cartridge
EP2181651A1 (en) 2008-10-29 2010-05-05 Boehringer Mannheim Gmbh Instrument and system for producing a sample of a body liquid and for analysis thereof
ES2601221T3 (en) 2009-02-17 2017-02-14 F. Hoffmann-La Roche Ag Protection for systems reuse lancets
DE102009010999A1 (en) * 2009-03-02 2010-09-09 Murrplastik Medizintechnik Gmbh Lancet device for temporary insertion of needle into skin of diabetic patient during medical treatment, has groove formed running in axial direction between two levels respectively defining needle withdrawal and pricking positions
EP2311373B1 (en) * 2009-10-15 2012-08-01 Roche Diagnostics GmbH Piercing system for removal of a body fluid
US20110092854A1 (en) 2009-10-20 2011-04-21 Uwe Kraemer Instruments and system for producing a sample of a body fluid and for analysis thereof
US20110088901A1 (en) * 2009-10-20 2011-04-21 Larry Watters Method for Plugging Wells
DE102010010507B4 (en) * 2009-12-11 2013-04-18 Gerresheimer Regensburg Gmbh Blood lancet device with a detection device for determining the position of a lancet in a lancing element
EP2538997A1 (en) 2010-02-22 2013-01-02 Sanofi-Aventis Deutschland GmbH Force transmission arrangement for auto-injector
EP2382921A1 (en) 2010-04-30 2011-11-02 Roche Diagnostics GmbH Lancing device with automatic disengagement
KR101172855B1 (en) * 2010-12-14 2012-08-20 주식회사 아이센스 Percussion structure of the lancing device
DE102011015590B4 (en) 2011-03-30 2015-11-19 Gerresheimer Regensburg Gmbh Lancing device with at least one lancet for the extraction of body fluids
DE102011015656B3 (en) * 2011-03-30 2012-06-21 Gerresheimer Regensburg Gmbh Lancet magazine for lancing devices
CA2883631A1 (en) * 2012-09-13 2014-03-20 Facet Technologies, Llc Push-to-charge mechanism for lancing device
CA2884845A1 (en) * 2012-09-27 2014-04-03 Facet Technologies, Llc Depth-adjust mechanism for lancing device
CN103190921B (en) * 2013-04-22 2014-07-16 威海洁瑞医用制品有限公司 Disposable safe blood taking needle
CN203328703U (en) * 2013-06-25 2013-12-11 天津华鸿科技有限公司 Novel blood sampling pen
CN105816188B (en) * 2016-03-21 2018-05-22 苏州施莱医疗器械有限公司 Improved adjustable-time blood collection needle puncture depth security

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358689A (en) * 1964-06-09 1967-12-19 Roehr Products Company Inc Integral lancet and package
US3742954A (en) * 1972-02-22 1973-07-03 F Strickland Snake bite kit
US3797488A (en) * 1972-07-10 1974-03-19 Ampoules Inc Ampoule applicator with one-way clutch
US4203446A (en) * 1976-09-24 1980-05-20 Hellige Gmbh Precision spring lancet
US4442836A (en) * 1980-03-22 1984-04-17 Clinicon Mannheim Gmbh Blood lancet device
US4469110A (en) * 1981-06-25 1984-09-04 Slama Gerard J Device for causing a pinprick to obtain and to test a drop of blood
US4535769A (en) * 1981-03-23 1985-08-20 Becton, Dickinson And Company Automatic retractable lancet assembly
US4643189A (en) * 1985-02-19 1987-02-17 W. T. Associates Apparatus for implementing a standardized skin incision
US4850973A (en) * 1987-10-16 1989-07-25 Pavel Jordon & Associates Plastic device for injection and obtaining blood samples
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US4924879A (en) * 1988-10-07 1990-05-15 Brien Walter J O Blood lancet device
US5324303A (en) * 1992-09-25 1994-06-28 Amg Medical, Inc. Combined lancet and multi-function cap and lancet injector for use therewith
US5454828A (en) * 1994-03-16 1995-10-03 Schraga; Steven Lancet unit with safety sleeve
US5480387A (en) * 1991-07-24 1996-01-02 Medico Development Investment Company Injection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490140A1 (en) * 1980-09-16 1982-03-19 Matthey Maurice Components of compression molding method and device for its implementation
EP0097748A1 (en) * 1982-06-28 1984-01-11 Gérard Joseph Slama Pricking device for collecting a droplet of blood
US4653513A (en) * 1985-08-09 1987-03-31 Dombrowski Mitchell P Blood sampler
JPH0573518B2 (en) * 1985-12-10 1993-10-14 Sanko Kagaku Kk
EP0254203A3 (en) * 1986-07-22 1988-10-05 Personal Diagnostics, Inc. Optical analyzer
US5196025A (en) * 1990-05-21 1993-03-23 Ryder International Corporation Lancet actuator with retractable mechanism

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358689A (en) * 1964-06-09 1967-12-19 Roehr Products Company Inc Integral lancet and package
US3742954A (en) * 1972-02-22 1973-07-03 F Strickland Snake bite kit
US3797488A (en) * 1972-07-10 1974-03-19 Ampoules Inc Ampoule applicator with one-way clutch
US4203446A (en) * 1976-09-24 1980-05-20 Hellige Gmbh Precision spring lancet
US4442836A (en) * 1980-03-22 1984-04-17 Clinicon Mannheim Gmbh Blood lancet device
US4535769A (en) * 1981-03-23 1985-08-20 Becton, Dickinson And Company Automatic retractable lancet assembly
US4469110A (en) * 1981-06-25 1984-09-04 Slama Gerard J Device for causing a pinprick to obtain and to test a drop of blood
US4643189A (en) * 1985-02-19 1987-02-17 W. T. Associates Apparatus for implementing a standardized skin incision
US4850973A (en) * 1987-10-16 1989-07-25 Pavel Jordon & Associates Plastic device for injection and obtaining blood samples
US4924879A (en) * 1988-10-07 1990-05-15 Brien Walter J O Blood lancet device
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US5480387A (en) * 1991-07-24 1996-01-02 Medico Development Investment Company Injection device
US5324303A (en) * 1992-09-25 1994-06-28 Amg Medical, Inc. Combined lancet and multi-function cap and lancet injector for use therewith
US5423847A (en) * 1992-09-25 1995-06-13 Amg Medical, Inc. Safe lancet injector
US5454828A (en) * 1994-03-16 1995-10-03 Schraga; Steven Lancet unit with safety sleeve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Glucolet 2, Literature from "Miles Diagnostic Division", 1992.
Glucolet 2, Literature from Miles Diagnostic Division , 1992. *

Cited By (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123701B2 (en) 1996-05-17 2012-02-28 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7841991B2 (en) 1996-05-17 2010-11-30 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US8696596B2 (en) 1996-05-17 2014-04-15 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7828749B2 (en) 1996-05-17 2010-11-09 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7901363B2 (en) 1996-05-17 2011-03-08 Roche Diagnostics Operations, Inc. Body fluid sampling device and methods of use
US7731668B2 (en) 1996-05-17 2010-06-08 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7727168B2 (en) 1996-05-17 2010-06-01 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8740813B2 (en) 1996-05-17 2014-06-03 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US8690798B2 (en) 1996-05-17 2014-04-08 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8231549B2 (en) 1996-05-17 2012-07-31 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US6706000B2 (en) 1997-11-21 2004-03-16 Amira Medical Methods and apparatus for expressing body fluid from an incision
US20040204662A1 (en) * 1997-11-21 2004-10-14 Perez Edward P. Methods and apparatus for expressing body fluid from an incision
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US20030225430A1 (en) * 1998-06-11 2003-12-04 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US7311718B2 (en) 1998-06-11 2007-12-25 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US7947057B2 (en) 1998-06-11 2011-05-24 Stat Medical Devices, Inc. Lancet having adjustable penetration depth
US8834503B2 (en) 1998-06-11 2014-09-16 Stat Medical Devices, Inc. Lancet having adjustable penetration depth
US20030187470A1 (en) * 1999-08-03 2003-10-02 Chelak Todd M. Lancer
US7651512B2 (en) 1999-08-03 2010-01-26 Becton, Dickinson And Company Lancer
US6558402B1 (en) 1999-08-03 2003-05-06 Becton, Dickinson And Company Lancer
US8777973B2 (en) * 1999-08-03 2014-07-15 Becton, Dickinson And Company Lancer
US9622697B2 (en) 1999-08-03 2017-04-18 Becton, Dickinson And Company Lancer
US20100082055A1 (en) * 1999-08-03 2010-04-01 Becton, Dickinson And Company Lancer
US8814896B2 (en) 1999-11-02 2014-08-26 Stat Medical Devices, Inc. Single use lancet assembly
US8353924B2 (en) 1999-11-02 2013-01-15 Stat Medical Devices, Inc. Single use lancet assembly
US20030088261A1 (en) * 2000-01-28 2003-05-08 Stat Medical Device Inc. Adjustable tip for a lancet device and method
US8709032B2 (en) 2000-01-28 2014-04-29 Stat Medical Devices, Inc. Adjustable tip for a lancet device and method
US7378007B2 (en) 2000-03-02 2008-05-27 Diabetes Diagnostics, Inc. Combined lancet and electrochemical analyte-testing apparatus
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
US20050011759A1 (en) * 2000-03-02 2005-01-20 Moerman Piet H. C. Combined lancet and electrochemical analyte-testing apparatus
US20040227643A1 (en) * 2000-07-03 2004-11-18 Hunter Rick C. Insulated container
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8257276B2 (en) 2001-01-22 2012-09-04 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US7803123B2 (en) 2001-01-22 2010-09-28 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US20100145229A1 (en) * 2001-01-22 2010-06-10 Perez Edward P Lancet device having capillary action
US6866675B2 (en) 2001-01-22 2005-03-15 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US6858015B2 (en) 2001-05-05 2005-02-22 Roche Diagnostics Operations, Inc. Blood withdrawal system
US7476202B2 (en) 2001-06-08 2009-01-13 Roche Diagnostics Operations, Inc. Sampling devices and methods utilizing a horizontal capillary test strip
US8192372B2 (en) 2001-06-08 2012-06-05 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US20020188224A1 (en) * 2001-06-08 2002-12-12 Roe Jeffrey N. Test media cassette for bodily fluid testing device
US20060079811A1 (en) * 2001-06-08 2006-04-13 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US8986223B2 (en) 2001-06-08 2015-03-24 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US9538941B2 (en) 2001-06-08 2017-01-10 Roche Diabetes Care, Inc. Devices and methods for expression of bodily fluids from an incision
US20100317935A1 (en) * 2001-06-08 2010-12-16 Roe Jeffrey N Test media cassette for bodily fluid testing device
US7785272B2 (en) 2001-06-08 2010-08-31 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US8257277B2 (en) 2001-06-08 2012-09-04 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US6988996B2 (en) 2001-06-08 2006-01-24 Roche Diagnostics Operatons, Inc. Test media cassette for bodily fluid testing device
US7758518B2 (en) 2001-06-08 2010-07-20 Roche Diagnostics Operations, Inc. Devices and methods for expression of bodily fluids from an incision
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9937298B2 (en) 2001-06-12 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US9744312B2 (en) * 2001-06-12 2017-08-29 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9802007B2 (en) * 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US20090088787A1 (en) * 2001-07-11 2009-04-02 Arkray, Inc. Lancet and lancing apparatus
US8758380B2 (en) * 2001-07-11 2014-06-24 Arkray, Inc. Lancet and lancing apparatus
US8523784B2 (en) 2001-08-29 2013-09-03 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US6659966B2 (en) 2001-11-15 2003-12-09 Roche Diagnostics Corporation Fluid sampling apparatus
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8870903B2 (en) 2002-02-21 2014-10-28 Facet Technologies, Llc Blood sampling device
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8562545B2 (en) 2002-04-19 2013-10-22 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8496601B2 (en) 2002-04-19 2013-07-30 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8491500B2 (en) 2002-04-19 2013-07-23 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8636673B2 (en) 2002-04-19 2014-01-28 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US20090054813A1 (en) * 2002-04-19 2009-02-26 Dominique Freeman Method and apparatus for body fluid sampling and analyte sensing
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8808201B2 (en) 2002-04-19 2014-08-19 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for penetrating tissue
US8845549B2 (en) 2002-04-19 2014-09-30 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8366637B2 (en) 2002-04-19 2013-02-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US20070219573A1 (en) * 2002-04-19 2007-09-20 Dominique Freeman Method and apparatus for penetrating tissue
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8235915B2 (en) 2002-04-19 2012-08-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9339612B2 (en) 2002-04-19 2016-05-17 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8157748B2 (en) 2002-04-19 2012-04-17 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9907502B2 (en) 2002-04-19 2018-03-06 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8715309B2 (en) 2002-04-29 2014-05-06 Steven Schraga Lancet device
EP1424040A1 (en) 2002-11-26 2004-06-02 F.Hoffmann-La Roche Ag Body fluid testing device
US20050201897A1 (en) * 2002-11-26 2005-09-15 Volker Zimmer Body fluid testing device
US7731900B2 (en) 2002-11-26 2010-06-08 Roche Diagnostics Operations, Inc. Body fluid testing device
US7244264B2 (en) 2002-12-03 2007-07-17 Roche Diagnostics Operations, Inc. Dual blade lancing test strip
US20070106178A1 (en) * 2002-12-03 2007-05-10 Roe Steven N Dual blade lancing test strip
WO2004049945A1 (en) 2002-12-03 2004-06-17 Roche Diagnostics Gmbh Dual blade lancing test strip
US7625457B2 (en) 2002-12-03 2009-12-01 Roche Diagnostics Operations, Inc. Dual blade lancing test strip
US8016775B2 (en) 2002-12-03 2011-09-13 Roche Diagnostics Operations, Inc. Dual blade lancing test strip
EP2289416A1 (en) 2002-12-23 2011-03-02 Roche Diagnostics GmbH Body fluid testing device
US8383041B2 (en) 2002-12-23 2013-02-26 Roche Diagnostics Operations, Inc. Body fluid testing device
US20050232815A1 (en) * 2002-12-23 2005-10-20 Werner Ruhl Body fluid testing device
US7582258B2 (en) 2002-12-23 2009-09-01 Roche Diagnostics Operations, Inc. Body fluid testing device
US8021631B2 (en) 2002-12-23 2011-09-20 Roche Diagnostics Operations, Inc. Body fluid testing device
US8574496B2 (en) 2002-12-23 2013-11-05 Roche Diagnostics Operations, Inc. Body fluid testing device
US20040236251A1 (en) * 2002-12-27 2004-11-25 Roe Steven N. Precision depth control lancing tip
US7736322B2 (en) 2002-12-27 2010-06-15 Roche Diagnostics Operations, Inc. Precision depth control lancing tip
US9554741B2 (en) 2002-12-27 2017-01-31 Roche Diabetes Care, Inc. Precision depth control lancing tip
US7976477B2 (en) 2002-12-27 2011-07-12 Roche Diagnostics Operations, Inc. Precision depth control lancing tip
US20110237979A1 (en) * 2002-12-27 2011-09-29 Roche Diagnostics Operations, Inc. Precision depth control lancing tip
US20110166477A1 (en) * 2002-12-30 2011-07-07 Roe Steven N Blood acquisition suspension system
US7708703B2 (en) 2002-12-30 2010-05-04 Roche Diagnostics Operations, Inc. Integrated analytical test element
US8684951B2 (en) 2002-12-30 2014-04-01 Roche Diagnostics Operations, Inc. Blood acquisition suspension system
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7927291B2 (en) 2002-12-30 2011-04-19 Roche Diagnostics Operations, Inc. Blood acquisition suspension system
US7214200B2 (en) 2002-12-30 2007-05-08 Roche Diagnostics Operations, Inc. Integrated analytical test element
US7351212B2 (en) 2002-12-30 2008-04-01 Roche Diagnostics Operations, Inc. Blood acquisition suspension system
US20040127929A1 (en) * 2002-12-30 2004-07-01 Roe Steven N. Flexible test strip lancet device
US20060100543A1 (en) * 2002-12-30 2006-05-11 Raney Charles C Integrated Analytical Test Element
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7211052B2 (en) 2002-12-30 2007-05-01 Roche Diagnostics Operations, Inc. Flexible test strip lancet device
US7479119B2 (en) 2002-12-30 2009-01-20 Roche Diagnostics Operations, Inc. Flexible test strip lancet device
US7374546B2 (en) 2003-01-29 2008-05-20 Roche Diagnostics Operations, Inc. Integrated lancing test strip
US20040186394A1 (en) * 2003-01-29 2004-09-23 Roe Steven N. Integrated lancing test strip
US8475395B2 (en) * 2003-02-13 2013-07-02 Toru Nakayama Painless blood-collecting method
US20060224085A1 (en) * 2003-02-13 2006-10-05 Toru Nakayama Painless blood-collecting method
US7621931B2 (en) 2003-05-20 2009-11-24 Stat Medical Devices, Inc. Adjustable lancet device and method
US20040236362A1 (en) * 2003-05-20 2004-11-25 Stat Medical Devices, Inc. Adjustable lancet device and method
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US7510564B2 (en) 2003-06-27 2009-03-31 Abbott Diabetes Care Inc. Lancing device
US8556827B2 (en) 2003-06-27 2013-10-15 Abbott Laboratories Lancing device
US20090054812A1 (en) * 2003-06-27 2009-02-26 Abbott Laboratories Lancing device
US20040267300A1 (en) * 2003-06-27 2004-12-30 Mace Chad Harold Lancing device
US7905898B2 (en) 2003-08-15 2011-03-15 Stat Medical Devices, Inc. Adjustable lancet device and method
US20050234495A1 (en) * 2003-08-15 2005-10-20 Stat Medical Devices, Inc. Adjustable lancet device and method
US8888804B2 (en) 2003-08-15 2014-11-18 Stat Medical Devices, Inc. Adjustable lancet device and method
US20110098736A1 (en) * 2003-08-15 2011-04-28 Stat Medical Devices, Inc. Adjustable lancet device and method
US7105006B2 (en) 2003-08-15 2006-09-12 Stat Medical Devices, Inc. Adjustable lancet device and method
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US8221332B2 (en) 2003-11-12 2012-07-17 Facet Technologies, Llc Multi-lancet cartridge and lancing device
US20080039887A1 (en) * 2003-11-12 2008-02-14 Facet Technologies, Llc Lancing device and multi-lancet cartridge
US20100057119A1 (en) * 2003-11-12 2010-03-04 Facet Technologies, Llc Multi-lancet cartridge and lancing device
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7670352B1 (en) 2004-03-24 2010-03-02 Caribbean Medical Brokers, Inc. Adjustable tip with integrated detent for blood lancet system
US8298255B2 (en) 2004-04-16 2012-10-30 Facet Technologies, Llc Cap displacement mechanism for lancing device and multi-lancet cartridge
US7377904B2 (en) 2004-04-16 2008-05-27 Facet Technologies, Llc Cap displacement mechanism for lancing device and multi-lancet cartridge
US20050245845A1 (en) * 2004-04-30 2005-11-03 Roe Steven N Lancets for bodily fluid sampling supplied on a tape
US20110137206A1 (en) * 2004-04-30 2011-06-09 Roe Steven N Lancets for bodily fluid sampling supplied on a tape
US8591436B2 (en) 2004-04-30 2013-11-26 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US9179872B2 (en) 2004-04-30 2015-11-10 Roche Diabetes Care, Inc. Lancets for bodily fluid sampling supplied on a tape
US7909776B2 (en) 2004-04-30 2011-03-22 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US8529470B2 (en) 2004-04-30 2013-09-10 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US9101302B2 (en) 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
US20050245844A1 (en) * 2004-05-03 2005-11-03 Mace Chad H Analyte test device
US7452366B2 (en) * 2004-05-06 2008-11-18 Eumed Biotechnology Co., Ltd. Safety lancet device
US20050251188A1 (en) * 2004-05-06 2005-11-10 Tzer-Ming Chen Safety lancet device
US7670301B2 (en) 2004-05-07 2010-03-02 Roche Diagnostics Operations, Inc. Integrated disposable for automatic or manual blood dosing
US20100113977A1 (en) * 2004-05-07 2010-05-06 Roe Jeffrey N Integrated disposable for automatic or manual blood dosing
US8636674B2 (en) 2004-05-07 2014-01-28 Roche Diagnostics Operations, Inc. Integrated disposable for automatic or manual blood dosing
US7322942B2 (en) 2004-05-07 2008-01-29 Roche Diagnostics Operations, Inc. Integrated disposable for automatic or manual blood dosing
US20050251064A1 (en) * 2004-05-07 2005-11-10 Roe Jeffrey N Integrated disposable for automatic or manual blood dosing
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US8257380B2 (en) 2004-06-29 2012-09-04 Stat Medical Devices, Inc. Adjustabable disposable/single-use lancet device and method
US7837633B2 (en) 2004-06-30 2010-11-23 Facet Technologies, Llc Lancing device and multi-lancet cartridge
US20100106174A1 (en) * 2004-06-30 2010-04-29 Facet Technologies, Llc Lancing device and multi-lancet cartridge
US20080021291A1 (en) * 2004-07-27 2008-01-24 Abbott Laboratories Integrated Lancet and Blood Glucose Meter System
US8257258B2 (en) 2004-07-27 2012-09-04 Abbott Laboratories Integrated lancet and blood glucose meter system
US7512432B2 (en) 2004-07-27 2009-03-31 Abbott Laboratories Sensor array
US20070233167A1 (en) * 2004-09-04 2007-10-04 Thomas Weiss Lancing apparatus for producing a puncture wound
US8002785B2 (en) * 2004-09-04 2011-08-23 Roche Diagnostics Operations, Inc. Lancing apparatus for producing a puncture wound
US7488298B2 (en) 2004-10-08 2009-02-10 Roche Diagnostics Operations, Inc. Integrated lancing test strip with capillary transfer sheet
US8105347B2 (en) 2004-11-16 2012-01-31 Stat Medical Devices, Inc. Adjustable disposable/single-use blade lancet device and method
US8066728B2 (en) 2004-11-30 2011-11-29 Stat Medical Devices, Inc. Disposable or single-use lancet device and method
US20060116705A1 (en) * 2004-11-30 2006-06-01 Stat Medical Devices, Inc. Disposable or single-use lancet device and method
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US9289161B2 (en) 2005-01-28 2016-03-22 Stat Medical Divices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US9282918B2 (en) 2005-01-28 2016-03-15 Stat Medical Devices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US20060241668A1 (en) * 2005-01-28 2006-10-26 Stat Medical Devices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US20110178435A1 (en) * 2005-03-02 2011-07-21 Roe Steven N System and method for breaking a sterility seal to engage a lancet
US7935063B2 (en) 2005-03-02 2011-05-03 Roche Diagnostics Operations, Inc. System and method for breaking a sterility seal to engage a lancet
US20060241669A1 (en) * 2005-04-04 2006-10-26 Stout Jeffrey T Narrow-profile lancing device
US8574255B2 (en) 2005-04-04 2013-11-05 Facet Technologies, Llc Narrow-profile lancing device
US20100160831A1 (en) * 2005-04-04 2010-06-24 Facet Technologies, Llc Narrow-profile lancing device
US20120022352A1 (en) * 2005-10-12 2012-01-26 Masaki Fujiwara Blood sensor, blood testing apparatus, and method for controlling blood testing apparatus
US20070100364A1 (en) * 2005-10-28 2007-05-03 Sansom Gordon G Compact lancing apparatus
US20070095178A1 (en) * 2005-11-03 2007-05-03 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
US20100168776A1 (en) * 2005-11-03 2010-07-01 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
US8454642B2 (en) 2005-11-03 2013-06-04 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
US7704265B2 (en) 2005-11-03 2010-04-27 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
US8876846B2 (en) 2005-11-03 2014-11-04 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
US20070213682A1 (en) * 2006-03-13 2007-09-13 Hans-Peter Haar Penetration device, kit, and method
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US20110230905A1 (en) * 2006-10-13 2011-09-22 Roche Diagnostics Operations, Inc. Tape transport lance sampler
US8852124B2 (en) 2006-10-13 2014-10-07 Roche Diagnostics Operations, Inc. Tape transport lance sampler
US8328736B2 (en) 2006-10-13 2012-12-11 Roche Diagnostics Operations, Inc. Tape transport lance sampler
US7955271B2 (en) 2006-10-13 2011-06-07 Roche Diagnostics Operations, Inc. Tape transport lance sampler
US8043318B2 (en) 2007-02-08 2011-10-25 Stat Medical Devices, Inc. Push-button lance device and method
US20110160759A1 (en) * 2007-02-09 2011-06-30 Stat Medical Devices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US9017356B2 (en) 2007-02-09 2015-04-28 Stat Medical Devices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US20080243159A1 (en) * 2007-03-30 2008-10-02 Stat Medical Devices, Inc. Lancet device with combined trigger and cocking mechanism and method
US9307939B2 (en) 2007-03-30 2016-04-12 Stat Medical Devices, Inc. Lancet device with combined trigger and cocking mechanism
US9179867B2 (en) 2007-06-19 2015-11-10 Stat Medical Devices, Inc. Lancet device with depth adjustment and lancet removal system and method
US20100274273A1 (en) * 2007-06-19 2010-10-28 Steven Schraga Lancet device with depth adjustment and lancet removal system and method
WO2009001049A1 (en) 2007-06-22 2008-12-31 Owen Mumford Limited Lancing devices
US20100249820A1 (en) * 2007-06-22 2010-09-30 Owen Mumford Limited Lancing devices
US20100094326A1 (en) * 2007-07-05 2010-04-15 Blackrock Kelso Capital Corporation Multi-lancet cartridge and lancing device
US8251922B2 (en) 2007-10-08 2012-08-28 Roche Diagnostics Operations, Inc. Analysis system for automatic skin prick analysis
US20110092855A1 (en) * 2007-10-08 2011-04-21 Hans List Analysis system for automatic skin prick analysis
US20110112384A1 (en) * 2007-10-24 2011-05-12 Christoph Eisenhardt Medical system having consumables monitoring
US8517938B2 (en) 2007-10-24 2013-08-27 Roche Diagnostics Operations, Inc. Medical system having consumables monitoring
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9480419B2 (en) * 2008-10-09 2016-11-01 Roche Diabetes Care, Inc. Lancing device
US20100121366A1 (en) * 2008-10-09 2010-05-13 Thomas Weiss Lancing device
US20100160943A1 (en) * 2008-12-18 2010-06-24 Facet Technologies, Llc Lancing device and lancet
US9095294B2 (en) 2008-12-18 2015-08-04 Facet Technologies, Llc Lancing device and lancet
US20100160942A1 (en) * 2008-12-18 2010-06-24 Facet Technologies, Llc Lancing device and lancet
US9095293B2 (en) 2008-12-18 2015-08-04 Facet Technologies, Llc Lancing device and lancet
US8398664B2 (en) 2008-12-18 2013-03-19 Facet Technologies, Llc Lancing device and lancet
EP2213231A1 (en) 2009-01-30 2010-08-04 Roche Diagnostics GmbH Integrated body fluid meter and lancing device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9131886B2 (en) 2009-04-03 2015-09-15 Roche Diagnostics Operations, Inc. Apparatus for acquiring and analyzing a blood sample
US8496602B2 (en) 2009-04-03 2013-07-30 Roche Diagnostics Operations, Inc. Apparatus for acquiring and analyzing a blood sample
US20100256526A1 (en) * 2009-04-03 2010-10-07 Herbert Harttig Apparatus for acquiring and analyzing a blood sample
US9517027B2 (en) 2009-07-10 2016-12-13 Facet Techonologies, Llc Advancement mechanism for cartridge-based devices
US20110130782A1 (en) * 2009-07-10 2011-06-02 Kan Gil Advancement mechanism for cartridge-based devices
US20110098735A1 (en) * 2009-10-22 2011-04-28 Facet Technologies, Llc Lancing device with improved guidance assembly
US9055899B2 (en) 2009-10-22 2015-06-16 Facet Technologies, Llc Lancing device with improved guidance assembly
USD634426S1 (en) 2010-04-08 2011-03-15 Facet Technologies, Llc Lancing device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9844331B2 (en) 2011-12-15 2017-12-19 Facet Technologies, Llc Latch mechanism for preventing lancet oscillation in a lancing device
USD806246S1 (en) 2016-02-25 2017-12-26 Steven Schraga Lancet cover

Also Published As

Publication number Publication date Type
JPH07275223A (en) 1995-10-24 application
EP0782838A2 (en) 1997-07-09 application
EP0565970A1 (en) 1993-10-20 application
EP0782838A3 (en) 1998-03-25 application
DE4212315A1 (en) 1993-10-14 application
EP0565970B1 (en) 1997-09-24 grant
ES2108155T3 (en) 1997-12-16 grant
ES2154855T3 (en) 2001-04-16 grant
EP0782838B1 (en) 2001-01-17 grant
JP2702374B2 (en) 1998-01-21 grant
US5318584A (en) 1994-06-07 grant

Similar Documents

Publication Publication Date Title
US6530937B1 (en) Adjustable tip for a lancet device and method
US5643306A (en) Disposable lancet
US4462405A (en) Blood letting apparatus
US7223276B2 (en) Blood removal system
US6514270B1 (en) Single use lancet device
US20040098010A1 (en) Confuser crown skin pricker
US20060264997A1 (en) Finger activated lancet device
US7322996B2 (en) Precisely guided lancet
US5746761A (en) Disposable lancet for finger/heel stick
US5397334A (en) Distal movement limiting assembly for finger stick device
US4924879A (en) Blood lancet device
US20060235454A1 (en) Blood sampling device
US5871494A (en) Reproducible lancing for sampling blood
EP1337182B1 (en) Blood testing apparatus
US20060052723A1 (en) Device for sampling bodily fluids
US20080082023A1 (en) Puncturing system for withdrawing a body fluid
US20050143771A1 (en) Lancing device with combination depth and activation control
US20070265654A1 (en) Puncture needle cartridge and lancet for blood collection
US4624253A (en) Lancet
US6589261B1 (en) Lancet needle anchor and method
US7150755B2 (en) Blood sampling device
US20100274273A1 (en) Lancet device with depth adjustment and lancet removal system and method
US20080039885A1 (en) Dampening And Retraction Mechanism For A Lancing Device
US5571132A (en) Self activated finger lancet
US20060224172A1 (en) Blood sampling device

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12