BACKGROUND OF THE INVENTION
1. Field of the Invention
The apparatus of the present invention relates to downhole valves. More particularly, the present invention relates to a disc valve, constructed of a breakable material, such as glass, positioned in the flowbore of a tubing string that prevents flow of fluid through the bore from either direction. When flow is desired, the breakable disc is ruptured, and the flow is allowed to commence within the bore.
2. General Background
In this general process for drilling and produces of oil and gas wells, at that point in the process where a hydrocarbon formation has been located in a particular depth, normally an exterior casing would be lowered down, the borehole through the area of production, known as the production zone. The exterior casing is perforated with the use of a perforating gun or the like. Using electric wireline and setting tools, or some other means, a permanent type packer, referred to as a "sump packer" is usually set below the perforations. Subsequently, an internal tubing string, together with sand screen and blank pipe, packer and packer extension, hydraulic setting tool, cross-over tool, and wash pipe, are positioned within the exterior casing to engage with the "sump packer". The annulus between the sand screen and the exterior perforated casing is packed off, utilizing certain procedures. This packing off is necessary so that the interior tubing would be utilized to carry the recovered hydrocarbons to the surface. The area around the perforations is prepared, so that the flow of hydrocarbons may commence.
For example, the well must be gravel packed, so that the flow of sand or the like out of the formation is prevented during recovery of the hydrocarbons. The present invention would be utilized following the gravel packing procedure, with the assignee company, Completion Services, Inc., would designate as the "Complete Gravel Pack," which would include a hydraulic setting tool and crossover being run into the well with the required sandscreen and blank pipe. The packer assembly would be seated using pump pressure applied to the tubing. After is it seated, the crossover valve may be opened and closed. With the crossover valve closed, the packer may be pressure tested by pumping down the casing. Fluid may be pumped into the formation to establish injection rate. Also, the formation may be acidized, if necessary. With the crossover valve open, sand slurry may be circulated to place sand outside of the screen and into the formation until adequate gravel pack is obtained. After removal of the setting tool and crossover, a production seal assembly is run in for production of the zone.
After gravel packing is complete, oftentimes the well may not necessarily be pressure balanced. The formation, under these conditions, may tend to absorb the well fluid into the production zone or the fluid in the zone may tend to flow into the well. In either case, this could lead to unacceptable (a) loss of expensive well fluid (b) damage to the formation, (c) danger of a potential well blow-out or co-mingling of formation fluids. In the present state of the art, if there can be a prediction in which direction the pressure differential will exist within the well, a flapper valve can be utilized which would hold pressure in one direction only. However, flapper valves can be easily damaged, activated premature, leak or rupture at too low a pressure differential. Therefore, there is a need in the art for a valve which would prevent the movement of fluids within the well bore in either direction, and under varying degrees of pressure differential within the well.
There have been patents issued in the art which relate to valves in operation downhole, during the recovery of hydrocarbons during production, etc., the most pertinent being as follows:
______________________________________
U.S. Pat. No.
TITLE ISSUE DATE
______________________________________
4,658,902
"Surging Fluids Downhole In
Apr. 21, 1987
An Earth Borehole"
4,651,827
"Hydraulically Controlled
Mar. 24, 1987
Safety Valves For Incorporation
In Production Tubes Of
Hydrocarbon Production Wells"
4,691,775
"Isolation Valve With Frangible
Sep. 8, 1987
Flapper Element"
3,831,680
"Pressure Responsive Auxiliary
Aug. 27, 1974
Disc Valve And The Like For
Well Cleaning, Testing And
Other Operations"
3,599,713
"Method And Apparatus For
Aug. 17, 1971
Controlling The Filling Of
Drill Pipe Or The Like With
Mud During Lowering Thereof"
3,024,846
"Dual Completion Packer Tool"
Nov. 15, 1957
2,855,943
"Circulation Port Assemblies
Oct. 14, 1958
For Tubing Or Well Pipe"
2,626,177
"Tool For Hydraulically
Jan. 20, 1953
Displacing Well Materials"
2,565,731
"Disk Perforator For Pipes
Aug. 28, 1951
In Wells"
2,545,504
"Completion Shoe" Mar. 20, 1951
______________________________________
Other objects of the invention will be obvious to those skilled in the art from the following description of the invention.
SUMMARY OF THE PRESENT INVENTION
The apparatus of the present invention solves the problems in the art in a simple and straightforward manner. What is provided is a travelling disc valve apparatus, positionable within the bore of a tubing string, to control differential pressures from above or below the position of the valve. The valve is engaged to the wash pipe and used during gravel packing operation. When gravel packing is concluded, the valve is then placed in position by raising the wash pipe to the upper seal bore, latching the valve in position. The wash pipe is then sheared from the safety valve, and the valve is sealing fluid flow in either direction. Upon lowering of a tool on a wireline, the glass travelling disc valve is then ruptured, and production flow up the string is allowed to proceed.
Therefore, it is a principal object of the present invention to provide a travelling disc valve positioned in a tubing string to provide control of differential pressures from above or below the valve;
It is a further object of the present invention to provide a valve which can be positioned in varied locations within the tubing string, and effects a positive seal when latched into position;
It is a further object of the present invention to provide a disc valve which, prevents loss of contaminating fluids, and prevents loss of the expensive completion fluids involved in the completion of an oil or gas well; and
It is still a further object of the present invention to provide a disc valve which is flexible in its use downhole, and eliminates the difficulties of spring activated metal to metal, or metal to o-ring seal valves, such as flapper valves.
BRIEF DESCRIPTION OF THE DRAWINGS
For a further understanding of the nature and objects of the present invention, reference should be had to the following detailed description taken in conjunction with the accompanying drawings, in which like parts are given like reference numerals, and wherein:
FIG. 1A through 1G illustrated cross-section views of isolated components making up the upper and lower sections of the lower circulation configuration utilizing the present invention;
FIG. 1H is an overall view of the components of the assembly as illustrated in FIGS. 1A through 1G, including the components in the tubing string situation directly above the assembly components that are illustrated in FIG. 1H.
FIGS. 2A through 2D illustrate in cross-section views, the isolation components of the assembly during upper circulation following the raising of the top seal ring out of sealing engagement with the bottom seal bore;
FIGS. 2E through 2G illustrate in cross-section views, the isolated components of the assembly further illustrating the upper section of the assembly after the wash pipe has been sheared and withdrawn from bore-hole and the disc valve is locked in position;
FIG. 3 illustrates a cross-sectional view of the manner in which the travelling disc valve of the present invention is ruptured and removed to allow flow as illustrated in FIGS. 4A and 4B; and
FIGS. 4A and 4B illustrate cross-section views of isolated components of the system utilizing the present invention, with the disc valve ruptured to allow production flow in the system.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The apparatus of the present invention referred to as a travelling disc valve is illustrated in the figures by the numeral 10. As best seen in the drawings, the entire assembly housing the travelling disc valve assembly during lower circulation is shown in FIGS. 1A through 1G. The upper section of the assembly is illustrated in FIGS. 1A through 1D, and the lower section of the assembly illustrated in FIGS. 1E through 1G.
In FIG. 1H there is illustrated an overall composite view of the disc valve assembly as seen in its isolated components in FIGS. 1A through 1G, and the components in the tubing string positioned directly above the disc valve assembly. These would comprise upper setting tool and crossover assembly 114, with the compset packer 116 positioned directly below. Furthermore, there is illustrated the perforated extension 118, which is attached directly to the seal bore 120, which is positioned directly below the perforated extension 118. Furthermore, there is illustrated the indicator collet 122, and the no-go housing 124 for the disc valve 10. Directly below the no-go housing for the disc valve is a seal bore 126 for the disc valve 10, and thence the production screen 32 as illustrated in the isolated views, the top seal bore member 30, and thence the disc valve assembly 10 as will be discussed further.
As seen in FIG. 1G, travelling disc valve 10 comprises a solid piece of material, preferably glass, which may be of various thickness depending on the pressures downhole that may be encountered and various diameters depending on the size of the tubing in which the disc valve 10 is positioned. Disc 10 is positioned within a groove 12 in the wall of a collet member 14, as illustrated in FIG. 1G. Groove 12 is formed on its lower end of a circular end pice 18 threadably secured on the lower end of collet 14 which serves as the lower shoulder upon which the disc valve 10 rests in groove 12.
Turning now to the system in which travelling disc valve 10 functions, reference is made to FIG. 1A-1G, which comprise a series of isolated views of the system, extending from the upper packer extension 20 down to the lower most component, the sump packer 22. As seen in the FIGS. 1A through 1D, the packer extension 20 is threadably engaged to a to locator 24 which engages on its lowermost end a collet locator 26. The collet locator 26 interconnects to an elongated spacer 28, which, at its lower end engages the top seal bore member 30, to which bank tubing and the production screen 32 is suspended. Production screen 32, as illustrated in FIG. 1E would be a typical production screen having an outer screen layer 33, positioned around the screen support wall 33A. The support wall 33A would include a plurality of ports 33B so that production flow through the ports 35 in the wall of the production casing 36 into the annulus 37 of the production casing 36, would flow into the internal bore of the production screen and up to the surface as will be described further. As seen in FIG. 1D and 1E, when production is commenced the hydrocarbon flow would move through the perforations in the wall of casing 36, into the annulus between the wall of casing 36 and the production screen 32, and then to the surface through the bore in the production string.
As seen further in FIGS. 1E through 1G, the lower end of production screen 32 would be connected to a bottom seal bore 40, for connecting to, at its lower end 41, a second screen, or a telltale screen 44, which would be connected to a bottom locator 50 and then to the lowest component, the sump packer 22, which would pack off the lowest most point of the assembly so that fluid or production flow could not pass that point during production.
As is illustrated in FIGS. 1A-1G, the components previously recited, referred collectively hereinafter as outer production assembly 100, further comprise a continuous internal bore 54 therethrough, in which there is housed the internal system for carrying the travelling disc valve 10, and will be referred to as the travelling disc valve assembly 102. Continuing to refer to FIGS. 1A through 1G, the assembly 102 would comprise an upper length of wash pipe 58 extending down the internal bore 54 of the outer assembly 100, and would extend and interconnect to a sheat joint 56 the lower end of which would interconnect to a collect 57. The outlet 57 would further include a first top seal ring 60 which would form a seal between the outer wall 59 of collet 57 and the inner wall of bottom seal bore member 40, to prevent fluid flow therebetween. Further, as seen in FIG. 1G, collet 57 would further interconnect to a spacer 59 which would in turn interconnect to second bottom seal rings 62 again for sealing against fluid flow as will be discussed further. Directly positioned below second bottom seal rings 62 traveling disc valve member 10, as discussed earlier. As seen in the FIGURES, during the process of lower circulation, the travelling disc valve 10 is positioned along the length of telltale screen 44, to prevent the travelling disc valve from interfering with lower or upper circulation.
Having discussed the components of the system, as illustrated in the Figures, a discussion will be had regarding the function of the traveling disc valve 10 in the system, which lends itself to the novelty of the valve 10. FIGS. 1A-1G comprise the series of figures showing the operation of the system and the location of the disc valve 10 during lower circulation. As illustrated in the Figures, the travelling disc valve 10 and related components have been positioned below the upper packer, not illustrated, with the crossover tool raised to the lower circulation position. While in this position, the sand slurry, following the packaging off process as discussed, is pumped down the tubing, through the crossover ports into the casing annulus 37 below the packer 20, as seen by arrows 21, between the outer casing 36 and the outer assembly 100. The sand slurry flow, would then enter the telltale screen 44, through the pluralty of prots 80 in the wall of the screen above the disc valve 10, up the bore 43 of the wash pipe 58 in the direction of Arrows 23, through the concentric passage 82 of the crossover tool and would continue to travel up the passage through the ports which would communicate with the casing annulus above the packer, not illustrated.
During the lower circulation process as described, the point at which sand has begun to accumulate against the ports in the telltale screen 44, would result in the retardation of the circulation of the fluid as previously described. Therefore, the pump pressure, at the surface would increase, would indicate that the crossover tool as in position as seen in FIGS. 1A through 1G should be raised by raising the wash pipe 44 in the hole, to the position that the first top seal ring 60 would be pulled from the position within the bottom seal bore 40, as seen more clearly in FIGS. 2D and 2E, and in position adjacent production screen 32 and through ports 45 in spacer 59. When this is accomplished in the process, the circulation through the production screen 32 would then be permitted through the port 33B below the first top seal ring 60, allowing the flow to enter into the wash pipe in the direction of Arrows 23.
As in the earlier part of the process during lower circulation, when the sand has begun to accumulate against the production screen 32, again the pump pressure will increase which will force the sand slurry into the casing perforations 35, and then into the formation 104, surround the casing at the point of the perforations. The pressure would then be released and the crossover tool would then be raised until the crossover ports are above the packer. In this position, the excess sand slurry can then be circulated and returned back to the well surface by pumping down the annulus between the casing 36 and the tubing that extends to the surface of the well above the hydraulic setting tool and crossover tool. The fluid would then be received at the surface of the well through the tubing bore.
Upon the completion of the reverse circulation as seen and described, again reference is made to FIGS. 2D-2G where it is illustrated that the crossover tool and the wash pipe 44 are raised until the shear joint 56 positioned above the collet 57 is stopped in the top locator 24. At this point, shear screws 56A in the shear joint 56 will be sheared off, leaving the disc valve assembly, comprising the components below the shear joint 56 down to the disc valve 10 held in place by lower end piece 18 of the assembly. In this position, the second bottom seal ring 62 together with disc valve 10 provide a means to prevent fluid flow from entering into the formation from above the disc valve 10, or from preventing fluid or gas production to enter from the surrounding formation. At the point that the shear pins are sheared, the crossover tool and the wash pipe are then withdrawn from the hole, leaving the disc valve assembly as described. Although a shear joint is utilized in this preferred embodiment, any means for disconnecting the disc valve assembly from the washpipe 44.
Following the running of the production tubing and the seals into the well and stabbing to secure the packer, the disc valve 10 must be ruptured in order to clear the way for production of the well. Therefore, there is a means to rupture the valve. This means would comprise, preferably, a long, slender, pointed sinker bar 108, as illustrated in FIG. 3, which would be lowered on a wire line 110 through bore 43 in the assembly 102, in the direction of Arrows 112, and by raising the dropping the bar 108 against the glass disc 10, the impact would rupture the disc 10, thus clearing the passage within the assembly 102, in order to allow the well to begin producing through the production screen through the internal bore of the disc valve assembly 102, as seen in FIGS. 4A-4B. In addition, mere fluid pressure in the bore may be used to rupture the disc valve, without the need for a sinker bar or the like.
As seen in those FIGS. 4A and 4B illustrate isolated views of the component of the travelling disc valve assembly 102, which illustrates the upper portion of the assembly having the gap 12 where the ruptured disc was once in position, and has been ruptured by the impact of tool 108, as illustrated in FIG. 3. Therefore, as seen, fluid which has traveled through ports 35 in casing 36 into the annular space 37 are then free to enter into production screen 32, through the ports 33B in the production casing, of the concentric passage 82 in the direction of Arrows 23 to be collected at the surface of the assembly. It is this particular point that the production of the well has commenced, and the upward pressure of the production from the surrounding formation 104 is able to take place.
List of Parts and Reference Numbers
travelling disc valve 10
groove 12
circular end piece 18
collet 14
upper packer extension 20
sump packer 20
top locator 24
collet locator 26
elongated spacer 28
top seal bore member 30
production screen 32
outer screen layer 33
screen support wall 33A
plurality of ports 33B
casing perforations 35
production casing 36
annulus 37
string 11
bottom seal bore 40
lower end 41
telltale screen 44
bottom locator 50
outer production assembly 100
internal bore 54
traveling disc valve assembly 102
wash pipe 58
shear joint 56
shear screws 56A
collet 57
space 59
first top seal ring 60
outer wall 63
bottom seal bore member 61
bottom seal rings 62
casing annulus 37
arrows 21
ports 80
bore 43
concentric passage 82
ports 61
formation 104
wireline 110
bar 108
arrows 112
crossover assembly 114
compset packer 116
perforated extension 118
seal bore 120
indicator collet 122
no-go housing 124
seal bore 126
Because many varying and different embodiments may be made within the space of the inventive concept herein taught, and because many modifications may be made in the embodiment herein detailed in accordance with the descriptive requirement of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.