USRE34720E - Television signal enhancement and scrambling system - Google Patents
Television signal enhancement and scrambling system Download PDFInfo
- Publication number
- USRE34720E USRE34720E US08061924 US6192493A USRE34720E US RE34720 E USRE34720 E US RE34720E US 08061924 US08061924 US 08061924 US 6192493 A US6192493 A US 6192493A US RE34720 E USRE34720 E US RE34720E
- Authority
- US
- Grant status
- Grant
- Patent type
- Prior art keywords
- signal
- television
- video
- distortion
- iaddend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/80—Jamming or countermeasure characterized by its function
- H04K3/82—Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
- H04K3/825—Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by jamming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K1/00—Secret communication
- H04K1/02—Secret communication by adding a second signal to make the desired signal unintelligible
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/40—Jamming having variable characteristics
- H04K3/41—Jamming having variable characteristics characterized by the control of the jamming activation or deactivation time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/40—Jamming having variable characteristics
- H04K3/42—Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/40—Jamming having variable characteristics
- H04K3/43—Jamming having variable characteristics characterized by the control of the jamming power, signal-to-noise ratio or geographic coverage area
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/166—Passage/non-passage of the television signal, e.g. jamming, band suppression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K2203/00—Jamming of communication; Countermeasures
- H04K2203/10—Jamming or countermeasure used for a particular application
- H04K2203/14—Jamming or countermeasure used for a particular application for the transfer of light or images, e.g. for video-surveillance, for television or from a computer screen
Abstract
Description
This invention relates to a system for modifying a television signal to increase the quality of the received picture while also providing scrambling.
In a known television scrambling system described in U.S. Pat. No. 4,074,311 (Tanner et al.), a scrambling signal is injected into the television signal between the video and audio carriers. The signal is removed by a notch filter for decoding.
Tanner et al. also teach signal preemphasis centered on the frequency of the scrambling signal to compensate for signal degradation due to the removal of the scrambling signal by the notch filter signal during decoding.
The Tanner system suffers from several disadvantages. For example, the signal preemphasis is generally inadequate to compensate for the degradation which results from the removal of the scrambling signal, particularly when the picture includes high spatial frequency components which require a high spectral content of the transmitted signal. This degradation is manifested by a blurring of the received picture which in some cases, for example, makes it difficult to read textual parts of the picture.
In accordance with a first aspect of the invention, a television signal is subjected to preemphasis which is so large that it is properly termed distortion. The distortion is applied in the region of the signal between the video and audio carriers .[.and causes the demodulated video signal to experience carrier "pinch off" which results from over modulation of the carrier.].. This distortion is so large that most television sets are unable to produce an acceptable picture unless the signal is properly treated.
The signal can be restored to allow the television set to produce an acceptable picture by applying the signal to an amplifier or passive filter having a response characteristic which is the inverse of the distortion characteristic.
In the preferred embodiment, the distortion curve and the restoring curve have Gaussian shapes which limit the number of inflections to substantially reduce group delay. The maximum distortion is 38 dB, and the audio and video carriers are increased by 8 dB.
In accordance with a second aspect of the invention, at least one jamming signal is applied to the television signal only during the horizontal and vertical blanking pulses. The signal is gated to be applied only during these portions of the signal and prevents the television from detecting the real sync pulses, which assists in preventing the detection of a usable signal.
In a preferred embodiment, two such gated jamming signals are used, and they are spaced by a small frequency to prevent unauthorized decoding of a signal by application of a single, home made notch filter.
In an alternative embodiment, the gated jamming signals comprise noise, e.g. random frequencies within a selected band.
It has been found that a signal subjected to the distortion and restoration amplifiers of the invention produces a picture having a quality which is better than that which is presently available using jamming signals because the deleterious effects of the notch filter are greatly reduced.
FIG. 1a is a block diagram of a encoder in accordance with the invention.
FIG. 1b is a block diagram of a decoder in accordance with the invention.
FIG. 2 is a graph showing a preferred restoration curve.
FIG. 3 is a graph showing a preferred distortion curve and the effect of distortion of a television signal.
FIG. 4 is a graph comparing the distorted television signal with the restored signal.
FIG. 1a is a block diagram of a system in accordance with the invention for use with a cable television system. A head end encoder 2 includes a video input line 4 which receives the video signal from modulator 3 wherein the video carrier is at an intermediate frequency of 45.75 MHz. The video signal is combined with gated jamming signal at a combiner 6, these jamming signal being described more fully below. The video signal is passed through a first buffer amplifier 8, a distortion amplifier 10, and a second buffer amplifier 12. The distorted signal is then returned to the modulator 3 for combination with the audio signal and subsequent transmission to a cable distribution network.
FIG. 1b illustrates a typical decoder and receiver for the transmitted signals. The signal from the cable television distribution system is received at 13 and is supplied to a passive filter 15. The signals from the filter are then supplied to a known television receiver 17 for reproduction of the picture and sound. The decoder thus preferably comprises a set of filters which restore the signal by providing the inverse of the distortion effected in the amplifier 10 whereby the television receiver can produce an acceptable picture.
FIGS. 2 thorough 4 illustrate the preferred distortion characteristics of the distortion amplifier 10. FIG. 2 is a graph of the amplitude versus frequency response of the restoring filter and represents the inverse of the distortion caused by the amplifier 10. This curve is substantially Gaussian and the characteristics are as follows:
______________________________________Frequency(from center) Attenuation______________________________________ 0 MHZ -38.7 dB-2.25 MHz -7.5 dB-1.5 MHz -22.5 dB+1.33 MHz -26.7 dB-6.0 MHz 0.0 dB+6.0 MHz 0.0 dB______________________________________
The approximate location of the video carrier is shown at 14, and the approximate location of the audio carrier is shown at 16. The maximum attenuation is 38.7 dB, and this is located at the frequency of the carrier plus 2.25 MHz.
With reference to FIG. 3, the distortion curve is shown at 18, and a typical distorted television signal is shown at 20. The video carrier is shown at 22, and the audio carrier is shown at 24.
FIG. 4 shows a comparison between a typical distorted television signal 26 and a restored signal 28 during the picture transmission part of the signal.
Referring again to FIG. 1, the gated jamming pulses of the invention will be described. The distortion-restoration system described with reference to FIGS. 2 through 4 provides adequate jamming of television signals for a large majority of the television receivers in use today. Some newer receivers, however, may be capable of producing a "viewable" picture from the distorted signal as shown by curve 26 of FIG. 4. Accordingly, applicants additionally provide two jamming signals between the audio and video carriers, the jamming signals having amplitudes such that they are each equal to the video carrier amplitude resulting at 50. These jamming signals are supplied only during the vertical and horizontal blanking periods, and the combination of the distortion and the gated jamming signals provides complete jamming for even state of the art receivers.
The gated jamming signals are provided by a first oscillator 30, which produces a signal spaced from the video carrier by about 1.4 MHz, and a second oscillator 32, which produces a signal spaced from the video carrier by about 2.258 MHz.
The video signal from the video source is supplied to a video loop 36, and the loop passes through a sync separator 38. The sync separator provides a series of pulses in accordance with the horizontal sync pulses, and the vertical sync pulses are derived from these. A composite blanking generator 40 generates a vertical signal 42 which controls a mixer 44 and a horizontal signal 46 which controls a mixer 48. The mixers are essentially gates controlled by the horizontal and vertical signals to allow the introduction of the signals from the oscillators 30 and 32 to a hybrid combiner 34 only during respective horizontal and vertical blanking intervals. The hybrid combiners themselves are known and provide low loss coupling of the signals from the input ports to the common output port.
The video signal which has been modulated by an intermediate frequency and which is supplied at 4 is combined with the gated jamming signals, and this combination is subjected to the buffer and distortion amplifiers 8, 10, and 12 as described above. The resulting signal at 50 is returned to the modulator for combination with the audio signal and transmission to the cable system.
While the gated jamming signals have been described as comprising carrier signals, they alternatively comprise noise. In a practical embodiment, the bandwidth of the noise was 3 MHz, but this may be larger or smaller. In accordance with this embodiment, the oscillators 30 and 32 are replaced by a noise generator which produces a noise signal for combination with the video signal in lieu of the jamming signals at single frequencies.
The gated jamming signals are inherently removed in large measure by the restoration filter 15 having the characteristics illustrated in FIG. 2. The restoration filter reduces the amplitude of the center of the signal between the audio and video carriers by about 30 dB with respect to the video carrier. Thus, the jamming signals are reduced in amplitude by about 97%. The residual 3% has been found to be small enough to permit the television receiver to read the information it is required to find in the blanking intervals, such as the horizontal sync signal, the color burst signal, and vertical interval signals. This remaining 3% can, however, reduce the quality of the picture if it is present during the interval when the signal carries picture information. Because these jamming signals are gated, however, they are not present when the picture information is transmitted and do not interfere with the production of a high quality picture by the receiver.
It will be appreciated that a unique technique for improving the quality of a television picture and for preventing unauthorized of television signals has been described. Modifications within the scope of the appended claims will be apparent to those of skill in the art.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07490788 US5022078A (en) | 1990-03-08 | 1990-03-08 | Television signal enhancement and scrambling system |
US08061924 USRE34720E (en) | 1990-03-08 | 1993-05-14 | Television signal enhancement and scrambling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08061924 USRE34720E (en) | 1990-03-08 | 1993-05-14 | Television signal enhancement and scrambling system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US07490788 Reissue US5022078A (en) | 1990-03-08 | 1990-03-08 | Television signal enhancement and scrambling system |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE34720E true USRE34720E (en) | 1994-09-06 |
Family
ID=23949473
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07490788 Expired - Lifetime US5022078A (en) | 1990-03-08 | 1990-03-08 | Television signal enhancement and scrambling system |
US08061924 Expired - Lifetime USRE34720E (en) | 1990-03-08 | 1993-05-14 | Television signal enhancement and scrambling system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07490788 Expired - Lifetime US5022078A (en) | 1990-03-08 | 1990-03-08 | Television signal enhancement and scrambling system |
Country Status (1)
Country | Link |
---|---|
US (2) | US5022078A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070140513A1 (en) * | 2005-12-15 | 2007-06-21 | Harman International Industries, Incorporated | Distortion compensation |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04245063A (en) * | 1991-01-31 | 1992-09-01 | Sony Corp | Signal synthesization circuit and detection circuit for preventing reproduction |
US5185793A (en) * | 1991-03-15 | 1993-02-09 | Eagle Comtronics, Inc. | Method and apparatus for securing television signals using sideband interdiction |
US5278525A (en) * | 1992-06-11 | 1994-01-11 | John Mezzalingua Assoc. Inc. | Electrical filter with multiple filter sections |
US6031432A (en) * | 1997-02-28 | 2000-02-29 | Schreuders; Ronald C. | Balancing apparatus for signal transmissions |
US6839433B1 (en) * | 1998-07-22 | 2005-01-04 | Macrovision Corporation | Method and apparatus for generating a signal that defeats illegal cable decoders |
US6973188B1 (en) * | 2002-02-25 | 2005-12-06 | Lockheed Martin Corporation | Analog scrambler |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3729576A (en) * | 1971-02-08 | 1973-04-24 | Optical Sys Corp | Encoding and decoding system for catv |
US4074311A (en) * | 1976-06-18 | 1978-02-14 | Tanner Electronic Systems | Television security system |
US4099203A (en) * | 1977-01-05 | 1978-07-04 | Joseph Garodnick | Television signal scrambling with introduction of replacement program signals |
US4222067A (en) * | 1978-06-23 | 1980-09-09 | Stern Joseph L | Tamper-resistant television signal scrambling |
US4338628A (en) * | 1979-12-19 | 1982-07-06 | Dynacom International, Inc. | Scrambled video communication system |
US4398215A (en) * | 1979-09-03 | 1983-08-09 | Clarion Co., Ltd. | Video signal processing system |
US4488183A (en) * | 1980-10-27 | 1984-12-11 | Victor Company Of Japan, Limited | Copy-proof recording medium and device for adding copy-proof interference signal |
US4527195A (en) * | 1979-02-20 | 1985-07-02 | Payview Limited | Apparatus for encoding and decoding information |
US4623918A (en) * | 1983-05-02 | 1986-11-18 | Teleglobe Pay-Tv System, Inc. | Pay television system utilizing multi-frequency passive filters |
US4628358A (en) * | 1983-06-10 | 1986-12-09 | General Instrument Corporation | Television signal encryption system with protected audio |
US4639777A (en) * | 1983-12-16 | 1987-01-27 | Matsushita Electric Industrial Co., Ltd. | Apparatus for scrambling and descrambling communication signals |
US4748667A (en) * | 1986-11-04 | 1988-05-31 | Scientific Atlanta | Jamming signal scrambling and descrambling systems for CATV |
US4839922A (en) * | 1983-12-26 | 1989-06-13 | Pioneer Electronic Corporation | CATV scrambling and descrambling method |
US4959717A (en) * | 1989-05-12 | 1990-09-25 | Faroudja Y C | Method for masking picture reinforcement signals carried within the vertical interval |
US5091935A (en) * | 1984-01-27 | 1992-02-25 | Maast, Inc. | Method and system for scrambling information signals |
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3729576A (en) * | 1971-02-08 | 1973-04-24 | Optical Sys Corp | Encoding and decoding system for catv |
US4074311A (en) * | 1976-06-18 | 1978-02-14 | Tanner Electronic Systems | Television security system |
US4099203A (en) * | 1977-01-05 | 1978-07-04 | Joseph Garodnick | Television signal scrambling with introduction of replacement program signals |
US4222067A (en) * | 1978-06-23 | 1980-09-09 | Stern Joseph L | Tamper-resistant television signal scrambling |
US4527195A (en) * | 1979-02-20 | 1985-07-02 | Payview Limited | Apparatus for encoding and decoding information |
US4398215A (en) * | 1979-09-03 | 1983-08-09 | Clarion Co., Ltd. | Video signal processing system |
US4338628A (en) * | 1979-12-19 | 1982-07-06 | Dynacom International, Inc. | Scrambled video communication system |
US4488183A (en) * | 1980-10-27 | 1984-12-11 | Victor Company Of Japan, Limited | Copy-proof recording medium and device for adding copy-proof interference signal |
US4623918A (en) * | 1983-05-02 | 1986-11-18 | Teleglobe Pay-Tv System, Inc. | Pay television system utilizing multi-frequency passive filters |
US4628358A (en) * | 1983-06-10 | 1986-12-09 | General Instrument Corporation | Television signal encryption system with protected audio |
US4639777A (en) * | 1983-12-16 | 1987-01-27 | Matsushita Electric Industrial Co., Ltd. | Apparatus for scrambling and descrambling communication signals |
US4839922A (en) * | 1983-12-26 | 1989-06-13 | Pioneer Electronic Corporation | CATV scrambling and descrambling method |
US5091935A (en) * | 1984-01-27 | 1992-02-25 | Maast, Inc. | Method and system for scrambling information signals |
US4748667A (en) * | 1986-11-04 | 1988-05-31 | Scientific Atlanta | Jamming signal scrambling and descrambling systems for CATV |
US4959717A (en) * | 1989-05-12 | 1990-09-25 | Faroudja Y C | Method for masking picture reinforcement signals carried within the vertical interval |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070140513A1 (en) * | 2005-12-15 | 2007-06-21 | Harman International Industries, Incorporated | Distortion compensation |
US8036402B2 (en) | 2005-12-15 | 2011-10-11 | Harman International Industries, Incorporated | Distortion compensation |
US8942391B2 (en) | 2005-12-15 | 2015-01-27 | Harman International Industries, Incorporated | Distortion compensation |
Also Published As
Publication number | Publication date | Type |
---|---|---|
US5022078A (en) | 1991-06-04 | grant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5491748A (en) | Enhanced security for a cable system | |
US5754650A (en) | Simultaneous multichannel television access control system and method | |
US5572249A (en) | Method and apparatus for optimal NTSC rejection filtering and transmitter and receiver comprising same | |
US4958230A (en) | Method of transmitting auxiliary information in a television signal | |
US4223340A (en) | Image detail improvement in a vertical detail enhancement system | |
US6072872A (en) | Determination of scrambling mode of a television signal | |
US7333153B2 (en) | Expanded information capacity for existing communication transmission systems | |
US5060262A (en) | Video scrambling, audio masking and data transmission methods for wireless cable systems | |
US5182771A (en) | Anti-taping method and apparatus for a multiplexed analog component television system | |
US4405944A (en) | TV Sound transmission system | |
US6804826B1 (en) | Radio frequency leakage detection system for CATV system | |
US5841563A (en) | Method and system for efficient optical transmission of NTSC video | |
US4179705A (en) | Method and apparatus for separation of chrominance and luminance with adaptive comb filtering in a quadrature modulated color television system | |
US4200889A (en) | Complementary pre-emphasis and de-emphasis circuits for a video signal transfer channel | |
US6188832B1 (en) | Method and apparatus for modifications made to a video signal to inhibit the making of acceptable videotape recordings | |
US5477276A (en) | Digital signal processing apparatus for achieving fade-in and fade-out effects on digital video signals | |
US4389671A (en) | Digitally-controlled analog encrypton | |
US4621285A (en) | Protected television signal distribution system | |
US4055848A (en) | Signal processing for off-air video recorder | |
US5553141A (en) | Encryption and decryption (scrambling and unscrambling) of video signals | |
US4024575A (en) | Catv sine wave coding system | |
US5686966A (en) | Digital data transmission system for transmitting digital data in a predetermined bandwidth without distortion | |
US4295155A (en) | Gray scale sync video processing system | |
US5086340A (en) | Co-channel interference reduction system for digital high definition television | |
US4408225A (en) | Subscription television decoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: TRESNESS (2013) IRREVOCABLE PATENT TRUST, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRESNESS IRREVOCABLE PATENT TRUST;REEL/FRAME:030612/0030 Effective date: 20130422 |