USRE34669E - Method for preparing moulded polyureapolyurethane flexible foams - Google Patents
Method for preparing moulded polyureapolyurethane flexible foams Download PDFInfo
- Publication number
- USRE34669E USRE34669E US07/803,959 US80395991A USRE34669E US RE34669 E USRE34669 E US RE34669E US 80395991 A US80395991 A US 80395991A US RE34669 E USRE34669 E US RE34669E
- Authority
- US
- United States
- Prior art keywords
- isocyanate
- reactive
- compound
- reactive compound
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000006260 foam Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims abstract description 58
- 239000004970 Chain extender Substances 0.000 claims abstract description 20
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 15
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 229920002396 Polyurea Polymers 0.000 claims abstract description 10
- 239000004814 polyurethane Substances 0.000 claims abstract description 10
- 229920003226 polyurethane urea Polymers 0.000 claims abstract description 10
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 9
- 239000000654 additive Substances 0.000 claims abstract description 5
- 229920005862 polyol Polymers 0.000 claims description 30
- 150000003077 polyols Chemical class 0.000 claims description 30
- 229920000570 polyether Polymers 0.000 claims description 22
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 19
- 239000012948 isocyanate Substances 0.000 claims description 15
- 150000002513 isocyanates Chemical class 0.000 claims description 15
- 229920000768 polyamine Polymers 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 150000001414 amino alcohols Chemical class 0.000 claims description 4
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 claims description 3
- HGXVKAPCSIXGAK-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine;4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N.CCC1=CC(C)=C(N)C(CC)=C1N HGXVKAPCSIXGAK-UHFFFAOYSA-N 0.000 claims 2
- -1 polymethylene Polymers 0.000 description 22
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 12
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 10
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 125000001841 imino group Chemical group [H]N=* 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 150000004072 triols Chemical class 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- 229940043237 diethanolamine Drugs 0.000 description 3
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 3
- 150000002334 glycols Chemical class 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 3
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 2
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 description 2
- JGYUBHGXADMAQU-UHFFFAOYSA-N 2,4,6-triethylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(CC)=C1N JGYUBHGXADMAQU-UHFFFAOYSA-N 0.000 description 2
- OJPDDQSCZGTACX-UHFFFAOYSA-N 2-[n-(2-hydroxyethyl)anilino]ethanol Chemical compound OCCN(CCO)C1=CC=CC=C1 OJPDDQSCZGTACX-UHFFFAOYSA-N 0.000 description 2
- KZXDETHBUVFJMZ-UHFFFAOYSA-N 2-ethylbenzene-1,3-diamine Chemical compound CCC1=C(N)C=CC=C1N KZXDETHBUVFJMZ-UHFFFAOYSA-N 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- RQEOBXYYEPMCPJ-UHFFFAOYSA-N 4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N RQEOBXYYEPMCPJ-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000004705 aldimines Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000004984 aromatic diamines Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 239000004872 foam stabilizing agent Substances 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- PGYPOBZJRVSMDS-UHFFFAOYSA-N loperamide hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 PGYPOBZJRVSMDS-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- QCCDLTOVEPVEJK-UHFFFAOYSA-N phenylacetone Chemical compound CC(=O)CC1=CC=CC=C1 QCCDLTOVEPVEJK-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920006295 polythiol Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229920013730 reactive polymer Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- KFYRJJBUHYILSO-YFKPBYRVSA-N (2s)-2-amino-3-dimethylarsanylsulfanyl-3-methylbutanoic acid Chemical compound C[As](C)SC(C)(C)[C@@H](N)C(O)=O KFYRJJBUHYILSO-YFKPBYRVSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- XNDHQMLXHGSDHT-UHFFFAOYSA-N 1,4-bis(2-hydroxyethyl)cyclohexa-2,5-diene-1,4-diol Chemical compound OCCC1(O)C=CC(O)(CCO)C=C1 XNDHQMLXHGSDHT-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- DNMWKVLCHRNMFF-UHFFFAOYSA-N 1,5,5-trimethylcyclohexane-1,3-diamine Chemical compound CC1(C)CC(N)CC(C)(N)C1 DNMWKVLCHRNMFF-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- FKOMNQCOHKHUCP-UHFFFAOYSA-N 1-[n-(2-hydroxypropyl)anilino]propan-2-ol Chemical compound CC(O)CN(CC(C)O)C1=CC=CC=C1 FKOMNQCOHKHUCP-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- XPZBNIUWMDJFPW-UHFFFAOYSA-N 2,2,3-trimethylcyclohexan-1-one Chemical compound CC1CCCC(=O)C1(C)C XPZBNIUWMDJFPW-UHFFFAOYSA-N 0.000 description 1
- ZVDSMYGTJDFNHN-UHFFFAOYSA-N 2,4,6-trimethylbenzene-1,3-diamine Chemical group CC1=CC(C)=C(N)C(C)=C1N ZVDSMYGTJDFNHN-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- KELUYBRGBRRUCW-UHFFFAOYSA-N 2,4-diethylbenzene-1,3-diamine Chemical compound CCC1=CC=C(N)C(CC)=C1N KELUYBRGBRRUCW-UHFFFAOYSA-N 0.000 description 1
- 150000005000 2,6-diaminotoluenes Chemical class 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- OHKOAJUTRVTYSW-UHFFFAOYSA-N 2-[(2-aminophenyl)methyl]aniline Chemical class NC1=CC=CC=C1CC1=CC=CC=C1N OHKOAJUTRVTYSW-UHFFFAOYSA-N 0.000 description 1
- VARKIGWTYBUWNT-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanol Chemical compound OCCN1CCN(CCO)CC1 VARKIGWTYBUWNT-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- JOMNTHCQHJPVAZ-UHFFFAOYSA-N 2-methylpiperazine Chemical compound CC1CNCCN1 JOMNTHCQHJPVAZ-UHFFFAOYSA-N 0.000 description 1
- VSOJIKTXJSNURZ-UHFFFAOYSA-N 3,4-dimethylcyclohexa-1,5-diene-1,4-diamine Chemical group CC1C=C(N)C=CC1(C)N VSOJIKTXJSNURZ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- QPKOBORKPHRBPS-UHFFFAOYSA-N bis(2-hydroxyethyl) terephthalate Chemical compound OCCOC(=O)C1=CC=C(C(=O)OCCO)C=C1 QPKOBORKPHRBPS-UHFFFAOYSA-N 0.000 description 1
- PZFCKLKBGCAOPJ-UHFFFAOYSA-N bis(2-hydroxyethyl)carbamic acid Chemical compound OCCN(C(O)=O)CCO PZFCKLKBGCAOPJ-UHFFFAOYSA-N 0.000 description 1
- QBEHRHAJZXVHGW-UHFFFAOYSA-N bis(2-hydroxypropyl) benzene-1,3-dicarboxylate Chemical compound CC(O)COC(=O)C1=CC=CC(C(=O)OCC(C)O)=C1 QBEHRHAJZXVHGW-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007278 cyanoethylation reaction Methods 0.000 description 1
- VKONPUDBRVKQLM-UHFFFAOYSA-N cyclohexane-1,4-diol Chemical compound OC1CCC(O)CC1 VKONPUDBRVKQLM-UHFFFAOYSA-N 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 125000001240 enamine group Chemical group 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 201000006747 infectious mononucleosis Diseases 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 150000004658 ketimines Chemical class 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- RTWNYYOXLSILQN-UHFFFAOYSA-N methanediamine Chemical compound NCN RTWNYYOXLSILQN-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- ZETYUTMSJWMKNQ-UHFFFAOYSA-N n,n',n'-trimethylhexane-1,6-diamine Chemical compound CNCCCCCCN(C)C ZETYUTMSJWMKNQ-UHFFFAOYSA-N 0.000 description 1
- OHQOKJPHNPUMLN-UHFFFAOYSA-N n,n'-diphenylmethanediamine Chemical class C=1C=CC=CC=1NCNC1=CC=CC=C1 OHQOKJPHNPUMLN-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000012970 tertiary amine catalyst Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 229950006389 thiodiglycol Drugs 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 150000004998 toluenediamines Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/6576—Compounds of group C08G18/69
- C08G18/6582—Compounds of group C08G18/69 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6594—Compounds of group C08G18/69 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of C08G18/3225 or C08G18/3271 or polyamines of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
- C08G18/503—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups being in latent form
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/6505—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6523—Compounds of group C08G18/3225 or C08G18/3271 or polyamines of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/6505—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6523—Compounds of group C08G18/3225 or C08G18/3271 or polyamines of C08G18/38
- C08G18/6529—Compounds of group C08G18/3225 or polyamines of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0041—Foam properties having specified density
- C08G2110/005—< 50kg/m3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0075—Foam properties prepared with an isocyanate index of 60 or lower
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
Definitions
- the invention relates to the manufacture of polyurethane and/or polyurea flexible foams.
- isocyanate-reactive composition a chain extended such as 1,4 butane diol, alone or in admixture with phenyldiethanolamine or aromatic polyamines.
- GB 2041387 describes the manufacture of microcellular flexible PU foams by reacting isocyanate with a high molecular weight polyether polyol and a mixture of 1,4 butane diol and phenyldiethanolamine, the amount of those low molecular weight compounds ranging from 0.2% to 40% by weight of polyether polyol.
- a primary or secondary amino-functional compound (Iso-called chain-extender) of Mw below 1000 in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or
- Polyisocyanate compositions which may be reacted with the isocyanate-reactive compositions of the invention may include any of the aliphatic, cyclo-aliphatic, araliphatic or aromatic polyisocyanates known in polyurethane or polyurea chemistry, especially those that are liquid at room temperature.
- polyisocyanates examples include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-xylylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,4'-diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanates (crude MDI) and 1,5-naphthylene diisocyanate.
- 1,6-hexamethylene diisocyanate isophorone diisocyanate
- cyclohexane-1,4-diisocyanate 4,4'-dicyclohexylmethane diisocyanate
- 1,4-xylylene diisocyanate 1,4-phenylene di
- polyisocyanates can be used and also polyisocyanates which have been modified by the introduction of urethane, allophanate, urea, biuret, carbodiimide, uretonimine or isocyanature residues.
- the aromatic polyisocyanates are preferred, especially the available MDI isomers, that is to say 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and mixtures thereof.
- MDI variants such as uretonimine-modified MDI and MDI prepolymers are also of great value in the moulding process.
- Suitable high molecular weight isocyanate-reactive compounds have molecular weight of 1000-10,000, preferably 1000-7000.
- Typical high molecular weight isocyanate-reactive compounds include polyols, polyamines, imino-functional compounds and mixtures thereof.
- polyesters polyesteramides
- polythioethers polycarbonates
- polyacetals polyolefins
- polysiloxanes polysiloxanes
- Polyether polyols which may be used include polyoxyalkylene polyether polyols obtained by the polymerisation of a cyclic oxide, for example ethylene oxide, propylene oxide or tetrahydrofuran in the presence, where necessary, of polyfunctional initiators.
- Suitable initiator compounds contain a plurality of active hydrogen atoms and include water and polyols, for example ethylene glycol, propylene glycol, diethylene glycol, cyclohexane dimethanol, resorcinol, bisphenol A, glycerol, trimethylolpropane, 1,2,6-hexanetriol, pentaerythritol or sorbitol. Mixtures of initiators and/or cyclic oxides may be used.
- Especially useful polyether polyols include polyoxypropylene diols and triols and poly(oxyethylene-oxypropylene) diols and triols obtained by the simultaneous or sequential addition of propylene and ethylene oxides to di- or trifunctional initiators as fully described in the prior art. Mixtures of the said diols and triols can be particularly useful.
- Other useful polyether include polytetramethylene glycols obtained by the polymerisation of tetrahydrofuran.
- Polyester polyols which may be used include hydroxylterminated reaction products of polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, bis(hydroxyethyl)terephthalate, glycerol, trimethylolpropane, pentaerythritol or polyether polyols or mixtures of such polyhydric alcohols, and polycarboxylic acids, especially dicarboxylic acids or their ester-forming derivatives, for example succinic, glutaric and adipic acids or their dimethyl esters, sebacic acid, phthalic anhydride, or its derivatives such as tetrachlorophthalic or tetrabromophthalic anhydride or dimethyl terephthalate or mixtures thereof.
- Polyesteramides may be obtained by the inclusion of aminoalcohols such as ethanolamine in polyesterification mixtures. Polyesters obtained by the polymerisation of lactones, for example caprolactone, in
- Polythioether polyols which may be used include products obtained by condensing thiodiglycol either alone or with other glycols, alkylene oxides, dicarboxylic acids, formaldehyde, amino-alcohols or aminocarboxylic acids.
- Polycarbonate polyols which may be used include products obtained by reacting diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol or tetraethylene glycol with diaryl carbonates for example diphenyl carbonate, or with phosgene.
- Polyacetal polyols which may be used include those prepared by reacting glycols such as diethylene glycol, triethylene glycol or hexanediol with formaldehyde. Suitable polyacetals may also be prepared by polymerising cyclic acetals.
- Suitable polyolefin polyols include hydroxy-terminated butandiene homo- and copolymers and suitable polysiloxane polyols include polydimethylsiloxane diols and triols.
- polyhydroxyl derivatives which contain high molecular polyaddition or polycondensation polymers in dispersed or soluble state.
- polyhydroxyl derivatives can for example be obtained by carrying out a polyaddition reaction (for instance between polyisocyanates and amino-functional compounds) or a polycondensation reaction (for instance between formaldehyde and phenols and/or amines) in situ in such polyols as already disclosed above.
- Suitable are also polyhydroxyl derivative modified by vinyl-polymerisation, such as for example obtained by polymerising styrene and acrylonitrile in the presence of polyether polyols for polycarbonate polyols.
- isocyanate-reactive polymers include polymeric polyamines, especially diamines and triamines, corresponding to the above described polymeric polyols.
- Suitable polyamines include products obtained by the reductive amination of polyether polyols as described, for example, in U.S. Pat. No. 3,654,370 or by the cyanoethylation of polyols followed by hydrogenation.
- Polyoxypropylene diamines and triamines and mixtures thereof are preferred.
- polymers containing both amino and hydroxyl groups obtained by the partial amination of polyols.
- Imino-functional compounds which may be used are imino-functional compounds capable of reacting directly with polyisocyanates without prior cleavage of the C ⁇ N bond to form a monomeric byproduct.
- Suitable imino-functional compounds include imino-functional polyether resins.
- Imino-functional as used herein means that a reactant contains the grouping: ##STR1## wherein X, Y and Z are chemical moieties which collectively form the rest of said compound and are each independently selected from hydrogen and organic radicals which are attached to the imino unit:
- neither the carbon nor the nitrogen atom of the imino unit should be incorporated within an aromatic or other fully conjugated ring or ring system. It is preferred that Z is attached to the imino unit through saturated atoms, preferably aliphatic carbon atoms.
- imino-functional reagents which may be used in the invention is not limited by or to any particular chemistry of the preparation of said reagents.
- imine terminated aliphatic polyethers may be made by a number of different routes. Specifically, the amine groups (--NH 2 ) of an aliphatic amine-terminated polyether can be prereacted with an aldehyde (XCH 2 CHO) or a ketone (X--CFO--Y), to form, respectively, the corresponding aldimine
- Enamine-containing compounds which may be present include compounds having the structures: ##STR4## wherein each of A, B, D, E, G, J and L, independently, represents hydrogen or, preferably, an optionally substituted hydrocarbon radical, any of A, B and D and, independently, any of E, G, J and L optionally being joined together to form one or more carbocyclic or heterocyclic rings.
- enamine-functional compounds E, G, J and L are not hydrogen. It is also preferred that not both of A and B are hydrogen.
- Especially useful enamino-functional compounds contain two or more enamine groups as a result of any of A, B, D, E, G, J and/or L being a radical terminating in one or more enamino groups.
- Suitable enamino-functional compounds may be obtained in known manner by reacting a carbonyl compound containing at least one alpha-hydrogen atom, for example an aliphatic, cyclo-aliphatic or araliphatic aldehyde or ketone such as acetaldehyde, propionaldehyde, isobutyraldehyde, caproaldehyde, cyclohexyladhyde, acetone, methyl ethyl ketone, benzyl methyl ketone, cyclopentanone, cyclohexanone, trimethylcyclohexanone, mixtures of these and the like with a secondary amine, for example a secondary amino-terminated polymer such as a polyether.
- a secondary amine for example a secondary amino-terminated polymer such as a polyether.
- mixtures of isocyanate-reactive polymers may be used. Such mixtures may contain components differing in respect of molecular weight, functionality, nature of isocyanate-reactive groups or polymer backbone.
- the isocyanate-reactive composition should contain a primary or secondary amino-functional compound having at least 2 isocyanate-reactive groups of Mw below 1000, preferably of Mw in the range of 60 to below 1000, in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s).
- Particularly preferred amounts of low Mw amino-functional compounds should range from 0.2% to 0.8% by wt of isocyanate-reactive compound(s).
- an isocyanate-reactive composition comprising a mixture of at least two chain-extenders of which at least one is a primary or secondary amino-functional compound having at least 2 isocyanate-reactive groups, said mixture of chain-extenders being used in amounts ranging from 0.1% to 10% by wt of high Mw isocyanate-reactive compound(s).
- the amount of primary or secondary amino-functional compound present in said mixture of chain-extenders should be of less than 1% by weight of high Mw isocyanate-reactive compound(s).
- Suitable primary or secondary amino-functional compounds used in this invention may be a C 2 -C 30 -aliphatic, C 4 -C 30 -cycloaliphatic, aromatic, or araliphatic polyamine or combinations thereof.
- aliphatic and cycloaliphatic amines are ethylene diamine, propylene diamine, diethylene amine, hexamethylene diamine, amine terminated polyoxypropylene oligomers of under 1000 molecular weight, trimethyl hexamethylene diamine, isophorone diamine, 1-amino-3-amino-3,5,5-trimethyl cyclohexane, fully hydrogenated di(aminophenyl)methane, piperazine, hydrogenated methylene dianiline, diamino methane, and hydrogenated toluene diamine.
- the most useful of these are those that are liquids below about 110° C.
- aromatic diamines which have at least one linear alkyl substituent in ortho position to the one amino group and two linear alkylsubstituents, preferably with 1 to 3 carbon atoms, in both ortho positions of the other amino group.
- aromatic diamines which have an alkyl substituent in all ortho positions to both amino groups.
- Suitable aromatic isocyanate-reactive compounds are described as chain extenders in various patents, including U.S. Pat. Nos. 3,428,610; 4,218,543; 4,374,210; 4,396,729; 4,288,564; 4,298,701; 4,296,212; 4,379,105 and 4,442,235.
- aromative diamine chain extenders include toluenediamine including 2,4- and 2,6-diaminotoluenes; 2,5-diaminoxylene; 1,3-diethyl-2,4-diaminobenzene; 2,4-diaminomesitylene; 1-ethyl-2,6-diaminobenzene; 1-methyl-3,5-diethyl-2,4-diaminobenzene; 1-methyl-3,5-diethyl-2,6-diaminobenzene; 1,3,5-triethyl-2,6-diaminobenzene; 3,5,3',5'-tetra-ethyl-4,4'-diaminodiphenylmethane; 2,6-diethylnaphth-ylene-1,5diamine; 2-ethyl-1,3-diaminobenzene; 4,4'-diaminodiphenylmethane; 1,
- a more preferred compound is 1,3,5-triethyl-2,6- diaminobenzene. Most preferred is an 80:20 (w/w) mixture of 3,5-diethyl-2,4- diaminotoluene and 3,5-diethyl-2,6-diaminotoluene. This mixture is universally referred to as DETDA.
- Suitable additional chain-extenders which may be used include amino-compounds as here above described, amino alcohols or polyols of Mw below 1000, preferably in the range of 60 to below 1000.
- Suitable amino alcohols are ethanolamine, diethanolamine, isopropanolamine, bis(2-hydroxyethyl)- and bis(2-hydroxy-propyl) aniline, and bis alkanol derivatives of piperazine or 2-methyl-piperazine.
- Suitable polyols having molecular weights below 1000 include aliphatic diols and triols such as 1,4-butanediol, 1,6-hexanediol, ethylene-, diethylene-, and dipropylene glycol, neopentyl glycol, as well as low molecular weight adducts of propylene oxide of trimethylolpropane and glycerol as well as simple polyhydric alcohols such as trimethylolpropane, glycerol and 1,2,6-hexanetriol.
- Bis(2-hydroxypropyl)isophthalate (Arco Chemical Co.) and bis (2-hydroxyethyl)carbamate (Jefferson Chemical Co.) can also be used, as can low molecular weight, hydroxyl-terminated polyesters, including poly(caprolactones).
- the amount of H 2 O to be used in the present invention should be of at least 1.5% by weight of high Mw isocyanate-reactive compound(s).
- the amount of H 2 O used should not exceed 10% by wt of high Mw isocyanate-reactive compound(s). More preferably, the amount of H 2 O used should range from 2.5% to 6% most preferably from 2.5% to 5% by wt of high Mw isocyanate-reactive compound(s).
- Suitable blowing agents which may be used include dissolved or dispersed gases such as air, CO 2 or N 2 which may be injected or may be generated in situ by a chemical reaction or by the vaporisation of volatile liquids. Further suitable blowing agents may be inert liquids having boiling points not exceeding 100° C., preferably not exceeding 50° C., at atmospheric pressure. As examples of such liquids, there may be mentioned hydrocarbons, chlorinated hydrocarbons, fluorinated hydrocarbons and chlorofluorocarbons.
- the foam forming reaction mixture may contain one or more other conventional ingredients of such reaction mixtures.
- other such optional ingredients there may be mentioned catalysts, surfactants, foam stabilisers, fire retardants, fillers, dyes, pigments and internal mould release agents.
- Catalysts which may be used include materials already proposed as catalysts for isocyanate-based foam systems, for example tertiary amines, tin compounds and alkali metal salts of carboxylic acids.
- Surfactants and foam stabilisers which may be used include siloxane-oxyalkylene copolymers.
- Suitable surfactants also include, for example, sodium salts of castor oil sulfonates, alkali metal or ammonium salts of sulfonic acids such as dodecyl benzene sulfonic acid; and polyether siloxanes having a structure such that a copolymer of oethylene oxide and propylene oxide is attached to a polydimethyl siloxane radical.
- the amount of surfactant used is less than about 2 percent by weight of the total reactants, preferably less than 1%.
- the method of the invention provides advantages in respect of foam properties. It is a further advantage of the present method to provide processing flexibility, mainly by allowing the coverage of a broad range of isocyanate indices. This provides the possibility to cover a broad range of hardness values for the foamed end-products, while retaining their good physical properties without varying the density of the foams.
- the isocyanate indices may vary from 40 to 120, preferably from 50 to 100, most preferably from 60 to 90.
- the method of the invention may be performed to produce moulded or slabstock foams, by mixing the components in any convenient manner, continuously or discontinuously.
- the present invention further provides a reaction system suitable for performing the process of the invention, which comprises:
- an amino-functional compound (so-called chain-extender) of Mw below 1000 a primary or secondary in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or
- Flexible polyurethane/polyurea foams were prepared by mixing together, under foam-forming conditions, an isocyante composition consisting of a mixture comprising polymethyl polyphenylene polyisocyanate having an NCO content of 30.6% (referred to as polymeric MDI) and a glycol modified MDI containing 20% 2,4' MDI (of NCO content 26.85%) with isocyanate-reactive compositions outlined in Table 1 below.
- polymeric MDI polymethyl polyphenylene polyisocyanate having an NCO content of 30.6%
- glycol modified MDI containing 20% 2,4' MDI of NCO content 26.85%
- the reaction mixture was stirred for 6 sec. at room temperature at about 5000 rpm.
- Flexible polyurethane/polyurea foams were prepared--as described in Example 1--by mixing together under foam-forming conditions, an isocyanate blend having an NCO content of 26.7%, containing 80% of an isocyanate composition supplied by ICI PLC under the commercial name SUPRASEC VM28, and 20% of an MDI composition comprising 20% of 2,4" MDI, supplied by ICI PLC under the name SUPRASEC ML, with isocyanate-reactive compositions 2a, 2b, 2c, 2d outlined in Table 3 herebelow, at an isocyanate index of 78.
- an isocyanate blend having an NCO content of 26.7%, containing 80% of an isocyanate composition supplied by ICI PLC under the commercial name SUPRASEC VM28, and 20% of an MDI composition comprising 20% of 2,4" MDI, supplied by ICI PLC under the name SUPRASEC ML, with isocyanate-reactive compositions 2a, 2b, 2c, 2d outlined in Table
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
A method to prepare polyurethane and/or polyurea flexible foams which comprises reacting: A. an organic polyisocyanate composition B. an isocyanate-reactive composition containing: a. at least one high Mw isocyanate-reactive compound b1. a primary or secondary amino-functional compound (so-called chain-extender) of Mw below 1000 in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or b2. a mixture of at least two chain extenders of which at least one is a primary or secondary amino-functional compound of Mw below 1000, in an amount of 0.1% to 10% by wt of high Mw isocyanate-reactive compound(s) C. H2O D. optionally catalysts E. optionally further blowing agents which are different from H2O. F. optionally further conventional additives.
Description
The invention relates to the manufacture of polyurethane and/or polyurea flexible foams.
The manufacture of polyurethane/polyurea flexible foams is well known in the art and methods for their preparation have been fully described in the literature.
It is known to manufacture flexible polyurethane foams by reacting isocyanate with isocyanate-reactive compositions containing high molecular weight compounds, in the presence of blowing agents.
It is also known to include in the isocyanate-reactive composition a chain extended such as 1,4 butane diol, alone or in admixture with phenyldiethanolamine or aromatic polyamines.
Thus GB 2041387 describes the manufacture of microcellular flexible PU foams by reacting isocyanate with a high molecular weight polyether polyol and a mixture of 1,4 butane diol and phenyldiethanolamine, the amount of those low molecular weight compounds ranging from 0.2% to 40% by weight of polyether polyol.
The use of relatively high amounts of aromatic diamines as chain extenders for free rise or sprayed polyurethane/polyurea foams has also been disclosed, in EP 177766. It has now been found that flexible polyurethane/polyurea foams, having improved mechanical properties and reduced densities, can be obtained by reacting isocyanate with an isocyanate-reactive composition which contains reduced amounts of a primary or secondary amino-functional compound of low Mw, or which contains at least 2 low molecular weight isocyanate-reactive compounds of which at least one is a primary or secondary amine-functional compound.
Thus, according to the present invention there is provided a method to prepare polyurethane and/or polyurea flexible foams which comprises reacting:
A. an organic polyisocyanate composition
B. an isocyanate-reactive composition containing:
a) at least one high Mw isocyanate-reactive compound;
b1) a primary or secondary amino-functional compound (Iso-called chain-extender) of Mw below 1000 in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or
b2) a mixture of at least two chain-extenders of which at least one is a primary or secondary amino-functional compound of Mw below 1000, in an amount of 0.1% to 10% by wt of high Mw isocyanate-reactive compound(s)
C) H2 O
D) optionally catalysts
E) optionally further blowing agents which are different from H2 O
F) optionally further conventional additives.
Polyisocyanate compositions which may be reacted with the isocyanate-reactive compositions of the invention may include any of the aliphatic, cyclo-aliphatic, araliphatic or aromatic polyisocyanates known in polyurethane or polyurea chemistry, especially those that are liquid at room temperature.
Examples of suitable polyisocyanates include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-xylylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,4'-diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanates (crude MDI) and 1,5-naphthylene diisocyanate. Mixtures of polyisocyanates can be used and also polyisocyanates which have been modified by the introduction of urethane, allophanate, urea, biuret, carbodiimide, uretonimine or isocyanature residues.
In general, the aromatic polyisocyanates are preferred, especially the available MDI isomers, that is to say 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and mixtures thereof. MDI variants such as uretonimine-modified MDI and MDI prepolymers are also of great value in the moulding process.
Suitable high molecular weight isocyanate-reactive compounds have molecular weight of 1000-10,000, preferably 1000-7000.
Their functionality should range from 2-6, preferably 2-4.
Typical high molecular weight isocyanate-reactive compounds include polyols, polyamines, imino-functional compounds and mixtures thereof.
Suitable polyols and methods for their preparation have been fully described in the prior art and, as example of such polyols, there may be mentioned polyesters, polyesteramides, polythioethers, polycarbonates, polyacetals, polyolefins, polysiloxanes and, especially, polyethers.
Polyether polyols which may be used include polyoxyalkylene polyether polyols obtained by the polymerisation of a cyclic oxide, for example ethylene oxide, propylene oxide or tetrahydrofuran in the presence, where necessary, of polyfunctional initiators. Suitable initiator compounds contain a plurality of active hydrogen atoms and include water and polyols, for example ethylene glycol, propylene glycol, diethylene glycol, cyclohexane dimethanol, resorcinol, bisphenol A, glycerol, trimethylolpropane, 1,2,6-hexanetriol, pentaerythritol or sorbitol. Mixtures of initiators and/or cyclic oxides may be used.
Especially useful polyether polyols include polyoxypropylene diols and triols and poly(oxyethylene-oxypropylene) diols and triols obtained by the simultaneous or sequential addition of propylene and ethylene oxides to di- or trifunctional initiators as fully described in the prior art. Mixtures of the said diols and triols can be particularly useful. Other useful polyether include polytetramethylene glycols obtained by the polymerisation of tetrahydrofuran.
Polyester polyols which may be used include hydroxylterminated reaction products of polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, bis(hydroxyethyl)terephthalate, glycerol, trimethylolpropane, pentaerythritol or polyether polyols or mixtures of such polyhydric alcohols, and polycarboxylic acids, especially dicarboxylic acids or their ester-forming derivatives, for example succinic, glutaric and adipic acids or their dimethyl esters, sebacic acid, phthalic anhydride, or its derivatives such as tetrachlorophthalic or tetrabromophthalic anhydride or dimethyl terephthalate or mixtures thereof. Polyesteramides may be obtained by the inclusion of aminoalcohols such as ethanolamine in polyesterification mixtures. Polyesters obtained by the polymerisation of lactones, for example caprolactone, in conjunction with a polyol, may also be used.
Polythioether polyols which may be used include products obtained by condensing thiodiglycol either alone or with other glycols, alkylene oxides, dicarboxylic acids, formaldehyde, amino-alcohols or aminocarboxylic acids. Polycarbonate polyols which may be used include products obtained by reacting diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol or tetraethylene glycol with diaryl carbonates for example diphenyl carbonate, or with phosgene.
Polyacetal polyols which may be used include those prepared by reacting glycols such as diethylene glycol, triethylene glycol or hexanediol with formaldehyde. Suitable polyacetals may also be prepared by polymerising cyclic acetals.
Suitable polyolefin polyols include hydroxy-terminated butandiene homo- and copolymers and suitable polysiloxane polyols include polydimethylsiloxane diols and triols.
Other suitable polyol compositions which can be used include for example polyhydroxyl derivatives which contain high molecular polyaddition or polycondensation polymers in dispersed or soluble state. Such polyhydroxyl derivatives can for example be obtained by carrying out a polyaddition reaction (for instance between polyisocyanates and amino-functional compounds) or a polycondensation reaction (for instance between formaldehyde and phenols and/or amines) in situ in such polyols as already disclosed above. Suitable are also polyhydroxyl derivative modified by vinyl-polymerisation, such as for example obtained by polymerising styrene and acrylonitrile in the presence of polyether polyols for polycarbonate polyols.
Other useful isocyanate-reactive polymers include polymeric polyamines, especially diamines and triamines, corresponding to the above described polymeric polyols. Suitable polyamines include products obtained by the reductive amination of polyether polyols as described, for example, in U.S. Pat. No. 3,654,370 or by the cyanoethylation of polyols followed by hydrogenation. Polyoxypropylene diamines and triamines and mixtures thereof are preferred. Also useful are polymers containing both amino and hydroxyl groups obtained by the partial amination of polyols.
Imino-functional compounds which may be used are imino-functional compounds capable of reacting directly with polyisocyanates without prior cleavage of the C═N bond to form a monomeric byproduct. Suitable imino-functional compounds include imino-functional polyether resins.
"Imino-functional" as used herein means that a reactant contains the grouping: ##STR1## wherein X, Y and Z are chemical moieties which collectively form the rest of said compound and are each independently selected from hydrogen and organic radicals which are attached to the imino unit:
C═N-
of said compound through N, C, O, S, Si or P, the central carbon atom of said imino unit being bonded to three atoms.
In the above structure, neither the carbon nor the nitrogen atom of the imino unit should be incorporated within an aromatic or other fully conjugated ring or ring system. It is preferred that Z is attached to the imino unit through saturated atoms, preferably aliphatic carbon atoms.
The range of imino-functional reagents which may be used in the invention is not limited by or to any particular chemistry of the preparation of said reagents. For example, imine terminated aliphatic polyethers may be made by a number of different routes. Specifically, the amine groups (--NH2) of an aliphatic amine-terminated polyether can be prereacted with an aldehyde (XCH2 CHO) or a ketone (X--CFO--Y), to form, respectively, the corresponding aldimine
-N═CHCH.sub.2 X
or the corresponding ketimine ##STR2## or the aldehyde and/or ketone group of an aldehyde and/or ketone-terminated polyether, can be prereacted with an aliphatic primary mono-amine to form, respectively, the corresponding aldimine and/or ketimine-terminated polyethers: ##STR3## The preparation of imino functional groups in both cyclic and acyclic forms is well known in the literature, such as from "The Chemistry of the Carbon-Nitrogen Double Bond", Ed. S. Patai, Interscience Publishers, London, 1970 and references therein.
Enamine-containing compounds which may be present include compounds having the structures: ##STR4## wherein each of A, B, D, E, G, J and L, independently, represents hydrogen or, preferably, an optionally substituted hydrocarbon radical, any of A, B and D and, independently, any of E, G, J and L optionally being joined together to form one or more carbocyclic or heterocyclic rings.
In many preferred enamine-functional compounds E, G, J and L are not hydrogen. It is also preferred that not both of A and B are hydrogen. Especially useful enamino-functional compounds contain two or more enamine groups as a result of any of A, B, D, E, G, J and/or L being a radical terminating in one or more enamino groups.
Suitable enamino-functional compounds may be obtained in known manner by reacting a carbonyl compound containing at least one alpha-hydrogen atom, for example an aliphatic, cyclo-aliphatic or araliphatic aldehyde or ketone such as acetaldehyde, propionaldehyde, isobutyraldehyde, caproaldehyde, cyclohexyladhyde, acetone, methyl ethyl ketone, benzyl methyl ketone, cyclopentanone, cyclohexanone, trimethylcyclohexanone, mixtures of these and the like with a secondary amine, for example a secondary amino-terminated polymer such as a polyether.
Mixtures of isocyanate-reactive polymers may be used. Such mixtures may contain components differing in respect of molecular weight, functionality, nature of isocyanate-reactive groups or polymer backbone.
It is an essential requirement of this invention that the isocyanate-reactive composition should contain a primary or secondary amino-functional compound having at least 2 isocyanate-reactive groups of Mw below 1000, preferably of Mw in the range of 60 to below 1000, in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s). Particularly preferred amounts of low Mw amino-functional compounds (so-called chain-extenders) should range from 0.2% to 0.8% by wt of isocyanate-reactive compound(s).
It is a still further aspect of the invention to provide an isocyanate-reactive composition comprising a mixture of at least two chain-extenders of which at least one is a primary or secondary amino-functional compound having at least 2 isocyanate-reactive groups, said mixture of chain-extenders being used in amounts ranging from 0.1% to 10% by wt of high Mw isocyanate-reactive compound(s).
Preferably, the amount of primary or secondary amino-functional compound present in said mixture of chain-extenders should be of less than 1% by weight of high Mw isocyanate-reactive compound(s).
Suitable primary or secondary amino-functional compounds used in this invention may be a C2 -C30 -aliphatic, C4 -C30 -cycloaliphatic, aromatic, or araliphatic polyamine or combinations thereof. Suitably employed as aliphatic and cycloaliphatic amines are ethylene diamine, propylene diamine, diethylene amine, hexamethylene diamine, amine terminated polyoxypropylene oligomers of under 1000 molecular weight, trimethyl hexamethylene diamine, isophorone diamine, 1-amino-3-amino-3,5,5-trimethyl cyclohexane, fully hydrogenated di(aminophenyl)methane, piperazine, hydrogenated methylene dianiline, diamino methane, and hydrogenated toluene diamine. The most useful of these are those that are liquids below about 110° C.
It is preferred to use aromatic diamines which have at least one linear alkyl substituent in ortho position to the one amino group and two linear alkylsubstituents, preferably with 1 to 3 carbon atoms, in both ortho positions of the other amino group. Most preferred are those diamines which have an alkyl substituent in all ortho positions to both amino groups.
Suitable aromatic isocyanate-reactive compounds are described as chain extenders in various patents, including U.S. Pat. Nos. 3,428,610; 4,218,543; 4,374,210; 4,396,729; 4,288,564; 4,298,701; 4,296,212; 4,379,105 and 4,442,235. Examples of aromative diamine chain extenders include toluenediamine including 2,4- and 2,6-diaminotoluenes; 2,5-diaminoxylene; 1,3-diethyl-2,4-diaminobenzene; 2,4-diaminomesitylene; 1-ethyl-2,6-diaminobenzene; 1-methyl-3,5-diethyl-2,4-diaminobenzene; 1-methyl-3,5-diethyl-2,6-diaminobenzene; 1,3,5-triethyl-2,6-diaminobenzene; 3,5,3',5'-tetra-ethyl-4,4'-diaminodiphenylmethane; 2,6-diethylnaphth-ylene-1,5diamine; 2-ethyl-1,3-diaminobenzene; 4,4'-diaminodiphenylmethane; 1,2-, 1,3-, or 1,4-phenylene diamine; 2,4'- or 4,4'-diaminodiphenylmethane; naphthylene-1,5-diamine; triphenylmethane-4,4'-4"-triamine. A more preferred compound is 1,3,5-triethyl-2,6- diaminobenzene. Most preferred is an 80:20 (w/w) mixture of 3,5-diethyl-2,4- diaminotoluene and 3,5-diethyl-2,6-diaminotoluene. This mixture is universally referred to as DETDA.
Suitable additional chain-extenders which may be used include amino-compounds as here above described, amino alcohols or polyols of Mw below 1000, preferably in the range of 60 to below 1000.
Examples of suitable amino alcohols are ethanolamine, diethanolamine, isopropanolamine, bis(2-hydroxyethyl)- and bis(2-hydroxy-propyl) aniline, and bis alkanol derivatives of piperazine or 2-methyl-piperazine.
Suitable polyols having molecular weights below 1000 include aliphatic diols and triols such as 1,4-butanediol, 1,6-hexanediol, ethylene-, diethylene-, and dipropylene glycol, neopentyl glycol, as well as low molecular weight adducts of propylene oxide of trimethylolpropane and glycerol as well as simple polyhydric alcohols such as trimethylolpropane, glycerol and 1,2,6-hexanetriol.
Aromatic cycloaliphatic and heterocyclic diols can also be used and include 1,4-bis(hydroxyethyl) hydroquinone, bis(hydroxyethyl)- and bis(2-hydroxypropyl) bisphenol A, hydrogenated bisphenol A(2,2-bis(4=hydroxycyclohexyl)propane, cyclohexane 1,4-diol, and 1,4-bis(hydroxyethyl)piperazine. Bis(2-hydroxypropyl)isophthalate (Arco Chemical Co.) and bis (2-hydroxyethyl)carbamate (Jefferson Chemical Co.) can also be used, as can low molecular weight, hydroxyl-terminated polyesters, including poly(caprolactones).
The amount of H2 O to be used in the present invention should be of at least 1.5% by weight of high Mw isocyanate-reactive compound(s).
Preferably, the amount of H2 O used should not exceed 10% by wt of high Mw isocyanate-reactive compound(s). More preferably, the amount of H2 O used should range from 2.5% to 6% most preferably from 2.5% to 5% by wt of high Mw isocyanate-reactive compound(s).
It is a particular aspect of the present invention to provide flexible foams which are mainly water-blown and substantially halocarbon-free. However, additional amounts of inert physical blowing agents may be used.
Suitable blowing agents which may be used include dissolved or dispersed gases such as air, CO2 or N2 which may be injected or may be generated in situ by a chemical reaction or by the vaporisation of volatile liquids. Further suitable blowing agents may be inert liquids having boiling points not exceeding 100° C., preferably not exceeding 50° C., at atmospheric pressure. As examples of such liquids, there may be mentioned hydrocarbons, chlorinated hydrocarbons, fluorinated hydrocarbons and chlorofluorocarbons.
In addition to the ingredients already mentioned, the foam forming reaction mixture may contain one or more other conventional ingredients of such reaction mixtures. As examples of other such optional ingredients, there may be mentioned catalysts, surfactants, foam stabilisers, fire retardants, fillers, dyes, pigments and internal mould release agents.
Catalysts which may be used include materials already proposed as catalysts for isocyanate-based foam systems, for example tertiary amines, tin compounds and alkali metal salts of carboxylic acids.
Surfactants and foam stabilisers which may be used include siloxane-oxyalkylene copolymers.
Suitable surfactants also include, for example, sodium salts of castor oil sulfonates, alkali metal or ammonium salts of sulfonic acids such as dodecyl benzene sulfonic acid; and polyether siloxanes having a structure such that a copolymer of oethylene oxide and propylene oxide is attached to a polydimethyl siloxane radical. The amount of surfactant used is less than about 2 percent by weight of the total reactants, preferably less than 1%.
The method of the invention provides advantages in respect of foam properties. It is a further advantage of the present method to provide processing flexibility, mainly by allowing the coverage of a broad range of isocyanate indices. This provides the possibility to cover a broad range of hardness values for the foamed end-products, while retaining their good physical properties without varying the density of the foams. Thus, according to the present method, the isocyanate indices may vary from 40 to 120, preferably from 50 to 100, most preferably from 60 to 90.
The method of the invention may be performed to produce moulded or slabstock foams, by mixing the components in any convenient manner, continuously or discontinuously.
It is a particular advantage of the invention to provide moulded foams having good physical properties, by using reduced amounts of only one amino-functional chain-extender. The present invention further provides a reaction system suitable for performing the process of the invention, which comprises:
A. an organic polyisocyanate composition
B. an isocyante-reactive composition containing:
a. at least one high Mw isocyanate-reactive compound
b1. an amino-functional compound (so-called chain-extender) of Mw below 1000 a primary or secondary in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or
b2. a mixture of at least two chain extenders of which at least one is an amino-functional compound of Mw below 1000, in an amount of 0.1% to 10% by wt of high Mw isocyanate-reactive compound(s)
C. H2 O
D. optionally catalysts
E. optionally further blowing agents which are different from H2 O
F. optionally further conventional additives.
The invention is illustrated but not limited by the following Examples:
Flexible polyurethane/polyurea foams were prepared by mixing together, under foam-forming conditions, an isocyante composition consisting of a mixture comprising polymethyl polyphenylene polyisocyanate having an NCO content of 30.6% (referred to as polymeric MDI) and a glycol modified MDI containing 20% 2,4' MDI (of NCO content 26.85%) with isocyanate-reactive compositions outlined in Table 1 below.
The reaction mixture was stirred for 6 sec. at room temperature at about 5000 rpm.
The proportions used, foaming conditions and foam densities are described in Table 2.
TABLE 1
__________________________________________________________________________
Compositions
Ingredients (parts by weight)
1a 1b 1c 1d 1e 1f 1g 1h
__________________________________________________________________________
Polyethyleneoxide/polypropylene oxide
80.0
80.0
80.0
80.0
80.0
80.0
80.0
80.0
polyether triol (17% ethylene oxide
tipped) having a OH number of 35
Polyethyleneoxide/polypropylene oxide
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
polyether diol (15% ethylene oxide
tipped) having a OH number of 28
DABCO catalyst (a 33% solution of
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
triethylene diamine in dipropylene
glycol) marketed by Air Products Inc.
NIAX C 174 catalyst (a 30% solution
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
of a tertiary amine catalyst in
dipropylene glycol) supplied by
Union Carbide
A silicon surfactant supplied by
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
Th. Goldschmidt as Tegostab B 4113
Diethyl toluene diamine (DETDA)
1.0
1.0
1.0
1.0
1.0
0.5
1.0
1.0
Diethanol amine (DELA)
0.5
1.0
1.5
2.0
-- -- -- --
Monoethanol amine (MELA)
-- -- -- -- 0.5
-- -- --
Isophorone diamine -- -- -- -- -- 0.5
0.7
0.7
1,4 butane diol -- -- -- -- -- -- -- 0.1
H.sub.2 O 3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
__________________________________________________________________________
TABLE 2
______________________________________
Ingredients
(parts by
Foams
weight) I II III IV V VI VII VIII
______________________________________
Isocyanate
64 64 64 64 64 64 64 64
composition
Isocyanate-
reactive
compositions:
1a 100
1b 100
1c 100
1d 100
1e 100
1f 100
1g 100
1h 100
Foaming
conditions
Cream 9 9 8 7 9 12 10 8
time (s)
String 70 60 50 45 60 90 70 45
time (s)
End of rise
85 80 70 65 90 110 90 75
time (s)
Density 39.9 39.7 42.6 46 37 36 36 33.6
(kg/m.sup.3)
______________________________________
Flexible polyurethane/polyurea foams were prepared--as described in Example 1--by mixing together under foam-forming conditions, an isocyanate blend having an NCO content of 26.7%, containing 80% of an isocyanate composition supplied by ICI PLC under the commercial name SUPRASEC VM28, and 20% of an MDI composition comprising 20% of 2,4" MDI, supplied by ICI PLC under the name SUPRASEC ML, with isocyanate-reactive compositions 2a, 2b, 2c, 2d outlined in Table 3 herebelow, at an isocyanate index of 78.
The foaming conditions and foam properties are described in Table 4 herebelow.
Results clearly indicate that the use of DETDA in amounts below 1% by wt leads to foams showing good physical/structural properties, while formulations having no DETDA or more than 1% by wt of DETDA per 100 parts of polyol are giving foams showing poor structural properties.
It further appears from column IId of Table 4 that the use of more than 1% by wt of DETDA resulted in inferior processing characteristics (e.g. strong reduction in string time).
TABLE 3
______________________________________
compositions
2a 2d
Ingredients (compara- (compara-
(parts by weight)
tive) 2b 2c tive)
______________________________________
Trifunctional ethylene
100.0 100.0 100.0 100.0
oxide tipped polyether
polyol (17% EO-
tipped) of OH
number 35
NIAX C-174 0.1 0.1 0.1 0.1
X-8154 (a urethane-
0.5 0.5 0.5 0.5
promoting catalyst
supplied by Air
Products Inc.)
DMAPA (an amino-
0.2 0.2 0.2 0.2
catalyst supplied by
BASF AG)
B 4113 1.0 1.0 1.0 1.0
WATER 4.0 4.0 4.0 4.0
DETDA 0.0 0.4 0.8 1.2
______________________________________
TABLE 4
______________________________________
Foams
IIa IId
(compa- (compa-
Ingredients rative) IIb IIc rative)
______________________________________
Isocyanate composi-
X X X X
tion of NCO content
26.7%
Isocyanate-reactive
2a 2b 2c 2d
compositions
Isocyanate index
78 78 78 78
Foaming conditions
Cream time (sec)
11-12 10-11 10 9
String time (sec)
63 59 57 47
End of rise time (sec)
73 71 71 68
Foam properties
% recession 30% 22% 22% 30%
Structure Internal Suitable Suitable
Bad
collapse foams foams skin
______________________________________
Claims (11)
1. A method to prepare polyurethane and/or polyurea flexible foams which comprises reacting:
A. an organic polyisocyanate composition
B. an isocyanate-reactive composition containing:
a. at least one high Mw isocyanate-reactive compound
b1. a compound selected from the group consisting of DETDA and isophorone diamine of Mw below 1000 in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or
b2. a mixture of at least two chain extenders of which at least one is a compound selected from the group consisting of DETDA and isophorone diamine of Mw below 1,000, in an amount of 0.1% to 10% by wt of which Mw isocyanate-reactive compound(s)
C. H2 O
D. optionally catalysts
E. optionally further blowing agents which are different from H2 O.
F. optionally further conventional additives.
2. A method according to claim 1 in which the primary or secondary amino-functional compound in the mixture b2 is present in an amount of less than 1% by weight of high Mw isocyanate-reactive compound(s).
3. A method according to any one of claims 1 or 2, wherein the high molecular weight isocyanate-reactive compound(s) has/have a molecular weight of 1000 to 10,000, and a functionality of 2-4, and are selected from the group consisting of polyoxyalkylene polyether polyols and polyoxyalkylene polyether polyamines.
4. A method according to .[.any one of the preceding claims.]. .Iadd.claim 3 .Iaddend.wherein the mixture of chain-extenders b2 comprises a second chain-extender selected among amino-compounds, amino-alcohols, polyols.
5. A method according to .[.any one of the preceding claims.]. .Iadd.claim 4 .Iaddend.wherein there is used H2 O in an amount of 1.5% to 10% by wt of high Mw isocyanate-reactive compound(s).
6. A method according to claim 5 wherein there is used H2 O in an amount of 2.5% to 6% by weight of high Mw isocyanate-reactive compound(s).
7. A method according to .[.any one of the preceding claims.]. .Iadd.claim 6 .Iaddend.wherein the isocyanate composition (A), the isocyanate-reactive composition (B) and H2 O are used in such amounts to provide an isocyanate index ranging from 40 to 120.
8. A method according to claim 7 wherein there is provided an isocyanate index ranging from 50 to 100.
9. A reaction system for performing a method according to any one of the preceding claims which comprises;
A. an organic polyisocyanate composition
B. an isocyanate-reactive composition containing;
a. at least one high Mw isocyanate-reactive compound
b1. an amino-functional compound (so-called chain-extender) of Mw below 1000 a primary or secondary in an amount of less than 1% by wt of high Mw isocyanate-reactive compound(s) or
b2. a mixture of at least two chain extenders of which at least one is an amino-functional compound of Mw below 1000, in an amount of 0.1% to 10% by wt of high Mw isocyanate-reactive compound(s)
C. H2 O
D. optionally catalysts
E. optionally further blowing agents which are different from H2 O
F. optionally further conventional additives.
10. A flexible foam which is obtained by using a method according to .[.any one of claims 1 to 8.]. .Iadd.claim 1 .Iaddend.or which is obtained by using a reaction system according to claim 9.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/803,959 USRE34669E (en) | 1988-11-25 | 1991-12-09 | Method for preparing moulded polyureapolyurethane flexible foams |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8827589 | 1988-11-25 | ||
| GB888827589A GB8827589D0 (en) | 1988-11-25 | 1988-11-25 | Method for preparing moulded polyurea-polyurethane flexible foams |
| GB898923354A GB8923354D0 (en) | 1989-10-17 | 1989-10-17 | Method for preparing polyurea-polyurethane flexible foams |
| GB8923354 | 1989-10-17 | ||
| US07/440,399 US5034427A (en) | 1989-11-22 | 1989-11-22 | Method for preparing moulded polureapolyurethane flexible foams |
| US07/803,959 USRE34669E (en) | 1988-11-25 | 1991-12-09 | Method for preparing moulded polyureapolyurethane flexible foams |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/440,399 Reissue US5034427A (en) | 1988-11-25 | 1989-11-22 | Method for preparing moulded polureapolyurethane flexible foams |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE34669E true USRE34669E (en) | 1994-07-19 |
Family
ID=27450222
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/803,959 Expired - Lifetime USRE34669E (en) | 1988-11-25 | 1991-12-09 | Method for preparing moulded polyureapolyurethane flexible foams |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USRE34669E (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4722942A (en) * | 1986-05-30 | 1988-02-02 | The Dow Chemical Company | Flexible polyurethane foams which exhibit excellent flame resistance |
| US4774264A (en) * | 1981-12-02 | 1988-09-27 | Bayer Aktiengesellschaft | Process for the production of elastic molded articles |
| US4798851A (en) * | 1986-04-23 | 1989-01-17 | Basf Aktiengesellschaft | Process for the preparation of elastic, noncellular or cellular polyurethane- or polyurethane-polyurea molded articles |
-
1991
- 1991-12-09 US US07/803,959 patent/USRE34669E/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4774264A (en) * | 1981-12-02 | 1988-09-27 | Bayer Aktiengesellschaft | Process for the production of elastic molded articles |
| US4798851A (en) * | 1986-04-23 | 1989-01-17 | Basf Aktiengesellschaft | Process for the preparation of elastic, noncellular or cellular polyurethane- or polyurethane-polyurea molded articles |
| US4722942A (en) * | 1986-05-30 | 1988-02-02 | The Dow Chemical Company | Flexible polyurethane foams which exhibit excellent flame resistance |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0403066B1 (en) | C02 blown integral skin foams | |
| CA2034855C (en) | Manufacture of polymeric foams | |
| EP0353785B1 (en) | Manufacture of polyurethane foam | |
| EP0309217B1 (en) | Manufacture of polyurethane foam | |
| US5034427A (en) | Method for preparing moulded polureapolyurethane flexible foams | |
| US5710231A (en) | Isocyanate-reactive compositions containing internal mold release agents | |
| US4906720A (en) | Polyisocyanate prepolymer compositions and the use thereof in the preparation of polyurethanes | |
| KR0149027B1 (en) | Isocyanate Reactive Composition | |
| JP3145147B2 (en) | Method for producing polyurethane / polyurea flexible foam | |
| USRE34669E (en) | Method for preparing moulded polyureapolyurethane flexible foams | |
| US5234960A (en) | Process for preparing foams | |
| EP0371680B1 (en) | Method for preparing polyurea-polyurethane flexible foams | |
| HK1001691B (en) | Method for preparing polyurea-polyurethane flexible foams | |
| HK1004273B (en) | Manufacture of polyurethane foam | |
| HK1004338B (en) | Manufacture of polyurethane foam | |
| MXPA99007041A (en) | New isocyanate-terminated prepolymers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| AS | Assignment |
Owner name: HUNTSMAN ICI CHEMICALS LLC, UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IMPERIAL CHEMICAL INDUSTRIES PLC;ICI ITALIA S.P.A.;REEL/FRAME:010668/0335 Effective date: 19990630 |