USRE34466E - Extendable guidewire for cardiovascular procedures - Google Patents
Extendable guidewire for cardiovascular procedures Download PDFInfo
- Publication number
- USRE34466E USRE34466E US07979469 US97946992A USRE34466E US RE34466 E USRE34466 E US RE34466E US 07979469 US07979469 US 07979469 US 97946992 A US97946992 A US 97946992A US RE34466 E USRE34466 E US RE34466E
- Authority
- US
- Grant status
- Grant
- Patent type
- Prior art keywords
- guidewire
- section
- end
- mating
- member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M25/0905—Guide wires extendable, e.g. mechanisms for extension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49876—Assembling or joining with prestressing of part by snap fit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49945—Assembling or joining by driven force fit
Abstract
Description
.Iadd.This application is a continuation, of application Ser. No. 07/697,780 filed May 9, 1991, now abandoned. .Iaddend.
This invention generally relates to cardiovascular procedures such as angioplasty, angiography and valvuloplasty, and more particularly to an extendable guidewire for use in such procedures.
Guidewires are currently used to facilitate the placement of catheters in the arterial system of a patient for cardiovascular procedures such as angioplasty, angiography and valvuloplasty. The guidewire is typically on the order of 20-50 cm longer than the catheter to permit the guidewire and the catheter to be advanced relative to each other as they are steered into position within the patient's body. Suitable guidewires are described in U.S. Pat. No. 4,538,622 (Samson et al.) and U.S. Pat. No. 4,569,347 (Frisbie) which are hereby incorporated herein in their entirety.
In the usual procedure to change catheters, the guidewire is removed from the patient, and an exchange wire is inserted in its place. The in-place catheter is removed from the patient and a new catheter is inserted into the patient. The exchange wire is then removed and the guidewire is reinserted. The exchange wire is substantially longer than the guidewire, and it generally extends outside the patient's body for a distance greater than the length of the catheter. With a dilatation catheter having a length on the order of 120-140 cm, for example, a guidewire might have a length on the order of 175 cm, and an exchange wire might have a length on the order of 300 cm. The use of an exchange wire has the obvious disadvantage that it complicates the angioplasty procedure.
Heretofore, there have been some attempts to eliminate the need for a separate exchange wire by attaching an extension wire to a guidewire to extend the length thereof. The two wires are joined together by a crimped connector which requires a special tool. Once the wires have been crimped, the connection therebetween is permanent, and the extension wire cannot be removed except by severing it from the guidewire.
What has been needed and heretofore unavailable is an extension which can be readily connected and disconnected to the guidewire when it is in position within the patient. The present invention satisfies this need.
The present invention provides a new and improved guidewire system and the method of using the same.
In accordance with the present invention, a guidewire is provided with main and extension sections which are detachably secured together by press fitting. One of the guidewire sections has a tubular portion at the connecting end thereof, and the other guidewire section has a connecting end portion which has an effective diameter in one radial dimension which is slightly larger than the inner diameter of the tubular portion. The slightly larger connecting end of one of the guidewire sections is inserted into the tubular end of the other guidewire section. One or both of the connecting ends are deformed to provide an interference or friction fit therebetween and thereby detachably secure the two guidewire sections together. The two sections can be readily separated by pulling them apart. The two sections can be reconnected and disconnected as desired.
In the presently preferred embodiment, the end portion of the male end of the connection has an undulating shape which is adapted to be inserted into the tubular end of the guidewire section. The effective diameter of the undulating portion should not be more than 50% greater than the inner diameter of the tubular member to facilitate the insertion and removal thereof from the tubular member.
These and other advantages of the invention will become more apparent from the following detailed description thereof and the accompanying exemplary drawings.
FIG. 1 is a fragmentary, centerline sectional view of an extendable guidewire embodying features of the invention, with parts separated;
FIG. 2 is a fragmentary centerline view of the embodiment shown in FIG. 1 with the parts joined;
FIG. 3 is a cross-section view taken along lines 3-3 of FIG. 2; and
FIG. 4 is a partial centerline sectional view of an alternative embodiment.
As illustrated in FIG. 1-3, the guidewire system 10 embodying features of the invention has a main section 11 which is adapted to be inserted into a patient's vascular system and an extension section 12 which can be connected and disconnected to the main section 11 to facilitate the exchange of catheters without the need for removing the main section 10 from the patient's vascular system. Main guidewire 11 generally comprises an elongated shaft 13 with a flexible tip (not shown) at its distal end and a smaller diameter portion 14 at its proximal end which is shaped into an undulating or sinusoidal shape. Reference is made to U.S. Pat. No. 4,538,622 (Samson et al.) and U.S. Pat. No. 4,569,347 (Frisbie), which have been previously incorporated herein by reference, for a description of desirable guidewire tip constructions. Extension section 12 has an elongated shaft 16 with smaller diameter projection or post 17 at its distal end.
The connection 18 between guidewire sections 11 and 12 generally comprise tubular member 19 which is fixed to the distal end of the main section 12 and which receives interfitting undulating member 14 which is on the proximal end of section 11. Tubular member 19 is mounted by suitable means such as welding, brazing, or the like onto the short axial extension 17 of reduced diameter at the distal end of shaft 16. Axial extension or post 17 can be formed by any suitable means such as grinding down the proximal end portion of the shaft 16 to the desired diameter so that it interfits into the end of tubular member 15. The undulating portion 14 is formed by first grinding the proximal end of main section 11 to a smaller diameter, then forming the undulations or sinusoidal shape by bending over a mandrel or other suitable means. The maximum effective dimension A of the undulated section should be slightly more than the inner diameter B of tubular connecting piece 17 but preferably not more than 50% greater than dimension B to provide interference or friction fit which will hold the sections together during catheter exchange but which can be readily disengaged after exchange has been made. Preferably no more than a one pound pull should be necessary for disengagement.
In a guidewire having a diameter on the order of about 0.014 inch, for example, tubular member 19 might have an inner diameter of about 0.007 inch and a wall thickness on the order of 0.001 inch and the undulating section 14 might have a maximum effective radial dimension of about 0.009 inch. In this embodiment, tubular member 19 might have a length on the order of about 2.4-2.5 cm.
The main guidewire section is intended for use in positioning a dilatation catheter (not shown) in the cardiovascular system of a patient, and it has a length corresponding to the length of a conventional guidewire for this purpose. Details of typical dilatation catheters and guidewires can be found in the patents cited previously and incorporated herein.
Extension section 12 is sufficiently long so that when the guidewire sections 11 and 12 are connected together the guidewire system 10 has an overall length suitable for exchanging catheters without removing the main section 11 from the patient's vascular system. With a dilatation catheter having a length on the order of 120-140 cm, for example, section 11 might have a length of 140-175 cm, and section 12 might have a length of 125-160 cm.
Shafts 13 and 16 and tubular member 19 can be fabricated from suitable material, such as stainless steel, Nitinol (55% NI-Bal. Ti), and the like, and each should have a diameter to allow a dilatation catheter to pass freely over them. It is perferably that the two shafts 13 and 16 be of substantially the same diameter in order to provide a smooth transition between them. In one presently preferred embodiment for use in coronary angioplasty, shafts 13 and 16 have a diameter on the order of about 0.014 inch. Either or both of the shafts can be provided with a coating of polytetrafluoroethylene, which is sold under the trademark Teflon by the DuPont Corporation, or another suitable low-friction material to facilitate the movement of the catheter over the wire.
An alternative embodiment is shown in FIG. 4 wherein the proximal end of main guidewire section 12 which is adapted to be inserted into the tubular member 19 is provided with a smaller diameter portion 30 having protrusions 31 which provide the interference or friction fit to releasably secure together the sections 11 and 12 of the guidewire system 10. The protrustions can have various shapes such as the semi-spherical shapes shown in FIG. 4, triangular shapes, or other shapes which may provide a suitable fit.
In use, the main guidewire section 11 is introduced into the vascular system of a patient with a dilatation catheter through a guiding catheter not shown) and an introducer (not shown). When performing coronary angioplasty, the distal end of the guiding catheter is positioned in the coronary ostium, and the dilatation catheter is advanced so that it is just proximal to the tip of the guiding cathether.
The distal tip of the guidewire is advanced beyond the distal tip of the dilatation catheter while the latter is held in place. As the main guidewire section 11 is advanced, it is rotated and steered into the selected artery. The guidewire tip is preferably advanced through the lesion and beyond it, in order to permit the balloon portion of the dilatation catheter to be positioned within the lesion over a more supportive section of the guidewire. Once in position, the main guidewire section 11 is held in place and the dilatation catheter is advanced along it until the inflatable balloon thereof is within the lesion. Undulating end portion 14 remains outside the patient's body and outside any adapter which may be connected to the proximal end of the dilatation catheter.
To exchange catheters, the main guidewire section 11 is extended by manually pressing the open end of tubular member 19 on the distal end of extension section 12 onto the undulating end 14. As the tubular member 19 is inserted over the undulating end 14, either the tubular member 19 or the undulating member 14 or both deform to thereby firmly but releasably hold the two guidewire sections together. The dilatation catheter can then be withdrawn from the patient's body over the extended guidewire system.
A new dilatation catheter may then be introduced over the extension section 12 and advanced along the main guidewire section 11 within the patient's body until the balloon crosses the lesion. Once the proximal end of the new balloon catheter has advanced beyond connection 18 and tubular end portion 19, section 12 can be removed by grasping the two guidewire sections 11 and 12 on opposite sides of the connection 18 and pulling them apart without disturbing the position of section 11 in the patient's body. As previously described, the interference or friction fit between the undulating member 14 and the tubular member 19 should be sufficiently strong to hold the two guidewire sections 11 and 12 together while dilatation catheters are being exchanged, but should be capable of separation by a pulling force less than one pound.
The invention has a number of important features and advantages. The two sections of the guidewire can be connected together whenever a longer wire is needed, and they can be separated whenever the additional length is not required. The two sections of the guidewire may be connected and disconnected by the physician by simply pressing them together and pulling them apart. This can be done as needed, and no special tools are required either to make the connection or to separate it. Thus the catheter exchange is greatly simplified.
It is apparent from the foregoing that a new and improved extended guidewire system and method of using the same have been provided. While the present invention has been described herein with the tubular connecting element fixed to the distal end of the guidewire extension section and the male member adapted to be inserted into the open end of the tubular member on the proximal end of the main guidewire section, it is obvious that the tubular element on the distal end of the extension section may be interchanged with the male member on the main guidewire section. Moreover, it will be apparent to those familiar with the art, that other modifications and improvements can be made without departing from the scope of the invention as defined by the following claims.
Claims (18)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07137963 US4827941A (en) | 1987-12-23 | 1987-12-23 | Extendable guidewire for cardiovascular procedures |
US69778091 true | 1991-05-09 | 1991-05-09 | |
US07979469 USRE34466E (en) | 1987-12-23 | 1992-11-20 | Extendable guidewire for cardiovascular procedures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07979469 USRE34466E (en) | 1987-12-23 | 1992-11-20 | Extendable guidewire for cardiovascular procedures |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US07137963 Reissue US4827941A (en) | 1987-12-23 | 1987-12-23 | Extendable guidewire for cardiovascular procedures | |
US69778091 Continuation | 1991-05-09 | 1991-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE34466E true USRE34466E (en) | 1993-12-07 |
Family
ID=27385114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07979469 Expired - Lifetime USRE34466E (en) | 1987-12-23 | 1992-11-20 | Extendable guidewire for cardiovascular procedures |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE34466E (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421722A (en) * | 1992-06-12 | 1995-06-06 | Stemmann; Hartmut | Magnet arrangement for a prosthesis |
US5605163A (en) * | 1994-05-11 | 1997-02-25 | Schneider (Europe) A.G. | Guidewire attachment assembly |
US5617875A (en) * | 1994-04-11 | 1997-04-08 | Schneider (Europe) A.G. | Interlocking guidewire connector |
US5651373A (en) * | 1993-09-24 | 1997-07-29 | Cardiometrics, Inc. | Extension device, assembly thereof, heater for use therewith and method |
US5701911A (en) * | 1996-04-05 | 1997-12-30 | Medtronic, Inc. | Guide wire extension docking system |
US5792075A (en) * | 1995-04-11 | 1998-08-11 | Schneider (Europe) A.G. | Method and apparatus for extending the length of a guide wire |
US5813996A (en) * | 1995-12-21 | 1998-09-29 | Scimed Life Systems, Inc. | Guide wire extension system with magnetic coupling |
US5820571A (en) * | 1996-06-24 | 1998-10-13 | C. R. Bard, Inc. | Medical backloading wire |
US5827241A (en) * | 1995-06-07 | 1998-10-27 | C. R. Bard, Inc. | Rapid exchange guidewire mechanism |
US5843001A (en) * | 1997-09-17 | 1998-12-01 | Goldenberg; Alec | Connector for a replaceable biopsy needle |
US5853375A (en) * | 1995-11-29 | 1998-12-29 | Medtronic, Inc. | Guide wire extension peg and hole with 90 degree latch |
US6183420B1 (en) | 1997-06-20 | 2001-02-06 | Medtronic Ave, Inc. | Variable stiffness angioplasty guide wire |
US6190332B1 (en) | 1998-02-19 | 2001-02-20 | Percusurge, Inc. | Core wire with shapeable tip |
US6248082B1 (en) | 1997-10-10 | 2001-06-19 | Advanced Cardiovascular Systems, Inc. | Guidewire with tubular connector |
US6325778B1 (en) | 1996-05-20 | 2001-12-04 | Medtronic Percusurge, Inc. | Low profile catheter valve and inflation adaptor |
US6355014B1 (en) | 1996-05-20 | 2002-03-12 | Medtronic Percusurge, Inc. | Low profile catheter valve |
US6355016B1 (en) | 1997-03-06 | 2002-03-12 | Medtronic Percusurge, Inc. | Catheter core wire |
US6505392B1 (en) * | 1994-06-08 | 2003-01-14 | Interventional Therapies Llc | Process for manufacturing a radioactive source wire for irradiating diseased tissue |
US6544276B1 (en) | 1996-05-20 | 2003-04-08 | Medtronic Ave. Inc. | Exchange method for emboli containment |
US6638267B1 (en) | 2000-12-01 | 2003-10-28 | Advanced Cardiovascular Systems, Inc. | Guidewire with hypotube and internal insert |
US6645159B1 (en) | 1999-11-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Wire joint and method |
US20040044348A1 (en) * | 2002-08-29 | 2004-03-04 | Medtronic, Inc. | Medical passing device and method |
US6786888B1 (en) | 1996-05-20 | 2004-09-07 | Medtronic Ave, Inc. | Low profile catheter for emboli protection |
US6911016B2 (en) | 2001-08-06 | 2005-06-28 | Scimed Life Systems, Inc. | Guidewire extension system |
US20060015122A1 (en) * | 2002-04-09 | 2006-01-19 | Stephan Rupp | Device for guiding a cerclage wire |
US20070142743A1 (en) * | 2005-12-16 | 2007-06-21 | Provencher Kevin M | Tissue sample needle actuator system and apparatus and method of using same |
US7785273B2 (en) | 2003-09-22 | 2010-08-31 | Boston Scientific Scimed, Inc. | Guidewire with reinforcing member |
EP2248543A1 (en) | 2000-08-24 | 2010-11-10 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
EP2283891A2 (en) | 2004-01-09 | 2011-02-16 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
WO2012058302A1 (en) | 2010-10-28 | 2012-05-03 | Abbott Cardiovascular Systems Inc. | Nickel-titanium core guide wire |
US8177760B2 (en) | 2004-05-12 | 2012-05-15 | C. R. Bard, Inc. | Valved connector |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400447A (en) * | 1965-07-23 | 1968-09-10 | Aluma Grip Company Of America | Method and apparatus for assembly of tire studs |
US4003369A (en) * | 1975-04-22 | 1977-01-18 | Medrad, Inc. | Angiographic guidewire with safety core wire |
US4045859A (en) * | 1975-02-06 | 1977-09-06 | Texas Medical Products, Inc. | Method of making a suction wand |
US4068660A (en) * | 1976-07-12 | 1978-01-17 | Deseret Pharmaceutical Co., Inc. | Catheter placement assembly improvement |
US4538622A (en) * | 1983-11-10 | 1985-09-03 | Advanced Cardiovascular Systems, Inc. | Guide wire for catheters |
US4554800A (en) * | 1983-11-03 | 1985-11-26 | Moon Richard D | Jewelry arrangement |
US4569347A (en) * | 1984-05-30 | 1986-02-11 | Advanced Cardiovascular Systems, Inc. | Catheter introducing device, assembly and method |
US4617715A (en) * | 1982-08-03 | 1986-10-21 | Oy Tampella Ab | Method for preliminary anchoring of a wire rope bolt |
GB2180454A (en) * | 1985-09-18 | 1987-04-01 | Bard Inc C R | Catheter exchange method and means therefor |
US4875489A (en) * | 1987-08-14 | 1989-10-24 | Advanced Cardiovascular Systems, Inc. | Extendable guidewire |
US4922923A (en) * | 1985-09-18 | 1990-05-08 | C. R. Bard, Inc. | Method for effecting a catheter exchange |
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400447A (en) * | 1965-07-23 | 1968-09-10 | Aluma Grip Company Of America | Method and apparatus for assembly of tire studs |
US4045859A (en) * | 1975-02-06 | 1977-09-06 | Texas Medical Products, Inc. | Method of making a suction wand |
US4003369A (en) * | 1975-04-22 | 1977-01-18 | Medrad, Inc. | Angiographic guidewire with safety core wire |
US4068660A (en) * | 1976-07-12 | 1978-01-17 | Deseret Pharmaceutical Co., Inc. | Catheter placement assembly improvement |
US4617715A (en) * | 1982-08-03 | 1986-10-21 | Oy Tampella Ab | Method for preliminary anchoring of a wire rope bolt |
US4554800A (en) * | 1983-11-03 | 1985-11-26 | Moon Richard D | Jewelry arrangement |
US4538622A (en) * | 1983-11-10 | 1985-09-03 | Advanced Cardiovascular Systems, Inc. | Guide wire for catheters |
US4569347A (en) * | 1984-05-30 | 1986-02-11 | Advanced Cardiovascular Systems, Inc. | Catheter introducing device, assembly and method |
GB2180454A (en) * | 1985-09-18 | 1987-04-01 | Bard Inc C R | Catheter exchange method and means therefor |
US4922923A (en) * | 1985-09-18 | 1990-05-08 | C. R. Bard, Inc. | Method for effecting a catheter exchange |
US4875489A (en) * | 1987-08-14 | 1989-10-24 | Advanced Cardiovascular Systems, Inc. | Extendable guidewire |
Non-Patent Citations (2)
Title |
---|
"Guide Wire Extension", by C. Cope, M.D. Radiology 1985; 157; 263 Sep. 24, 1985. |
Guide Wire Extension , by C. Cope, M.D. Radiology 1985; 157; 263 Sep. 24, 1985. * |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421722A (en) * | 1992-06-12 | 1995-06-06 | Stemmann; Hartmut | Magnet arrangement for a prosthesis |
US5651373A (en) * | 1993-09-24 | 1997-07-29 | Cardiometrics, Inc. | Extension device, assembly thereof, heater for use therewith and method |
US5617875A (en) * | 1994-04-11 | 1997-04-08 | Schneider (Europe) A.G. | Interlocking guidewire connector |
US5605163A (en) * | 1994-05-11 | 1997-02-25 | Schneider (Europe) A.G. | Guidewire attachment assembly |
US5782776A (en) * | 1994-05-11 | 1998-07-21 | Schneider A.G. | Guidewire attachment assembly |
US6876712B1 (en) | 1994-06-08 | 2005-04-05 | Interventional Therapies, L.L.C. | Flexible source wire for localized internal irradiation of tissue |
US6505392B1 (en) * | 1994-06-08 | 2003-01-14 | Interventional Therapies Llc | Process for manufacturing a radioactive source wire for irradiating diseased tissue |
US5792075A (en) * | 1995-04-11 | 1998-08-11 | Schneider (Europe) A.G. | Method and apparatus for extending the length of a guide wire |
US5827241A (en) * | 1995-06-07 | 1998-10-27 | C. R. Bard, Inc. | Rapid exchange guidewire mechanism |
US5853375A (en) * | 1995-11-29 | 1998-12-29 | Medtronic, Inc. | Guide wire extension peg and hole with 90 degree latch |
US5813996A (en) * | 1995-12-21 | 1998-09-29 | Scimed Life Systems, Inc. | Guide wire extension system with magnetic coupling |
US5701911A (en) * | 1996-04-05 | 1997-12-30 | Medtronic, Inc. | Guide wire extension docking system |
US6986778B2 (en) | 1996-05-20 | 2006-01-17 | Medtronic Vascular, Inc. | Exchange method for emboli containment |
US6786888B1 (en) | 1996-05-20 | 2004-09-07 | Medtronic Ave, Inc. | Low profile catheter for emboli protection |
US6544276B1 (en) | 1996-05-20 | 2003-04-08 | Medtronic Ave. Inc. | Exchange method for emboli containment |
US6325778B1 (en) | 1996-05-20 | 2001-12-04 | Medtronic Percusurge, Inc. | Low profile catheter valve and inflation adaptor |
US6355014B1 (en) | 1996-05-20 | 2002-03-12 | Medtronic Percusurge, Inc. | Low profile catheter valve |
US6500166B1 (en) | 1996-05-20 | 2002-12-31 | Gholam-Reza Zadno Azizi | Method of emboli protection using a low profile catheter |
US5820571A (en) * | 1996-06-24 | 1998-10-13 | C. R. Bard, Inc. | Medical backloading wire |
US6669670B1 (en) | 1997-03-06 | 2003-12-30 | Medtronic Ave, Inc. | Catheter core wire |
US6355016B1 (en) | 1997-03-06 | 2002-03-12 | Medtronic Percusurge, Inc. | Catheter core wire |
US6183420B1 (en) | 1997-06-20 | 2001-02-06 | Medtronic Ave, Inc. | Variable stiffness angioplasty guide wire |
US5843001A (en) * | 1997-09-17 | 1998-12-01 | Goldenberg; Alec | Connector for a replaceable biopsy needle |
US6602208B2 (en) | 1997-10-10 | 2003-08-05 | Advanced Cardiovascular Systems, Inc. | Guidewire with tubular connector |
US6248082B1 (en) | 1997-10-10 | 2001-06-19 | Advanced Cardiovascular Systems, Inc. | Guidewire with tubular connector |
US6190332B1 (en) | 1998-02-19 | 2001-02-20 | Percusurge, Inc. | Core wire with shapeable tip |
US6375629B1 (en) | 1998-02-19 | 2002-04-23 | Medtronic Percusurge, Inc. | Core wire with shapeable tip |
US6468230B2 (en) | 1998-02-19 | 2002-10-22 | Medtronic Percusurge, Inc. | Core wire with shapeable tip |
US20040039310A1 (en) * | 1999-11-30 | 2004-02-26 | Burkett David H. | Wire joint and method |
US6645159B1 (en) | 1999-11-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Wire joint and method |
EP3006057A1 (en) | 2000-08-24 | 2016-04-13 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
EP2248543A1 (en) | 2000-08-24 | 2010-11-10 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
US6638267B1 (en) | 2000-12-01 | 2003-10-28 | Advanced Cardiovascular Systems, Inc. | Guidewire with hypotube and internal insert |
US6911016B2 (en) | 2001-08-06 | 2005-06-28 | Scimed Life Systems, Inc. | Guidewire extension system |
US20060015122A1 (en) * | 2002-04-09 | 2006-01-19 | Stephan Rupp | Device for guiding a cerclage wire |
US7018384B2 (en) | 2002-08-29 | 2006-03-28 | Medtronic, Inc. | Medical passing device and method |
US20040044348A1 (en) * | 2002-08-29 | 2004-03-04 | Medtronic, Inc. | Medical passing device and method |
US7785273B2 (en) | 2003-09-22 | 2010-08-31 | Boston Scientific Scimed, Inc. | Guidewire with reinforcing member |
EP2283891A2 (en) | 2004-01-09 | 2011-02-16 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
EP2286864A2 (en) | 2004-01-09 | 2011-02-23 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
EP2286863A2 (en) | 2004-01-09 | 2011-02-23 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
US8177760B2 (en) | 2004-05-12 | 2012-05-15 | C. R. Bard, Inc. | Valved connector |
US20070142743A1 (en) * | 2005-12-16 | 2007-06-21 | Provencher Kevin M | Tissue sample needle actuator system and apparatus and method of using same |
WO2012058302A1 (en) | 2010-10-28 | 2012-05-03 | Abbott Cardiovascular Systems Inc. | Nickel-titanium core guide wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348537A (en) | Catheter with intraluminal sealing element | |
US5389089A (en) | Catheter with angled ball tip for fallopian tube access and method | |
US5916178A (en) | Steerable high support guidewire with thin wall nitinol tube | |
US5947993A (en) | Stent crimping tool and method of use | |
US5706827A (en) | Magnetic lumen catheter | |
US5762615A (en) | Guideware having a distal tip with variable flexibility | |
US4846186A (en) | Flexible guidewire | |
US5497785A (en) | Catheter advancing guidewire and method for making same | |
US5571087A (en) | Intravascular catheter with distal tip guide wire lumen | |
US6800065B2 (en) | Catheter and guide wire exchange system | |
US6398799B2 (en) | Catheter system with catheter and guidewire exchange | |
US5030204A (en) | Guiding catheter with controllable distal tip | |
US5242396A (en) | Dilatation catheter with reinforcing mandrel | |
US5109867A (en) | Extendable guidewire assembly | |
US6364894B1 (en) | Method of making an angioplasty balloon catheter | |
US6491648B1 (en) | Guidewire with tapered flexible core segment | |
US6685696B2 (en) | Hollow lumen cable apparatus | |
US5247942A (en) | Guide wire with swivel | |
US5702439A (en) | Balloon catheter with distal guide wire lumen | |
US6059769A (en) | Medical catheter with grooved soft distal segment | |
EP0344530A1 (en) | Vascular catheter assembly with a guiding sleeve | |
US5345945A (en) | Dual coil guidewire with radiopaque distal tip | |
US5365943A (en) | Anatomically matched steerable PTCA guidewire | |
US5395332A (en) | Intravascualr catheter with distal tip guide wire lumen | |
EP0608853B1 (en) | Vascular dilatation instrument and catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 12 |