USRE34000E - Method of operating ion trap detector in MS/MS mode - Google Patents

Method of operating ion trap detector in MS/MS mode Download PDF

Info

Publication number
USRE34000E
USRE34000E US07499947 US49994790A USRE34000E US RE34000 E USRE34000 E US RE34000E US 07499947 US07499947 US 07499947 US 49994790 A US49994790 A US 49994790A US RE34000 E USRE34000 E US RE34000E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
ions
field
trap
voltage
rf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07499947
Inventor
John E. P. Syka
John N. Louris
Paul E. Kelley
George C. Stafford
Walter E. Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBA HOLDINGS Inc
THERMOQUEST Corp
Thermo Finnigan LLC
Original Assignee
Thermo Finnigan LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • H01J49/0063Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction by applying a resonant excitation voltage
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0081Tandem in time, i.e. using a single spectrometer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • H01J49/429Scanning an electric parameter, e.g. voltage amplitude or frequency

Abstract

A simple and economical method of mass analyzing a sample by means of a quadrupole ion trap mass spectrometer in an MS/MS mode comprises the steps of forming ions within a trap structure, changing the RF and DC voltages in such a way that the ions with mass-to-charge ratios within a desired range will be and remain trapped within the trap structure, dissociating such ions into fragments by collisions and increasing the field intensity again so that the generated fragments will become unstable and exit the trap volume sequentially to be detected. A supplementary AC field may be applied additionally to provide various scan modes as well as dissociate the ions.

Description

This is a continuation of application Ser. No. 738,018 filed May 24, 1985.

The present invention relates to a method of using an ion trap in an MS/MS mode.

Ion trap mass spectrometers, or quadrupole ion stores, have been known for many years and described by a number of authors. They are devices in which ions are formed and contained within a physical structure by means of electrostatic fields such as RF, DC and a combination thereof. In general, a quadrupole electric field provides an ion storage region by the use of a hyperbolic electrode structure or a spherical electrode structure which provides an equivalent quadrupole trapping field.

Mass storage is generally achieved by operating trap electrodes with values of RF voltage V and its frequency f, DC voltage U and device size r0 such that ions having their mass-to-charge ratios within a finite range are stably trapped inside the device. The aforementioned parameters are sometimes referred to as scanning parameters and have a fixed relationship to the mass-to-charge ratios of the trapped ions. For trapped ions, there is a distinctive secular frequency for each value of mass-to-charge ratio. In one method for detection of the ions, these secular frequencies can be determined by a frequency tuned circuit which coupled to the oscillating motion of the ions within the trap, and then the mass-to-charge ratio may be determined by use of an improved analyzing technique.

In spite of the relative length of time during which ion trap mass spectrometers and methods of using them for mass analyzing a sample have been known they have not gained popularity until recently because these mass selection techniques are insufficient and difficult to implement and yield poor mass resolution and limited mass range. A new method of ion trap operation (U.S. Pat. No. 2,939,952 and U.S. patent application Ser. No. 453,351 12- 2982) has overcome most of the past limitations an is gaining popularity as a product called the Ion Trap Detector.

It is an object of this invention to provide a new method of operating an ion trap in a mode of operation called MS/MS.

In accordance with the above object there is provided a new method of using an ion trap in an MS/MS mode which comprises the steps of forming and storing ions in the ion trap, mass-selecting them by a mass analyzer, dissociating them by means of collisions with a gas or surfaces, and analyzing fragment ions by means of a mass or energy analyzer. .Iadd.A supplementary AC field may be applied additionally to provide various scan modes for mass detection as well as to dissociate the ions.

FIG. 1 is a simplified schematic of a quadrupole ion trap along with a block diagram of associated electrical circuits adapted to be used according to the method embodying the present invention.

FIG. 2 is a stability envelope for an ion store device of the type shown in FIG. 1.

FIGS 3(A) and 3(B) are spectrograms obtained by a series of experiments with a nitrobenzene sample by using the method of the present invention.

FIG. 4 shows a program that may be used for a notchfilter scan mode with a supplementary voltage.

FIGS. 5(A) and 5(B) are spectrograms obtained with a xenon sample by using the method of FIG. 4.

FIG. 6(A) through FIG. 6(D) are spectrograms obtained with a nitrobenzene sample by using the method of FIG. 4.

FIG. 7 shows another program for an ion scan mode of the present invention.

FIG. 8(A) through FIG. 8(D) are spectrograms obtained with an n-heptane sample by a series of experiments in which both the methods of FIGS. 4 and 7 are used.

There is shown in FIG. 1 at 10 a three-dimensional ion trap which includes a ring electrode 11 and two end caps 12 and 13 facing each other. A radio frequency voltage generator 14 is connected to the ring electrode 11 to supply a radio frequency voltage V sin ωt (the fundamental voltage) between the end caps and the ring electrode which provides the quadrupole field for trapping ions within the ion storage region or volume 16 having a radius r0 and a vertical dimension z0 (z0 2 =r0 2 /2). The field required for trapping is formed by coupling the RF voltage between the ring electrode 11 and the two end cap electrodes 12 and 13 which are common mode grounded through coupling transformer 32 as shown. A supplementary RF generator 35 is coupled to the end caps 22, 23 to supply a radio frequency voltage V2 sin ω2 t between the end caps to resonate trapped ions at their axial resonant frequencies. A filament 17 which is fed by a filament power supply 18 is disposed to provide an ionizing electron beam for ionizing the sample molecules introduced into the ion storage region 16. A cylindrical gate electrode and lens 19 is powered by a filament lens controller 21. The gate electrode provides control to gate the electron beam on and off as desired. End cap 12 includes an aperture through which the electron beam projects. The opposite end cap 13 is perforated 23 to allow unstable ions in the fields of the ion trap to exit and be detected by an electron multiplier 24 which generates an ion signal on line 26. An electrometer 27 converts the signal on line 26 from current to voltage. The signal is summed and stored by the unit 28 and processed in unit 29. Controller 31 is connected to the fundamental RF generator 14 to allow the magnitude and/or frequency of the fundamental RF voltage to be varied for providing mass selection. The controller 31 is also connected to the supplementary RF generator 35 to allow the magnitude and/or frequency of the supplementary RF voltage to be varied or gated. The controller on line 32 gates the filament lens controller 21 to provide an ionizing electron beam only at time periods other than the scanning interval. Mechanical details of ion traps have been shown, for example, U.S. Pat. No. 2,939,952 and more recently in U.S. patent application Ser. No. 454,351 12/29/82 assigned to the present assignee.

The symmetric fields in the ion trap 10 lead to the well known stability diagram shown in FIG. 2. The parameters a and q in FIG. 2 are defined as

a=-8 eU/mr.sub.0.sup.2 ω.sup.2

q=4 eV/mr.sub.0.sup.2 ω.sup.2

where e and m are respectively charge on and mass of charged particle. For any particular ion, the values of a and q must be within the stability envelope if it is to be trapped within the quadrupole fields of the ion trap device.

The type of trajectory a charged particle has in a described three-dimensional quadrupole field depends on how the specific mass of the particle, m/e, and the applied field parameters, U, V, r0 and ω combined to map onto the stability diagram. If the scanning parameters combine to map inside the stability envelope then the given particle has a stable trajectory in the defined field. A charged particle having a stable trajectory in a three-dimensional quadrupole field is constrained to a periodic orbit about the center of the field. Such particles can be thought of as trapped by the field. If for a particle m/e, U, V, r0 and ω combine to map outside the stability envelope on the stability diagram, then the given particle has an unstable trajectory in the defined field. Particles having unstable trajectories in a three-dimensional quadrupole field obtain displacements from the center of the field which approach infinity over time. Such particles can be thought of escaping the field and are consequently considered untrappable.

For a three-dimensional quadrupole field defined by U, V, r0 and ω, the locus of all possible mass-to-charge ratios maps onto the stability diagram as a single straight line running through the origin with a slope equal to -2 U/V. (This locus is also referred to as the scan line.) That portion of the loci of all possible mass-to-charge ratios that maps within the stability region defines the region of mass-to-charge ratios particles may have if they are to be trapped in the applied field. By properly choosing the magnitude of U and V, the range of specific masses to trappable particles can be selected. If the ratio of U to V is chosen so that the locus of possible specific masses maps through an apex of the stability region (line A of FIG. 2) then only particles within a very narrow range of specific masses will have stable trajectories. However, if the ratio of U to V is chosen so that the locus of possible specific masses maps through the middle of the stability region (line B of FIG. 2) then particles of a broad range of specific masses will have stable trajectories.

According to the present invention, the ion trap of the type described above is operated as follows: ions are formed within the trap volume 16 by gating a burst of electrons from the filament 17 into the trap. The DC and RF voltages are applied to the three-dimensional electrode structure such that ions of a desired mass or mass range will be stable while all others will be unstable and expelled from the trap structure. This step may be carried out by using only the RF potential so that the trapped ions will lie on a horizontal line through the origin in the stability diagram of FIG. 2 (a=0). The electron beam is then shut off and the trapping voltages are reduced until U becomes 0 in such a way that the loci of all stably trapped ions will stay inside the stability region in the stability diagram throughout this process. The value of q must be reduced sufficiently low so that not only the ions of interest but any fragment ions which are formed therefrom in a subsequent dissociation process to be described below will also remain trapped (because a lower mass-to-charge ratio means a large q value).

In the dissociation step, the ions of interest are caused to collide with a gas so as to become dissociated into fragments which will remain within the trap, or within the stability region of FIG. 2. Since the ions to be fragmented may or may not have sufficient energy to undergo fragmentation by colliding with a gas, it may be necessary to pump energy into the ions of interest or to cause them to collide with energetic or excited neutral species so that the system will contain enough energy to cause fragmentation of the ions of interest. The fragment ions are then swept from the trap by the RF voltage along the horizontal line a=0 in FIG. 2 so as to be detected.

Any of the known ways of producing energetic neutral species may be used in the preceding step. Excited neutrals of argon or xenon may be introduced from a gun, pulsed at a proper time. A discharge source may be used alternatively. A laser pulse may be used to pump energy into the system, either through the ions or through the neutral species.

In what follows, there will be shown results of experiment for determining in the case of nitrobenzene ions (with molecular weight M=123 and degree of ionization Z=1) what fragment ions (daughter ions), what fragment ions of fragment ions (granddaughter ions), etc. will arise when dissociation of the parent ions is induced by collisions with a background gas such as argon and the resultant ions out of the ion trap are scanned to determine their mass spectrum.

FIG. 3(A) is an electron ionization mass spectrogram of nitrobenzene. Line M/Z=124 arises from an ion-molecule reaction which adds a proton to M/Z=123.

Operating in the mode with U=0 and with 1×104 torr of Ar, the RF voltage was adjusted first such that only ions with M/Z greater than 120 would be stored in the ion trap at the end of sample ionization. The RF voltage was then lowered such that the cut-off value would be M/Z=20 so that ions with M/Z above this value would be trapped or stable in the ion trap. Parent ions with M/Z=123 which remained trapped in the ion trap after ionization collided with a background gas of argon and dissociated. Next the RF was scanned up and the mass spectrogram shown in FIG. 3(B) was obtained, representing the ions produced from the parent with M/Z=123.

A variety of new scan modes becomes possible with the superposition of an AC field such as an RF field. For any ion stored in the ion trap, the displacement in any space coordinate must be a composite of periodic function of time. If a supplementary RF potential is applied that matches any of the component frequencies of the motion for a particular ion species, that ion will begin to oscillate along the coordinate with increased amplitude. The ion may be ejected from the trap, strike an electrode, or in the presence of significant pressure of sample or inert damping gas may assume a stable trajectory within the trap of mean displacement greater than before the application of the supplementary RF potential. If the supplementary RF potential is applied for a limited time, the ion may assume a stable orbit, even under conditions of low pressure.

FIG. 4 illustrates a program that may be used for a notch-filter mode. Reference being made to this figure, ions of the mass range of interest are produced and stored in period A, and then the fundamental RF voltage applied to the ring electrode is increased to eject all ions of M/Z less than a given value. The fundamental RF voltage is then maintained at a fixed level which will trap all ions of M/Z greater than another given value (period D). A supplementary RF voltage of appropriate frequency and magnitude is then applied between the end caps and all ions of a particular M/Z value are ejected from the trap. The supplementary voltage is then turned off and the fundamental RF voltage is scanned to obtain a mass spectrum of the ions that are still in the trap (period E).

FIG. 5(A) shows a spectrum of xenon in which the fundamental RF voltage is scanned as in FIG. 4 but in which a supplementary voltage is not used. FIG. 5(B) shows a spectrum obtained under similar conditions but a supplementary voltage of appropriate frequency and magnitude is used to eject ions of M/Z=131 during period D. FIG. 5(B) shows that these ions are largely removed from the trap. There are many ways of actually using the notch-filter mode. For example, the supplementary RF voltage might be turned on during the ionization period and turned off at all other times. An ion which is present in a large amount would be ejected to facilitate the study of ions which are present in lesser amounts.

Other useful scan modes are possible by using the supplementary field during periods in which the fundamental RF voltage or its associated DC component is scanned rather than maintained at a constant level. For example, if a supplementary voltage of sufficient amplitude and fixed frequency is turned on during period E (instead of during period D), ions will be successively ejected from the trap as the fundamental RF voltage successively produces a resonant frequency in each ion species which matches the frequency of the supplementary voltage. In this way, a mass spectrum over a specified range of M/Z values can be obtained with a reduced maximum magnitude of the fundamental RF voltage or a larger maximum M/Z value may be attained for a given maximum magnitude of the fundamental RF voltage. Since the maximum attainable value of the fundamental RF voltage limits the mass range in the ordinary scan mode, the supplementary RF voltage extends the mass range of the instrument.

Useful scan modes are also possible in which the frequency of the supplementary voltage is scanned. For example, the frequency of the supplementary voltage may be scanned while the fundamental RF voltage is fixed. This would correspond to FIG. 4 with period E absent and the frequency of the supplementary RF voltage being scanned during period D. A mass spectrum is obtained as ions are successively brought into resonance. Increased mass resolution is possible in this mode of operation. Also, an extended mass range is attainable because the fundamental RF voltage is fixed.

The presence of a supplementary RF voltage may induce fragmentation of ions at or near resonance. FIG. 6(A) shows a spectrum of nitrobenzene (with 1×10-3 torr He) acquired with the scan program of FIG. 4 but without a supplementary RF voltage. All ions of M/Z less than 118 are ejected before and during period B so that the small peak at M/Z=93 must have been formed after period B and before the ejection of ions of M/Z=93 during period E FIG. 6(B) shows a spectrum obtained under the same conditions except that a supplementary RF voltage at the resonant frequency of M/Z=123 was applied during interval D. The spectrum shows abundant fragment ions at M/Z=93 and 65. Similarly, FIG. 6(C) was acquired as was FIG. 6(A), except that all ions of M/Z less than 88 are ejected before and during period B. FIG. 6(D) was acquired under the same conditions as FIG. 6(C), except that a supplementary RF voltage at the resonant frequency of M/Z=93 was applied during interval D. This spectrum shows an abundant fragment at M/Z=65.

Sequential experiments are possible in which daughter ions are produced with the supplementary RF field and granddaughter ions are then produced from those daughter ions by adjusting the conditions such as voltage or frequency of the fundamental RF field or the supplementary RF field so that the daughter ions are brought into resonance. FIG. 7 shows a particular way in which daughter ions may be produced. The frequency of the supplementary RF voltage remains constant but the fundamental RF voltage is adjusted during period DA to bring a particular parent ion into resonance so that granddaughter ions are produced. During period DB, the fundamental RF voltage is adjusted to bring a particular daughter ion into resonance so that granddaughter ions will be produced. FIG. 8(A) shows a spectrum of n-heptane during the acquisition of which the scan program of FIG. 7 was used, except that no supplementary RF voltage was used. Since all ions of M/Z less than 95 were ejected before and during period B, the small peaks at M/Z=70 and 71 must be due to ions that were formed after period B. FIG. 8(B) was obtained by using the scan program shown in FIG. 4 with a supplementary frequency at the resonant frequency of M/Z=100. Abundant daughter ions at M/Z=70 and 71 are seen, and less intense peaks at M/Z=55, 56 and 57 are evident. FIG. 8(C) was acquired with the scan program used for FIG. 8(A), except that a supplementary RF voltage was used. The fundamental RF voltage during periods DA and DB, and the frequency of the supplementary RF voltage were chosen so that M/Z=100 was in resonance during period DA so that daughter ions were produced. A particular daughter was M/Z=70 that was produced during period DA was brought into resonance during period DB so that granddaughter ions were produced. These granddaughter ions are evident in FIG. 8(C) as the increased intensities of the peaks at M/Z=55, 56 and 57. FIG. 8(D) is similar to FIG. 8(A) except that M/Z=100 was in resonance during DA, and M/Z=71 was in resonance during DB.

Many other schemes may be used to obtain sequential daughter scans. For example, the frequency of the supplemental RF field may be changed instead of changing the fundamental RF voltage. Also, the trap may be cleared of undesired ions after daughter ions have been produced but before granddaughter ions are produced. Of course, further fragmentation may be induced by sequentially changing the fundamental RF voltage or the frequency of the supplementary RF voltage to bring the products of successive fragmentations into resonance.

The present invention has been disclosed above in terms of only a limited number of examples but various modifications which may be made thereon are still considered within the purview of the present invention. For example, the applied RF voltage need not be sinusoidal but is required only to be periodic. A different stability diagram will result but its general characteristics are similar, including a scan line. In other words, the RF voltage could comprise square waves, triangular waves, etc. The quadrupole ion trap would nevertheless operate in substantially the same manner. The ion trap sides were described above as hyperbolic but the ion traps can be formed with cylindrical or circular trap sides. Any electrode structure that produces an approximate three-dimensional quadrupole field could be used. The scope of the invention is limited only by the following claims.

Claims (16)

What is claimed is:
1. A method of mass analyzing a sample comprising the steps of
defining a trap volume with a three-dimensional quadrupole field adapted to trap ions within a predetermined range of mass-to-charge ratio,
forming or injecting ions within said trap volume such that those within said predetermined mass-to-charge range are trapped within said trap volume,
changing said quadrupole field to eliminate ions having a mass-to-charge ratio other than that of the ions of desired charge-to-mass ratio to be analyzed,
readjusting said quadrupole field to capture daughter ions of said ions of desired charge-to-mass ratio
dissociating or reacting said trapped desired ions such that those of said ions and said daughters within a desired range of mass-to-charge ratio remain trapped within said trap volume, and
then charging the quadrupole field to cause ions of consecutive mass to escape said trap volume for detection.
2. The method of claim 1 wherein said quadrupole field is generated by an ion trap having a ring electrode and spaced end electrodes, said quadrupole field being defined by U=amplitude of a direct current voltage between said end electrodes and said ring electrode, V=magnitude of an RF voltage applied between said ring electrodes, and ω=2π×frequency of said RF voltage.
3. The method of claim 2 wherein said step of controlling said quadrupole field is effected by changing one or more of U, V and ω.
4. The method of claim 3 wherein U is changed to 0.
5. The method of claim 1 wherein said step of forming ions is effected by gating a burst of electrons into said trap volume.
6. The method of claim 2 wherein said step of forming ions is effected with U=0.
7. The method of claim 1 further comprising the step of pumping energy into said trapped ions.
8. The method of claim 1 further comprising the step of causing said trapped ions to collide with energetic background particles.
9. The method of claim 1 wherein said step of controlling said quadrupole field and dissociating said trapped ions includes the step of superposing a supplementary AC field.
10. The method of claim 9 wherein said supplementary field is turned on while the intensity of said quadrupole field is fixed.
11. The method of claim 9 wherein said quadrupole field and supplementary field are controlled such that during a first period one of said trapped ions is in resonance and that during a subsequent second period one of fragments of said one ion is in resonance.
12. A method of scanning ions within a predetermined range of mass-to-charge ratio trapped within a trap volume with a three-dimensional quadrupole trapping field, comprising the steps of applying a supplementary AC field superposing and trapping field to .Iadd.provide a combined trapping field and changing the combined trapping field to successively .Iaddend.eject out of said trap volume those of said ions with particular mass-to-charge ratios, .Iadd.and .Iaddend.detecting said ions.[., and thereafter changing the intensity of said trapping field.]..
13. The method of claim 12 wherein .Iadd.the frequency of .Iaddend.said supplementary field is .[.turned on.]. .Iadd.scanned .Iaddend.while the intensity of said trapping field is fixed.
14. The method of claim 12 wherein said supplementary field is turned on while the intensity of said trapping field is .[.varied.]. .Iadd.scanned.Iaddend.. .Iadd.
15. A method of mass analyzing a sample comprising the steps of
defining a trap volume with a three-dimensional quadrupole field adapted to trap ions within a predetermined range of mass-to-charge ratio,
forming or injecting ions within said trap volume such that those within said predetermined mass-to-charge range are trapped within said trap volume,
applying a supplementary AC field superposing said three-dimensional quadrupole field to form combined fields, and
scanning said combined fields to cause ions to consecutive mass-to-charge ratio to escape said trap volume for detection. .Iaddend. .Iadd.16. The method of claim 15 wherein the frequency of said supplementary field is scanned while the intensity of said trapping field is fixed. .Iaddend. .Iadd.17. The method of claim 15 wherein said supplementary field is turned on while the intensity of said trapping field is scanned. .Iaddend. .Iadd.18. The method of claim 17 wherein the frequency of said
supplementary field is constant .Iaddend. .Iadd.19. A method of mass analyzing a sample comprising the steps of
defining a trap volume with a three-dimensional quadrupole field adapted to trap ions within a predetermined range of mass-to-charge ratio, wherein said quadrupole field is generated by an ion trap having a ring electrode and spaced end electrodes, said quadrupole field being defined by U=amplitude of a direct current voltage between said end electrodes and said ring electrode, V=magnitude of an RF voltage applied to said electrodes, and ω=2π×frequency of said RF voltage,
forming or injecting ions within said trap volume such that those within said predetermined mass-to-charge range are trapped within said trap volume,
applying a supplementary AC field superposing said three-dimensional quadrupole field to form combined fields, wherein said supplementary field is defined by V2=magnitude of an RF voltage applied between said end cap electrodes, and ω2 =2π×frequency of said AC field, and
controlling the combined fields by changing one or more of U, V, ω and ω2 to cause said ions of consecutive mass to escape said trap volume for detection.
US07499947 1985-05-24 1990-03-27 Method of operating ion trap detector in MS/MS mode Expired - Fee Related USRE34000E (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US73801885 true 1985-05-24 1985-05-24
US07084518 US4736101A (en) 1985-05-24 1987-08-11 Method of operating ion trap detector in MS/MS mode
US07499947 USRE34000E (en) 1985-05-24 1990-03-27 Method of operating ion trap detector in MS/MS mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07499947 USRE34000E (en) 1985-05-24 1990-03-27 Method of operating ion trap detector in MS/MS mode

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US73801885 Continuation 1985-05-24 1985-05-24
US07084518 Reissue US4736101A (en) 1985-05-24 1987-08-11 Method of operating ion trap detector in MS/MS mode

Publications (1)

Publication Number Publication Date
USRE34000E true USRE34000E (en) 1992-07-21

Family

ID=24966228

Family Applications (2)

Application Number Title Priority Date Filing Date
US07084518 Expired - Lifetime US4736101A (en) 1985-05-24 1987-08-11 Method of operating ion trap detector in MS/MS mode
US07499947 Expired - Fee Related USRE34000E (en) 1985-05-24 1990-03-27 Method of operating ion trap detector in MS/MS mode

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07084518 Expired - Lifetime US4736101A (en) 1985-05-24 1987-08-11 Method of operating ion trap detector in MS/MS mode

Country Status (5)

Country Link
US (2) US4736101A (en)
EP (2) EP0202943B2 (en)
JP (2) JPH0821365B2 (en)
CA (1) CA1242536A (en)
DE (4) DE3650304D1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272337A (en) * 1992-04-08 1993-12-21 Martin Marietta Energy Systems, Inc. Sample introducing apparatus and sample modules for mass spectrometer
EP0581600A2 (en) * 1992-07-31 1994-02-02 Varian Associates, Inc. Method of operating a quadrupole ion trap at high sensitivity
DE4324224C1 (en) * 1993-07-20 1994-10-06 Bruker Franzen Analytik Gmbh Quadrupole ion traps with switchable multipole components
US5382801A (en) * 1992-04-15 1995-01-17 Agency Of Industrial Science And Technology Method for producing minute particles and apparatus therefor
WO1995019041A1 (en) * 1994-01-10 1995-07-13 Varian Associates, Inc. Space change control method for improved ion isolation in ion trap mass spectrometer by dynamically adaptive sampling
US5466931A (en) * 1991-02-28 1995-11-14 Teledyne Et A Div. Of Teledyne Industries Mass spectrometry method using notch filter
US5469323A (en) * 1991-03-26 1995-11-21 Agency Of Industrial Science And Technology Method and apparatus for trapping charged particles
US5468957A (en) * 1993-05-19 1995-11-21 Bruker Franzen Analytik Gmbh Ejection of ions from ion traps by combined electrical dipole and quadrupole fields
US5572025A (en) * 1995-05-25 1996-11-05 The Johns Hopkins University, School Of Medicine Method and apparatus for scanning an ion trap mass spectrometer in the resonance ejection mode
US5572022A (en) * 1995-03-03 1996-11-05 Finnigan Corporation Method and apparatus of increasing dynamic range and sensitivity of a mass spectrometer
US5576540A (en) * 1995-08-11 1996-11-19 Mds Health Group Limited Mass spectrometer with radial ejection
WO2000024037A1 (en) 1998-10-16 2000-04-27 Finnigan Corporation Method of ion fragmentation in a quadrupole ion trap
US6177668B1 (en) 1996-06-06 2001-01-23 Mds Inc. Axial ejection in a multipole mass spectrometer
DE10028914C1 (en) * 2000-06-10 2002-01-17 Bruker Daltonik Gmbh Mass spectrometer with HF quadrupole ion trap has ion detector incorporated in one of dome-shaped end electrodes of latter
US6570151B1 (en) 2002-02-21 2003-05-27 Hitachi Instruments, Inc. Methods and apparatus to control charge neutralization reactions in ion traps
US6608303B2 (en) 2001-06-06 2003-08-19 Thermo Finnigan Llc Quadrupole ion trap with electronic shims
US6674067B2 (en) 2002-02-21 2004-01-06 Hitachi High Technologies America, Inc. Methods and apparatus to control charge neutralization reactions in ion traps
US20040149903A1 (en) * 2003-01-31 2004-08-05 Yang Wang Ion trap mass spectrometry
US20040245455A1 (en) * 2003-03-21 2004-12-09 Bruce Reinhold Mass spectroscopy system
US20050023452A1 (en) * 2003-07-28 2005-02-03 Hitachi High-Technologies Corporation Mass spectrometer
US20060118716A1 (en) * 2004-11-08 2006-06-08 The University Of British Columbia Ion excitation in a linear ion trap with a substantially quadrupole field having an added hexapole or higher order field
US7112787B2 (en) 2002-12-18 2006-09-26 Agilent Technologies, Inc. Ion trap mass spectrometer and method for analyzing ions
US20090008543A1 (en) * 2007-06-11 2009-01-08 Dana-Farber Cancer Institute, Inc. Mass spectroscopy system and method including an excitation gate
USRE40632E1 (en) 1999-12-03 2009-02-03 Thermo Finnigan Llc. Mass spectrometer system including a double ion guide interface and method of operation
US20100059670A1 (en) * 2008-09-05 2010-03-11 Schwartz Jae C Two-Dimensional Radial-Ejection Ion Trap Operable as a Quadrupole Mass Filter
US20100059666A1 (en) * 2008-09-05 2010-03-11 Remes Philip M Methods of Calibrating and Operating an Ion Trap Mass Analyzer to Optimize Mass Spectral Peak Characteristics
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
WO2013022747A1 (en) * 2011-08-05 2013-02-14 Academia Sinica Step-scan ion trap mass spectrometry for high speed proteomics
US20150097115A1 (en) * 2013-10-04 2015-04-09 Thermo Finnigan Llc Method and apparatus for a combined linear ion trap and quadrupole mass filter

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755670A (en) * 1986-10-01 1988-07-05 Finnigan Corporation Fourtier transform quadrupole mass spectrometer and method
GB8625529D0 (en) * 1986-10-24 1986-11-26 Griffiths I W Control/analysis of charged particles
EP0321819B2 (en) * 1987-12-23 2002-06-19 Bruker Daltonik GmbH Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method
EP0336990B1 (en) * 1988-04-13 1994-01-05 Bruker Franzen Analytik GmbH Method of mass analyzing a sample by use of a quistor and a quistor designed for performing this method
JPH02103856A (en) * 1988-06-03 1990-04-16 Finnigan Corp Operation method for ton trap type mass spectrometer
US4850371A (en) * 1988-06-13 1989-07-25 Broadhurst John H Novel endotracheal tube and mass spectrometer
EP0362432A1 (en) * 1988-10-07 1990-04-11 Bruker Franzen Analytik GmbH Improvement of a method of mass analyzing a sample
DE68913290T2 (en) * 1989-02-18 1994-05-26 Bruker Franzen Analytik Gmbh Method and apparatus for determining the mass of samples by means of a QUISTOR.
US5171991A (en) * 1991-01-25 1992-12-15 Finnigan Corporation Quadrupole ion trap mass spectrometer having two axial modulation excitation input frequencies and method of parent and neutral loss scanning
US5128542A (en) * 1991-01-25 1992-07-07 Finnigan Corporation Method of operating an ion trap mass spectrometer to determine the resonant frequency of trapped ions
US5075547A (en) * 1991-01-25 1991-12-24 Finnigan Corporation Quadrupole ion trap mass spectrometer having two pulsed axial excitation input frequencies and method of parent and neutral loss scanning and selected reaction monitoring
US5206507A (en) * 1991-02-28 1993-04-27 Teledyne Mec Mass spectrometry method using filtered noise signal
US5449905A (en) * 1992-05-14 1995-09-12 Teledyne Et Method for generating filtered noise signal and broadband signal having reduced dynamic range for use in mass spectrometry
US5381007A (en) * 1991-02-28 1995-01-10 Teledyne Mec A Division Of Teledyne Industries, Inc. Mass spectrometry method with two applied trapping fields having same spatial form
US5436445A (en) * 1991-02-28 1995-07-25 Teledyne Electronic Technologies Mass spectrometry method with two applied trapping fields having same spatial form
US5196699A (en) * 1991-02-28 1993-03-23 Teledyne Mec Chemical ionization mass spectrometry method using notch filter
US5105081A (en) * 1991-02-28 1992-04-14 Teledyne Cme Mass spectrometry method and apparatus employing in-trap ion detection
US5173604A (en) * 1991-02-28 1992-12-22 Teledyne Cme Mass spectrometry method with non-consecutive mass order scan
US5200613A (en) * 1991-02-28 1993-04-06 Teledyne Mec Mass spectrometry method using supplemental AC voltage signals
US5256875A (en) * 1992-05-14 1993-10-26 Teledyne Mec Method for generating filtered noise signal and broadband signal having reduced dynamic range for use in mass spectrometry
DK0573579T3 (en) * 1991-02-28 1997-10-20 Teledyne Ind A process for the mass spectrograph, which uses supplemental AC voltage signals.
US5187365A (en) * 1991-02-28 1993-02-16 Teledyne Mec Mass spectrometry method using time-varying filtered noise
US5274233A (en) * 1991-02-28 1993-12-28 Teledyne Mec Mass spectrometry method using supplemental AC voltage signals
US5451782A (en) * 1991-02-28 1995-09-19 Teledyne Et Mass spectometry method with applied signal having off-resonance frequency
US5182451A (en) * 1991-04-30 1993-01-26 Finnigan Corporation Method of operating an ion trap mass spectrometer in a high resolution mode
US5179278A (en) * 1991-08-23 1993-01-12 Mds Health Group Limited Multipole inlet system for ion traps
DE4139037C2 (en) * 1991-11-27 1995-07-27 Bruker Franzen Analytik Gmbh A method of isolating a selectable ion mass
US5206509A (en) * 1991-12-11 1993-04-27 Martin Marietta Energy Systems, Inc. Universal collisional activation ion trap mass spectrometry
US5302826A (en) * 1992-05-29 1994-04-12 Varian Associates, Inc. Quadrupole trap improved technique for collisional induced disassociation for MS/MS processes
US5381006A (en) * 1992-05-29 1995-01-10 Varian Associates, Inc. Methods of using ion trap mass spectrometers
EP0786796B1 (en) * 1992-05-29 2000-07-05 Varian, Inc. Methods of using ion trap mass spectrometers
US5404011A (en) * 1992-05-29 1995-04-04 Varian Associates, Inc. MSn using CID
US5198665A (en) * 1992-05-29 1993-03-30 Varian Associates, Inc. Quadrupole trap improved technique for ion isolation
CA2097211A1 (en) * 1992-05-29 1993-11-30 Varian, Inc. Methods of using ion trap mass spectrometers
GB2267385B (en) * 1992-05-29 1995-12-13 Finnigan Corp Method of detecting the ions in an ion trap mass spectrometer
US5378891A (en) * 1993-05-27 1995-01-03 Varian Associates, Inc. Method for selective collisional dissociation using border effect excitation with prior cooling time control
US5399857A (en) * 1993-05-28 1995-03-21 The Johns Hopkins University Method and apparatus for trapping ions by increasing trapping voltage during ion introduction
US5420425A (en) * 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
DE4425384C1 (en) * 1994-07-19 1995-11-02 Bruker Franzen Analytik Gmbh A method for collision-induced fragmentation of ions in ion traps
JP3509267B2 (en) * 1995-04-03 2004-03-22 株式会社日立製作所 Ion trap mass spectrometer method and apparatus
US5783824A (en) * 1995-04-03 1998-07-21 Hitachi, Ltd. Ion trapping mass spectrometry apparatus
JPH095298A (en) * 1995-06-06 1997-01-10 Varian Assoc Inc Method for detecting selection ion species in quadrupole ion trap
US5672870A (en) * 1995-12-18 1997-09-30 Hewlett Packard Company Mass selective notch filter with quadrupole excision fields
US5598001A (en) * 1996-01-30 1997-01-28 Hewlett-Packard Company Mass selective multinotch filter with orthogonal excision fields
JP3495512B2 (en) * 1996-07-02 2004-02-09 株式会社日立製作所 Ion trap mass spectrometer
US5756996A (en) * 1996-07-05 1998-05-26 Finnigan Corporation Ion source assembly for an ion trap mass spectrometer and method
US5650617A (en) * 1996-07-30 1997-07-22 Varian Associates, Inc. Method for trapping ions into ion traps and ion trap mass spectrometer system thereof
US5793038A (en) * 1996-12-10 1998-08-11 Varian Associates, Inc. Method of operating an ion trap mass spectrometer
US6147348A (en) * 1997-04-11 2000-11-14 University Of Florida Method for performing a scan function on quadrupole ion trap mass spectrometers
JP3413079B2 (en) * 1997-10-09 2003-06-03 株式会社日立製作所 Ion trap mass spectrometer
CA2227806C (en) 1998-01-23 2006-07-18 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
US6392225B1 (en) 1998-09-24 2002-05-21 Thermo Finnigan Llc Method and apparatus for transferring ions from an atmospheric pressure ion source into an ion trap mass spectrometer
DE19932839B4 (en) * 1999-07-14 2007-10-11 Bruker Daltonik Gmbh Fragmentation in quadrupole ion trap mass spectrometers
US6153880A (en) * 1999-09-30 2000-11-28 Agilent Technologies, Inc. Method and apparatus for performance improvement of mass spectrometers using dynamic ion optics
GB9924722D0 (en) 1999-10-19 1999-12-22 Shimadzu Res Lab Europe Ltd Methods and apparatus for driving a quadrupole device
JP2001160373A (en) 1999-12-02 2001-06-12 Hitachi Ltd Ion trap mass spectrometry and ion trap mass spectrometer
WO2001041427A1 (en) * 1999-12-06 2001-06-07 Dmi Biosciences, Inc. Noise reducing/resolution enhancing signal processing method and system
DE10058706C1 (en) * 2000-11-25 2002-02-28 Bruker Daltonik Gmbh Fragmentation of ions, especially biomolecules comprises capture of low energy electrons in high energy ion trap mass spectrometer with ring electrode to which high frequency voltage and end cap electrodes which are earthed, or vice-versa
US6700120B2 (en) * 2000-11-30 2004-03-02 Mds Inc. Method for improving signal-to-noise ratios for atmospheric pressure ionization mass spectrometry
GB0126525D0 (en) * 2001-11-05 2002-01-02 Shimadzu Res Lab Europe Ltd A quadrupole ion trap device, methods of operating a quadrupole ion trap device and a mass spectrometer including the quadrupole ion trap device
US6710336B2 (en) 2002-01-30 2004-03-23 Varian, Inc. Ion trap mass spectrometer using pre-calculated waveforms for ion isolation and collision induced dissociation
JP3840417B2 (en) 2002-02-20 2006-11-01 株式会社日立ハイテクノロジーズ Mass spectrometer
JP3951741B2 (en) * 2002-02-27 2007-08-01 株式会社日立製作所 Charge adjustment method and apparatus, and mass spectrometer
US6781117B1 (en) 2002-05-30 2004-08-24 Ross C Willoughby Efficient direct current collision and reaction cell
US7511246B2 (en) * 2002-12-12 2009-03-31 Perkinelmer Las Inc. Induction device for generating a plasma
JP3936908B2 (en) * 2002-12-24 2007-06-27 株式会社日立ハイテクノロジーズ Mass spectrometer and mass spectrometry methods
US7064319B2 (en) * 2003-03-31 2006-06-20 Hitachi High-Technologies Corporation Mass spectrometer
GB0312940D0 (en) * 2003-06-05 2003-07-09 Shimadzu Res Lab Europe Ltd A method for obtaining high accuracy mass spectra using an ion trap mass analyser and a method for determining and/or reducing chemical shift in mass analysis
JP3912345B2 (en) * 2003-08-26 2007-05-09 株式会社島津製作所 Mass spectrometer
CA2559260C (en) * 2004-03-12 2015-05-12 University Of Virginia Patent Foundation Electron transfer dissociation for biopolymer sequence analysis
US20050253059A1 (en) * 2004-05-13 2005-11-17 Goeringer Douglas E Tandem-in-time and-in-space mass spectrometer and associated method for tandem mass spectrometry
US7141784B2 (en) 2004-05-24 2006-11-28 University Of Massachusetts Multiplexed tandem mass spectrometry
US7772549B2 (en) 2004-05-24 2010-08-10 University Of Massachusetts Multiplexed tandem mass spectrometry
US7034293B2 (en) * 2004-05-26 2006-04-25 Varian, Inc. Linear ion trap apparatus and method utilizing an asymmetrical trapping field
US6949743B1 (en) 2004-09-14 2005-09-27 Thermo Finnigan Llc High-Q pulsed fragmentation in ion traps
US7102129B2 (en) * 2004-09-14 2006-09-05 Thermo Finnigan Llc High-Q pulsed fragmentation in ion traps
WO2006042187A3 (en) 2004-10-08 2006-08-24 Univ Virginia Simultaneous sequence analysis of amino- and carboxy- termini
DE102005005743B4 (en) 2005-02-07 2007-06-06 Bruker Daltonik Gmbh Ion fragmentation by bombardment with neutral particles
US7183545B2 (en) * 2005-03-15 2007-02-27 Agilent Technologies, Inc. Multipole ion mass filter having rotating electric field
DE102005025497B4 (en) * 2005-06-03 2007-09-27 Bruker Daltonik Gmbh measure light Bruck piece ions with ion traps
JP4636943B2 (en) * 2005-06-06 2011-02-23 株式会社日立ハイテクノロジーズ Mass spectrometer
US7742167B2 (en) 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
JP2007033322A (en) * 2005-07-28 2007-02-08 Jeol Ltd Mass spectrometry and device thereof
DE102005061425B4 (en) 2005-12-22 2009-06-10 Bruker Daltonik Gmbh Rear-controlled fragmentation in ion trap mass spectrometers
GB2477657B (en) * 2005-12-22 2011-12-07 Bruker Daltonik Gmbh Method for mass spectrometry of peptide ions
WO2007096970A1 (en) * 2006-02-23 2007-08-30 Shimadzu Corporation Mass spectrometry and mass spectrographic device
JP4369454B2 (en) 2006-09-04 2009-11-18 株式会社日立ハイテクノロジーズ Ion trap mass spectrometry method
WO2008072326A1 (en) * 2006-12-14 2008-06-19 Shimadzu Corporation Ion trap tof mass spectrometer
US7842918B2 (en) * 2007-03-07 2010-11-30 Varian, Inc Chemical structure-insensitive method and apparatus for dissociating ions
US7656236B2 (en) 2007-05-15 2010-02-02 Teledyne Wireless, Llc Noise canceling technique for frequency synthesizer
DE102007042436B3 (en) * 2007-09-06 2009-03-19 Brandenburgische Technische Universität Cottbus Method and apparatus for assembly, modification or discharge of aerosol particles by ions, particularly in a diffusion-based bipolar equilibrium state
WO2009105080A1 (en) * 2007-11-09 2009-08-27 The Johns Hopkins University Low voltage, high mass range ion trap spectrometer and analyzing methods using such a device
US7880147B2 (en) * 2008-01-24 2011-02-01 Perkinelmer Health Sciences, Inc. Components for reducing background noise in a mass spectrometer
US8179045B2 (en) * 2008-04-22 2012-05-15 Teledyne Wireless, Llc Slow wave structure having offset projections comprised of a metal-dielectric composite stack
JP5039656B2 (en) * 2008-07-25 2012-10-03 株式会社日立ハイテクノロジーズ Mass spectrometer and mass spectrometry methods
US8178835B2 (en) * 2009-05-07 2012-05-15 Thermo Finnigan Llc Prolonged ion resonance collision induced dissociation in a quadrupole ion trap
JP5107977B2 (en) * 2009-07-28 2012-12-26 株式会社日立ハイテクノロジーズ Ion trap mass spectrometer
EP2474021A4 (en) * 2009-09-04 2016-11-23 Dh Technologies Dev Pte Ltd Method, system and apparatus for filtering ions in a mass spectrometer
US8384022B1 (en) 2011-10-31 2013-02-26 Thermo Finnigan Llc Methods and apparatus for calibrating ion trap mass spectrometers
DE102012013038B4 (en) * 2012-06-29 2014-06-26 Bruker Daltonik Gmbh Ejecting an ion cloud from 3D RF ion trap
WO2014011919A3 (en) 2012-07-13 2015-06-11 Perkinelmer Health Sciences, Inc. Torches and methods of using them
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes
US9847218B2 (en) 2015-11-05 2017-12-19 Thermo Finnigan Llc High-resolution ion trap mass spectrometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939952A (en) * 1953-12-24 1960-06-07 Paul Apparatus for separating charged particles of different specific charges
US3527949A (en) * 1967-02-15 1970-09-08 Gen Electric Low energy,interference-free,pulsed signal transmitting and receiving device
US4105917A (en) * 1976-03-26 1978-08-08 The Regents Of The University Of California Method and apparatus for mass spectrometric analysis at ultra-low pressures
US4540884A (en) * 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527939A (en) * 1968-08-29 1970-09-08 Gen Electric Three-dimensional quadrupole mass spectrometer and gauge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939952A (en) * 1953-12-24 1960-06-07 Paul Apparatus for separating charged particles of different specific charges
US3527949A (en) * 1967-02-15 1970-09-08 Gen Electric Low energy,interference-free,pulsed signal transmitting and receiving device
US4105917A (en) * 1976-03-26 1978-08-08 The Regents Of The University Of California Method and apparatus for mass spectrometric analysis at ultra-low pressures
US4540884A (en) * 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Dawson, Quadrupole Mass Spectromety and its Applications, 1976, pp. 4 6. *
Dawson, Quadrupole Mass Spectromety and its Applications, 1976, pp. 4-6.
Fischer, Z. Phys. 156 (1959), pp. 1 26. *
Fischer, Z. Phys. 156 (1959), pp. 1-26.
Fulford et al., Journal of Vacuum Science and Technology, 17(4) Jul./Aug. 1980, pp. 829 835. *
Fulford et al., Journal of Vacuum Science and Technology, 17(4) Jul./Aug. 1980, pp. 829-835.
Mather et al., Dynamic Mass Spectrometry, vol. 5, ed. Price et al., 1978, pp. 71 84. *
Mather et al., Dynamic Mass Spectrometry, vol. 5, ed. Price et al., 1978, pp. 71-84.
Rettinghaus Z. Angew Phys. 22 (1967), pp. 321 326. *
Rettinghaus Z. Angew Phys. 22 (1967), pp. 321-326.
Todd et al., "Quadrupole Ion Traps", Quadrupole Mass Spectrometry and its Applications, ed. Dawson, 1976, pp. 181-224.
Todd et al., Quadrupole Ion Traps , Quadrupole Mass Spectrometry and its Applications, ed. Dawson, 1976, pp. 181 224. *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466931A (en) * 1991-02-28 1995-11-14 Teledyne Et A Div. Of Teledyne Industries Mass spectrometry method using notch filter
US5469323A (en) * 1991-03-26 1995-11-21 Agency Of Industrial Science And Technology Method and apparatus for trapping charged particles
US5272337A (en) * 1992-04-08 1993-12-21 Martin Marietta Energy Systems, Inc. Sample introducing apparatus and sample modules for mass spectrometer
US5382801A (en) * 1992-04-15 1995-01-17 Agency Of Industrial Science And Technology Method for producing minute particles and apparatus therefor
US5448061A (en) * 1992-05-29 1995-09-05 Varian Associates, Inc. Method of space charge control for improved ion isolation in an ion trap mass spectrometer by dynamically adaptive sampling
EP0581600A3 (en) * 1992-07-31 1995-08-09 Varian Associates Method of operating a quadrupole ion trap at high sensitivity.
EP0581600A2 (en) * 1992-07-31 1994-02-02 Varian Associates, Inc. Method of operating a quadrupole ion trap at high sensitivity
US5468957A (en) * 1993-05-19 1995-11-21 Bruker Franzen Analytik Gmbh Ejection of ions from ion traps by combined electrical dipole and quadrupole fields
DE4324224C1 (en) * 1993-07-20 1994-10-06 Bruker Franzen Analytik Gmbh Quadrupole ion traps with switchable multipole components
WO1995019041A1 (en) * 1994-01-10 1995-07-13 Varian Associates, Inc. Space change control method for improved ion isolation in ion trap mass spectrometer by dynamically adaptive sampling
US5572022A (en) * 1995-03-03 1996-11-05 Finnigan Corporation Method and apparatus of increasing dynamic range and sensitivity of a mass spectrometer
US5572025A (en) * 1995-05-25 1996-11-05 The Johns Hopkins University, School Of Medicine Method and apparatus for scanning an ion trap mass spectrometer in the resonance ejection mode
US5576540A (en) * 1995-08-11 1996-11-19 Mds Health Group Limited Mass spectrometer with radial ejection
US6177668B1 (en) 1996-06-06 2001-01-23 Mds Inc. Axial ejection in a multipole mass spectrometer
WO2000024037A1 (en) 1998-10-16 2000-04-27 Finnigan Corporation Method of ion fragmentation in a quadrupole ion trap
EP1040507A1 (en) * 1998-10-16 2000-10-04 Finnigan Corporation Method of ion fragmentation in a quadrupole ion trap
EP1040507B1 (en) * 1998-10-16 2011-03-16 Thermo Finnigan Llc Method of ion fragmentation in a quadrupole ion trap
EP2302660A1 (en) 1999-12-03 2011-03-30 Thermo Finnigan Llc Mass spectrometer system including a double ion guide interface and method of operation
USRE40632E1 (en) 1999-12-03 2009-02-03 Thermo Finnigan Llc. Mass spectrometer system including a double ion guide interface and method of operation
US6596990B2 (en) 2000-06-10 2003-07-22 Bruker Daltonik Gmbh Internal detection of ions in quadrupole ion traps
DE10028914C1 (en) * 2000-06-10 2002-01-17 Bruker Daltonik Gmbh Mass spectrometer with HF quadrupole ion trap has ion detector incorporated in one of dome-shaped end electrodes of latter
US6608303B2 (en) 2001-06-06 2003-08-19 Thermo Finnigan Llc Quadrupole ion trap with electronic shims
US6674067B2 (en) 2002-02-21 2004-01-06 Hitachi High Technologies America, Inc. Methods and apparatus to control charge neutralization reactions in ion traps
US6570151B1 (en) 2002-02-21 2003-05-27 Hitachi Instruments, Inc. Methods and apparatus to control charge neutralization reactions in ion traps
US7112787B2 (en) 2002-12-18 2006-09-26 Agilent Technologies, Inc. Ion trap mass spectrometer and method for analyzing ions
US20040149903A1 (en) * 2003-01-31 2004-08-05 Yang Wang Ion trap mass spectrometry
US20050279932A1 (en) * 2003-01-31 2005-12-22 Yang Wang Two-dimensional ion trap mass spectrometry
US6998610B2 (en) 2003-01-31 2006-02-14 Yang Wang Methods and apparatus for switching ion trap to operate between three-dimensional and two-dimensional mode
US7019289B2 (en) 2003-01-31 2006-03-28 Yang Wang Ion trap mass spectrometry
US7329866B2 (en) 2003-01-31 2008-02-12 Yang Wang Two-dimensional ion trap mass spectrometry
US20050145790A1 (en) * 2003-01-31 2005-07-07 Yang Wang Methods and apparatus for switching ion trap to operate between three-dimensional and two-dimensional mode
US20040245455A1 (en) * 2003-03-21 2004-12-09 Bruce Reinhold Mass spectroscopy system
US7071464B2 (en) 2003-03-21 2006-07-04 Dana-Farber Cancer Institute, Inc. Mass spectroscopy system
US20050023452A1 (en) * 2003-07-28 2005-02-03 Hitachi High-Technologies Corporation Mass spectrometer
US6967323B2 (en) 2003-07-28 2005-11-22 Hitachi High-Technologies Corporation Mass spectrometer
US20060118716A1 (en) * 2004-11-08 2006-06-08 The University Of British Columbia Ion excitation in a linear ion trap with a substantially quadrupole field having an added hexapole or higher order field
US20090008543A1 (en) * 2007-06-11 2009-01-08 Dana-Farber Cancer Institute, Inc. Mass spectroscopy system and method including an excitation gate
US7847240B2 (en) 2007-06-11 2010-12-07 Dana-Farber Cancer Institute, Inc. Mass spectroscopy system and method including an excitation gate
US8704168B2 (en) 2007-12-10 2014-04-22 1St Detect Corporation End cap voltage control of ion traps
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
US7804065B2 (en) * 2008-09-05 2010-09-28 Thermo Finnigan Llc Methods of calibrating and operating an ion trap mass analyzer to optimize mass spectral peak characteristics
US20100059670A1 (en) * 2008-09-05 2010-03-11 Schwartz Jae C Two-Dimensional Radial-Ejection Ion Trap Operable as a Quadrupole Mass Filter
US7947948B2 (en) * 2008-09-05 2011-05-24 Thermo Funnigan LLC Two-dimensional radial-ejection ion trap operable as a quadrupole mass filter
US20100059666A1 (en) * 2008-09-05 2010-03-11 Remes Philip M Methods of Calibrating and Operating an Ion Trap Mass Analyzer to Optimize Mass Spectral Peak Characteristics
WO2013022747A1 (en) * 2011-08-05 2013-02-14 Academia Sinica Step-scan ion trap mass spectrometry for high speed proteomics
US8507846B2 (en) 2011-08-05 2013-08-13 Academia Sinica Step-scan ion trap mass spectrometry for high speed proteomics
US9117646B2 (en) * 2013-10-04 2015-08-25 Thermo Finnigan Llc Method and apparatus for a combined linear ion trap and quadrupole mass filter
US20150097115A1 (en) * 2013-10-04 2015-04-09 Thermo Finnigan Llc Method and apparatus for a combined linear ion trap and quadrupole mass filter

Also Published As

Publication number Publication date Type
DE3688215T3 (en) 2005-08-25 grant
US4736101A (en) 1988-04-05 grant
CA1242536A (en) 1988-09-27 grant
JPH0821365B2 (en) 1996-03-04 grant
JPS6237861A (en) 1987-02-18 application
DE3688215T2 (en) 1993-07-22 grant
DE3688215D1 (en) 1993-05-13 grant
CA1242536A1 (en) grant
EP0202943A2 (en) 1986-11-26 application
EP0202943B1 (en) 1993-04-07 grant
EP0409362A3 (en) 1991-09-18 application
DE3650304T2 (en) 1995-10-12 grant
EP0409362A2 (en) 1991-01-23 application
EP0202943A3 (en) 1988-02-17 application
JPH11317193A (en) 1999-11-16 application
JP3020490B2 (en) 2000-03-15 grant
DE3650304D1 (en) 1995-05-24 grant
EP0202943B2 (en) 2004-11-24 grant
EP0409362B1 (en) 1995-04-19 grant

Similar Documents

Publication Publication Date Title
Johnson et al. Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps
US5198665A (en) Quadrupole trap improved technique for ion isolation
US5101105A (en) Neutralization/chemical reionization tandem mass spectrometry method and apparatus therefor
US5714755A (en) Mass scanning method using an ion trap mass spectrometer
US6781117B1 (en) Efficient direct current collision and reaction cell
US7049584B1 (en) Fragmentation methods for mass spectrometry
US6924478B1 (en) Tandem mass spectrometry method
US7329866B2 (en) Two-dimensional ion trap mass spectrometry
Andersen et al. The combination of an electrospray ion source and an electrostatic storage ring for lifetime and spectroscopy experiments on biomolecules
Todd Ion trap mass spectrometer—past, present, and future (?)
US5468958A (en) Quadrupole ion trap with switchable multipole fractions
US6703607B2 (en) Axial ejection resolution in multipole mass spectrometers
US6410913B1 (en) Fragmentation in quadrupole ion trap mass spectrometers
US5528031A (en) Collisionally induced decomposition of ions in nonlinear ion traps
US5200613A (en) Mass spectrometry method using supplemental AC voltage signals
EP0383961A1 (en) Method and instrument for mass analyzing samples with a quistor
US7045797B2 (en) Axial ejection with improved geometry for generating a two-dimensional substantially quadrupole field
US5302826A (en) Quadrupole trap improved technique for collisional induced disassociation for MS/MS processes
Schwartz et al. A two-dimensional quadrupole ion trap mass spectrometer
US5381006A (en) Methods of using ion trap mass spectrometers
US6504148B1 (en) Quadrupole mass spectrometer with ION traps to enhance sensitivity
US5107109A (en) Method of increasing the dynamic range and sensitivity of a quadrupole ion trap mass spectrometer
US5075547A (en) Quadrupole ion trap mass spectrometer having two pulsed axial excitation input frequencies and method of parent and neutral loss scanning and selected reaction monitoring
US20040245448A1 (en) Methods and apparatus for electron or positron capture dissociation
US6759651B1 (en) Ion guides for mass spectrometry

Legal Events

Date Code Title Description
LAPS Lapse for failure to pay maintenance fees
AS Assignment

Owner name: TBA HOLDINGS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THERMOQUEST CORPORATION;REEL/FRAME:008328/0520

Effective date: 19961217

Owner name: FINNIGAN CORPORATION, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:TBA HOLDINGS INC.;REEL/FRAME:008328/0530

Effective date: 19951226

Owner name: QUEST-FINNINGAN HOLDINGS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:FINNIGAN CORPORATION;REEL/FRAME:008328/0517

Effective date: 19960101

Owner name: THERMOQUEST CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FINNIGAN CORPORATION;REEL/FRAME:008328/0526

Effective date: 19961217

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: THERMO FINNIGAN LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:FINNIGAN CORPORATION;REEL/FRAME:011898/0886

Effective date: 20001025