USRE32932E - Cold hearth refining - Google Patents

Cold hearth refining Download PDF

Info

Publication number
USRE32932E
USRE32932E US07/217,610 US21761088A USRE32932E US RE32932 E USRE32932 E US RE32932E US 21761088 A US21761088 A US 21761088A US RE32932 E USRE32932 E US RE32932E
Authority
US
United States
Prior art keywords
hearth
segment
mold
segments
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/217,610
Inventor
Howard R. Harker
Charles H. Entrekin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TITANIUM HEALTH TECHNOLOGIES Inc IS A PENNSYLVANIA GENERAL PARTNERSHIP COMPOSED OF TWO GENERAL PARTNERS ALEX JOHNSON METALS Inc A DE CORP AND TITANIUM METALS Corp A DE CORP
Titanium Hearth Technologies Inc
A JOHNSON METALS CORP
Original Assignee
A JOHNSON METALS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A JOHNSON METALS CORP filed Critical A JOHNSON METALS CORP
Priority to US07/217,610 priority Critical patent/USRE32932E/en
Application granted granted Critical
Publication of USRE32932E publication Critical patent/USRE32932E/en
Assigned to TITANIUM HEALTH TECHNOLOGIES, INC. IS A PENNSYLVANIA GENERAL PARTNERSHIP COMPOSED OF TWO GENERAL PARTNERS, ALEX JOHNSON METALS, INC., A DE CORP, AND TITANIUM METALS CORPORATION, A DE CORP. reassignment TITANIUM HEALTH TECHNOLOGIES, INC. IS A PENNSYLVANIA GENERAL PARTNERSHIP COMPOSED OF TWO GENERAL PARTNERS, ALEX JOHNSON METALS, INC., A DE CORP, AND TITANIUM METALS CORPORATION, A DE CORP. ASSIGNMENT UNDIVIDED JOINT INTEREST AS JOINT TENANTS Assignors: AXEL JOHNSON METALS, INC., A DE CORP.
Assigned to BANKERS TRUST COMPANY, AS AGENT reassignment BANKERS TRUST COMPANY, AS AGENT CONDITIONAL ASSIGNMENT AND ASSIGNMENT OF SECURITY INTEREST IN U.S. PATENTS Assignors: TITANIUM HEARTH TECHNOLOGIES, INC.
Assigned to TITANIUM HEARTH TECHNOLOGIES, INC. reassignment TITANIUM HEARTH TECHNOLOGIES, INC. PATENT ASSIGNMENT Assignors: AXEL JOHNSON METALS, INC.
Assigned to BANKERS TRUST COMPANY, AS AGENT reassignment BANKERS TRUST COMPANY, AS AGENT CONDITIONAL ASSIGNMENT AND SECURITY INTEREST Assignors: TITANIUM HEARTH TECHNOLOGIES
Assigned to CONGRESS FINANCIAL CORPORATION (SOUTHWEST) reassignment CONGRESS FINANCIAL CORPORATION (SOUTHWEST) SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TITANIUM HEARTH TECHNOLOGIES, INC.
Assigned to TITANIUM HEARTH TECHNOLOGIES, INC. reassignment TITANIUM HEARTH TECHNOLOGIES, INC. RELEASE AND TERMINATION OF CONDITIONAL ASSIGNMENT AND ASSIGNMENT OF SECURITY INTEREST IN U.S. PATENTS. Assignors: BANKERS TRUST CORPORATION, AS COLLATERAL AGENT
Assigned to TITANIUM HEARTH TECHNOLOGIES, INC. reassignment TITANIUM HEARTH TECHNOLOGIES, INC. RELEASE AND TERMINATION OF CONDITIONAL ASSIGNMENT OF SECURITY INTEREST IN U.S. PATENTS Assignors: BANKERS TRUST CORPORATION, AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Electric arc furnaces ; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Electric arc furnaces ; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Electric arc furnaces ; Tank furnaces
    • F27B3/10Details, accessories or equipment, e.g. dust-collectors, specially adapted for hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Electric arc furnaces ; Tank furnaces
    • F27B3/10Details, accessories or equipment, e.g. dust-collectors, specially adapted for hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/003Bombardment heating, e.g. with ions or electrons

Definitions

  • This invention relates to .[.electron beam.]. cold hearth refining of metals such as titanium alloys which must be completely free of unrefined, inclusions and, more particularly, to a new and improved .[.electron beam.]. cold hearth refining furnace which is especially adapted to prevent contamination of refined metal.
  • a water cooled hearth is supplied with lumps or pieces of titanium sponge or machine turnings of titanium alloy consisting of scrap from the manufacture of titanium alloy parts.
  • This material is introduced by gravity feed at one end of a cooled elongated hearth in .[.an electron beam.]. .Iadd.a .Iaddend.furnace in which the material is melted and refined by electron beam .Iadd.or plasma .Iaddend.impingement.
  • the refined molten material is poured from the opposite end of the hearth into a cylindrical mold where it forms a vertically disposed cylindrical ingot that is withdrawn downwardly within the mold as it solidifies.
  • the raw material In conventional .[.electron beam.]. cold hearth furnaces used for refining of titanium alloy or the like, the raw material often includes vaporizable contaminants such as chlorine in titanium sponge and oil or moisture in machine turnings. As such materials are introduced into the melt area of the hearth and are heated by the molten metal and by an electron beam, .Iadd.for example, .Iaddend.the vaporizable contaminants frequently produce relatively violent eruptions in the molten metal being refined. Such eruptions have been found to cause both molten and unmelted material from the melt area to be spattered toward other areas of the electron beam furnace including the casting area where the refined ingot is being molded.
  • unrefined metal containing undesirable inclusions such as titanium nitrides or tungsten carbides, for example, is introduced into the mold and thereby incorporated into the cast ingot and into any final product produced from the ingot, such as a jet engine compressor disc, for example.
  • Another object of the invention is to provide a new and improved .[.electron beam.]. cold hearth refining furnace which provides greater assurance that refined metal will be free of undesirable inclusions.
  • an elongated hearth arrangement having hearth segments which extend at an angle to each other, a supply device for introducing raw material to a melt area at one end of one of the hearth segments, a mold for receiving refined material from the opposite end of another segment, and a shield disposed in the angle between the hearth segments at a location such that a straight line extending between the melt area and the mold intersects the shield at a position laterally spaced from both of the hearth segments.
  • the two hearth segments are separate hearths disposed at right angles to each other at different levels so that refined molten metal from the first hearth is poured into the adjacent end of the second hearth.
  • FIG. 1 is a schematic view in longitudinal section illustrating a representative conventional electron beam cold hearth refining arrangement
  • FIG. 2 is a schematic plan view illustrating a typical electron beam cold hearth refining arrangement in accordance with the present invention.
  • a hearth 10 comprises a hearth bed 11 containing cooling pipes 12 through which water or another cooling liquid may be circulated.
  • a chute 13 directs pieces 14 of the raw material to be refined, such as titanium sponge or titanium alloy machine turnings, into the hearth and a series of electron beam guns 15 disposed above the hearth produces controllable beams of electrons 16 which can be directed to desired areas of the hearth to heat the material to be refined in a desired manner.
  • One of the beams 16 is concentrated on the raw material 14 at the melt area 17 of the hearth so as to melt the raw material, and other electron beams 16 are controlled so as to refine the molten metal during its passage from the melt area 17 to a pouring lip 18 at the other end of the hearth.
  • other energy sources such as plasma torches, may be used in place of electron beam guns. .Iaddend.
  • the raw material introduced into the hearth forms a molten pool 19 which flows from the melt area 17 to the lip 18.
  • a solid skull 20 of the molten material 19 in the pool forms on the inner surface of the hearth bed, protecting it from degradation by the molten material.
  • molten mater0155 ral 19 As the molten mater0155 ral 19 flows through the hearth, it is completely melted and refined, producing a stream 21 of molten refined material which pours from the pouring lip 18 into a vertical mold 22 containing cooling pipes 23. The molten metal then cools in the mold 22, forming an ingot 24 which is gradually moved downwardly within the mold in a conventional manner as indicated by the arrow.
  • Another electron beam gun 25 directs a beam of electrons 26 in a controlled manner toward the surface of the molten material 27 within the mold so as to control the cooling and solidification of that material into the ingot 21 in a desired manner.
  • the entire arrangement is, of course, contained within a sealed enclosure (not shown) and maintained at a high vacuum in the conventional manner.
  • the raw material 14 As the raw material 14 is introduced into the melt area of the hearth, it frequently carries with it certain contaminants which are volatile at the temperature of the molten material 19 and which are therefore removed during the refining process.
  • chlorine may be contained within titanium sponge particles and liquids such as oil and water may be carried by titanium alloy turnings as they are poured from the chute 13 into the melt area 17.
  • the introduction of such volatile materials into the molten material 19 causes rapid vaporization of the volatile material at or below the surface of the molten material, producing eruptions which spatter both molten and unmelted material in all directions.
  • such eruptions may spatter unrefined material directly from the melt area 17 of the hearth into the mold 22 as indicated by the dotted line paths 28 in FIG. 1.
  • the electron beam gun 25 directs a beam of electrons 26 at the surface of the molten material 27 in the mold, that material is generally at a lower temperature than the material in the hearth and the electron beam 26 will normally not be sufficient to refine any unrefined material within the mold.
  • the spattered unrefined metal containing inclusions such as titanium nitrides or tungsten carbides, may be incorporated into the ingot 20224 4, contaminating the final product made from that ingot with detrimental results to that product.
  • a shield may be placed above the outlet end of the hearth, as indicated by the dotted outline 29 in FIG. 1, to block material spattered from the melt area from passing directly into the mold 22.
  • unrefined material spattered from the melt area 17 toward the mold which strikes the shield 29 is frequently deflected downwardly to the surface of the molten material 19 as it is being poured into the mold so that it is carried directly into the mold with the molten material.
  • vaporized material and spattered molten material solidifies on the surface of the shield and portions of such solidified material may be dislodged so that they fall directly into the molten material being poured with the same detrimental result.
  • a first hearth segment 30 is in the form of an elongated hearth having an inlet end at which raw material, such as titanium sponge or titanium alloy turnings 14, is introduced from a chute 13 into the melt area 17.
  • Electron beam guns similar to the guns 15 shown in FIG. 1 but not shown in FIG. 2, are arranged above the hearth segment 30 to melt the raw material in the melt area 17 and to refine the molten material 31 as it passes toward a pouring lip 32 at the outlet end of the hearth segment 30.
  • a second elongated hearth segment 33 positioned at a lower level than the hearth segment 30 and at right angles to the segment 30 receives molten material 34 from the pouring lip 32.
  • One or more additional electron guns similar to the guns 15 of FIG. 1 but not illustrated in FIG. 2, direct electron beams toward the surface of the molten material in a refining area 35 of this hearth segment to complete the refining of the material as it flows through the hearth segment.
  • the hearth segment 33 has a pouring lip 36 through which refined molten metal 37 is poured into a mold 38 to produce a refined ingot in the same manner described above with respect to FIG. 1.
  • the mold 38 as illustrated in FIG. 2 has a circular cross section but it may, instead, have any other desired cross-sectional configuration, such as rectangular, for example.
  • a solid shield 39 is mounted in the angle between the first and second hearth segments 30 and 33 in such manner that a direct line between the melt area 17 at the inlet to the hearth segment 30 and either the refining area 35 of the second hearth segment or the mold 38 intersects the shield 39.
  • the shield 39 is laterally displaced from the hearth segments so that molten material spattered against it or vaporized or spattered material which has solidified on its surface will not fall into the molten material in either the first hearth segment 30 or the second hearth segment 33.
  • any number of hearth segments may, of course, be used as long as a shielding arrangement is provided to prevent material spattered from the melt area from reaching the mold.
  • metals such as titanium alloy can be refined in .[.an electron beam.]. .Iadd.a .Iaddend.cold hearth furnace without concern over possible inclusions which might be spattered into the mold at the end of the hearth by the introduction of materials containing vaporizable contaminants at the melt area of the hearth.
  • two or more hearth segments at different levels are used, as in the embodiment shown in FIG. 2, two separate hearth skulls are formed so that thermal expansion and contraction of the skulls can occur in each hearth segment independently of the conditions in the other hearth segment.
  • different refining conditions can be used in the hearth segments and improved stirring of the material being refined is provided by the cascading of molten material from one segment to the other so that improved refining of the material can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

In the particular embodiment of an electron beam cold hearth refining arrangement described in the specification, two separate hearth segments are disposed at right angles to each other and raw material is supplied to a melt area at the end of the first hearth segment remote from the second hearth segment. Molten material is poured from the opposite end of the first hearth segment into the adjacent end of the second hearth segment and refined molten material is poured into a mold from the opposite end of the second hearth segment. To prevent spattering of unrefined material into the mold or the adjacent refining area of the second hearth segment a baffle is positioned in the angle between the two mold segments. 0013

Description

This application is a continuation of application Ser. No. 022,430, filed on Mar. 6, 1987, now abandoned.
BACKGROUND OF THE INVENTION
This invention relates to .[.electron beam.]. cold hearth refining of metals such as titanium alloys which must be completely free of unrefined, inclusions and, more particularly, to a new and improved .[.electron beam.]. cold hearth refining furnace which is especially adapted to prevent contamination of refined metal.
In certain applications wherein metals such as titanium alloys which have been refined by .[.electron beam.]. cold hearth refining are used in aircraft engine parts, the presence of even the tiniest amounts of unrefined inclusions in the refined ingot is severly detrimental. Since such inclusions may, for example, result in fracture and disintegration of aircraft engine parts rotating at very high speed they should be completely avoided.
In conventional .[.electron beam.]. cold hearth refining of metals such as titanium alloys, a water cooled hearth is supplied with lumps or pieces of titanium sponge or machine turnings of titanium alloy consisting of scrap from the manufacture of titanium alloy parts. This material is introduced by gravity feed at one end of a cooled elongated hearth in .[.an electron beam.]. .Iadd.a .Iaddend.furnace in which the material is melted and refined by electron beam .Iadd.or plasma .Iaddend.impingement. The refined molten material is poured from the opposite end of the hearth into a cylindrical mold where it forms a vertically disposed cylindrical ingot that is withdrawn downwardly within the mold as it solidifies.
In conventional .[.electron beam.]. cold hearth furnaces used for refining of titanium alloy or the like, the raw material often includes vaporizable contaminants such as chlorine in titanium sponge and oil or moisture in machine turnings. As such materials are introduced into the melt area of the hearth and are heated by the molten metal and by an electron beam, .Iadd.for example, .Iaddend.the vaporizable contaminants frequently produce relatively violent eruptions in the molten metal being refined. Such eruptions have been found to cause both molten and unmelted material from the melt area to be spattered toward other areas of the electron beam furnace including the casting area where the refined ingot is being molded. As a result, it is possible that unrefined metal containing undesirable inclusions such as titanium nitrides or tungsten carbides, for example, is introduced into the mold and thereby incorporated into the cast ingot and into any final product produced from the ingot, such as a jet engine compressor disc, for example.
Heretofore the provision of a vertical shield over the molten material at the end of the hearth adjacent to the casting area has been proposed in order to block such spattering of material into the mold. With such arrangements, however, unmelted material spattered by eruptions and prevented by the shield from entering the casting area directly can be deflected downwardly from the shield into the molten material at the point where it passes from the hearth into the mold. Furthermore, vaporized material and spattered molten material may accumulate and solidify on the shield and occasionally portions of such solid material containing contaminating inclusions may drop from the shield into the refined molten material as it passes from the hearth into the mold.
Accordingly, it is an object of the present invention to provide a new and improved .[.electron beam.]. cold hearth refining arrangement which overcomes the abovementioned disadvantages of the prior art.
Another object of the invention is to provide a new and improved .[.electron beam.]. cold hearth refining furnace which provides greater assurance that refined metal will be free of undesirable inclusions.
SUMMARY OF THE INVENTION
These and other objects of the invention are attained by providing an elongated hearth arrangement having hearth segments which extend at an angle to each other, a supply device for introducing raw material to a melt area at one end of one of the hearth segments, a mold for receiving refined material from the opposite end of another segment, and a shield disposed in the angle between the hearth segments at a location such that a straight line extending between the melt area and the mold intersects the shield at a position laterally spaced from both of the hearth segments. In a preferred arrangement, the two hearth segments are separate hearths disposed at right angles to each other at different levels so that refined molten metal from the first hearth is poured into the adjacent end of the second hearth.
BRIEF DESCRIPTION OF THE DRAWINGS
Further objects and advantages of the invention will be apparent from a reading of the following description in conjunction with the accompanying drawings in which:
FIG. 1 is a schematic view in longitudinal section illustrating a representative conventional electron beam cold hearth refining arrangement; and
FIG. 2 is a schematic plan view illustrating a typical electron beam cold hearth refining arrangement in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
In the conventional cold hearth electron beam refining arrangement shown in FIG. 1, a hearth 10 comprises a hearth bed 11 containing cooling pipes 12 through which water or another cooling liquid may be circulated. At the inlet end of the hearth, a chute 13 directs pieces 14 of the raw material to be refined, such as titanium sponge or titanium alloy machine turnings, into the hearth and a series of electron beam guns 15 disposed above the hearth produces controllable beams of electrons 16 which can be directed to desired areas of the hearth to heat the material to be refined in a desired manner. One of the beams 16 is concentrated on the raw material 14 at the melt area 17 of the hearth so as to melt the raw material, and other electron beams 16 are controlled so as to refine the molten metal during its passage from the melt area 17 to a pouring lip 18 at the other end of the hearth. .Iadd.Alternatively, other energy sources, such as plasma torches, may be used in place of electron beam guns. .Iaddend.
As a result, the raw material introduced into the hearth forms a molten pool 19 which flows from the melt area 17 to the lip 18. Because the hearth bed 11 is cooled by liquid flowing through the pipes 12, a solid skull 20 of the molten material 19 in the pool forms on the inner surface of the hearth bed, protecting it from degradation by the molten material.
As the molten mater0155 ral 19 flows through the hearth, it is completely melted and refined, producing a stream 21 of molten refined material which pours from the pouring lip 18 into a vertical mold 22 containing cooling pipes 23. The molten metal then cools in the mold 22, forming an ingot 24 which is gradually moved downwardly within the mold in a conventional manner as indicated by the arrow. Another electron beam gun 25 directs a beam of electrons 26 in a controlled manner toward the surface of the molten material 27 within the mold so as to control the cooling and solidification of that material into the ingot 21 in a desired manner. The entire arrangement is, of course, contained within a sealed enclosure (not shown) and maintained at a high vacuum in the conventional manner.
As the raw material 14 is introduced into the melt area of the hearth, it frequently carries with it certain contaminants which are volatile at the temperature of the molten material 19 and which are therefore removed during the refining process. For example, chlorine may be contained within titanium sponge particles and liquids such as oil and water may be carried by titanium alloy turnings as they are poured from the chute 13 into the melt area 17. Frequently, the introduction of such volatile materials into the molten material 19 causes rapid vaporization of the volatile material at or below the surface of the molten material, producing eruptions which spatter both molten and unmelted material in all directions.
In conventional hearth arrangements such eruptions may spatter unrefined material directly from the melt area 17 of the hearth into the mold 22 as indicated by the dotted line paths 28 in FIG. 1. Although the electron beam gun 25 directs a beam of electrons 26 at the surface of the molten material 27 in the mold, that material is generally at a lower temperature than the material in the hearth and the electron beam 26 will normally not be sufficient to refine any unrefined material within the mold. As a result, the spattered unrefined metal, containing inclusions such as titanium nitrides or tungsten carbides, may be incorporated into the ingot 20224 4, contaminating the final product made from that ingot with detrimental results to that product.
In certain conventional .[.electron beam.]. cold hearth furnaces, a shield may be placed above the outlet end of the hearth, as indicated by the dotted outline 29 in FIG. 1, to block material spattered from the melt area from passing directly into the mold 22. With such arrangements, however, unrefined material spattered from the melt area 17 toward the mold which strikes the shield 29 is frequently deflected downwardly to the surface of the molten material 19 as it is being poured into the mold so that it is carried directly into the mold with the molten material. Moreover, vaporized material and spattered molten material solidifies on the surface of the shield and portions of such solidified material may be dislodged so that they fall directly into the molten material being poured with the same detrimental result.
In accordance with the present invention, the possibility of introducing such unrefined material into a mold is eliminated by providing a segmented hearth in the manner shown in FIG. 2. In this arrangement, a first hearth segment 30 is in the form of an elongated hearth having an inlet end at which raw material, such as titanium sponge or titanium alloy turnings 14, is introduced from a chute 13 into the melt area 17. Electron beam guns, similar to the guns 15 shown in FIG. 1 but not shown in FIG. 2, are arranged above the hearth segment 30 to melt the raw material in the melt area 17 and to refine the molten material 31 as it passes toward a pouring lip 32 at the outlet end of the hearth segment 30. A second elongated hearth segment 33, positioned at a lower level than the hearth segment 30 and at right angles to the segment 30 receives molten material 34 from the pouring lip 32. One or more additional electron guns, similar to the guns 15 of FIG. 1 but not illustrated in FIG. 2, direct electron beams toward the surface of the molten material in a refining area 35 of this hearth segment to complete the refining of the material as it flows through the hearth segment. At its outlet end, the hearth segment 33 has a pouring lip 36 through which refined molten metal 37 is poured into a mold 38 to produce a refined ingot in the same manner described above with respect to FIG. 1. The mold 38 as illustrated in FIG. 2 has a circular cross section but it may, instead, have any other desired cross-sectional configuration, such as rectangular, for example.
To prevent introduction of unrefined material into the mold 38 in accordance with the invention, a solid shield 39 is mounted in the angle between the first and second hearth segments 30 and 33 in such manner that a direct line between the melt area 17 at the inlet to the hearth segment 30 and either the refining area 35 of the second hearth segment or the mold 38 intersects the shield 39. In addition, as shown in FIG. 2, the shield 39 is laterally displaced from the hearth segments so that molten material spattered against it or vaporized or spattered material which has solidified on its surface will not fall into the molten material in either the first hearth segment 30 or the second hearth segment 33. Although only two hearth segments are shown in FIG. 2, any number of hearth segments may, of course, be used as long as a shielding arrangement is provided to prevent material spattered from the melt area from reaching the mold.
With this arrangement, metals such as titanium alloy can be refined in .[.an electron beam.]. .Iadd.a .Iaddend.cold hearth furnace without concern over possible inclusions which might be spattered into the mold at the end of the hearth by the introduction of materials containing vaporizable contaminants at the melt area of the hearth. Furthermore, when two or more hearth segments at different levels are used, as in the embodiment shown in FIG. 2, two separate hearth skulls are formed so that thermal expansion and contraction of the skulls can occur in each hearth segment independently of the conditions in the other hearth segment. As a result, different refining conditions can be used in the hearth segments and improved stirring of the material being refined is provided by the cascading of molten material from one segment to the other so that improved refining of the material can be obtained.
Although the invention has been described herein with reference to a specific embodiment, many modifications and variations therein will readily occur to those skilled in the art. Accordingly, all such variations and modifications are included within the intended scope of the invention as defined by the following claims.

Claims (6)

We claim:
1. An electron beam refining furnace comprising hearth means including first and second elongated hearth segments disposed at an angle with respect to each other, a mold to receive molten material after passage through the first and second hearth segments, supply means for introducing material to be refined to a melting area adjacent to one end of the first hearth segment and horizontally spaced from the mold, connecting means providing for flow of molten material between the opposite end of the first hearth segment and one end of the second hearth segment, means for transferring refined material from the opposite end of the second hearth segment into the mold, and shield means disposed between the melting area of the first hearth segment and the mold so that a vertical plane extending between the melting area of the first hearth segment and the mold intersects the shield means at a location laterally spaced from a vertical plane containing the melting area and the path of molten material between the hearth segments, the shield means being oriented at an angle to the horizontal to intercept molten material spattered in a generally horizontal direction from the melting area toward the mold.
2. An electron beam refining furnace according to claim 1 wherein the first hearth segment is at a higher level than the second hearth segment and the connecting means comprises a pouring lip at the end of the first hearth segment adjacent to the second hearth segment.
3. An electron beam refining furnace according to claim 1 wherein the second hearth segment includes a refining area and wherein the shield means is disposed so that a straight line extending between the melt area of the first hearth segment and the refining area of the second hearth segment intersects the shield means at a location laterally spaced from the first and second hearth segments.
4. An electron beam refining furnace according to claim 1 wherein the first and second elongated hearth segments are disposed substantially at right angles to each other, the melt area of the first hearth segment is at the end of the segment remote from the second hearth segment, the mold is disposed adjacent to the end of the second hearth segment remote from the first hearth segment and the shield means is disposed in the corner formed between the first and second hearth segments.
5. An electron beam refining furnace according to claim 1 wherein the first and second hearth segments are arranged to subject the molten material passing through them to different refining conditions. .Iadd.6. A cold hearth refining furnace comprising hearth means including first and second elongated hearth segments disposed at an angle with respect to each other, a mold to receive molten material after passage through the first and second hearth segments, supply means for introducing material to be refined to a melting area adjacent to one end of the first hearth segment and horizontally spaced from the mold, connecting means providing for flow of molten material between the opposite end of the first hearth segment and one end of the second hearth segment, means for transferring refined material from the opposite end of the second hearth segment into the mold, and shield means disposed between the melting area of the first hearth segment and the mold so that a vertical plane extending between the melting area of the first hearth segment and the mold intersects the shield means at a location laterally spaced from a vertical plane containing the melting area and the path of molten material between the hearth segments, the shield means being oriented at an angle to the horizontal to intercept molten material spattered in a generally horizontal direction from the melting area toward the mold. .Iaddend.
.Iadd.7. A cold hearth refining furnace according to claim 6 wherein the first hearth segment is at a higher level than the second hearth segment and the connecting means comprises a pouring lip at the end of the first hearth segment adjacent to the second hearth segment. .Iaddend. .Iadd.8. A cold hearth refining furnace according to claim 6 wherein the second hearth segment includes a refining area and wherein the shield means is disposed so that a straight line extending between the melt area of the first hearth segment and the refining area of the second hearth segment intersects the shield means at a location laterally spaced from the first and second hearth segments. .Iaddend. .Iadd.9. A cold hearth refining furnace according to claim 6 wherein the first and second elongated hearth segments are disposed substantially at right angles to each other, the melt area of the first hearth segment is at the end of the segment remote from the second hearth segment, the mold is disposed adjacent to the end of the second hearth segment remote from the first hearth segment and the shield means is disposed in the corner formed between the first and second hearth segments. .Iaddend. .Iadd.10. A cold hearth refining furnace according to claim 6 wherein the first and second hearth segments are arranged to subject the molten material passing through them to different refining conditions. .Iaddend.
US07/217,610 1987-03-06 1988-07-01 Cold hearth refining Expired - Lifetime USRE32932E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/217,610 USRE32932E (en) 1987-03-06 1988-07-01 Cold hearth refining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2243087A 1987-03-06 1987-03-06
US07/217,610 USRE32932E (en) 1987-03-06 1988-07-01 Cold hearth refining

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US2243087A Continuation 1987-03-06 1987-03-06
US07/102,276 Reissue US4750542A (en) 1987-03-06 1987-09-28 Electron beam cold hearth refining

Publications (1)

Publication Number Publication Date
USRE32932E true USRE32932E (en) 1989-05-30

Family

ID=26695917

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/217,610 Expired - Lifetime USRE32932E (en) 1987-03-06 1988-07-01 Cold hearth refining

Country Status (1)

Country Link
US (1) USRE32932E (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571605A4 (en) * 1991-12-16 1994-02-23 Axel Johnson Metals, Inc.
EP0493591A4 (en) * 1990-07-19 1994-06-08 Johnson Axel Metals Vacuum processing of reactive metal
US6019812A (en) 1996-10-22 2000-02-01 Teledyne Industries, Inc. Subatmospheric plasma cold hearth melting process
US6175585B1 (en) 1999-07-15 2001-01-16 Oregon Metallurgical Corporation Electron beam shielding apparatus and methods for shielding electron beams
US6264884B1 (en) 1999-09-03 2001-07-24 Ati Properties, Inc. Purification hearth
US20070006989A1 (en) * 2002-09-20 2007-01-11 Ajax Tocco Magnethermic Corporation Method and apparatus for melting titanium using a combination of plasma torches and direct arc electrodes
US20110308760A1 (en) * 2009-02-09 2011-12-22 Hisamune Tanaka Apparatus for production of metallic slab using electron beam, and process for production of metallic slab using the apparatus
US9050650B2 (en) 2013-02-05 2015-06-09 Ati Properties, Inc. Tapered hearth
US11150021B2 (en) * 2011-04-07 2021-10-19 Ati Properties Llc Systems and methods for casting metallic materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342250A (en) * 1963-11-08 1967-09-19 Suedwestfalen Ag Stahlwerke Method of and apparatus for vacuum melting and teeming steel and steellike alloys
US4027722A (en) * 1963-02-01 1977-06-07 Airco, Inc. Electron beam furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027722A (en) * 1963-02-01 1977-06-07 Airco, Inc. Electron beam furnace
US3342250A (en) * 1963-11-08 1967-09-19 Suedwestfalen Ag Stahlwerke Method of and apparatus for vacuum melting and teeming steel and steellike alloys

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493591A4 (en) * 1990-07-19 1994-06-08 Johnson Axel Metals Vacuum processing of reactive metal
EP0571605A4 (en) * 1991-12-16 1994-02-23 Axel Johnson Metals, Inc.
US6019812A (en) 1996-10-22 2000-02-01 Teledyne Industries, Inc. Subatmospheric plasma cold hearth melting process
US6175585B1 (en) 1999-07-15 2001-01-16 Oregon Metallurgical Corporation Electron beam shielding apparatus and methods for shielding electron beams
US6264884B1 (en) 1999-09-03 2001-07-24 Ati Properties, Inc. Purification hearth
US7503376B2 (en) * 2002-09-20 2009-03-17 Ajax Tocco Magnethermic Corporation Method and apparatus for melting titanium using a combination of plasma torches and direct arc electrodes
US20070006989A1 (en) * 2002-09-20 2007-01-11 Ajax Tocco Magnethermic Corporation Method and apparatus for melting titanium using a combination of plasma torches and direct arc electrodes
US20110308760A1 (en) * 2009-02-09 2011-12-22 Hisamune Tanaka Apparatus for production of metallic slab using electron beam, and process for production of metallic slab using the apparatus
EP2394758A4 (en) * 2009-02-09 2014-06-04 Toho Titanium Co Ltd METAL ARRAY FABRIC DEVICE USING ELECTRON BEAM AND METHOD FOR MANUFACTURING METAL ARRAY USING THE DEVICE
US11150021B2 (en) * 2011-04-07 2021-10-19 Ati Properties Llc Systems and methods for casting metallic materials
US9050650B2 (en) 2013-02-05 2015-06-09 Ati Properties, Inc. Tapered hearth
US9205489B2 (en) 2013-02-05 2015-12-08 Ati Properties, Inc. Hearth and casting system
US9221097B2 (en) 2013-02-05 2015-12-29 Ati Properties, Inc. Method for casting material
US9381571B2 (en) * 2013-02-05 2016-07-05 Ati Properties, Inc. Hearth
US9539640B2 (en) 2013-02-05 2017-01-10 Ati Properties Llc Hearth and casting system

Similar Documents

Publication Publication Date Title
US4932635A (en) Cold hearth refining apparatus
US4750542A (en) Electron beam cold hearth refining
US4961776A (en) Cold hearth refining
US4936375A (en) Continuous casting of ingots
US4838340A (en) Continuous casting of fine grain ingots
US5291940A (en) Static vacuum casting of ingots
USRE32932E (en) Cold hearth refining
US5171357A (en) Vacuum processing of particulate reactive metal
EP3126079B1 (en) Granulation of molten ferrochromium
US5084090A (en) Vacuum processing of reactive metal
GB2117417A (en) Producing high-purity ceramics- free metallic powders
EA022298B1 (en) Device and method for cooling melt fragments
GB2202476A (en) Electron beam refining furnace
EP0300411B1 (en) Melting retort and method of melting materials
WO2005084850A1 (en) Method and apparatus for perimeter cleaning in cold hearth refining
RU2191211C2 (en) Method for metal melting and casting in rotating inclined vessel
JP2001272172A (en) Multiple hearth devices including barriers
JP2021079395A (en) Method of making titanium ingot
JPH0688146A (en) Electron beam overflow melting device
JPS63251786A (en) Metal melting and casting equipment

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TITANIUM HEALTH TECHNOLOGIES, INC. IS A PENNSYLVAN

Free format text: ASSIGNMENT UNDIVIDED JOINT INTEREST AS JOINT TENANTS;ASSIGNOR:AXEL JOHNSON METALS, INC., A DE CORP.;REEL/FRAME:006426/0203

Effective date: 19920831

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BANKERS TRUST COMPANY, AS AGENT, NEW YORK

Free format text: CONDITIONAL ASSIGNMENT AND ASSIGNMENT OF SECURITY INTEREST IN U.S. PATENTS;ASSIGNOR:TITANIUM HEARTH TECHNOLOGIES, INC.;REEL/FRAME:008660/0849

Effective date: 19970730

Owner name: TITANIUM HEARTH TECHNOLOGIES, INC., PENNSYLVANIA

Free format text: PATENT ASSIGNMENT;ASSIGNOR:AXEL JOHNSON METALS, INC.;REEL/FRAME:008660/0815

Effective date: 19961001

Owner name: BANKERS TRUST COMPANY, AS AGENT, NEW YORK

Free format text: CONDITIONAL ASSIGNMENT AND SECURITY INTEREST;ASSIGNOR:TITANIUM HEARTH TECHNOLOGIES;REEL/FRAME:008660/0825

Effective date: 19970730

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: CONGRESS FINANCIAL CORPORATION (SOUTHWEST), TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:TITANIUM HEARTH TECHNOLOGIES, INC.;REEL/FRAME:010655/0742

Effective date: 20000225

AS Assignment

Owner name: TITANIUM HEARTH TECHNOLOGIES, INC., PENNSYLVANIA

Free format text: RELEASE AND TERMINATION OF CONDITIONAL ASSIGNMENT AND ASSIGNMENT OF SECURITY INTEREST IN U.S. PATENTS.;ASSIGNOR:BANKERS TRUST CORPORATION, AS COLLATERAL AGENT;REEL/FRAME:010719/0610

Effective date: 20000223

AS Assignment

Owner name: TITANIUM HEARTH TECHNOLOGIES, INC., PENNSYLVANIA

Free format text: RELEASE AND TERMINATION OF CONDITIONAL ASSIGNMENT OF SECURITY INTEREST IN U.S. PATENTS;ASSIGNOR:BANKERS TRUST CORPORATION, AS COLLATERAL AGENT;REEL/FRAME:010719/0591

Effective date: 20000223