USRE32153E - Highly thermostable glucoamylaseand process for its production - Google Patents

Highly thermostable glucoamylaseand process for its production Download PDF

Info

Publication number
USRE32153E
USRE32153E US06/761,930 US76193085A USRE32153E US RE32153 E USRE32153 E US RE32153E US 76193085 A US76193085 A US 76193085A US RE32153 E USRE32153 E US RE32153E
Authority
US
United States
Prior art keywords
glucoamylase
process
enzyme
enzyme preparation
ph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/761,930
Inventor
Masaki Tamura
Mizuho Shimizu
Minoru Tago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Bestfoods North America
Original Assignee
Unilever Bestfoods North America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP53106354A priority Critical patent/JPS6155948B2/ja
Priority to JP53-106354 priority
Application filed by Unilever Bestfoods North America filed Critical Unilever Bestfoods North America
Application granted granted Critical
Publication of USRE32153E publication Critical patent/USRE32153E/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2428Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/20Preparation of compounds containing saccharide radicals produced by the action of an exo-1,4 alpha-glucosidase, e.g. dextrose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi

Abstract

Process for the production of a thermostable glucoamylase by a strain of Talaromyces and the glucoamylase produced thereby.

Description

BACKGROUND OF THE INVENTION

At present, batch processes are applied to the production of dextrose by saccharification of starch hydrolyzates with a glucoamylase. Many of the commercially-available glucoamylase enzymes produced today are derived from microorganisms of the genera Rhizopus and Aspergillus. When these enzymes are used to produce dextrose, they are generally reacted at 55° C. to 60° C. for 2 to 4 days. If glucoamylase can be immobilized and the saccharification can be conducted continuously through a column, the reaction time is reduced and no large reaction tank is necessary thereby saving labor and energy. Glucoamylase enzymes produced by Rhizopus and Aspergillus can be immobilized by ion exchange processes, physical adsorption, covalent bonding, gel entrapment, etc. Any glucoamylase enzymes immoblized by any of these processes are, however, inactivated when used at above 50° C.

An article by Marsh, D. R., Lee, Y. Y., and Tsao, G. T., Biotech. Bioeng. 15, 483 (1973) reported that immobilized glucoamylase enzymes were stable for a considerably long period of time when they were used at below 50° C., but this process is not commercially feasible because of the danger of microbial contamination.

Therefore, the development of an immobilized glucoamylase stable at temperatures above 50° C. is necessary for continuous saccharification in commercial operations.

To achieve this, a glucoamylase having remarkably higher thermostability than those of conventional ones must be developed.

SUMMARY OF THE INVENTION

A microbial strain has been discovered belonging to the genus Talaromyces which produces a glucoamylase having an optimum reaction temperature of 75° C. and characterized as being capable of retaining at least about 90% of its initial glucoamylase activity when held at 70° C. and pH 4.5 for 10 minutes. This invention includes the method for the production of this glucoamylase wherein a microorganism of the genus Talaromyces, which produces the glucoamylase, is cultured in a medium and the enzyme is recovered from the culture broth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the relationship between the pH and the enzyme activity in the cases of the enzyme of the present invention and the conventional glucoamylases produced by R. niveus and A. niger microorganisms.

FIG. 2 shows the relationship between the temperature and the enzyme activity in the cases of the present enzyme and the glucoamylases from A. luchuensis and H. lanuginosa.

FIG. 3 provides a comparison of the present enzyme and the glucoamylases produced by the H. lanuginosa, A. niger and R. niveus microorganisms in terms of their relative thermostabilities.

DETAILED DESCRIPTION OF THE INVENTION

The properties of the novel thermostable glucoamylase of the present invention are presented in detail, and their properties are contrasted with those of the previously-known glucoamylases.

The term "D.E." is an abbreviation for "dextrose equivalent", and these terms are used interchangeably to refer to the reducing sugar content of a material calculated as dextrose and expressed as percent of total solids.

The term "starch hydrolyzate" is used in a general way to refer to a syrup or dry product that is made by the partial hydrolysis of starch. Such a product may be made by acid or enzymic hydrolysis.

The term "liquefied starch" is used to refer to a low D.E. (D.E. from about 2 to about 20) startch hydrolyzate.

1. Activity and Substrate Specificity

This enzyme hydrolyzes starch, soluble starch, amylose, amylopectin, glycogen, etc., into dextrose. When the substrate concentration is 1%, the yield of dextrose is 100% and the optical rotation of the formed dextrose is positive; hence this enzyme is a glucoamylase.

2. Optimum pH and Stable pH Range

FIG. 1 shows the relationship between the relative enzyme activity and the pH in comparison with those of the glucoamylases produced by Rhizopus and Aspergillus. As shown in the figure, the optimum pH of this enzyme at 60° C. is 4.0 and those of the glucoamylases produced by Rhizopus and Aspergillus are 5.0 and 4.0, respectively. This enzyme is most stable at pHs between 3 to 5, but no inactivation was found to occur when it was held at room temperature and a pH of between 2 to 9 for 24 hours.

3. Determination of Enzymatic Activity

A 0.5 ml aliquot of a diluted enzyme solution is added to 0.5 ml of a 2% maltodextrin (D.E. about 10) solution in 0.1 M acetate buffer (pH 4.5) and this is reacted at 60° C. for exactly 10 minutes. After 10 minutes, the enzyme reaction is terminated by heating in a boiling water bath for 5 minutes. The extrose formed is determined using the glucose oxidase method. The enzyme amount which is capable of producing 1 micromole of dextrose per minute is defined as 1 enzyme unit.

4. Range of Reaction Temperature

FIG. 2 shows the relationship between the relative enzymatic activity and the reaction temperature in comparison with that of the glucoamylase produced by Aspergillus luchuenis U2 (Public Notice of Japanese Patent Sho No. 53-7513) and also that the glucoamylase produced by Humicola lanuginosa (Carbohydrate Research, 61 301, 1978), which are the most thermostable glucoamylases known to date. As shown in the figure, the optimum reaction temperature of this enzyme is 75° C., which is 10° C. higher than that of Aspergillus luchuensis and Humicola lanuginosa.

5. Inactivation Due to pH and Temperature Conditions.

This enzyme is completely inactivated by heating at 70° C. and at pHs less than 2 or above 8 for 1 hour. FIG. 3 shows the inactivation curve of this enzyme in comparison with those of the glucoamylases produced by Humicola lanuginosa, Aspergillus niger and Rhizopus niveus. Namely, the figure shows the inactivation curves of these four gluoamylases when they were treated at 70° C. and their optimum pHs for stability.

As shown in the figure, the present enzyme has a remarkably higher thermostability than the known glucoamylases, showing 92.5% residual activity after heating at 70° C. for 10 minutes and 48% residual activity even after heating for 1 hour. This fact indicates that this glucoamylase is significantly more thermostable than the known glucoamylases.

6. Inhibition, Activation and Stabilization

This enzyme does not require any activating nor stabilizing agents. It is inhibited by such metal salts as mercury bichloride.

7. Purification Process

This enzyme can be purified through salting-out with an inorganic salt, fractionation with an organic solvent, treatment with active clay, various chromatographic methods, etc., and combinations thereof. An embodiment of the purification process is described in the example.

When the purified enzyme was analyzed by disc electrophoresis in accordance with the Davis method: Ann New York Acad. Sci. 121, 321 (1964), it migrated toward the cathode at pH 8.8 and showed a single band.

8. Molecular Weight

The molecular weight of the present enzyme was investigated using a Sephadex G-150 column in accordance with the procedure of Andrews, P., Biochem. J. 96, 595 (1965). The results indicated that this enzyme's molecular weight is about 31,000.

Next, the points of difference between the present enzyme and the conventionally-known glucoamylases will be presented, and an explanation will be made of the reasons that this enzyme is to be considered a new enzyme having high thermostability.

Table I shows the optimum reaction pH, the optimum reaction temperature and the molecular weight of the present enzyme in comparison with those of several known glucoamylases. The optimum reaction temperature of the present enzyme is 75° C., which is 5° to 15° C. higher than those of the known glucoamylases. The molecular weight of the present enzyme is significantly smaller than those of the known glucoamylases.

              TABLE I______________________________________COMPARISON OF VARIOUS GLUCOAMYLASES INTERMS OF OPTIMUM pH, OPTIMUM TEMPERATUREAND MOLECULAR WEIGHT                     Optimum            Optimum  Temp.    MolecularGlucoamylase     pH.sup.(a)                     °C..sup.(a)                              Weight.sup.(a)______________________________________Present Enzyme   4.0*      75*      31,000*(Talaromyces)Humicola lanuginosa.sup.(b)            6.5      65       --Aspergillus luchensis.sup.(c)            4.0      65       --Aspergillus niger            4.5*      70*      97,000.sup.(d)Rhizopus sp.     5.0*      60*      70,000.sup.(e)Endomyces sp..sup.(f)            5.0      60       64,000Trichoderma viride.sup.(g)            5.0      60       75,000Cephalosporium cherticola.sup.(h)            5.4      60       69,000______________________________________ .sup.(a) All values except those marked with an asterisk (*) were taken from the references. .sup.(b) P. M. Taylor et. al.: Carbohydrate Research 61,301 (1978). .sup.(c) T. Kanno et. al.: Public Notice of Japanese Patent Sho 53 (1978)7513. .sup.(d) J. H. Pazur, et. al.: J. Biol Chem. 237, 1002 (1962). .sup.(e) Hiromi et al.: Biochem Biophys. Acta 302,632 (1973). .sup.(f) Hattori et. al.: Agr. Biol. Chem 25,895 (1961). .sup.(g) Okada: J. Jap. Soc. Starch Sci. 21,282 (1974). .sup. (h) H. Urbanek: Appl. Microbiol 30, 163 (1975).

FIG. 3 shows the inactivation curve of the present enzyme in comparison with those of the glucoamylases from Humicola lanuginosa, Aspergillus niger and Rhizopus niveus. These were heated at 70° C. at the most stable pH for each enzyme. As shown in the figure, the inactivation of the present enzyme is significantly slower than that of the other glucoamylases.

On the basis of the above facts, it can be concluded that the glucoamylase produced by the method of the present invention is a new thermophilic glucoamylase which has been totally unknown to date.

An explanation will now be made of the method for the production of the present enzyme.

As a desirable example of the glucoamylase-producing microorganism to be used in the present invention, there is strain G45-632, which was isolated from the soil by the present inventors. The microbiological characteristics of the present strain will be described below.

The morphological properties of the present strain were determined in accordance with the methods described by the researchers listed below:

Cooney, D. G. and Emerson, R. THERMOPHILIC FUNGI. W. H. Freeman and Company, San Francisco & London. 1964.

Raper, K. B. and Thom. C. A MANUAL OF PENICILLIA. Hafner Publishing Company, New York and London (1968).

Awao, T. and Mitsugi, K. Trans. Mycol. Soc. Japan 14, 145-160 (1973).

Minoura, K., Yokoe, M., Kizima, T., Nehira, T. Trans. Mycol. Soc. Japan 14, 352-361 (1973).

9. Morphological Properties of Strain G45-632

The present strain was cultured on two kinds of media in Petri dishes. The following sections present the morphological characteristics which were observed for isolated colonies.

(a) Potato Dextrose Agar Medium

When incubated at 40° C. for 3 days, the colonies are circular with a diameter of 6 to 7 cm. The vegetative hyphae are colorless. They grow thinly in the peripheral region of the colonies but become fluccose in the center with a thickness of 1 to 2 mm and have numerous conidia. They are grayish white with slightly green cleistothecia of less than 0.3 mm diameter lying randomly in the central and peripheral parts of the colony.

The bottom of the colonies is yellowish brown but the part which forms the cleistothecia is reddish brown, which secretes a yellowish brown pigment. The vegetative hyphae are 2 to 4.5μ in width and have septa. They consist of branched fibers from which conidiophores having septa protrude. The conidiophores have a smooth surface and are 30 to 2,000μ×2 to 3μ in size; the longer ones are often randomly branched.

The formation of the conidia is very irregular, sometimes sprouting directly from the top of the conidiophores and sometimes sprouting from the top of 1 to 4 phialides. Sometimes the phialides are double. The phialides are 10 to 15μ×2 to 3.5μ in size and have swollen bottoms.

The conidia run in a row, sometimes of more than 10 units. They are oval or long oval with a smooth surface, and are 5×3μ or less in size, having a brownish color under transparent light.

The ascocarps are spherical or elliptically spherical, being less than 300μ in diameter. The asci have no ascus-wall and are 10×8μ in size. The ascospores are yellowish and are 3 to 4μ in size, circular from the upper view but an equational furrow is visible in side view. (b) Yeast Extract Starch Agar Medium

______________________________________        Percent______________________________________Difco Yeast Extract          0.4Soluble Starch 1.5K.sub.2 HPO.sub.4          0.1MgSO.sub.4.7H.sub.2 O          0.05Agar           2______________________________________

When inubated at 40° C. for 3 days, the colonies are circular with a diameter of 6 to 7 cm. The colonies are floccose and 1 to 2 mm in thickness. Young colonies are white but they gradually become a grayish white slightly green color. In parallel with this, numerous conidia are formed and the surface becomes powdery. The bottom of the colonies is reddish brown at the initial stage of growth, but gradually becomes dark brown and secretes a dark brownish pigment into the medium. On this culturing medium, no ascocarps are formed.

10. Physiological Properties of Strain G45-632

(a) Growth Temperature

This strain is capable of growth over a temperature range of 25° to 50° C., but it does not grow at 55° C. and the optimum growth temperature is in the vicinity of 40° C.

(b) Growth pH

This strain is capable of growth over a pH range of 3 to 9 but its optimum growth pH is between 6 and 7.

(c) Carbon Source

This strain is capable of assimilating such carbon sources as dextrose, fructose, .[.glactose.]. .Iadd.galactose.Iaddend., mannose, sucrose, maltose and starch.

Based on the above microbiological findings and the description in "Thermophilic Fungi" (D. G. Cooney and R. Emerson), and "Trans. Mycol. Soc. Japan, 14" (T. Awao and K. Mitsugi), Strain 45-632 was identified as Talaromyces duponti. .Iadd.Further research indicated that this strain should be classified as Talaromyces leycettanus..Iaddend.

The Talaromyces .[.duponti.]. .Iadd.leycettanus .Iaddend.strain G45-632 is being stored at the Fermentation Research Institute, Agency of Industrial Science & Technology, Chiba City, Japan, as Deposit No. 4566.

The strain, Talaromyces .[.duponti.]. .Iadd.leycettanus .Iaddend.G45-632, is one of the embodiments of the microorganism used in this invention and any microorganism belonging to genus Talaromyces which is capable of producing the above-mentioned novel thermophilic glucoamylase can be employed as well as the strain G45-632 and its mutant strains.

Regarding the cultivation of the microorganisms to be employed in the present invention, the general knowledge and techniques used in the culture of molds are applicable.

Namely, as the nutritional source medium, it is possible to employ the media which are used for the culture of ordinary molds. For example, various starches, starch hydrolyzates, corn meal, wheat flour, molasses, etc., can be employed as the carbon source, while peptone, defatted cottonseed meal, meat extract, yeast extract, casein, corn steep liquor, malt extract, soybean meal, skim milk, inorganic ammonium salts, inorganic nitrates, etc., can be employed as the nitrogen source. As the inorganic salts, it is possible to employ calcium chloride, magnesium sulfate, phosphate, sodium chloride, potassium chloride, etc. Furthermore, these carbon sources, nitrogen sources and inorganic salts can be used either singly or in appropriate combinations. In addition, when it is desired to promote the growth of the microorganism and bring about an increase in its enzyme production, it is possible to employ trace amounts of metallic salts, vitamins, amino acids, etc.

The culture conditions usually employed for molds are also applicable to the cultivation of this microorganism. Namely, in liquid culture, when this microorganism is cultured for 3 to 10 days at pH 5 to 8 and 30° C. to 45° C., the enzyme of the present invention is accumulated in the culture broth. Solid culture is also possible by using solid materials such as bran.

In the case of liquid culture, the mycelia are removed by any of the well-known methods such as filtration; then the filtrate can be concentrated under reduced pressure, or the enzyme can be salted out with the other proteins by adding inorganic salts such as ammonium sulfate, or the enzyme can be precipitated by the addition of an organic solvent such as acetone or isopropanol.

In the case of solid culture, the enzyme is first extracted from the cultured material by the use of water or a buffer solution. Then, as in the case of liquid culture, it is possible to obtain the enzyme in a concentrated form.

The crude preparations of this new thermophilic glucoamylase thus obtained can be purified in accordance with the method described in the example.

This new thermophilic glucoamylase of the present invention can be used for saccharification in the process for production of dextrose from starch.

Especially, if this glucoamylase is immobilized and continuous saccharification is carried out using the immobilized glucoamylase, it is so advantageous that an extended period of continuous saccharification at 60° to 65° C. is possible with a high yield.

The invention is further illustrated by reference to the following example in which all parts and percentages are by weight unless otherwise noted.

EXAMPLE

A liquid culture medium consisting of 5% soluble starch, 2% corn steep liquor, 0.5% cottonseed meal, 0.5% yeast extract, 0.1% dipotassium phosphate, 0.05% magnesium sulfate and 0.01 calcium chloride was adjusted to pH 7.0 and 100 ml of this was placed in a 500 ml Erlenmeyer flask. This medium was sterilized at 121° C. for 20 minutes, inoculated with Talaromyces .[.duponti.]. .Iadd.leycettanus .Iaddend.strain G45-632 and incubated at 40° C. for 7 days on a shaker. After the culture was completed, the mycelia were removed from the culture fluid by filtration. The filtrate was found to contain 60 units of glucoamylase activity per milliliter.

The pH of this filtrate was adjusted to 6.0 with 2 N HCl, then active clay was added at 0.01 g/ml of the filtrate. After stirring for 15 minutes at room temperature, the active clay was removed by filtration. Two volumes of cold isopropanol was then added to the filtrate in order to precipitate the enzyme. The precipitate was centrifugally separated and dissolved in a small amount of Tris-HCl buffer (pH. 7.5). This enzyme-containing solution was then dialyzed against the same buffer for one night at 4° C. DEAE-cellulose, which had been equilibrated with the same buffer solution, was then added to the dialyzed enzyme solution and the enzyme was adsorbed to this carrier. The enzyme was eluted from it using a solution of the same buffer by linearly increasing its NaCl content from 0 to 0.5 M. Then, two volumes of cold isopropanol was added to the eluate to precipitate the enzyme, and this precipitate was dissolved in a .[.0.005.]. .Iadd.0.05 .Iaddend.M Tris-HCl buffer (pH 5.5).

This enzyme solution was adsorbed to a CM cellulose column and the enzyme was eluted from it using a solution of the same buffer by linearly increasing its NaCl content from 0 to 0.5 M. The eluted fractions which contained the enzyme were pooled and the enzyme was precipitated with two volumes of isopropanol.

The precipitate was then dissolved in 0.05 M Tris-HCl buffer (pH 7.5), and this enzyme solution was adsorbed to a Sephadex G-150 column which had been equilibrated with the same buffer and the enzyme was eluted using the same buffer. The fractions showing the enzyme activity were pooled and the enzyme was precipitated by adding two volumes of isopropanol. The precipitate was then dissolved in a small amount of 0.05 M acetate buffer (pH 4.5). The purified enzyme solution thus prepared had a glucoamylase activity of 110 units/mg protein.

Then the above-mentioned enzyme solution in Tris-HCl buffer, which had been prepared by dissolving the precipitate with isopropanol after the active clay treatment, was immobilized by binding with AE cellulose using glutaraldehyde in accordance with the method of Glassmeyer et al., Biochemistry 10, 786 (1971). An immobilized enzyme having 2,000 units of enzymatic activity per gram of carrier was thus obtained. Three grams of this immobilized enzyme was packed in a column which was held at 60° C. and a saccharification test was carried out by continuously passing through said column at a rate of 0.5 bed volumes per hour, a 25% solution of starch hydrolyzate (D.E. about 10) which had been adjusted to pH 5.0 with 2 N HCl. The dextrose content of this saccharified solution was found to be 96.5% as a result of determination by high-performance liquid chromatography. After 1 month of continuous saccharification, no decline in the dextrose yield was found to have occurred.

For comparison, an A. niger glucoamylase, having the highest thermostability of the known glucoamylase, was also immobilized in accordance with the same procedures as above and a 25% solution of starch hydrolyzate (pH 4.5) was saccharified under the same conditions. The initial dextrose content was 95.5%, but this rapidly declined and became 85% after 2 weeks of saccharification.

Claims (8)

We claim:
1. A process for producing a glucoamylase enzyme preparation which comprises culturing cells of a strain of Talaromyces .[.duponti.]. .Iadd.leycettanus .Iaddend.in a nutrient medium and isolating the glucoamylase enzyme preparation from the culture medium.
2. The process of claim 1 wherein the strain of Talaromyces .[.duponti.]. .Iadd.leycettanus .Iaddend.is Fermentation Research Institute, Deposit No. 4566.
3. The glucoamylase enzyme preparation, prepared according to the process of claim 2, which comprises a glucoamylase with a molecular weight of about 31,000 as determined by Sephadex G-150 column chromatography.
4. The glucoamylase enzyme preparation of claim 3 which has a maximum glucoamylase activity at about 75° C. as measured by a 10-minute reaction on a 2% maltodextrin solution at pH 4.5.
5. A glucoamylase enzyme preparation of claim 3 which retains at least about 90% of its initial glucoamylase activity when held at 70° C. for 10 minutes at pH 4.5.
6. In a continuous process for saccharifying a liquefied starch solution to a syrup of high dextrose content by contacting the liquefied starch at a temperature above about 60° C. with a glucoamylase enzyme preparation bound to an inert carrier, the improvement wherein said glucoamylase enzyme preparation is obtained by the process of claim 1 so that the continuous saccharification can be carried out for extended periods of time without decline in the dextrose yield.
7. The process of claim 6 wherein the glucoamylase is obtained from the strain of Talarmyces .[.duponti.]. .Iadd.leycettanus.Iaddend., Fermentation Research Institute, Deposit No. 4566.
8. The process of claim 7 wherein the saccharification is carried out at a pH of from about 4.0 to about 5.0.
US06/761,930 1978-09-01 1985-08-02 Highly thermostable glucoamylaseand process for its production Expired - Lifetime USRE32153E (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53106354A JPS6155948B2 (en) 1978-09-01 1978-09-01
JP53-106354 1978-09-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/055,723 Reissue US4247637A (en) 1978-09-01 1979-07-09 Highly thermostable glucoamylase and process for its production

Publications (1)

Publication Number Publication Date
USRE32153E true USRE32153E (en) 1986-05-20

Family

ID=14431425

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/055,723 Expired - Lifetime US4247637A (en) 1978-09-01 1979-07-09 Highly thermostable glucoamylase and process for its production
US06/761,930 Expired - Lifetime USRE32153E (en) 1978-09-01 1985-08-02 Highly thermostable glucoamylaseand process for its production

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/055,723 Expired - Lifetime US4247637A (en) 1978-09-01 1979-07-09 Highly thermostable glucoamylase and process for its production

Country Status (13)

Country Link
US (2) US4247637A (en)
JP (1) JPS6155948B2 (en)
AR (1) AR221619A1 (en)
BE (1) BE878466A (en)
CA (1) CA1128885A (en)
DE (1) DE2935315A1 (en)
DK (1) DK146631C (en)
ES (2) ES483735A1 (en)
FR (1) FR2434867B1 (en)
IN (1) IN151247B (en)
IT (1) IT1122701B (en)
NL (1) NL7906265A (en)
NZ (1) NZ191172A (en)

Cited By (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255084B1 (en) 1997-11-26 2001-07-03 Novozymes A/S Thermostable glucoamylase
WO2004080923A2 (en) 2003-03-10 2004-09-23 Novozymes A/S Alcohol product processes
WO2004113551A1 (en) 2003-06-25 2004-12-29 Novozymes A/S Process for the hydrolysis of starch
WO2005005646A2 (en) 2003-06-10 2005-01-20 Novozymes North America, Inc. Fermentation processes and compositions
US20050136525A1 (en) * 2003-11-21 2005-06-23 Baldwin Toby M. Expression of granular starch hydrolyzing enzymes in Trichoderma and process for producing glucose from granular starch substrates
US20060121589A1 (en) * 2004-05-27 2006-06-08 Nigel Dunn-Coleman Heterologous expression of an Aspergillus kawachi acid-stable alpha amylase and applications in granular starch hydrolysis
US20060134747A1 (en) * 2004-05-27 2006-06-22 Baldwin Toby M Heterologous alpha amylase expression in Aspergillus
WO2006069289A2 (en) 2004-12-22 2006-06-29 Novozymes North America, Inc Polypeptides having glucoamylase activity and polynucleotides encoding same
US20060154353A1 (en) * 2004-12-30 2006-07-13 Gang Duan Acid fungal protease in fermentation of insoluble starch substrates
WO2007035730A2 (en) 2005-09-20 2007-03-29 Novozymes North America, Inc. Process of producing a fermentation product
WO2007076388A2 (en) 2005-12-22 2007-07-05 Novozymes North America, Inc. Processes for producing a fermentation product
WO2007109750A2 (en) 2006-03-22 2007-09-27 Novozymes North America, Inc. Fermentation processes
US20070281344A1 (en) * 2006-06-06 2007-12-06 Lantero Oreste J Process for conversion of granular starch to ethanol
US7354752B2 (en) 2004-05-27 2008-04-08 Genencor International, Inc. Acid-stable alpha amylases having granular starch hydrolyzing activity and enzyme compositions
WO2008134259A1 (en) 2007-04-24 2008-11-06 Novozymes North America, Inc. Detoxifying pre-treated lignocellulose-containing materials
US20080293607A1 (en) * 2007-03-09 2008-11-27 Jones Brian E Alkaliphilic Bacillus Species alpha-Amylase Variants, Compositions Comprising alpha-Amylase Variants, And Methods of Use
US20080299622A1 (en) * 2007-02-07 2008-12-04 Paulson Bradley A Starch Hydrolysis Using Phytase with an Alpha Amylase
WO2009030713A1 (en) 2007-09-03 2009-03-12 Novozymes A/S Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
US20090215127A1 (en) * 2008-02-06 2009-08-27 Danisco Us Inc., Genencor Division ph Adjustment Free System For Producing Fermentable Sugars and Alcohol
US20090253191A1 (en) * 2008-03-11 2009-10-08 Ward Donald E Use of rhizopus amylases in granular starch hydrolysis
US20090305935A1 (en) * 2008-06-06 2009-12-10 Cascao-Pereira Luis G Production of glucose from starch using alpha-amylases from bacillus subtilis
US20090305360A1 (en) * 2008-06-06 2009-12-10 Suzanne Breneman Saccharification enzyme composition and method of saccharification thereof
US20100003366A1 (en) * 2008-06-06 2010-01-07 Danisco Us Inc., Genencor Division Variant Alpha-Amylases from Bacillus Subtilis and Methods of Use, Thereof
WO2010008841A2 (en) 2008-06-23 2010-01-21 Novozymes A/S Processes for producing fermentation products
WO2010039812A2 (en) 2008-09-30 2010-04-08 Novozymes North America, Inc. Improvement of enzymatic hydrolysis of pre-treated lignocellulose-containing material with distillers dried grains
WO2010043538A2 (en) 2008-10-15 2010-04-22 Novozymes A/S Brewing process
WO2010059413A2 (en) 2008-11-20 2010-05-27 Novozymes, Inc. Polypeptides having amylolytic enhancing activity and polynucleotides encoding same
WO2010078392A2 (en) 2008-12-31 2010-07-08 Novozymes North America, Inc. Processes of producing fermentation products
WO2010078391A2 (en) 2008-12-30 2010-07-08 Novozymes North America, Inc. Improvement of enzymatic hydrolysis of pretreated lignocellulose-containing material with dissolved air flotation sludge
EP2213732A1 (en) 2003-10-28 2010-08-04 Novozymes North America, Inc. Hybrid glucoamylases
WO2010088447A1 (en) 2009-01-30 2010-08-05 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2010091221A1 (en) 2009-02-06 2010-08-12 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2010115021A2 (en) 2009-04-01 2010-10-07 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
US20100278970A1 (en) * 2007-03-14 2010-11-04 Danisco Us, Inc., Genencor Division Trichoderma reesei alpha-amylase enhances saccharification of corn starch
WO2011003940A1 (en) 2009-07-07 2011-01-13 Novozymes A/S Process for treating a substrate with an enzyme
WO2011008785A2 (en) 2009-07-17 2011-01-20 Novozymes A/S A method of analyzing cellulose decay in cellulosic material hydrolysis
WO2011017093A1 (en) 2009-08-07 2011-02-10 Danisco Us Inc. Alpha-amylase blend for starch processing and method of use thereof
US20110039307A1 (en) * 2009-05-12 2011-02-17 Henderson Jodi M Ethanol yields in fermentation from an improved liquefaction process
EP2295545A1 (en) 2002-09-26 2011-03-16 Novozymes North America, Inc. Fermentation methods and compositions
WO2011039324A1 (en) 2009-09-30 2011-04-07 Novozymes A/S Steamed bread preparation methods and steamed bread improving compositions
US20110097765A1 (en) * 2008-04-30 2011-04-28 Gang Duan Enhanced fermentation process using molasses
US20110097778A1 (en) * 2008-04-30 2011-04-28 Power Scott D Chimeric alpha-amylase variants
WO2011049945A2 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
US20110124070A1 (en) * 2008-05-29 2011-05-26 Gang Duan Process for alcohol and co-product production from grain sorghum
WO2011087836A2 (en) 2009-12-22 2011-07-21 Novozymes A/S Pullulanase variants and uses thereof
WO2011092136A1 (en) 2010-01-29 2011-08-04 Novozymes A/S Biogas production process with enzymatic pre-treatment
WO2011100161A1 (en) 2010-02-09 2011-08-18 Novozymes North America, Inc. Addition of alpha - glucosidase and cobalt for producing fermentation products from starch
WO2011123505A1 (en) 2010-03-30 2011-10-06 Novozymes North America, Inc. Processes of producing a fermentation product
WO2011127820A1 (en) 2010-04-14 2011-10-20 Novozymes A/S Processes for producing fermentation products
US8048657B2 (en) 2007-10-18 2011-11-01 Danisco Us Inc. Enzyme compositions comprising a glucoamylase, an acid stable alpha amylase, and an acid fungal protease
WO2011154529A1 (en) 2010-06-11 2011-12-15 Novozymes A/S Enzymatic flour correction
WO2012018775A1 (en) 2010-08-02 2012-02-09 Novozymes North America, Inc. Process of producing a fermentation product
WO2012068047A2 (en) 2010-11-19 2012-05-24 Novozymes North America, Inc. Processes of producing a fermentation product
WO2012088303A2 (en) 2010-12-22 2012-06-28 Novozymes North America, Inc. Processes for producing fermentation products
WO2012093041A1 (en) 2011-01-04 2012-07-12 Novozymes A/S Process for producing biogas from pectin and lignocellulose containing material
WO2012103293A1 (en) * 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012103322A1 (en) * 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2012103288A1 (en) * 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012109119A2 (en) 2011-02-07 2012-08-16 Novozymes North America, Inc. Process of producing a fermentation product
WO2012149275A1 (en) 2011-04-29 2012-11-01 Danisco Us Inc. Use of cellulase and glucoamylase to improve ethanol yields from fermentation
WO2013000945A1 (en) 2011-06-28 2013-01-03 Novozymes A/S Biogas from enzyme-treated bagasse
WO2013006756A2 (en) 2011-07-06 2013-01-10 Novozymes A/S Alpha amylase variants and polynucleotides encoding same
US8354256B2 (en) 2008-03-11 2013-01-15 Danisco Us Inc. Glucoamylase and Buttiauxiella phytase during saccharification
EP2548944A1 (en) 2011-07-21 2013-01-23 AB Enzymes GmbH Process of lysing yeast cell walls
WO2013016115A1 (en) 2011-07-22 2013-01-31 Novozymes North America, Inc. Processes for pretreating cellulosic material and improving hydrolysis thereof
WO2013034106A1 (en) 2011-09-09 2013-03-14 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
US8399224B2 (en) 2007-03-14 2013-03-19 Danisco Us Inc. Production of ethanol from barley and DDGS containing reduced beta-glucan and phytic acid
WO2013044867A1 (en) 2011-09-30 2013-04-04 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2013048700A1 (en) 2011-09-29 2013-04-04 Danisco Us Inc. Liquefaction and saccharification of granular starch at high concentration
WO2013055676A1 (en) 2011-10-11 2013-04-18 Novozymes North America, Inc. Processes for producing fermentation products
WO2013063460A2 (en) 2011-10-28 2013-05-02 Danisco Us Inc. Variant maltohexaose-forming alpha-amylase variants
WO2013082486A1 (en) 2011-12-02 2013-06-06 Novozymes A/S Processes for producing fermentation products
WO2013083801A2 (en) 2011-12-09 2013-06-13 Novozymes A/S Biogas from substrates comprising animal manure and enzymes
WO2013096652A1 (en) 2011-12-21 2013-06-27 Novozymes, Inc. Methods for determining the degradation of a biomass material
WO2013148207A2 (en) 2012-03-30 2013-10-03 Danisco Us Inc. Direct starch to fermentable sugar
WO2013149192A1 (en) 2012-03-30 2013-10-03 Danisco Us Inc. Direct starch to fermentable sugar as feedstock for the production of isoprene, isoprenoid precursor molecules, and/or isoprenoids
WO2013169645A1 (en) 2012-05-11 2013-11-14 Danisco Us Inc. Use of alpha-amylase from aspergillus clavatus for saccharification
WO2013184577A1 (en) 2012-06-08 2013-12-12 Danisco Us Inc. Alpha-amylase variants derived from the alpha amylase of cytophaga sp.amylase|(cspamy2).
WO2014006040A1 (en) 2012-07-06 2014-01-09 Novozymes A/S Inactivation of a production strain using a fatty acid
CN103562384A (en) * 2011-01-26 2014-02-05 诺维信公司 Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2014028434A2 (en) 2012-08-16 2014-02-20 Danisco Us Inc. Method of using alpha-amylase from aspergillus clavatus and pullulanase for saccharification
WO2014027062A1 (en) 2012-08-17 2014-02-20 Novozymes A/S Thermostable asparaginase variants and polynucleotides encoding same
WO2014081622A1 (en) 2012-11-20 2014-05-30 Danisco Us Inc. Amylase with maltogenic properties
WO2014085439A1 (en) 2012-11-30 2014-06-05 Novozymes A/S Processes for producing fermentation products
WO2014093125A1 (en) 2012-12-14 2014-06-19 Danisco Us Inc. Method of using alpha-amylase from aspergillus fumigatus and isoamylase for saccharification
WO2014099525A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Paenibacillus curdlanolyticus amylase, and methods of use, thereof
WO2014099523A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Alpha-amylase variants
WO2014099653A1 (en) 2012-12-17 2014-06-26 Novozymes A/S Alpha-amylases and polynucleotides encoding same
WO2014099415A1 (en) 2012-12-20 2014-06-26 Danisco Us Inc. Method of using alpha-amylase from aspergillus terreus and pullulanase for saccharification
WO2014164777A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2014200656A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces umbrinus
WO2014200658A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from promicromonospora vindobonensis
WO2014200657A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces xiamenensis
WO2014204596A1 (en) 2013-06-17 2014-12-24 Danisco Us Inc. Alpha-amylase from bacillaceae family member
WO2015007639A1 (en) 2013-07-17 2015-01-22 Novozymes A/S Pullulanase chimeras and polynucleotides encoding same
US8962283B2 (en) 2008-02-04 2015-02-24 Danisco Us Inc. TS-23 alpha-amylase variants with altered properties
WO2015035914A1 (en) 2013-09-11 2015-03-19 Novozymes A/S Processes for producing fermentation products
WO2015050723A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
WO2015050724A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from a subset of exiguobacterium, and methods of use, thereof
WO2015057517A1 (en) 2013-10-17 2015-04-23 Danisco Us Inc. Use of hemicellulases to improve ethanol production
WO2015066669A1 (en) 2013-11-04 2015-05-07 Danisco Us Inc. Proteases in corn processing
WO2015066667A1 (en) 2013-11-04 2015-05-07 Danisco Us Inc. Proteases in wheat processing
WO2015065978A1 (en) 2013-10-28 2015-05-07 Danisco Us Inc. Trehalase in fermentations
WO2015077126A1 (en) 2013-11-20 2015-05-28 Danisco Us Inc. Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof
WO2015094714A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Proteases in grain processing
WO2015094809A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Chimeric fungal alpha-amylases comprising carbohydrate binding module and the use thereof
WO2015143144A1 (en) 2014-03-19 2015-09-24 Novozymes A/S Method for enhancing activity of an x143 polypeptide
WO2016062875A2 (en) 2014-10-23 2016-04-28 Novozymes A/S Glucoamylase variants and polynucleotides encoding same
WO2016087445A1 (en) 2014-12-01 2016-06-09 Novozymes A/S Improved production of glucose syrups
WO2016205127A1 (en) 2015-06-18 2016-12-22 Novozymes A/S Polypeptides having trehalase activity and the use thereof in process of producing fermentation products
WO2017100720A1 (en) 2015-12-09 2017-06-15 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2017112539A1 (en) 2015-12-22 2017-06-29 Novozymes A/S Process of extracting oil from thin stillage
WO2017173324A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017173190A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2018057420A1 (en) 2016-09-23 2018-03-29 Dupont Nutrition Biosciences Aps Use of low ph active alpha-1,4/1,6-glycoside hydrolases as a feed additive for ruminants to enhance starch digestion
US9944913B2 (en) 2006-10-10 2018-04-17 Danisco Us Inc. Glucoamylase variants with altered properties
WO2018075430A1 (en) 2016-10-17 2018-04-26 Novozymes A/S Methods of reducing foam during ethanol fermentation
WO2018098381A1 (en) 2016-11-23 2018-05-31 Novozymes A/S Improved yeast for ethanol production
US10036050B2 (en) 2011-12-20 2018-07-31 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
WO2018184004A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Alpha-amylase combinatorial variants
WO2018222990A1 (en) 2017-06-02 2018-12-06 Novozymes A/S Improved yeast for ethanol production
WO2018226569A1 (en) 2017-06-06 2018-12-13 Danisco Us Inc Use of betaine to stabilize and/or increase the activity of enzymes in stressful environments
EP3415624A1 (en) 2014-01-22 2018-12-19 Novozymes A/S Pullulanase variants and polynucleotides encoding same
WO2019005755A1 (en) 2017-06-28 2019-01-03 Novozymes A/S Polypeptides having trehalase activity and polynucleotides encoding same
WO2019030165A1 (en) 2017-08-08 2019-02-14 Novozymes A/S Polypeptides having trehalase activity and the use thereof in process of producing fermentation products
WO2019055455A1 (en) 2017-09-15 2019-03-21 Novozymes A/S Enzyme blends and processes for improving the nutritional quality of animal feed
WO2019083831A1 (en) 2017-10-23 2019-05-02 Novozymes A/S Processes for reducing lactic acid in a biofuel fermentation system
WO2019099235A1 (en) 2017-11-14 2019-05-23 Danisco Us Inc Alpha-amylase, composition and method
WO2019161227A1 (en) 2018-02-15 2019-08-22 Novozymes A/S Improved yeast for ethanol production

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536477A (en) * 1983-08-17 1985-08-20 Cpc International Inc. Thermostable glucoamylase and method for its production
US4587215A (en) * 1984-06-25 1986-05-06 Uop Inc. Highly thermostable amyloglucosidase
DE3587623T2 (en) 1984-08-06 1994-05-19 Genencor Inc Enzymatic hydrolysis of granular starch directly to glucose.
US4628031A (en) * 1984-09-18 1986-12-09 Michigan Biotechnology Institute Thermostable starch converting enzymes
US4689296A (en) * 1985-09-23 1987-08-25 Miles Laboratories, Inc. Method of preparing novel thermostable transglucosidase
FI81112C (en) * 1986-08-27 1990-09-10 Alko Ab Oy TECHNICAL FIELD ny of the type.
US5604128A (en) * 1991-08-13 1997-02-18 Sankyo Company, Limited Isolated cultures of Pestalotiopsis funerea IFO 5427 and Pestalotiopsis negleta FERM BP-3501
KR100808499B1 (en) 1997-11-26 2008-02-29 노보자임스 에이/에스 Thermostable glucoamylase
AU1434299A (en) * 1997-11-26 1999-06-16 Novo Nordisk A/S Thermostable glucoamylase
AU5061000A (en) * 1999-06-02 2000-12-28 Novozymes A/S Novel glucoamylase
US6309872B1 (en) * 2000-11-01 2001-10-30 Novozymes Biotech, Inc Polypeptides having glucoamylase activity and nucleic acids encoding same
GB0129864D0 (en) * 2001-12-13 2002-02-06 Danisco Animal feed
RU2394101C2 (en) 2004-11-30 2010-07-10 Джененкор Интернэшнл, Инк. Glucoamylase trichoderma reesei and its homologues
US7413887B2 (en) * 2004-05-27 2008-08-19 Genecor International, Inc. Trichoderma reesei glucoamylase and homologs thereof
EP2195422A1 (en) 2007-10-09 2010-06-16 Danisco US Inc. Glucoamylase variants
US8592194B2 (en) 2007-10-09 2013-11-26 Danisco Us Inc. Glucoamylase variants with altered properties
CN101868537B (en) 2007-11-20 2013-11-06 丹尼斯科美国公司 Glucoamylase variants with altered properties
CN102712915B (en) 2009-08-19 2014-12-10 丹尼斯科美国公司 Combinatorial variants of glucoamylase with improved specific activity and/or thermostability
US8809023B2 (en) 2009-08-19 2014-08-19 Danisco Us Inc. Variants of glucoamylase
US20120045812A1 (en) 2010-08-06 2012-02-23 Danisco Us Inc. PRODUCTION OF ISOPRENE UNDER NEUTRAL pH CONDITIONS
CN103068997A (en) 2010-08-06 2013-04-24 丹尼斯科美国公司 Neutral pH saccharification and fermentation
CA2834393A1 (en) 2011-04-29 2012-11-01 Danisco Us Inc. Single ph process for starch liquefaction and saccharification for high-density glucose syrups
BR112014002745A8 (en) 2011-08-05 2017-06-20 Danisco Us Inc isoprenoids production under neutral ph conditions
MX2015002099A (en) 2012-08-22 2015-05-11 Dupont Nutrition Biosci Aps Wave energy conversion.
WO2015084920A2 (en) 2013-12-04 2015-06-11 Danisco Us Inc. Glucoamylase variants
US9982284B2 (en) 2014-02-27 2018-05-29 E I Du Pont De Nemours And Company Enzymatic hydrolysis of disaccharides and oligosaccharides using alpha-glucosidase enzymes
WO2016100871A1 (en) 2014-12-19 2016-06-23 Danisco Us Inc Glucoamylase blends
US10294466B2 (en) 2015-02-25 2019-05-21 Danisco Us Inc. Alpha-glucosidase, compositions and methods
WO2018093285A1 (en) 2016-11-18 2018-05-24 Baltika Breweries - Part Of The Carlsberg Group Method of producing a grain malt and the malt product obtained in this way
WO2019067287A1 (en) 2017-09-29 2019-04-04 Dupont Nutrition Biosciences Aps Production of brewer's wort having increased fermentable sugars

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB987343A (en) * 1962-07-30 1965-03-24 Grain Processing Corp Processes for the treatment of glucamylase-containing enzyme preparations and their use in starch hydrolysis
GB1470325A (en) * 1973-04-10 1977-04-14 Cpc International Inc Enzymatic hydrolysis of granular starch
JPS537513A (en) * 1976-07-10 1978-01-24 Mitsubishi Metal Corp Covered hard alloy product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB987343A (en) * 1962-07-30 1965-03-24 Grain Processing Corp Processes for the treatment of glucamylase-containing enzyme preparations and their use in starch hydrolysis
GB1470325A (en) * 1973-04-10 1977-04-14 Cpc International Inc Enzymatic hydrolysis of granular starch
JPS537513A (en) * 1976-07-10 1978-01-24 Mitsubishi Metal Corp Covered hard alloy product

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Derwert Abstract of Kanno et al., Japanese Patent Sho 53 7513. *
Derwert Abstract of Kanno et al., Japanese Patent Sho 53-7513.
Subrahmanyam, et al., "Amyloglucosidase Production by Torula thermophilia", Indian J. Biol., 15, 495-496 (1977).
Subrahmanyam, et al., Amyloglucosidase Production by Torula thermophilia , Indian J. Biol., 15, 495 496 (1977). *
Taylor, et al., "Some Properties of a Glucoamylase Produced by the Thermophilic Fungus Humicola lanuginosa", Carbohydrate Research, 61, 301-308 (1978).
Taylor, et al., Some Properties of a Glucoamylase Produced by the Thermophilic Fungus Humicola lanuginosa , Carbohydrate Research, 61, 301 308 (1978). *

Cited By (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060468B2 (en) 1997-11-26 2006-06-13 Novozymes A/S Thermostable glucoamylase
US6620924B2 (en) 1997-11-26 2003-09-16 Novozymes A/S Thermostable glucoamylase
US6255084B1 (en) 1997-11-26 2001-07-03 Novozymes A/S Thermostable glucoamylase
EP2295545A1 (en) 2002-09-26 2011-03-16 Novozymes North America, Inc. Fermentation methods and compositions
WO2004080923A2 (en) 2003-03-10 2004-09-23 Novozymes A/S Alcohol product processes
WO2005005646A2 (en) 2003-06-10 2005-01-20 Novozymes North America, Inc. Fermentation processes and compositions
WO2004113551A1 (en) 2003-06-25 2004-12-29 Novozymes A/S Process for the hydrolysis of starch
EP2213732A1 (en) 2003-10-28 2010-08-04 Novozymes North America, Inc. Hybrid glucoamylases
US20090203087A1 (en) * 2003-11-21 2009-08-13 Baldwin Toby M Expression of Granular Starch Hydrolyzing Enzymes in Trichoderma and process for producing glucose from granular starch substrates
US8679815B2 (en) 2003-11-21 2014-03-25 Danisco Us Inc. Expression of granular starch hydrolyzing enzyme in Trichoderma
US20080108125A1 (en) * 2003-11-21 2008-05-08 Baldwin Toby M Expression of Granular Starch Hydrolyzing Enzyme in Trichoderma
US8034590B2 (en) 2003-11-21 2011-10-11 Danisco Us Inc. Expression of granular starch hydrolyzing enzymes in trichoderma and process for producing glucose from granular starch substrates
US20050208623A1 (en) * 2003-11-21 2005-09-22 Baldwin Toby M Expression of granular starch hydrolyzing enzyme in Trichoderma
US20050136525A1 (en) * 2003-11-21 2005-06-23 Baldwin Toby M. Expression of granular starch hydrolyzing enzymes in Trichoderma and process for producing glucose from granular starch substrates
US7335503B2 (en) 2003-11-21 2008-02-26 Genencor International, Inc. Expression of granular starch hydrolyzing enzyme in Trichoderma
US20070099272A1 (en) * 2003-11-21 2007-05-03 Baldwin Toby M Expression of granular starch hydrolyzing enzyme in Trichoderma
US8323932B2 (en) 2003-11-21 2012-12-04 Danisco Us Inc. Expression of granular starch hydrolyzing enzymes in Trichoderma and process for producing glucose from granular starch substrates
US7262041B2 (en) 2003-11-21 2007-08-28 Genencor International, Inc. Expression of granular starch hydrolyzing enzyme in Trichoderma
US9428780B2 (en) 2003-11-21 2016-08-30 Danisco Us Inc. Expression of granular starch hydrolyzing enzymes in trichoderma and process for producing glucose from granular starch sustrates
US7303899B2 (en) 2003-11-21 2007-12-04 Genencor International, Inc. Expression of granular starch hydrolyzing enzymes in Trichoderma and process for producing glucose from granular starch substrates
US9382563B2 (en) 2003-11-21 2016-07-05 Danisco Us Inc. Expression of granular starch hydrolyzing enzyme in trichoderma
US7332319B2 (en) 2004-05-27 2008-02-19 Genencor International, Inc. Heterologous alpha amylase expression in Aspergillus
US7205138B2 (en) 2004-05-27 2007-04-17 Genencor International, Inc. Heterologous expression of an Aspergillus kawachi acid-stable alpha amylase and applications in granular starch hydrolysis
US7354752B2 (en) 2004-05-27 2008-04-08 Genencor International, Inc. Acid-stable alpha amylases having granular starch hydrolyzing activity and enzyme compositions
US7691617B2 (en) 2004-05-27 2010-04-06 Danisco Us Inc. Acid-stable alpha amylases having granular starch hydrolyzing activity and enzyme compositions
US20060134747A1 (en) * 2004-05-27 2006-06-22 Baldwin Toby M Heterologous alpha amylase expression in Aspergillus
US20080153136A1 (en) * 2004-05-27 2008-06-26 Nigel Dunn-Coleman Acid-Stable Alpha Amylases having Granular Starch Hydrolyzing Activity and Enzyme Compositions
US20080199927A1 (en) * 2004-05-27 2008-08-21 Nigel Dunn-Coleman Aspergillus Kawachi Acid-Stable Alpha Amylase and Applications in Granular Starch Hydrolysis
US20060121589A1 (en) * 2004-05-27 2006-06-08 Nigel Dunn-Coleman Heterologous expression of an Aspergillus kawachi acid-stable alpha amylase and applications in granular starch hydrolysis
US7498159B2 (en) 2004-05-27 2009-03-03 Genencor International, Inc. Heterologous alpha amylase expression in Aspergillus
US20080124764A1 (en) * 2004-05-27 2008-05-29 Baldwin Toby M Heterologous alpha amylase expression in aspergillus
WO2006069289A2 (en) 2004-12-22 2006-06-29 Novozymes North America, Inc Polypeptides having glucoamylase activity and polynucleotides encoding same
EP2365068A2 (en) 2004-12-22 2011-09-14 Novozymes A/S Enzymes for starch processing
WO2006069290A2 (en) 2004-12-22 2006-06-29 Novozymes A/S Enzymes for starch processing
US20060154353A1 (en) * 2004-12-30 2006-07-13 Gang Duan Acid fungal protease in fermentation of insoluble starch substrates
US7563607B2 (en) 2004-12-30 2009-07-21 Genencor International, Inc. Acid fungal protease in fermentation of insoluble starch substrates
US8075694B2 (en) 2004-12-30 2011-12-13 Danisco Us Inc. Acid fungal protease in fermentation of insoluble starch substrates
WO2007035730A2 (en) 2005-09-20 2007-03-29 Novozymes North America, Inc. Process of producing a fermentation product
WO2007076388A2 (en) 2005-12-22 2007-07-05 Novozymes North America, Inc. Processes for producing a fermentation product
WO2007109750A2 (en) 2006-03-22 2007-09-27 Novozymes North America, Inc. Fermentation processes
EP2400026A1 (en) 2006-06-06 2011-12-28 Genecor International, Inc. Process for conversion of granular starch to ethanol
US20070281344A1 (en) * 2006-06-06 2007-12-06 Lantero Oreste J Process for conversion of granular starch to ethanol
US7968318B2 (en) 2006-06-06 2011-06-28 Genencor International, Inc. Process for conversion of granular starch to ethanol
US20110223639A1 (en) * 2006-06-06 2011-09-15 Genencor International, Inc. Process for Conversion of Granular Starch to Ethanol
US9944913B2 (en) 2006-10-10 2018-04-17 Danisco Us Inc. Glucoamylase variants with altered properties
US20080299622A1 (en) * 2007-02-07 2008-12-04 Paulson Bradley A Starch Hydrolysis Using Phytase with an Alpha Amylase
US20080293607A1 (en) * 2007-03-09 2008-11-27 Jones Brian E Alkaliphilic Bacillus Species alpha-Amylase Variants, Compositions Comprising alpha-Amylase Variants, And Methods of Use
EP2428572A2 (en) 2007-03-09 2012-03-14 Danisco US, Inc., Genencor Division Alkaliphilic Bacillus species alpha-amylase variants, compositions comprising alpha-amylase variants, and methods of use
US20100278970A1 (en) * 2007-03-14 2010-11-04 Danisco Us, Inc., Genencor Division Trichoderma reesei alpha-amylase enhances saccharification of corn starch
US8318157B2 (en) 2007-03-14 2012-11-27 Danisco Us Inc. Trichoderma reesei α-amylase enhances saccharification of corn starch
US8399224B2 (en) 2007-03-14 2013-03-19 Danisco Us Inc. Production of ethanol from barley and DDGS containing reduced beta-glucan and phytic acid
US8916369B2 (en) 2007-03-14 2014-12-23 Danisco Us Inc. Trichoderma reesei α-amylase is a maltogenic enzyme
WO2008134259A1 (en) 2007-04-24 2008-11-06 Novozymes North America, Inc. Detoxifying pre-treated lignocellulose-containing materials
EP3219804A1 (en) 2007-04-24 2017-09-20 Novozymes North America, Inc. Detoxifying pre-treated lignocellulose-containing materials
WO2009030713A1 (en) 2007-09-03 2009-03-12 Novozymes A/S Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
US8048657B2 (en) 2007-10-18 2011-11-01 Danisco Us Inc. Enzyme compositions comprising a glucoamylase, an acid stable alpha amylase, and an acid fungal protease
US8962283B2 (en) 2008-02-04 2015-02-24 Danisco Us Inc. TS-23 alpha-amylase variants with altered properties
US20090215127A1 (en) * 2008-02-06 2009-08-27 Danisco Us Inc., Genencor Division ph Adjustment Free System For Producing Fermentable Sugars and Alcohol
US7906303B2 (en) 2008-03-11 2011-03-15 Danisco Us Inc. Use of Rhizopus amylases in granular starch hydrolysis
US20090253191A1 (en) * 2008-03-11 2009-10-08 Ward Donald E Use of rhizopus amylases in granular starch hydrolysis
US8354256B2 (en) 2008-03-11 2013-01-15 Danisco Us Inc. Glucoamylase and Buttiauxiella phytase during saccharification
US20110097765A1 (en) * 2008-04-30 2011-04-28 Gang Duan Enhanced fermentation process using molasses
US20110097778A1 (en) * 2008-04-30 2011-04-28 Power Scott D Chimeric alpha-amylase variants
US9303254B2 (en) 2008-04-30 2016-04-05 Danisco Us Inc. Chimeric alpha-amylase variants
US20110124070A1 (en) * 2008-05-29 2011-05-26 Gang Duan Process for alcohol and co-product production from grain sorghum
US20100015686A1 (en) * 2008-06-06 2010-01-21 Danisco Us Inc., Genencor Division Variant Alpha-Amylases from Bacillus Subtilis and Methods of Uses, Thereof
US9090887B2 (en) 2008-06-06 2015-07-28 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of use, thereof
US20090305360A1 (en) * 2008-06-06 2009-12-10 Suzanne Breneman Saccharification enzyme composition and method of saccharification thereof
US9040278B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Production of glucose from starch using alpha-amylases from Bacillus subtilis
US9040279B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Saccharification enzyme composition and method of saccharification thereof
US20100003366A1 (en) * 2008-06-06 2010-01-07 Danisco Us Inc., Genencor Division Variant Alpha-Amylases from Bacillus Subtilis and Methods of Use, Thereof
US20090305935A1 (en) * 2008-06-06 2009-12-10 Cascao-Pereira Luis G Production of glucose from starch using alpha-amylases from bacillus subtilis
US8975056B2 (en) 2008-06-06 2015-03-10 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
US8323945B2 (en) 2008-06-06 2012-12-04 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
WO2010008841A2 (en) 2008-06-23 2010-01-21 Novozymes A/S Processes for producing fermentation products
WO2010039812A2 (en) 2008-09-30 2010-04-08 Novozymes North America, Inc. Improvement of enzymatic hydrolysis of pre-treated lignocellulose-containing material with distillers dried grains
WO2010043538A2 (en) 2008-10-15 2010-04-22 Novozymes A/S Brewing process
WO2010059413A2 (en) 2008-11-20 2010-05-27 Novozymes, Inc. Polypeptides having amylolytic enhancing activity and polynucleotides encoding same
EP2857515A2 (en) 2008-11-20 2015-04-08 Novozymes Inc. Polypeptides having amylolytic enhancing activity and polynucleotides encoding same
WO2010078391A2 (en) 2008-12-30 2010-07-08 Novozymes North America, Inc. Improvement of enzymatic hydrolysis of pretreated lignocellulose-containing material with dissolved air flotation sludge
WO2010078392A2 (en) 2008-12-31 2010-07-08 Novozymes North America, Inc. Processes of producing fermentation products
WO2010088447A1 (en) 2009-01-30 2010-08-05 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2010091221A1 (en) 2009-02-06 2010-08-12 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2010115021A2 (en) 2009-04-01 2010-10-07 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
US8852912B2 (en) 2009-04-01 2014-10-07 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
EP2902487A2 (en) 2009-04-01 2015-08-05 Danisco US Inc. Compositions and methods comprising alpha-amylase variants with altered properties
US20110039307A1 (en) * 2009-05-12 2011-02-17 Henderson Jodi M Ethanol yields in fermentation from an improved liquefaction process
WO2011003940A1 (en) 2009-07-07 2011-01-13 Novozymes A/S Process for treating a substrate with an enzyme
WO2011008785A2 (en) 2009-07-17 2011-01-20 Novozymes A/S A method of analyzing cellulose decay in cellulosic material hydrolysis
US8545907B2 (en) 2009-08-07 2013-10-01 Danisco Us Inc. Alpha-amylase blend for starch processing and method of use thereof
WO2011017093A1 (en) 2009-08-07 2011-02-10 Danisco Us Inc. Alpha-amylase blend for starch processing and method of use thereof
US8815560B2 (en) 2009-08-07 2014-08-26 Danisco Us Inc. Alpha-amylase blend for starch processing and method of use thereof
WO2011039324A1 (en) 2009-09-30 2011-04-07 Novozymes A/S Steamed bread preparation methods and steamed bread improving compositions
WO2011049945A2 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
WO2011087836A2 (en) 2009-12-22 2011-07-21 Novozymes A/S Pullulanase variants and uses thereof
WO2011092136A1 (en) 2010-01-29 2011-08-04 Novozymes A/S Biogas production process with enzymatic pre-treatment
WO2011100161A1 (en) 2010-02-09 2011-08-18 Novozymes North America, Inc. Addition of alpha - glucosidase and cobalt for producing fermentation products from starch
WO2011123505A1 (en) 2010-03-30 2011-10-06 Novozymes North America, Inc. Processes of producing a fermentation product
EP3070171A1 (en) 2010-03-30 2016-09-21 Novozymes A/S Processes of producing a fermentation product
WO2011126897A2 (en) 2010-03-30 2011-10-13 Novozymes A/S Methods for enhancing by-products from fermentation processes
WO2011127820A1 (en) 2010-04-14 2011-10-20 Novozymes A/S Processes for producing fermentation products
WO2011154529A1 (en) 2010-06-11 2011-12-15 Novozymes A/S Enzymatic flour correction
WO2012018775A1 (en) 2010-08-02 2012-02-09 Novozymes North America, Inc. Process of producing a fermentation product
WO2012068047A2 (en) 2010-11-19 2012-05-24 Novozymes North America, Inc. Processes of producing a fermentation product
WO2012088303A2 (en) 2010-12-22 2012-06-28 Novozymes North America, Inc. Processes for producing fermentation products
WO2012093041A1 (en) 2011-01-04 2012-07-12 Novozymes A/S Process for producing biogas from pectin and lignocellulose containing material
US8759023B2 (en) 2011-01-26 2014-06-24 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US9518253B2 (en) 2011-01-26 2016-12-13 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US9822350B2 (en) 2011-01-26 2017-11-21 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US9376670B2 (en) 2011-01-26 2016-06-28 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US10131893B2 (en) 2011-01-26 2018-11-20 Novozymes. Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
US10280413B2 (en) 2011-01-26 2019-05-07 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
CN103562384A (en) * 2011-01-26 2014-02-05 诺维信公司 Polypeptides having endoglucanase activity and polynucleotides encoding same
US9663774B2 (en) 2011-01-26 2017-05-30 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2012103293A1 (en) * 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012103322A1 (en) * 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
CN103562384B (en) * 2011-01-26 2017-01-18 诺维信公司 Having endoglucanase activity and polynucleotides encoding polypeptide
US9080161B2 (en) 2011-01-26 2015-07-14 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012103288A1 (en) * 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US9068176B2 (en) 2011-01-26 2015-06-30 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2012109119A2 (en) 2011-02-07 2012-08-16 Novozymes North America, Inc. Process of producing a fermentation product
WO2012149275A1 (en) 2011-04-29 2012-11-01 Danisco Us Inc. Use of cellulase and glucoamylase to improve ethanol yields from fermentation
WO2013000945A1 (en) 2011-06-28 2013-01-03 Novozymes A/S Biogas from enzyme-treated bagasse
WO2013006756A2 (en) 2011-07-06 2013-01-10 Novozymes A/S Alpha amylase variants and polynucleotides encoding same
EP2548944A1 (en) 2011-07-21 2013-01-23 AB Enzymes GmbH Process of lysing yeast cell walls
WO2013010937A1 (en) 2011-07-21 2013-01-24 Ab Enzymes Gmbh Process of lysing yeast cell walls
EP2787070A2 (en) 2011-07-21 2014-10-08 AB Enzymes GmbH Process of lysing yeast cell walls
WO2013016115A1 (en) 2011-07-22 2013-01-31 Novozymes North America, Inc. Processes for pretreating cellulosic material and improving hydrolysis thereof
WO2013034106A1 (en) 2011-09-09 2013-03-14 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2013048700A1 (en) 2011-09-29 2013-04-04 Danisco Us Inc. Liquefaction and saccharification of granular starch at high concentration
WO2013044867A1 (en) 2011-09-30 2013-04-04 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
WO2013055676A1 (en) 2011-10-11 2013-04-18 Novozymes North America, Inc. Processes for producing fermentation products
EP3246404A1 (en) 2011-10-28 2017-11-22 Danisco US Inc. Variant maltohexaose-forming alpha-amylase variants
WO2013063460A2 (en) 2011-10-28 2013-05-02 Danisco Us Inc. Variant maltohexaose-forming alpha-amylase variants
WO2013082486A1 (en) 2011-12-02 2013-06-06 Novozymes A/S Processes for producing fermentation products
WO2013083801A2 (en) 2011-12-09 2013-06-13 Novozymes A/S Biogas from substrates comprising animal manure and enzymes
US10036050B2 (en) 2011-12-20 2018-07-31 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
WO2013096652A1 (en) 2011-12-21 2013-06-27 Novozymes, Inc. Methods for determining the degradation of a biomass material
US9315831B2 (en) 2012-03-30 2016-04-19 Danisco Us Inc. Direct starch to fermentable sugar as feedstock for the production of isoprene, isoprenoid precursor molecules, and/or isoprenoids
WO2013148207A2 (en) 2012-03-30 2013-10-03 Danisco Us Inc. Direct starch to fermentable sugar
WO2013149192A1 (en) 2012-03-30 2013-10-03 Danisco Us Inc. Direct starch to fermentable sugar as feedstock for the production of isoprene, isoprenoid precursor molecules, and/or isoprenoids
WO2013169645A1 (en) 2012-05-11 2013-11-14 Danisco Us Inc. Use of alpha-amylase from aspergillus clavatus for saccharification
US8945889B2 (en) 2012-05-11 2015-02-03 Danisco Us Inc. Method of using alpha-amylase from Aspergillus clavatus for saccharification
WO2013184577A1 (en) 2012-06-08 2013-12-12 Danisco Us Inc. Alpha-amylase variants derived from the alpha amylase of cytophaga sp.amylase|(cspamy2).
WO2014006040A1 (en) 2012-07-06 2014-01-09 Novozymes A/S Inactivation of a production strain using a fatty acid
WO2014028434A2 (en) 2012-08-16 2014-02-20 Danisco Us Inc. Method of using alpha-amylase from aspergillus clavatus and pullulanase for saccharification
WO2014027062A1 (en) 2012-08-17 2014-02-20 Novozymes A/S Thermostable asparaginase variants and polynucleotides encoding same
WO2014081622A1 (en) 2012-11-20 2014-05-30 Danisco Us Inc. Amylase with maltogenic properties
WO2014085439A1 (en) 2012-11-30 2014-06-05 Novozymes A/S Processes for producing fermentation products
WO2014093125A1 (en) 2012-12-14 2014-06-19 Danisco Us Inc. Method of using alpha-amylase from aspergillus fumigatus and isoamylase for saccharification
WO2014099653A1 (en) 2012-12-17 2014-06-26 Novozymes A/S Alpha-amylases and polynucleotides encoding same
WO2014099415A1 (en) 2012-12-20 2014-06-26 Danisco Us Inc. Method of using alpha-amylase from aspergillus terreus and pullulanase for saccharification
WO2014099523A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Alpha-amylase variants
WO2014099525A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Paenibacillus curdlanolyticus amylase, and methods of use, thereof
WO2014164800A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2014164777A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
EP3336183A1 (en) 2013-03-11 2018-06-20 Danisco US Inc. Alpha-amylase conbinatorial variants
WO2014200657A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces xiamenensis
WO2014200658A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from promicromonospora vindobonensis
WO2014200656A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces umbrinus
WO2014204596A1 (en) 2013-06-17 2014-12-24 Danisco Us Inc. Alpha-amylase from bacillaceae family member
WO2015007639A1 (en) 2013-07-17 2015-01-22 Novozymes A/S Pullulanase chimeras and polynucleotides encoding same
WO2015035914A1 (en) 2013-09-11 2015-03-19 Novozymes A/S Processes for producing fermentation products
WO2015050724A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from a subset of exiguobacterium, and methods of use, thereof
WO2015050723A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
WO2015057517A1 (en) 2013-10-17 2015-04-23 Danisco Us Inc. Use of hemicellulases to improve ethanol production
WO2015065978A1 (en) 2013-10-28 2015-05-07 Danisco Us Inc. Trehalase in fermentations
WO2015066669A1 (en) 2013-11-04 2015-05-07 Danisco Us Inc. Proteases in corn processing
WO2015066667A1 (en) 2013-11-04 2015-05-07 Danisco Us Inc. Proteases in wheat processing
WO2015077126A1 (en) 2013-11-20 2015-05-28 Danisco Us Inc. Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof
WO2015094714A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Proteases in grain processing
WO2015094809A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Chimeric fungal alpha-amylases comprising carbohydrate binding module and the use thereof
EP3415624A1 (en) 2014-01-22 2018-12-19 Novozymes A/S Pullulanase variants and polynucleotides encoding same
WO2015143144A1 (en) 2014-03-19 2015-09-24 Novozymes A/S Method for enhancing activity of an x143 polypeptide
WO2016062875A2 (en) 2014-10-23 2016-04-28 Novozymes A/S Glucoamylase variants and polynucleotides encoding same
WO2016087445A1 (en) 2014-12-01 2016-06-09 Novozymes A/S Improved production of glucose syrups
WO2016205127A1 (en) 2015-06-18 2016-12-22 Novozymes A/S Polypeptides having trehalase activity and the use thereof in process of producing fermentation products
WO2017100720A1 (en) 2015-12-09 2017-06-15 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2017112542A1 (en) 2015-12-22 2017-06-29 Novozymes A/S Processes for improving fermentation product yield using phospholipase c
WO2017112539A1 (en) 2015-12-22 2017-06-29 Novozymes A/S Process of extracting oil from thin stillage
WO2017173324A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017173190A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2018057420A1 (en) 2016-09-23 2018-03-29 Dupont Nutrition Biosciences Aps Use of low ph active alpha-1,4/1,6-glycoside hydrolases as a feed additive for ruminants to enhance starch digestion
WO2018075430A1 (en) 2016-10-17 2018-04-26 Novozymes A/S Methods of reducing foam during ethanol fermentation
WO2018098381A1 (en) 2016-11-23 2018-05-31 Novozymes A/S Improved yeast for ethanol production
WO2018184004A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Alpha-amylase combinatorial variants
WO2018222990A1 (en) 2017-06-02 2018-12-06 Novozymes A/S Improved yeast for ethanol production
WO2018226569A1 (en) 2017-06-06 2018-12-13 Danisco Us Inc Use of betaine to stabilize and/or increase the activity of enzymes in stressful environments
WO2019005755A1 (en) 2017-06-28 2019-01-03 Novozymes A/S Polypeptides having trehalase activity and polynucleotides encoding same
WO2019030165A1 (en) 2017-08-08 2019-02-14 Novozymes A/S Polypeptides having trehalase activity and the use thereof in process of producing fermentation products
WO2019055455A1 (en) 2017-09-15 2019-03-21 Novozymes A/S Enzyme blends and processes for improving the nutritional quality of animal feed
WO2019083831A1 (en) 2017-10-23 2019-05-02 Novozymes A/S Processes for reducing lactic acid in a biofuel fermentation system
WO2019099235A1 (en) 2017-11-14 2019-05-23 Danisco Us Inc Alpha-amylase, composition and method
WO2019161227A1 (en) 2018-02-15 2019-08-22 Novozymes A/S Improved yeast for ethanol production

Also Published As

Publication number Publication date
US4247637A (en) 1981-01-27
CA1128885A (en) 1982-08-03
IT1122701B (en) 1986-04-23
DE2935315A1 (en) 1980-03-13
DK146631B (en) 1983-11-21
FR2434867A1 (en) 1980-03-28
CA1128885A1 (en)
DK365179A (en) 1980-03-02
BE878466A (en) 1979-12-17
NL7906265A (en) 1980-03-04
JPS6155948B2 (en) 1986-11-29
ES483735A1 (en) 1980-08-16
AR221619A1 (en) 1981-02-27
NZ191172A (en) 1982-02-23
BE878466A1 (en)
JPS5534046A (en) 1980-03-10
IT7924930D0 (en) 1979-08-03
ES483741A1 (en) 1980-04-16
DK146631C (en) 1984-05-07
IN151247B (en) 1983-03-12
FR2434867B1 (en) 1986-04-25

Similar Documents

Publication Publication Date Title
Takasaki Studies on Sugar-isomerizing Enzyme: Production and Utilization of Glucose Isomerase from Streptomyces sp.
CA1221326A (en) Thermostable, glucoamylase and method for its production
Aguilar et al. Induction and repression patterns of fungal tannase in solid-state and submerged cultures
Gangadharan et al. Solid culturing of Bacillus amyloliquefaciens for α-amylase production
Uyar et al. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation
US5370997A (en) Hyperthermostable alpha-amylase
US4454161A (en) Process for the production of branching enzyme, and a method for improving the qualities of food products therewith
EP0140410A1 (en) Novel enzyme product and its use in the saccharification of starch
US3565765A (en) Preparation of high maltose conversion products
US4587215A (en) Highly thermostable amyloglucosidase
US4604355A (en) Maltogenic amylase enzyme, preparation and use thereof
Gupta et al. Production and characterization of α-amylase from Aspergillus niger
KR890002413B1 (en) Debranching enzyme product preparation and use thereof
Tsuchiya et al. Dextran-degrading enzymes from molds
CA1045569A (en) Process for producing dextrose using mixed immobilized enzymes
Ueda et al. Production of isoamylase by Escherichia intermedia
US4560651A (en) Debranching enzyme product, preparation and use thereof
Idrees et al. Production of lipases by Rhizopus oligosporous by solid-state fermentation
US6303346B1 (en) Method of producing saccharide preparations
Takasaki Productions and utilizations of β-amylase and pullulanase from Bacillus cereus var. mycoides
WO1986001831A1 (en) Thermostable starch converting enzymes
JP4162774B2 (en) Protein production methods
Varalakshmi et al. Production and Characterization of a-Amylase from Aspergillus niger JGI 24 Isolated in Bangalore
US4312948A (en) Enzymic microbiological process for producing optically active aminoacids starting from hydantoins and/or racemic carbamoyl derivatives
EP0171218B1 (en) Enzymatic hydrolysis of granular starch directly to glucose