USRE32068E - Distillative separation employing bottom additives - Google Patents
Distillative separation employing bottom additives Download PDFInfo
- Publication number
 - USRE32068E USRE32068E US06/704,180 US70418085A USRE32068E US RE32068 E USRE32068 E US RE32068E US 70418085 A US70418085 A US 70418085A US RE32068 E USRE32068 E US RE32068E
 - Authority
 - US
 - United States
 - Prior art keywords
 - stream
 - product stream
 - column
 - overhead
 - bottom product
 - Prior art date
 - Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 - Expired - Fee Related
 
Links
- 239000000654 additive Substances 0.000 title claims description 74
 - 238000007700 distillative separation Methods 0.000 title claims description 14
 - 238000000034 method Methods 0.000 claims abstract description 68
 - 238000000926 separation method Methods 0.000 claims abstract description 32
 - 238000004821 distillation Methods 0.000 claims abstract description 31
 - 238000004064 recycling Methods 0.000 claims abstract description 29
 - 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
 - 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 17
 - 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 12
 - 230000000694 effects Effects 0.000 claims abstract description 6
 - CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 88
 - 230000000996 additive effect Effects 0.000 claims description 72
 - 239000007788 liquid Substances 0.000 claims description 66
 - 229910002092 carbon dioxide Inorganic materials 0.000 claims description 56
 - VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 55
 - 239000003795 chemical substances by application Substances 0.000 claims description 35
 - 239000001569 carbon dioxide Substances 0.000 claims description 32
 - IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
 - 238000011084 recovery Methods 0.000 claims description 26
 - 150000001335 aliphatic alkanes Chemical class 0.000 claims description 22
 - ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 16
 - 229910052757 nitrogen Inorganic materials 0.000 claims description 15
 - RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 12
 - 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 12
 - 239000007789 gas Substances 0.000 claims description 11
 - 239000002253 acid Substances 0.000 claims description 9
 - 239000000203 mixture Substances 0.000 claims description 9
 - 239000001294 propane Substances 0.000 claims description 9
 - 230000009467 reduction Effects 0.000 claims description 7
 - OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 6
 - 230000001965 increasing effect Effects 0.000 claims description 6
 - 239000000498 cooling water Substances 0.000 claims description 4
 - 230000006872 improvement Effects 0.000 claims description 2
 - 238000005507 spraying Methods 0.000 claims description 2
 - 238000011144 upstream manufacturing Methods 0.000 claims description 2
 - 125000004432 carbon atom Chemical group C* 0.000 claims 1
 - 238000011109 contamination Methods 0.000 claims 1
 - 230000003247 decreasing effect Effects 0.000 claims 1
 - 238000010992 reflux Methods 0.000 abstract description 25
 - 238000004519 manufacturing process Methods 0.000 abstract 1
 - 230000015572 biosynthetic process Effects 0.000 description 9
 - 238000005755 formation reaction Methods 0.000 description 9
 - -1 butane-plus Chemical class 0.000 description 6
 - 230000008569 process Effects 0.000 description 6
 - VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
 - 239000005977 Ethylene Substances 0.000 description 4
 - 230000008859 change Effects 0.000 description 4
 - 239000000356 contaminant Substances 0.000 description 4
 - 239000003345 natural gas Substances 0.000 description 4
 - 239000007787 solid Substances 0.000 description 4
 - 238000005057 refrigeration Methods 0.000 description 3
 - QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
 - 230000008901 benefit Effects 0.000 description 2
 - 238000005094 computer simulation Methods 0.000 description 2
 - 238000001816 cooling Methods 0.000 description 2
 - 239000012535 impurity Substances 0.000 description 2
 - 239000000126 substance Substances 0.000 description 2
 - 230000004075 alteration Effects 0.000 description 1
 - 229910021529 ammonia Inorganic materials 0.000 description 1
 - 239000003674 animal food additive Substances 0.000 description 1
 - 238000009835 boiling Methods 0.000 description 1
 - 230000002708 enhancing effect Effects 0.000 description 1
 - 239000002737 fuel gas Substances 0.000 description 1
 - 238000010438 heat treatment Methods 0.000 description 1
 - 239000003915 liquefied petroleum gas Substances 0.000 description 1
 - 230000004048 modification Effects 0.000 description 1
 - 238000012986 modification Methods 0.000 description 1
 - 238000012856 packing Methods 0.000 description 1
 - 239000003208 petroleum Substances 0.000 description 1
 - 230000002265 prevention Effects 0.000 description 1
 - 238000011027 product recovery Methods 0.000 description 1
 - 239000003507 refrigerant Substances 0.000 description 1
 - 238000004088 simulation Methods 0.000 description 1
 - XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
 
Images
Classifications
- 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
 - F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
 
 - 
        
- B—PERFORMING OPERATIONS; TRANSPORTING
 - B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
 - B01D—SEPARATION
 - B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
 - B01D3/14—Fractional distillation or use of a fractionation or rectification column
 - B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
 - B01D3/146—Multiple effect distillation
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C07—ORGANIC CHEMISTRY
 - C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
 - C07C7/00—Purification; Separation; Use of additives
 - C07C7/04—Purification; Separation; Use of additives by distillation
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C07—ORGANIC CHEMISTRY
 - C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
 - C07C7/00—Purification; Separation; Use of additives
 - C07C7/04—Purification; Separation; Use of additives by distillation
 - C07C7/05—Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
 - F25J3/0209—Natural gas or substitute natural gas
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
 - F25J3/0219—Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
 - F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
 - F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
 - F25J3/0247—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
 - F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
 - F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
 - F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
 - F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J2205/00—Processes or apparatus using other separation and/or other processing means
 - F25J2205/50—Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J2210/00—Processes characterised by the type or other details of the feed stream
 - F25J2210/12—Refinery or petrochemical off-gas
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J2215/00—Processes characterised by the type or other details of the product stream
 - F25J2215/64—Propane or propylene
 
 - 
        
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 - F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
 - F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
 - F25J2220/00—Processes or apparatus involving steps for the removal of impurities
 - F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
 - F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
 
 - 
        
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 - Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
 - Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
 - Y02C20/00—Capture or disposal of greenhouse gases
 - Y02C20/40—Capture or disposal of greenhouse gases of CO2
 
 - 
        
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 - Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
 - Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
 - Y02P20/00—Technologies relating to chemical industry
 - Y02P20/10—Process efficiency
 
 - 
        
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 - Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
 - Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
 - Y02P20/00—Technologies relating to chemical industry
 - Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
 
 - 
        
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 - Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
 - Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
 - Y02P20/00—Technologies relating to chemical industry
 - Y02P20/50—Improvements relating to the production of bulk chemicals
 
 - 
        
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 - Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
 - Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
 - Y10S62/00—Refrigeration
 - Y10S62/928—Recovery of carbon dioxide
 - Y10S62/929—From natural gas
 
 
Definitions
- distillative processes It is desirable to operate distillative processes at minimum energy, to effect separation of the feed stream into a desired overhead product stream and a bottom product stream in a distillative column having vapor-liquid contacting devices, such as distillation trays, packing devices or a combination thereof.
 - the overhead product stream is at least partially condensed and a small portion recycled to the top of the distillative column, while the bottom product stream is withdrawn and reboiled and at least a portion recycled to the bottom of the column, to provide desirable column operating conditions.
 - distillative columns operate under such conditions, so as to obtain the desired overhead product stream of defined specifications enriched in a desirable component, or conversely to obtain a bottom product stream of defined sepcifications enriched in a particular component, or both, so as to obtain purified streams for further separation or recovery or use in a chemical, refinery or petrochemical operation.
 - distillative techniques should be carried out at the most desirable column operating conditions, wherein optimum energy savings can be effected.
 - a nonpolar additive agent such as a liquid additive agent; for example, a C 3 -C 6 alkane, particularly butane-plus, introduced into the upper portion of said distillative column in an amount to prevent the formation of solids in the cryogenic distillation of methane from carbon dioxide, such as, for example, as more particularly set forth in U.S. Pat. No. 4,318,723, issued Mar. 9, 1982 (hereby incorporated by reference).
 - a nonpolar additive agent such as a liquid hydrocarbon additive agent, such as a C 3 -C 6 alkane, particularly butane-plus, prevents or inhibits the formation of azeotropes and enables the separation to provide an overhead product stream more enriched in a desirable component and a bottom product stream more enriched in a bottom product component, through the alteration of the azeotropic formation, such as, for example, as set forth and described more particularly in U.S. Pat. No. 4,350,511, issued Sept. 21, 1982 (hereby incorporated by reference).
 - U.S. patent application Ser. No. 307,672, filed Oct. 1, 1981 (hereby incorporated by reference) relates to an improvement in the effective separation of methane from carbon dioxide in a distillative column, wherein the upper portion of the column is operated at temperatures above the triple point of carbon dioxide; that is, -70° F., by increasing the amount of nonpolar additive agent added to the reflux condenser, to maintain the reflux condenser and all portions of the column above the triplepoint temperature.
 - the resulting bottom product stream contains, in addition to the usual bottom product stream components, a liquid nonpolar additive, particularly the liquid hydrocarbon additive added to change the operating conditions in the column.
 - the liquid additive agent may be recycled with the bottom product stream or may be separated and recycled for use in any one or all of the aforementioned uses of an additive agent, particularly where such distillative processes are employed in one-, two-, three- or multiple-column operations for the separation of a natural gas stream or petro-chemical stream into the desired components.
 - the feed streams employed in such distillation process include those streams which have major amounts of an acid gas component desired to be removed and those streams containing minor amounts of or even no acid gas components. It would be desirable, in such distillative separations or a combination of operations and other distillative operations where additives are not used, to reduce the energy requirements of such distillation techniques.
 - the invention relates to a distillative technique, wherein a product stream is employed to adjust distillative column operating conditions and to save energy.
 - the invention concerns a distillative technique, wherein a small portion of a bottom product stream of defined specifications, typically a C 3 -C 6 stream, is recycled to the condenser of a distillative column, wherein the overhead stream is not significantly contaminated by the recycled bottom product stream, to adjust column operating conditions and effect energy savings.
 - the introduction of the liquid additive agent into the condenser should be carried out, so as to provide that the additive agent is uniformly mixed with the overhead product stream from the distillative column entering the condenser, and typically to flow concurrently through the condenser with the overhead stream. It would be ineffectual to introduce the liquid additive agent to the condenser outlet and of considerably reduced efficiency to introduce the liquid additive poorly distributed into the inlet of the condenser. Therefore, the liquid additive should be introduced in and admixed with the incoming overhead product vapor stream and flow concurrently therewith, so that the liquid additive is generally uniformly distributed at least throughout the major portion of the heat-exchange surface or area of the condenser.
 - One method of introducing and admixing is to employ a sparger adjacent the inlet of the condenser or adjacent or directly upstream of the heat-exchange surface of the condenser.
 - Another suitable method of introducing and admixing comprises spraying the liquid additive concurrently into the incoming vapor overhead product stream.
 - One method of the invention is directed to those additive-recovery distillative techniques employing distillative columns, wherein the technique is directed toward mainly bottom-product-stream end specifications, and wherein the overhead product stream removes one or more contaminants or impurities from the feed stream.
 - a bottom product stream for example, a butane-plus stream
 - the recycling of the bottom product stream into said condenser will permit the advantageous adjustment of the operating conditions of the column.
 - the invention is particularly useful wherein an additive agent is introduced into a column, to prevent the formation of a solids zone, to enhance the relative volatility of particular components, or to prevent azeotropic formation, such as those distillative techniques as described in the prior art in the Background of the Invention.
 - the bottom product stream from the additive-recovery column of such operation can be recycled to the overhead condenser of the additive-recovery column or other column in the system to save energy.
 - the method of the invention is also of use wherein the feed stream comprises a hydrocarbon-containing stream, such as a petroleum or natural or synthetic gas stream high in hydrocarbons and which has a low amount of acid gas components or essentially few acid gas components.
 - the invention is directed toward those bottom product streams, wherein the bottom product stream is typically enriched in higher alkanes and more particularly C 4 -C 6 alkanes, such as iC 4 , nC 4 , iC 5 , nC 5 and heavier hydrocarbon components.
 - the recycling of the heavier hydrocarbon components of C 4 + directly from the bottom product stream into the overhead condenser of the distillation system provides for the overhead condenser to operate at a higher temperature, or alternatively the distillative column can be operated at a lower pressure, where the heavier components are present in the overhead product.
 - the recycling of the bottom product stream directly from the bottom product stream, without separation into the overhead condenser employed for the overhead product stream permits the temperature at the top of the column and of the condenser to increase, for example, from 10° F. to 60° F.; for example, 15° F. to 50° F., while providing for a reduction in temperature of the bottom of the column; for example, from 5° F. to 50° F.
 - the column operating temperatures may be maintained and the overall column pressure reduced, all with the effective savings in energy, without affecting, or, in fact, in some cases increasing, the efficiency of separation of the bottom product stream.
 - the amount of the bottom product stream recycled may vary, to effect a reduction in column operating pressure of greater than 20 psi; for example, 30 psi, such as from 30 to 150 psi.
 - the method of the invention is advantageous where the feed stream comprises a butane-plus additive agent from a prior separation, and wherein the condenser of the distillative column is refrigerated by propane, ammonia or Freon (a trademark of du Pont Co.), and the bottom product additive is fed into the condenser, to raise the condenser temperature.
 - the increase in temperature of the condenser permits the overhead product stream to be cooled or condensed employing a higher temperature; for example, the use of cooling water or any equivalent, cheap heat sink, providing increasing energy efficiency of the column operation.
 - a bottom product stream containing C 4 + hydrocarbons that is, the nonpolar liquid additive agent from a prior operation, and not to separate such hydrocarbons, with the hydrocarbon bottoms having a hydrogen sulfide concentration kept below a given level; for example, 10 parts per million, and with C 3 removed to below a given level; for example, 0.5% by volume, and then to use the bottom product stream as at least a portion of a liquid additive stream in a cryogenic separation in another column.
 - the overhead stream is desirably cooled against water or an equivalent energy heat sink, by recycling a portion of the bottom product stream through the overhead condenser, so that the overhead condenser will operate at a higher temperature or, alternatively and preferably, the column can be operated at a lower pressure, if a sufficient amount of a heavier C 4 + hydrocarbons are in the overhead product stream.
 - the method provides for a residual gas stream of low carbon dioxide or hydrogen sulfide content, a fuel gas stream of low carbon dioxide, hydrogen sulfide and nitrogen content and a sour liquefied petroleum gas stream wiht a high ethane-plus recovery containing the bulk of the carbon dioxide and the hydrogen sulfide.
 - a natural gas feed stream containing nitrogen is introduced into a refrigerated distillative column, wherein a liquid additive is fed through the condenser to maintain ethylene-level refrigeration temperatures, and to wash the methane to the base of the column, with the overhead product stream being enriched in nitrogen.
 - An additional refrigerated distillative column employing a liquid additive such as in U.S. Pat. No. 4,318,723, issued Mar. 9, 1982, is employed to provide for the separation of a methane and carbon dioxide, with the carbon dioxide in the bottom product stream, together with the liquid additive of C 4 +, and the methane removed from the overhead product stream, the formation of a solids zone prevented by the introduction of the liquid additive agent to the upper portion of the column.
 - a third column for additive recovery is then employed, wherein the bottom product stream, containing the liquid additive, is employed as a refrigerated feed stream into the first and second distillative columns.
 - the separation of carbon dioxide and C 2 from C 3 + in a distillative column has been found to be enhanced significantly and considerable heat energy saved by the recycling of a minor amount of the bottom stream, such as the C 4 + bottom stream, from an additive-recovery column to the condenser or to the upper section of the column separating CO 2 and C 3 .
 - a minor amount of the bottom stream such as the C 4 + bottom stream
 - the nonpolar liquid C 4 + additive bottom agent be introduced a sufficient number of trays above the feed tray.
 - the C 4 + bottom recycled stream may be added to the overhead condenser; however, some C 4 + stream will be produced or be present in the CO 2 -C 2 overhead stream.
 - some or all of the C 4 + recycled bottom stream may be introduced into the uppermost tray section of the distillative column, so that the trays above will reduce the C 4 + content in the overhead stream.
 - the C 4 + recycled bottom stream is introduced into the upper section of the column, such introduction occurs in the first top ten trays of the column or less, such as the first top five or less trays.
 - the reduction in heat removal is due to the improved relative volatility of the CO 2 to C 3 with the increased concentration of the C 4 + recycled bottom stream in the liquid in the column. This savings in heat energy generally occurs without significant changes in the overhead temperature and column operating pressure, due to the improved volatility ratio of the components.
 - FIG. 1 is a schematic illustration of an application of the invention to additive recovery
 - FIG. 2 is a schematic illustration of an application to a nitrogen separation method employing the invention.
 - FIG. 3 is a schematic illustration of an application of CO 2 -propane separation employing the invention.
 - FIG. 1 is a schematic illustration of a distillative separation method employing the present invention of a nonpolar-liquid-agent additive-recovery application, wherein the feed stream is derived from one or more prior separation processes, and wherein the feed stream comprises hydrogen sulfide, carbon dioxide and C 2 + hydrocarbons introduced through line 12 into a distillative column 14 with vapor-liquid contact devices therein, such as distillation trays, and with a stream removed overhead through line 16 introduced into a reflux condenser 18 and a liquefied portion of the overhead stream recycled to the top of the column through line 22, while an enriched carbon-dioxide overhead product stream is removed overhead through line 20.
 - the feed stream comprises hydrogen sulfide, carbon dioxide and C 2 + hydrocarbons introduced through line 12 into a distillative column 14 with vapor-liquid contact devices therein, such as distillation trays, and with a stream removed overhead through line 16 introduced into a reflux condenser 18 and a liquefied portion of the overhead stream recycled to the top of the
 - a liquid additive such as an alkane mixture; for example, C 3 -C 6 , comprising a major amount of butane-plus, is introduced into the upper section of the column 14 through line 24, to prevent or to modify azeotropic formations within the column 14.
 - a column bottom stream is removed through line 26 and is introduced into a reboiler 28, and a portion is recycled through line 30 to the bottom of the column, while the bottom product stream, containing C 2 + and the C 3 -C 6 additive and hydrogen sulfide, is withdrawn through line 32, is cooled in a heat exchanger 34 and is then introduced through line 36 as a feed stream into an additive-recovery distillative column 38 containing distillation trays.
 - An overhead product stream is removed through line 40 of column 38 and is introduced into a condenser 42, and a portion of the liquefied overhead stream is recycled to the top of the column through line 46, while an overhead product stream, containing C 2 , C 3 and perhaps some very minor amounts of C 4 + and contaminants, such as hydrogen sulfide, is removed.
 - a bottom product stream containing the C 3 -C 6 additive agent is removed through line 48 into a reboiler 50, where a portion is recycled through line 52 to the bottom of the column, while another portion is removed by line 60 to line 56 through cooler 62 and is recycled and introduced concurrently directly by line 58 and line 40 into the inlet of the overhead reflux condenser 42 of column 38, to increase the operating temperature of the reflux condenser 42.
 - the remaining portion of the defined bottom product stream containing C 4 + is removed through line 54.
 - a further portion of the bottom stream is removed by line 24 from line 56 and is introduced as all or a portion of the additive agent introduced into column 14.
 - the bottom product-recovery stream in the defined method is a specified stream having a hydrogen sulfide concentration kept below a defined specification level; for example, about 10 ppm or less of H 2 S, and with C 3 removed to below a given specification level; for example, about 0.5% by volume or less. If operation of the column is desired with the same overhead condenser temperature, then the operating pressure of the column could be lowered.
 - the overhead reflux condenser 42 of the additive-recovery column 38 will operate at a higher temperature, or, alternatively, the distillative column 38 may be operated at a lower pressure, while maintaining the same overhead reflux condenser temperature.
 - the specifications are directed to the recovery of the additive agent as bottoms, so that the recycle of the additive bottom stream to the reflux condenser of the column does not contaminate the overhead product stream.
 - the higher temperature of the overhead reflux condenser permits employing a less expensive cooling source, such as cooling water, air or a more moderate refrigerant source.
 - the trays shown in Table II are theoretical or equivalent, perfect equilibrium trays, with the reflux condenser 42 as tray 1, the reboiler 50 as tray 15 and the feed stream introduced at tray 7.
 - the effect of recycling 500-lb moles/hour of the C 4 + additive agent from the reboiler to the reflux condenser of the recovery column provides for an increase of the reflux condenser temperature from 93.3° F. without additive to 109.0° F. with the additive, and a decrease in the reboiler temperature from 236.9° F. to 232.8° F.
 - This adjustment of the reflux condenser permits the overhead product stream to be cooled using cooling water or an equivalent, inexpensive heat sink, while the recycled additive agent does not contaminate the overhead stream, since the desired specification stream from the column is the C 4 + bottom product stream.
 - the distillation could be operated at a lower pressure of 70 psia, if the reflux condenser is desired to be maintained at the same temperature as without additive.
 - the data illustrate the significant advantage of saving energy by the recycling of the C 4 + liquid additive agent stream from the reboiler to the reflux condenser in the illustrated method of FIG. 1.
 - FIG. 2 is a schematic illustration of another distillative separation employing the present invention, wherein a C 3 -C 6 bottom product stream is recycled to the overhead of a column different from the column from which the bottom product stream is removed.
 - a feed stream typically comprising a natural gas stream of a major amount of methane, some C 2 +, nitrogen; for example, 9% to 25% nitrogen, and CO 2 , is introduced by line 126 into a distillative column 128, and an overhead product stream is removed through line 130 and introduced into a condenser 132, and a portion of the liquefied, condensed stream is recycled through line 134 to the top of the column 128, while a mixture of essentially all nitrogen and part of the methane is removed as an overhead stream through line 136.
 - a bottom product stream is removed through line 138 and is introduced into a reboiler 140, and a portion is recycled through line 66 to the bottom of the column 128.
 - the bottom product stream comprising part of the methane and practically all of the C 2 + and carbon dioxide, flows through line 68 into a heat exchanger 70, to cool the stream, which cool stream is introduced through line 72 as the feed stream into the next distillative column 74.
 - An overhead product stream is removed through line 76 and is introduced into a condenser 78, and a condensed portion is recycled to the top of the column 74 through line 80, while the overhead product stream of enriched, substantially pure methane is removed through line 82.
 - a liquid additive C 3 -C 6 alkane agent is added to the top of the column through line 84, to prevent the formation of a carbon-dioxide solids zone, as in U.S. Pat. No. 4,318,723.
 - a bottom product stream is removed through line 86 and is introduced into a reboiler 88, and a portion is recycled through line 90 to the bottom of the column 74, and the bottom product stream from the reboiler, comprising carbon dioxide and C 2 + (with the additive agent), is removed through line 100 and is passed through heat exchanger 102, to cool the stream, and is introduced as a feed stream through line 104 into an additive-recovery distillative column 106.
 - This column is operated as in FIG. 1, in order to provide a specified bottom product of essentially the liquid additive agent and to remove the carbon dioxide as an impurity in the overhead product stream.
 - An overhead product vapor stream comprising carbon dioxide, C 2 and C 3
 - An overhead product vapor stream comprising carbon dioxide, C 2 and C 3
 - a condensed portion is recycled through line 112 into the top of the column, while carbon dioxide, C 2 and C 3 are removed as an overhead stream from line 114.
 - a bottom product stream comprising primary C 4 +, is removed from the bottom of the column through line 116 and is introduced into a reboiler 118, and a portion is recycled through line 120 to the bottom of the column 106.
 - a specified bottom product stream with defined specifications as in FIG.
 - the overhead temperature of the distillative column 128 can be raised independently of the overhead N 2 /CH 4 content.
 - the reflux condenser 132 temperature can be controlled and adjusted by the rate of the recycled additive addition to the condenser.
 - the recycled additive rate may be set to require only an ethylene refrigeration system operating at about -125° F.
 - the reflux condenser temperature would be well below the limit (about -150° F.) of an ethylene refrigeration system, while, with the recycle of the bottom stream, the overhead temperature is -125° F., effecting a savings in heat energy in the operation of the column.
 - FIG. 3 is a schematic illustration of a process of the invention, wherein the separation of CO 2 and ethane from propane by a distillative technique was discovered to be enhanced significantly by the introduction of small amounts of a liquid C 4 + additive recycled bottom stream to the condenser or to be uppermost tray section of the distillative separation column.
 - the introduction of small amounts; for example, 1 to 8 mols, of a C 4 + bottom stream from the additive-recovery or other distillative column source per 100 mols of feed improves the relative volatility of the CO 2 to the propane with increased C 4 + fraction, and considerably reduces the heat duty on the reflux condenser and reboiler by over 60%.
 - a feed stream consisting essentially of CO 2 , ethane and C 3 +, is introduced by line 152 in a distillative column 150 containing a plurality of distillation trays, and an overhead vapor stream is removed by line 154 and is introduced in a reflux condenser 156, and a portion of the liquid condensed stream is recycled through line 158 to the top of column 150.
 - a mixture, composed essentially of CO 2 and ethane, is removed as an overhead product stream by line 160.
 - a bottom product stream is removed by line 162 to a reboiler 164, and a portion is recycled through line 166 to the bottom of column 150.
 - the bottom product stream comprising primary propane, together with any recycled liquid additive agent introduced into the condenser or upper part of the column 150, is withdrawn by line 168 as a bottom product stream and is introduced into a heat exchanger 170 to cool the bottom product stream.
 - the cool bottom product stream is introduced by line 172 into the C 4 + additive-recovery column 174.
 - An overhead product stream is removed by line 176 and is introduced into a condenser 178, and a portion from the condenser is recycled by line 180 into the top of the column 174.
 - the overhead product stream comprising primarily propane, is removed by line 182.
 - a bottom product stream, comprising C 4 + additive agent, is removed by line 184 into reboiler 186, where a portion is recycled to the bottom of column 174 by line 188, and the C 4 + additive fraction is recovered by line 192 for recycle, recovery or for other use.
 - Table VI shows a computer simulated data of the composition of the column feed stream comprising a major amount of CO 2 , ethane and propane.
 - the recycled additive-recovery column bottom additive stream from column 174 comprising primarily C 4 -C 6 alkane liquid additive, is introduced in small amounts (less than about 4%; for example, 3%, by moles relative to the feed stream) by line 190 to the condenser 156 (tray 1), while the feed stream is introduced by line 152 to tray 7 of column 150.
 - the overhead stream removes essentially all of the CO 2 , C 1 and C 2 of the feed stream, while the bottom product stream is rich in the C 3 + components; that is, the separated C 3 and the recycled C 4 + additive bottom stream.
 - Table VII is the same as Table VI, except illustrating the feed, overhead and bottom stream compositions, wherein a recycled additive bottom stream is not employed in separation column 150.
 - Tables VIII and IX illustrate the operation of the CO 2 +C 2 /C 3 separation column 150 at 500 psia, both with and without the employment of and illustrating more particularly the change in the heat duty of the reboiler and condenser by the addition of the C 4 + recycled bottom additive stream to the condenser.
 - a small amount of recycled C 4 + additive bottom stream markedly reduces the heat load on the condenser and reboiler, while significantly enhancing the separation of CO 2 from C 3 , resulting not only in enhanced separation efficiency by a change in relative volatility, but accompanied by a savings in energy in the column operation.
 
Landscapes
- Engineering & Computer Science (AREA)
 - General Engineering & Computer Science (AREA)
 - Physics & Mathematics (AREA)
 - Thermal Sciences (AREA)
 - Mechanical Engineering (AREA)
 - Chemical & Material Sciences (AREA)
 - Organic Chemistry (AREA)
 - Chemical Kinetics & Catalysis (AREA)
 - Oil, Petroleum & Natural Gas (AREA)
 - Analytical Chemistry (AREA)
 - Water Supply & Treatment (AREA)
 - General Chemical & Material Sciences (AREA)
 - Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
 - Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
 - Separation By Low-Temperature Treatments (AREA)
 
Abstract
Description
              TABLE I                                                     
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
                                     Recycle                              
         Overhead  Bottom    Feed    Liquid                               
Components                                                                
         Stream (44)                                                      
                   Stream (60)                                            
                             Stream (36)                                  
                                     Stream (58)                          
______________________________________                                    
H.sub.2 S                                                                 
         8.80      0.01      8.81    0.00                                 
N.sub.2  0.00      0.00      0.00    0.00                                 
CO.sub.2 17.6      0.00      17.6    0.00                                 
C.sub.1  0.00      0.00      0.00    0.00                                 
C.sub.2  123.13    0.09      123.22  0.00                                 
C.sub.3  174.79    29.38     201.67  2.50                                 
iC.sub.4 28.76     54.12     78.28   4.60                                 
nC.sub.4 88.52     411.27    464.47  35.32                                
iC.sub.5 16.70     1263.12   1172.26 107.56                               
nC.sub.5 15.75     1868.65   1725.44 158.97                               
nC.sub.6 3.73      1673.61   1535.24 142.10                               
nC.sub.7 0.44      576.26    527.78  48.92                                
Totals   478.22    5876.53   5854.75 500.00                               
Temperature                                                               
         109.00    232.80    210.00  232.70                               
Deg. F.                                                                   
______________________________________                                    
    
                  TABLE II                                                    
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
     Temp.                  Products,  Duties mm                          
Tray Deg. F. Liquid                                                       
              Vapor   Feeds BTU/hr                                        
______________________________________                                    
1     93.3    1146          0 (recycle feed)                              
                                       11.0                               
                            462 (overhead net                             
                                       (condenser)                        
                            product)                                      
2    139.0    1143    1608                                                
3    161.1    1137    1605                                                
4    173.4    1130    1599                                                
5    181.1    1116    1592                                                
6    187.4    1087    1578                                                
7    195.2    1030    1549                                                
8    208.0    6810    1492  5855 (feed)                                   
9    213.0    6955    1417                                                
10   216.5    7054    1563                                                
11   219.3    7127    1661                                                
12   221.9    7190    1735                                                
13   224.7    7249    1797                                                
14   228.6    7293    1856                                                
15   236.9            1900  5392 (bottom net                              
                                       19.0                               
                            product)   (reboiler)                         
______________________________________                                    
    
                  TABLE III                                                   
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
     Temp.                  Products,                                     
                                   Duties mm                              
Tray Deg. F.  Liquid  Vapor Feeds  BTU/hr                                 
______________________________________                                    
1    109.0    1738          500 (recycle feed)                            
                                       13.9                               
                            478 (overhead net                             
                                       (condenser)                        
                            product)                                      
2    141.2    1818    1716                                                
3    156.8    1839    1797                                                
4    167.1    1839    1818                                                
5    175.6    1831    1818                                                
6    183.5    1814    1810                                                
7    192.3    1772    1792                                                
8    204.9    7490    1750  5854 (feed)                                   
9    209.4    7635    1614                                                
10   212.4    7729    1759                                                
11   214.9    7798    1853                                                
12   217.2    7856    1921                                                
13   219.8    7911    1980                                                
14   223.8    7953    2034                                                
15   232.8            2076  5876 (bottom net                              
                                       21.7                               
                            product)   (reboiler)                         
______________________________________                                    
    
                  TABLE IV                                                    
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
                    Recycle                                               
                    Bottom    Overhead                                    
                                      Bottom                              
         Feed Stream                                                      
                    Stream    Stream  Stream                              
Components                                                                
         (126)      (124)     (136)   (68)                                
______________________________________                                    
N.sub.2  336.38     0.00      334.8   1.52                                
CO.sub.2 266.91     0.00      2.47    264.42                              
CO       6.21       0.00      6.08    .13                                 
COS      .65        0.00      .00     .65                                 
H.sub.2 S                                                                 
         131.63     0.00      .00     131.62                              
C.sub.1  2427.04    0.00      1637.02 790.07                              
C.sub.2  161.32     0.00      .00     161.31                              
C.sub.3  126.87     27.38     .44     153.81                              
iC.sub.4 50.01      130.37    .59     179.78                              
nC.sub.4 75.39      196.65    .49     271.54                              
iC.sub.5 40.25      105.17    .07     145.35                              
nC.sub.5 7.60       19.72     .00     27.31                               
nC.sub.6 15.21      39.98     .00     55.19                               
nC.sub.7 10.85      28.48     .00     39.34                               
Totals   3656.40    547.78    1982.07 2222.11                             
Temperature                                                               
         -80.       -120.     -125.   -48.                                
Deg. F.                                                                   
______________________________________                                    
    
                  TABLE V                                                     
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
     Temp.                  Products,  Duties mm                          
Tray Deg. F.  Liquid  Vapor Feeds      BTU/hr                             
______________________________________                                    
1    -125     1854          548 (recycle feed)                            
                                       2.9                                
                            1982 (overhead                                
                                       (condenser)                        
                            net product)                                  
2    -119     1870    3288                                                
3    -116     1802    3305                                                
4    -112     1700    3236                                                
5    -106     1580    3135                                                
6     -97     1466    3015                                                
7     -86     1437    2901  2481 (vapor feed)                             
8     -81     2659     390  1175 (liquid feed)                            
9     -78     2701     437                                                
10    -76     2730     479                                                
11    -73     2723     508                                                
12    -48              501  2222       2.4                                
                                       (reboiler)                         
______________________________________                                    
    
                  TABLE VI                                                    
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
                 Recycled                                                 
                 Bottom   Overhead                                        
                                  Column Bottoms                          
          Feed   Additive Stream  Stream                                  
Components                                                                
          (152)  (190)    (160)   (168)                                   
______________________________________                                    
N.sub.2   0.59   0.0      0.59    0.00                                    
O.sub.2   0.06   0.0      0.06    0.00                                    
C.sub.1   60.70  0.0      60.70   0.00                                    
CO.sub.2  247.04 0.0      246.97  0.06                                    
C.sub.2   8.13   0.0      8.13    0.00                                    
C.sub.3   7.04   0.0      0.71    6.33                                    
iC.sub.4  0.75   1.30     0.20    1.85                                    
nC.sub.4  2.00   3.46     0.32    5.14                                    
iC.sub.5  0.39   0.68     0.02    1.05                                    
nC.sub.5  0.36   0.62     0.01    0.96                                    
nC.sub.6  2.27   3.92     0.05    6.14                                    
Totals    329.39 10.00    317.81  21.57                                   
Temperature                                                                
          90     13       13      303                                     
Deg. F.                                                                   
______________________________________                                    
    
                  TABLE VII                                                   
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
         Feed Stream                                                      
                    Overhead Stream                                       
                                 Bottom Stream                            
Components                                                                
         (152)      (160)        (168)                                    
______________________________________                                    
N.sub.2  0.59       0.59         0.00                                     
O.sub.2  0.06       0.06         0.00                                     
C.sub.1  60.70      60.70        0.00                                     
CO.sub.2 247.04     246.97       0.06                                     
C.sub.2  8.13       8.13         0.00                                     
C.sub.3  7.04       0.70         6.34                                     
iC.sub.4 0.75       0.00         0.75                                     
nC.sub.4 2.00       0.00         2.00                                     
iC.sub.5 0.39       0.00         0.39                                     
nC.sub.5 0.36       0.00         0.36                                     
nC.sub.6 2.27       0.00         2.27                                     
Totals   329.39     317.18       12.20                                    
Temperature                                                                
         90         12           255                                      
Deg. F.                                                                   
______________________________________                                    
    
                  TABLE VIII                                                  
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
     Temp.                  Products,  Duties mm                          
Tray Deg. F.  Liquid  Vapor Feeds      BTU/hr                             
______________________________________                                    
1    12.0     2516          0 (recycle feed)                              
                                       11.6                               
                            317 (overhead net                             
                                       (condenser)                        
                            product)                                      
2    26.0     2612    2834                                                
3    29.0     2628    2929                                                
4    29.0     2631    2945                                                
5    29.0     2634    2948                                                
6    29.0     2639    2952                                                
7    30.0     2645    2956                                                
8    30.0     2588    2962  329 (feed)                                    
9    32.0     2609    2576                                                
10   33.0     2622    2597                                                
11   33.0     2641    2610                                                
12   34.0     2669    2629                                                
13   35.0     2704    2657                                                
14   40.0     2644    2693                                                
15   61.0     2288    2631                                                
16   116.0    2292    2276                                                
17   164.0    2643    2280                                                
18   193.0    2709    2631                                                
19   219.0    2406    2697                                                
20   255.0            2394  12.20 (bottom                                 
                                       11.3                               
                            net product)                                  
                                       (reboiler)                         
______________________________________                                    
    
                  TABLE IX                                                    
______________________________________                                    
FLOW RATES - LB MOLS/HR                                                   
     Temp.                  Products,  Duties mm                          
Tray Deg. F.  Liquid  Vapor Feeds      BTU/hr                             
______________________________________                                    
1    13.0     1081          10 (recycle feed)                             
                                       4.9                                
                            318 (overhead net                             
                                       (condenser)                        
                            product)                                      
2    25.0     1116    1389                                                
3    27.0     1122    1424                                                
4    28.0     1123    1427                                                
5    28.0     1125    1431                                                
6    28.0     1127    1433                                                
7    28.0     1129    1435                                                
8    29.0     1066    1436  329 (feed)                                    
9    32.0     1080    1044                                                
10   33.0     1086    1053                                                
11   34.0     1093    1064                                                
12   35.0     1102    1071                                                
13   37.0     1102    1081                                                
14   47.0      998    1080                                                
15   89.0      860     976                                                
16   154.0     953     838                                                
17   198.0    1045     931                                                
18   229.0    1016    1023                                                
19   263.0     943     995                                                
20   303.4             922  21.6 (bottom                                  
                                       4.7                                
                            net product)                                  
                                       (reboiler)                         
______________________________________                                    
    
    Claims (31)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US06/704,180 USRE32068E (en) | 1983-01-14 | 1985-02-22 | Distillative separation employing bottom additives | 
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US06/458,047 US4428759A (en) | 1983-01-14 | 1983-01-14 | Distillative separation employing bottom additives | 
| US06/704,180 USRE32068E (en) | 1983-01-14 | 1985-02-22 | Distillative separation employing bottom additives | 
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US06/458,047 Reissue US4428759A (en) | 1983-01-14 | 1983-01-14 | Distillative separation employing bottom additives | 
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US06/816,000 Reissue USRE32600E (en) | 1983-01-14 | 1986-01-03 | Distillative separation employing bottom additives | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| USRE32068E true USRE32068E (en) | 1986-01-21 | 
Family
ID=23819142
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US06/458,047 Ceased US4428759A (en) | 1983-01-14 | 1983-01-14 | Distillative separation employing bottom additives | 
| US06/704,180 Expired - Fee Related USRE32068E (en) | 1983-01-14 | 1985-02-22 | Distillative separation employing bottom additives | 
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US06/458,047 Ceased US4428759A (en) | 1983-01-14 | 1983-01-14 | Distillative separation employing bottom additives | 
Country Status (10)
| Country | Link | 
|---|---|
| US (2) | US4428759A (en) | 
| EP (2) | EP0352870A1 (en) | 
| JP (1) | JPS60500448A (en) | 
| AU (3) | AU560357B2 (en) | 
| CA (2) | CA1185888A (en) | 
| DE (1) | DE3484356D1 (en) | 
| MX (1) | MX171886B (en) | 
| NO (1) | NO170007C (en) | 
| NZ (2) | NZ218798A (en) | 
| WO (1) | WO1984002767A1 (en) | 
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE3515949A1 (en) * | 1984-06-14 | 1985-12-19 | Linde Ag, 6200 Wiesbaden | METHOD FOR SEPARATING CO (DOWN ARROW) 2 (DOWN ARROW) FROM A GAS MIXTURE | 
| US4623370A (en) * | 1984-09-11 | 1986-11-18 | Aeci Limited | Gas treatment process | 
| US4556404A (en) * | 1984-09-19 | 1985-12-03 | Air Products And Chemicals, Inc. | Split-column extractive distillation | 
| DE3544855A1 (en) * | 1985-12-18 | 1987-06-19 | Linde Ag | METHOD FOR SEPARATING C (DOWN ARROW) 5 (DOWN ARROW) (DOWN ARROW) + (DOWN ARROW) HYDROCARBONS FROM A GAS FLOW | 
| US4675035A (en) * | 1986-02-24 | 1987-06-23 | Apffel Fred P | Carbon dioxide absorption methanol process | 
| US4654062A (en) * | 1986-07-11 | 1987-03-31 | Air Products And Chemicals, Inc. | Hydrocarbon recovery from carbon dioxide-rich gases | 
| US4753666A (en) * | 1986-07-24 | 1988-06-28 | Chevron Research Company | Distillative processing of CO2 and hydrocarbons for enhanced oil recovery | 
| US4717408A (en) * | 1986-08-01 | 1988-01-05 | Koch Process Systems, Inc. | Process for prevention of water build-up in cryogenic distillation column | 
| US4720294A (en) * | 1986-08-05 | 1988-01-19 | Air Products And Chemicals, Inc. | Dephlegmator process for carbon dioxide-hydrocarbon distillation | 
| US4762543A (en) * | 1987-03-19 | 1988-08-09 | Amoco Corporation | Carbon dioxide recovery | 
| US5335504A (en) * | 1993-03-05 | 1994-08-09 | The M. W. Kellogg Company | Carbon dioxide recovery process | 
| US6098425A (en) * | 1993-10-01 | 2000-08-08 | Stothers; William R. | Thermodynamic separation | 
| US5502971A (en) * | 1995-01-09 | 1996-04-02 | Abb Lummus Crest Inc. | Low pressure recovery of olefins from refinery offgases | 
| US6550274B1 (en) * | 2001-12-05 | 2003-04-22 | Air Products And Chemicals, Inc. | Batch distillation | 
| CA2557871A1 (en) * | 2004-03-11 | 2005-09-29 | Advanced Extraction Technologies, Inc. | Use of cryogenic temperatures in processing gases containing light components with physical solvents | 
| US9255731B2 (en) | 2007-05-18 | 2016-02-09 | Pilot Energy Solutions, Llc | Sour NGL stream recovery | 
| US9200833B2 (en) | 2007-05-18 | 2015-12-01 | Pilot Energy Solutions, Llc | Heavy hydrocarbon processing in NGL recovery system | 
| US9752826B2 (en) | 2007-05-18 | 2017-09-05 | Pilot Energy Solutions, Llc | NGL recovery from a recycle stream having natural gas | 
| US9574823B2 (en) * | 2007-05-18 | 2017-02-21 | Pilot Energy Solutions, Llc | Carbon dioxide recycle process | 
| AU2010230052B2 (en) * | 2009-03-25 | 2013-12-05 | Fluor Technologies Corporation | Improved configurations and methods for high pressure acid gas removal | 
| US8895798B2 (en) * | 2009-06-04 | 2014-11-25 | Uop Llc | Method for altering an operation of an alkylation unit | 
| US8955354B2 (en) * | 2009-12-10 | 2015-02-17 | Conocophillips Company | Fractionation of hydrogen sulfide rich sour gas and methods of use | 
| JP5132822B1 (en) * | 2012-03-27 | 2013-01-30 | 大陽日酸株式会社 | Distillation equipment | 
| FR3039080B1 (en) * | 2015-07-23 | 2019-05-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD OF PURIFYING HYDROCARBON-RICH GAS | 
| WO2017209757A1 (en) | 2016-06-02 | 2017-12-07 | Pilot Energy Solutions, Llc | Two column hydrocarbon recovery from carbon dioxide enhanced oil recovery streams | 
| AU2018239332B2 (en) * | 2017-03-21 | 2023-06-15 | Conocophillips Company | Light oil reflux heavies removal process | 
| US11377403B2 (en) | 2017-04-28 | 2022-07-05 | Dow Global Technologies Llc | Processes and systems for separating carbon dioxide in the production of alkanes | 
| CN109745723B (en) * | 2018-12-29 | 2021-07-06 | 恒天纤维集团有限公司 | A double-column continuous feeding rectification system and control method | 
| CN111238166B (en) * | 2020-03-20 | 2025-05-09 | 金昌隆博气体有限责任公司 | Refrigeration cycle system and method in carbon dioxide distillation separation process | 
| US12234421B2 (en) | 2021-08-27 | 2025-02-25 | Pilot Intellectual Property, Llc | Carbon dioxide recycle stream processing with ethylene glycol dehydrating in an enhanced oil recovery process | 
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3595782A (en) * | 1968-12-05 | 1971-07-27 | Fluor Corp | Method for separating crabon dioxide from hydrocarbons | 
| US4035167A (en) * | 1976-02-13 | 1977-07-12 | Continental Oil Company | Recovery of ethane and ethylene from gaseous mixtures | 
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE2843982A1 (en) * | 1978-10-09 | 1980-04-24 | Linde Ag | METHOD FOR DISASSEMBLING A GAS MIXTURE | 
| US4293322A (en) * | 1980-04-23 | 1981-10-06 | Helix Technology Corporation | Distillative separation of carbon dioxide from hydrogen sulfide | 
| US4318723A (en) * | 1979-11-14 | 1982-03-09 | Koch Process Systems, Inc. | Cryogenic distillative separation of acid gases from methane | 
| US4272269A (en) * | 1979-11-23 | 1981-06-09 | Fluor Corporation | Cryogenic expander recovery process | 
| US4350511A (en) * | 1980-03-18 | 1982-09-21 | Koch Process Systems, Inc. | Distillative separation of carbon dioxide from light hydrocarbons | 
- 
        1983
        
- 1983-01-14 US US06/458,047 patent/US4428759A/en not_active Ceased
 
 - 
        1984
        
- 1984-01-12 NZ NZ218798A patent/NZ218798A/en unknown
 - 1984-01-12 NZ NZ206821A patent/NZ206821A/en unknown
 - 1984-01-12 JP JP59500732A patent/JPS60500448A/en active Pending
 - 1984-01-12 WO PCT/US1984/000056 patent/WO1984002767A1/en unknown
 - 1984-01-12 AU AU24913/84A patent/AU560357B2/en not_active Ceased
 - 1984-01-13 CA CA000445300A patent/CA1185888A/en not_active Expired
 - 1984-01-13 MX MX200030A patent/MX171886B/en unknown
 - 1984-01-16 DE DE8484300251T patent/DE3484356D1/en not_active Expired - Fee Related
 - 1984-01-16 EP EP89202115A patent/EP0352870A1/en not_active Ceased
 - 1984-01-16 EP EP84300251A patent/EP0117052B1/en not_active Expired - Lifetime
 - 1984-09-13 NO NO84843626A patent/NO170007C/en unknown
 
 - 
        1985
        
- 1985-02-22 US US06/704,180 patent/USRE32068E/en not_active Expired - Fee Related
 
 - 
        1986
        
- 1986-06-16 CA CA000511716A patent/CA1217709B/en not_active Expired
 
 - 
        1987
        
- 1987-02-05 AU AU68553/87A patent/AU584272B2/en not_active Ceased
 - 1987-02-05 AU AU68554/87A patent/AU584781B2/en not_active Ceased
 
 
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3595782A (en) * | 1968-12-05 | 1971-07-27 | Fluor Corp | Method for separating crabon dioxide from hydrocarbons | 
| US4035167A (en) * | 1976-02-13 | 1977-07-12 | Continental Oil Company | Recovery of ethane and ethylene from gaseous mixtures | 
Also Published As
| Publication number | Publication date | 
|---|---|
| EP0352870A1 (en) | 1990-01-31 | 
| NO170007B (en) | 1992-05-25 | 
| NO843626L (en) | 1984-09-13 | 
| WO1984002767A1 (en) | 1984-07-19 | 
| AU560357B2 (en) | 1987-04-02 | 
| NZ218798A (en) | 1988-08-30 | 
| AU584781B2 (en) | 1989-06-01 | 
| MX171886B (en) | 1993-11-22 | 
| EP0117052A1 (en) | 1984-08-29 | 
| AU6855487A (en) | 1987-05-07 | 
| AU6855387A (en) | 1987-05-07 | 
| JPS60500448A (en) | 1985-04-04 | 
| NO170007C (en) | 1992-09-02 | 
| AU2491384A (en) | 1984-08-02 | 
| DE3484356D1 (en) | 1991-05-08 | 
| EP0117052B1 (en) | 1991-04-03 | 
| CA1217709B (en) | 1987-02-07 | 
| US4428759A (en) | 1984-01-31 | 
| CA1185888A (en) | 1985-04-23 | 
| AU584272B2 (en) | 1989-05-18 | 
| NZ206821A (en) | 1988-08-30 | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| USRE32068E (en) | Distillative separation employing bottom additives | |
| US4753666A (en) | Distillative processing of CO2 and hydrocarbons for enhanced oil recovery | |
| US4512782A (en) | Multistage rectification of gaseous hydrocarbons containing sour gases | |
| US4350511A (en) | Distillative separation of carbon dioxide from light hydrocarbons | |
| EP0029678B1 (en) | Recovery of c2 hydrocarbons from demethanizer overhead | |
| US5992175A (en) | Enhanced NGL recovery processes | |
| US4451275A (en) | Nitrogen rejection from natural gas with CO2 and variable N2 content | |
| US4881960A (en) | Fractionation of a hydrocarbon mixture | |
| CA1175339A (en) | Distillative separation of methane and carbon dioxide | |
| US6308532B1 (en) | System and process for the recovery of propylene and ethylene from refinery offgases | |
| US4444576A (en) | Energy-saving distillative separation using low-temperature heat input | |
| US3902329A (en) | Distillation of methane and hydrogen from ethylene | |
| US2849371A (en) | Separation and recovery of hydrocarbons from gaseous mixtures thereof | |
| US4284423A (en) | Separation of carbon dioxide and other acid gas components from hydrocarbon feeds containing admixtures of methane and hydrogen | |
| US7041156B2 (en) | Removing natural gas liquids from a gaseous natural gas stream | |
| USRE32600E (en) | Distillative separation employing bottom additives | |
| EP0230754B1 (en) | Separation of gaseous mixtures | |
| EP0023838B2 (en) | Separation of gas mixtures | |
| KR930001593B1 (en) | Process for recovering hydrogen-free higher boiling synthesis gas component | |
| US2916888A (en) | Hydrocarbon purification process | |
| US6578377B1 (en) | Recovery of hydrogen and carbon monoxide from mixtures including methane and hydrocarbons heavier than methane | |
| US3507127A (en) | Purification of nitrogen which contains methane | |
| KR100380868B1 (en) | How to produce ammonia and recover argon using low purity oxygen | |
| US3512368A (en) | Helium and nitrogen containing fuel product recovery | |
| US3915680A (en) | Separation of low-boiling gas mixtures | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| FPAY | Fee payment | 
             Year of fee payment: 4  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 8  | 
        |
| AS | Assignment | 
             Owner name: PROCESS SYSTEMS INTERNATIONAL, INC. A CORP. OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KOCH PROCESS SYSTEMS, INC. A CORP. OF DELAWARE;REEL/FRAME:006109/0272 Effective date: 19910830  | 
        |
| AS | Assignment | 
             Owner name: NBD BANK, N.A., MICHIGAN Free format text: SECURITY INTEREST;ASSIGNOR:PROCESS SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:007327/0231 Effective date: 19941202 Owner name: NATIONAL CITY BANK, OHIO Free format text: SECURITY INTEREST;ASSIGNOR:PROCESS SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:007327/0231 Effective date: 19941202  | 
        |
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| FP | Lapsed due to failure to pay maintenance fee | 
             Effective date: 19960131  | 
        |
| AS | Assignment | 
             Owner name: JPMORGAN CHASE BANK (FORMERLY KNOWN AS THE CHASE B Free format text: SECURITY AGREEMENT;ASSIGNOR:CHART INDUSTRIES, INC;REEL/FRAME:012590/0215 Effective date: 19990412  | 
        |
| AS | Assignment | 
             Owner name: CHART INDUSTRIES, INC., OHIO Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (F.K.A. THE CHASE MANHATTAN BANK);REEL/FRAME:016686/0482 Effective date: 20051017  |