USRE31406E - Oxygen permeable contact lens composition, methods and article of manufacture - Google Patents
Oxygen permeable contact lens composition, methods and article of manufacture Download PDFInfo
- Publication number
- USRE31406E USRE31406E US06/215,486 US21548680A USRE31406E US RE31406 E USRE31406 E US RE31406E US 21548680 A US21548680 A US 21548680A US RE31406 E USRE31406 E US RE31406E
- Authority
- US
- United States
- Prior art keywords
- iaddend
- iadd
- contact lens
- monomer
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 239000001301 oxygen Substances 0.000 title claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 23
- 239000000203 mixture Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 title description 10
- 229920001577 copolymer Polymers 0.000 claims abstract description 49
- -1 acrylic ester Chemical class 0.000 claims abstract description 17
- 230000035699 permeability Effects 0.000 claims abstract description 16
- 239000000178 monomer Substances 0.000 claims description 48
- 150000002148 esters Chemical class 0.000 claims description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 7
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 7
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 6
- 229920005862 polyol Polymers 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 150000003077 polyols Chemical group 0.000 claims description 3
- 239000000080 wetting agent Substances 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 238000009736 wetting Methods 0.000 claims 8
- 125000005395 methacrylic acid group Chemical class 0.000 claims 6
- 239000007787 solid Substances 0.000 claims 5
- 239000002253 acid Substances 0.000 claims 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 2
- 101150108015 STR6 gene Proteins 0.000 claims 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 21
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 13
- 241000219739 Lens Species 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 9
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- HGXJDMCMYLEZMJ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOOC(=O)C(C)(C)C HGXJDMCMYLEZMJ-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 5
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- RZKKLXUEULTOGP-UHFFFAOYSA-N [dimethyl(trimethylsilyloxy)silyl]methyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC[Si](C)(C)O[Si](C)(C)C RZKKLXUEULTOGP-UHFFFAOYSA-N 0.000 description 4
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 4
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 4
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- ITKVLPYNJQOCPW-UHFFFAOYSA-N chloro-(chloromethyl)-dimethylsilane Chemical compound C[Si](C)(Cl)CCl ITKVLPYNJQOCPW-UHFFFAOYSA-N 0.000 description 3
- OBSWSTDGLWZVEI-UHFFFAOYSA-N chloromethyl-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)CCl OBSWSTDGLWZVEI-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 125000005401 siloxanyl group Chemical group 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000005051 trimethylchlorosilane Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- ZNLZYZPAMISSAY-UHFFFAOYSA-N 1-[dimethyl-[methyl(trimethylsilyloxy)silyl]oxysilyl]hexyl 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OC([Si](O[SiH](O[Si](C)(C)C)C)(C)C)CCCCC ZNLZYZPAMISSAY-UHFFFAOYSA-N 0.000 description 1
- PIOXEVIMKXQAMA-UHFFFAOYSA-N 1-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CC)[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C PIOXEVIMKXQAMA-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- LCDOAIYHQKNNGE-UHFFFAOYSA-N 2-[[dimethyl(trimethylsilyloxy)silyl]oxy-dimethylsilyl]ethyl prop-2-enoate Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCOC(=O)C=C LCDOAIYHQKNNGE-UHFFFAOYSA-N 0.000 description 1
- IKYPELFEJIWCLL-UHFFFAOYSA-N 3-[[dimethyl-[methyl(trimethylsilyloxy)silyl]oxysilyl]oxy-dimethylsilyl]hexyl 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OCCC([Si](O[Si](O[SiH](O[Si](C)(C)C)C)(C)C)(C)C)CCC IKYPELFEJIWCLL-UHFFFAOYSA-N 0.000 description 1
- BESKSSIEODQWBP-UHFFFAOYSA-N 3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C BESKSSIEODQWBP-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 244000203494 Lens culinaris subsp culinaris Species 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- CIYIPYZRIKORJO-UHFFFAOYSA-N [1-[dimethyl-[methyl(trimethylsilyloxy)silyl]oxysilyl]-3-methylbutyl] 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OC([Si](O[SiH](O[Si](C)(C)C)C)(C)C)CC(C)C CIYIPYZRIKORJO-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- DAUXOZPNTNLUEY-UHFFFAOYSA-N [2-[ethyl(triethylsilyloxy)silyl]-2-phenylethyl] 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OCC([SiH](O[Si](CC)(CC)CC)CC)C1=CC=CC=C1 DAUXOZPNTNLUEY-UHFFFAOYSA-N 0.000 description 1
- RSUZYAHESZNVMD-UHFFFAOYSA-N [2-[methyl(trimethylsilyloxy)silyl]-2-phenylethyl] prop-2-enoate Chemical compound C=CC(=O)OCC([SiH](O[Si](C)(C)C)C)C1=CC=CC=C1 RSUZYAHESZNVMD-UHFFFAOYSA-N 0.000 description 1
- WMXKLMNSLJBNCG-UHFFFAOYSA-N [3,3-dimethyl-2-[methyl(trimethylsilyloxy)silyl]butyl] prop-2-enoate Chemical compound C(C=C)(=O)OCC([SiH](O[Si](C)(C)C)C)C(C)(C)C WMXKLMNSLJBNCG-UHFFFAOYSA-N 0.000 description 1
- VKPVUNFNWSJTBJ-UHFFFAOYSA-N [dimethyl(trimethylsilyloxy)silyl]methyl prop-2-enoate Chemical compound C[Si](C)(C)O[Si](C)(C)COC(=O)C=C VKPVUNFNWSJTBJ-UHFFFAOYSA-N 0.000 description 1
- YPMNWQTVWVHXIQ-UHFFFAOYSA-N [methyl-bis(trimethylsilyloxy)silyl]methyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC[Si](C)(O[Si](C)(C)C)O[Si](C)(C)C YPMNWQTVWVHXIQ-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- XJOBOFWTZOKMOH-UHFFFAOYSA-N decanoyl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(=O)CCCCCCCCC XJOBOFWTZOKMOH-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- SCFQUKBBGYTJNC-UHFFFAOYSA-N heptyl prop-2-enoate Chemical compound CCCCCCCOC(=O)C=C SCFQUKBBGYTJNC-UHFFFAOYSA-N 0.000 description 1
- PZDUWXKXFAIFOR-UHFFFAOYSA-N hexadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C=C PZDUWXKXFAIFOR-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- MDYPDLBFDATSCF-UHFFFAOYSA-N nonyl prop-2-enoate Chemical compound CCCCCCCCCOC(=O)C=C MDYPDLBFDATSCF-UHFFFAOYSA-N 0.000 description 1
- SRSFOMHQIATOFV-UHFFFAOYSA-N octanoyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(=O)CCCCCCC SRSFOMHQIATOFV-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- RGBXDEHYFWDBKD-UHFFFAOYSA-N propan-2-yl propan-2-yloxy carbonate Chemical compound CC(C)OOC(=O)OC(C)C RGBXDEHYFWDBKD-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- QHUNJMXHQHHWQP-UHFFFAOYSA-N trimethylsilyl acetate Chemical compound CC(=O)O[Si](C)(C)C QHUNJMXHQHHWQP-UHFFFAOYSA-N 0.000 description 1
- RRLMGCBZYFFRED-UHFFFAOYSA-N undecyl prop-2-enoate Chemical compound CCCCCCCCCCCOC(=O)C=C RRLMGCBZYFFRED-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
- C08F230/085—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
Definitions
- This invention relates to novel copolymer compositions.
- the invention relates to methods for increasing the oxygen permeability of polymerized acrylates and methacrylates.
- the invention concerns contact lenses having increased oxygen permeability.
- the invention relates to wettable contact lens materials.
- the invention concerns oxygen-permeable, wettable transparent copolymers which can be cast, molded or machined to provide improved contact lenses.
- Polymethylmethacrylate is rigid and durable but relatively impermeable to oxygen.
- the hydrogel materials based on hydrophilic polymers such as polyhydroxyethylmethacrylate are soft and have poor durability. In addition, they provide an environment which is favorable for bacterial growth and are also relatively impermeable to oxygen.
- Silicone rubber is soft and resilient and is highly permeable to oxygen.
- a filler which increases the refractive index of the mixture, must be added to improve the durability.
- the precision machining and polishing which is necessary in the fabrication of a corrective contact lens is extremely difficult with the elastomeric silicone rubbers.
- novel copolymers which I have discovered are prepared by copolymerizing a polysiloxanylalkyl ester of acrylic or methacrylic acid with an alkanol ester of acrylic or methacrylic acid.
- the polysiloxanylalkyl ester monomer has the structural formula ##STR1## wherein X and Y are selected from the class consisting of C 1 -C 5 alkyl groups, phenyl groups and Z groups; Z is a group of the structure ##STR2## A is selected from the class consisting of C 1 -C 5 alkyl groups and phenyl groups; R is selected from the class consisting of methyl groups and hydrogen; m is an integer from one to five; and n is an integer from one to three.
- the alkyl group contains from 1 to 20 carbon atoms.
- polysiloxanylalkyl ester comonomers which may be employed in the practice of the invention include: ##STR3##
- alkanol ester comonomers which may be employed in the practice of the invention include:
- novel copolymers of the present invention comprise about 10-60 parts by weight of one or more of the polysiloxanylalkyl ester monomers copolymerized with about 40-90 parts by weight of one or more of the alkanol ester comonomers.
- polysiloxanyl acrylate and methacrylate esters which have a straight or branched siloxane chain containing two to four silicon atoms having methyl or phenyl substituents and one to three ethylene groups connecting the siloxanyl chain to the acryloxy or methacryloxy group. Best results are obtained if the polysiloxanyl ester content of the comonomer is up to 35% by weight and correspondingly less, e.g., 10-15%, as the silica content of the ester is increased.
- branched chain alkanol ester e.g., 2-ethylhexyl acrylate
- a lower polysiloxanyl ester comonomer e.g., pentamethyldisiloxanylmethyl acrylate.
- the copolymers of the invention are prepared by contacting the mixture of comonomers with a free radical generating polymerization initiator of the type commonly used in polymerizing ethylenically unsaturated compounds.
- a free radical generating polymerization initiator of the type commonly used in polymerizing ethylenically unsaturated compounds.
- Representative free radical polymerization initiators include:
- the comonomer mixture containing between about 0.05-2% by weight of the free radical initiator is heated to a temperature between 30° C.-100° C., preferably below 70° C., to initiate and complete the polymerization.
- the polymerization can be carried out directly in a contact lens mold to form a lens generally having the desired configuration.
- the polymerization mixture can be heated in a suitable mold or container to form discs, rods or sheets which can then be machined to the desired shape using conventional equipment and procedures employed for fabricating lenses from polymethyl methacrylate.
- the temperature is preferably maintained below 70° C. in order to minimize the formation of bubbles in the copolymer.
- the novel copolymers have vastly increased oxygen permeability in comparison to conventional contact lens materials.
- a copolymer comprising 35 parts pentamethyldisiloxanylmethyl methacrylate and 65 parts of methyl methacrylate has an oxygen permeability of 500 cc.-mil/100 in. 2 /24 hr./atm. compared to an oxygen permeability of 34 for polymethyl methacrylate and 13 for polyhydroxyethylmethacrylate.
- These oxygen permeability values were determined in accordance with ASTM D1434, using a tester which has a 3 "Dow" cell pressure change detection units. Discs were cut to proper size to fit the tester, placed in the apparatus and conditioned a minimum of 16 hours under both vacuum and oxygen.
- the test was performed by plotting a curve of cell pressure versus time. The slope of the curve was then used to calculate the oxygen transmission rate.
- the oxygen permeability of the copolymers of the invention is at least 4 times to as much as several hundred times higher than that of lenses prepared from polymethylmethacrylate or the so-called "hydrogel" lenses prepared from polyhydroxyethylmethacrylate.
- wettability can be imparted to the copolymer by the addition of from about 0.1% to about 10% by weight of one or more hydrophilic monomers to the copolymerization mixture.
- hydrophilic monomers include hydroxyalkyl acrylates and methacrylates wherein the alkyl group contains 1 to 4 carbon atoms, acrylic and methacrylic acid, acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl acrylate and methacrylate and N-vinylpyrrolidone.
- the wettability of the surface of contact lenses made from the novel copolymers can be improved by the application of a wetting agent such as, for example, a dilute aqueous solution of alkyldimethylbenzylammonium chloride, by exposure of the surface to a corona discharge or by chemical treatment of the surface with a strong oxidizing agent such as nitric acid.
- a wetting agent such as, for example, a dilute aqueous solution of alkyldimethylbenzylammonium chloride
- the rigidity of the contact lenses prepared from materials useful in the practice of this invention may be varied by changing the ratio of comonomers and/or their chemical composition.
- contact lenses prepared from acrylate monomers are more flexible than those prepared from methacrylate monomers.
- a copolymer of a polysiloxanylalkyl methacrylate and an alkyl methacrylate may be fabricated into a contact lens which is more rigid than a lens prepared from the copolymer of the corresponding acrylates. The lower the alkyl methacrylate content of the copolymer the more flexible the contact lens prepared therefrom.
- the rigidity of a contact lens prepared from the materials useful in the practice of this invention may be increased, if desired, by the incorporation into the copolymer composition of 0.01% to about 2% by weight of a crosslinking monomer such as a polyol dimethacrylate or diacrylate or a polyol acrylic ester of higher functionality, for example, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, neopentyl glycol diacrylate and pentaerythritol triacrylate or tetra-acrylate.
- a crosslinking monomer such as a polyol dimethacrylate or diacrylate or a polyol acrylic ester of higher functionality, for example, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, neopentyl glycol diacrylate and pentaerythritol triacrylate or tetra-acrylate.
- the refractive index is an important but noncritical characteristic of a contact lens.
- the refractive index of polymethylmethacrylate the polymer most widely used in the fabrication of contact lenses, is 1.49.
- the refractive indices of the copolymers useful in the practice of this invention may be varied between 1.35 and 1.50 by varying the ratio and nature of the comonomers. In general, increasing the polysiloxanyl monomer content of the copolymer will decrease its refractive index. The nature of the substituents on the silicon atoms of the polysiloxanyl monomer also importantly affects the refractive index of the copolymer. Lower straight chain alkyl substituents produce copolymers of lower refractive index while polysiloxanyl monomers having phenyl substituents on the silicon atoms yield copolymers having a higher refractive index.
- This example illustrates the synthesis of a representative polysiloxanylalkyl ester comonomer, pentamethyldisiloxanylmethyl methacrylate.
- Distilled trimethylchlorosilane (635 ml., 5 moles), B.P. 59.9° C., is placed in a 1-liter, 3-necked, round-bottom flask equipped with a magnetic stirrer, a thermometer, a gas inlet tube and a Dry-Ice cooled reflux condenser whose outlet is connected to a water scrubber.
- chlorine gas is introduced through the gas inlet tube and the flask is irradiated by ultraviolet light from a General Electric 15-watt germicidal lamp placed at a distance of 6 in. from the flask.
- Gaseous hydrogen chloride is evolved and absorbed in the water scrubber which contains a caustic soda solution and a small amount of phenolphthalein.
- the temperature is maintained in the range 30°-40° C. while chlorine is bubbled through the reaction mixture.
- 5 moles of hydrogen chloride is evolved, as indicated by the discharge of the pink color in the water scrubber.
- the product is distilled through a column with 18 theoretic plates and the fraction distilling at 115° C. is collected.
- the disiloxane monomer recovered by distillation contains co-distilled hydroquinone. Purification is accomplished by washing the monomer with aqueous alkali solution containing 25% sodium carbonate and 1% sodium hydroxide until the aqueous layer is colorless. The oily monomer layer is then washed with water until neutral and dried over anhydrous sodium carbonate. The dried monomer is refrigerated until used.
- This example illustrates the preparation of a representative oxygen-permeable copolymer.
- a mixture of 35 parts of the disiloxane monomer of Example 1, 65 parts of methyl methacrylate and 0.004 ml. of tert-butyl peroxypivalate per ml. of monomer mixture is placed in a polypropylene Petri dish to a height of one-eighth of an inch.
- the dish is covered and placed in a vacuum oven which has been purged with nitrogen. The oven is closed and the temperature is maintained at 45° C. for 20 hours.
- the copolymer disc is hard, colorless, transparent and rigid.
- the oxygen permeability is 500 cc.-mil/100 in. 2 /24 hr./atm.
- the oxygen permeability of a disc of polymethylmethacrylate is 34 cc.-mil/100 in. 2 /24 hr./atm. while that of a disc of polyhydroxyethylmethacrylate is 13 cc.-mil/100 in. 2 /24 hr./atm.
- a cylindrical plug having dimensions of 1/4 inch thickness and 1/2 inch diameter is prepared by copolymerizing the 35/65 disiloxane monomer/methyl methacrylate mixture in a polyethylene cap at 45° C. for 20 hours.
- the plug is machined, cut, polished and finished to a concavo-convex lens.
- the polymerized plugs are machined and finished in the usual manner to lenses with a concave surface on one side and a convex surface on the opposite side.
- the lenses are easily wetted by water and an aqueous saline solution.
- This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
- a disc is prepared in the manner described in Example 2 from a mixture of 45 parts of the disiloxane monomer of Example 1, 50 parts of methyl methacrylate and 5 parts of hydroxyethylmethacrylate using tert-butyl peroxypivalate as catalyst. The polymerization is carried out at 45° C. for 20 hours. The resultant disc is colorless, transparent, hard and semi-rigid. The surface of the disc is readily wetted by water and saline solution. The oxygen permeability of the terpolymer is 765 cc.-mil/100 in. 2 /24 hr./atm.
- This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
- Cylindrical plugs are prepared in the manner described in Example 3 from mixtures of the disiloxane monomer (DSM) of Example 1, methyl methacrylate (MMA), octadecyl methacrylate (ODMA), hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) by polymerization at 70° C. for 2.5 hours using tert-butyl peroxypivalate as catalyst.
- DSM disiloxane monomer
- MMA methyl methacrylate
- ODMA octadecyl methacrylate
- HEMA hydroxyethyl methacrylate
- EGDMA ethylene glycol dimethacrylate
- This example illustrates the synthesis of 1,1,1-tris(trimethylsiloxy)methacrylatopropylsilane.
- Methacrylatopropyltrimethoxysilane (0.1 mole, 24.8 g.), is mixed with 0.3 mole (39.6 g.) of trimethylacetoxysilane in a flask equipped with a magnetic stirrer.
- Ethylsulfuric acid (6.5 g.), prepared as described above, is added dropwise from a dropping funnel into the stirred mixture.
- the flask is cooled during the addition of the ethylsulfuric acid catalyst solution in an ice water bath. After completion of the catalyst addition, the solution is stirred at room temperature for two days. The upper oily layer is then separated, washed with sodium bicarbonate solution, washed with water and then dried over anhydrous sodium sulfate.
- the produce is distilled under vacuum to remove ethyl acetate.
- the distillation flask is immersed in a water bath whose temperature is maintained at 40°-45° C. to prevent premature polymerization of the monomer.
- the yield of tris(trimethylsiloxy)methacrylatopropylsilane is 86% and the density of the monomer is 0.989 g./cc. at 20° C.
- the monomer is refrigerated until used.
- This example illustrates the preparation of a copolymer of methyl methacrylate with the novel polysiloxanyl ester of Example 15.
- a cylindrical plug is prepared by polymerizing a mixture of 40 parts of tris(trimethylsiloxy)- ⁇ -methacryloxypropylsilane and 60 parts of methyl methacrylate in the presence of tert-butyl peroxypivalate at 50° C. Lenses prepared from the plug are hard, transparent and oxygen permeable.
- This example illustrates the preparation of various copolymers of polysiloxanyl esters and various alkyl acrylates or methacrylates.
- the polysiloxanyl ester comonomers are prepared according to the general techniques of Examples 1 and 15.
- the copolymer is prepared according to the general technique of Example 2. All copolymers resulting are transparent, hard and rigid so as to be suitable for contact lens manufacture.
- the oxygen permeability of the copolymers varies from 300-500 cc.-mil/100 in. 2 /24 hr./atm. as measured by the technique previously described.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Eyeglasses (AREA)
Abstract
Contact lenses are fabricated from a copolymer of a polysiloxanylalkyl acrylic ester and an alkyl acrylic ester. The copolymer has increased oxygen permeability.
Description
.Iadd.
This is a continuation of application Ser. No. 931,355, abandoned, filed Aug. 7, 1978 which was a reissue application of Ser. No. 263,541, filed June 16, 1972, now U.S. Pat. No. 3,808,178. .Iaddend.
This invention relates to novel copolymer compositions.
In another aspect, the invention relates to methods for increasing the oxygen permeability of polymerized acrylates and methacrylates.
In still another respect, the invention concerns contact lenses having increased oxygen permeability.
In yet another respect, the invention relates to wettable contact lens materials.
In a further aspect, the invention concerns oxygen-permeable, wettable transparent copolymers which can be cast, molded or machined to provide improved contact lenses.
The prior art teaches the use of many different polymeric materials in contact lenses. However, although these polymers possess the optical clarity necessary for corrective lenses, they suffer from other characteristics which reduce their potential utility.
Polymethylmethacrylate is rigid and durable but relatively impermeable to oxygen. The hydrogel materials based on hydrophilic polymers such as polyhydroxyethylmethacrylate are soft and have poor durability. In addition, they provide an environment which is favorable for bacterial growth and are also relatively impermeable to oxygen.
Silicone rubber is soft and resilient and is highly permeable to oxygen. However, due to the low strength of polysiloxanes, a filler which increases the refractive index of the mixture, must be added to improve the durability. Further, the precision machining and polishing which is necessary in the fabrication of a corrective contact lens is extremely difficult with the elastomeric silicone rubbers.
Accordingly, it would be highly desirable to provide a polymeric material suitable for use in fabricating contact lenses having increased oxygen permeability, improved mechanical strength, and which is sufficiently rigid to permit precision machining and polishing. I have now discovered novel copolymer materials which possess these properties.
The novel copolymers which I have discovered are prepared by copolymerizing a polysiloxanylalkyl ester of acrylic or methacrylic acid with an alkanol ester of acrylic or methacrylic acid.
The polysiloxanylalkyl ester monomer has the structural formula ##STR1## wherein X and Y are selected from the class consisting of C1 -C5 alkyl groups, phenyl groups and Z groups; Z is a group of the structure ##STR2## A is selected from the class consisting of C1 -C5 alkyl groups and phenyl groups; R is selected from the class consisting of methyl groups and hydrogen; m is an integer from one to five; and n is an integer from one to three.
In the alkanol ester comonomers, the alkyl group contains from 1 to 20 carbon atoms.
Representative polysiloxanylalkyl ester comonomers which may be employed in the practice of the invention include: ##STR3##
Representative alkanol ester comonomers which may be employed in the practice of the invention include:
methyl acrylate and methacrylate
ethyl acrylate and methacrylate
propyl acrylate and methacrylate
isopropyl acrylate and methacrylate
butyl acrylate and methacrylate
amyl acrylate and methacrylate
hexyl acrylate and methacrylate
heptyl acrylate and methacrylate
octyl acrylate and methacrylate
2-ethylhexyl acrylate and methacrylate
nonyl acrylate and methacrylate
decyl acrylate and methacrylate
undecyl acrylate and methacrylate
lauryl acrylate and methacrylate
cetyl acrylate and methacrylate
octadecyl acrylate and methacrylate
The novel copolymers of the present invention comprise about 10-60 parts by weight of one or more of the polysiloxanylalkyl ester monomers copolymerized with about 40-90 parts by weight of one or more of the alkanol ester comonomers.
At present it is preferred to employ polysiloxanyl acrylate and methacrylate esters which have a straight or branched siloxane chain containing two to four silicon atoms having methyl or phenyl substituents and one to three ethylene groups connecting the siloxanyl chain to the acryloxy or methacryloxy group. Best results are obtained if the polysiloxanyl ester content of the comonomer is up to 35% by weight and correspondingly less, e.g., 10-15%, as the silica content of the ester is increased. If one employs a branched chain alkanol ester, e.g., 2-ethylhexyl acrylate, one preferably, employs a lower polysiloxanyl ester comonomer, e.g., pentamethyldisiloxanylmethyl acrylate.
The copolymers of the invention are prepared by contacting the mixture of comonomers with a free radical generating polymerization initiator of the type commonly used in polymerizing ethylenically unsaturated compounds. Representative free radical polymerization initiators include:
acetyl peroxide
lauroyl peroxide
decanoyl peroxide
caprylyl peroxide
benzoyl peroxide
tertiarybutyl peroxypivalate
diisopropyl peroxycarbonate
tertiarybutyl peroctoate
α,α'-azobisisobutyronitrile
Conventional polymerization techniques can be employed to produce the novel copolymers. The comonomer mixture containing between about 0.05-2% by weight of the free radical initiator is heated to a temperature between 30° C.-100° C., preferably below 70° C., to initiate and complete the polymerization. The polymerization can be carried out directly in a contact lens mold to form a lens generally having the desired configuration. Alternatively, the polymerization mixture can be heated in a suitable mold or container to form discs, rods or sheets which can then be machined to the desired shape using conventional equipment and procedures employed for fabricating lenses from polymethyl methacrylate. The temperature is preferably maintained below 70° C. in order to minimize the formation of bubbles in the copolymer. Instead of employing the bulk polymerization techniques described above, one can employ solution, emulsion or suspension polymerization to prepare the novel copolymers, using techniques conventionally used in the preparation of polymers from ethylenically unsaturated monomers. The copolymer thus produced may be extruded, pressed or molded into rods, sheets or other convenient shapes which are then machined to produce the contact lenses.
The novel copolymers have vastly increased oxygen permeability in comparison to conventional contact lens materials. For example, a copolymer comprising 35 parts pentamethyldisiloxanylmethyl methacrylate and 65 parts of methyl methacrylate has an oxygen permeability of 500 cc.-mil/100 in.2 /24 hr./atm. compared to an oxygen permeability of 34 for polymethyl methacrylate and 13 for polyhydroxyethylmethacrylate. These oxygen permeability values were determined in accordance with ASTM D1434, using a tester which has a 3 "Dow" cell pressure change detection units. Discs were cut to proper size to fit the tester, placed in the apparatus and conditioned a minimum of 16 hours under both vacuum and oxygen. Immediately following the conditioning period, the test was performed by plotting a curve of cell pressure versus time. The slope of the curve was then used to calculate the oxygen transmission rate. In general, the oxygen permeability of the copolymers of the invention is at least 4 times to as much as several hundred times higher than that of lenses prepared from polymethylmethacrylate or the so-called "hydrogel" lenses prepared from polyhydroxyethylmethacrylate.
While some of the novel copolymers are inherently wettable by human tears, it may be necessary to improve the wettability of others. This can be accomplished by several alternate methods. For example, wettability can be imparted to the copolymer by the addition of from about 0.1% to about 10% by weight of one or more hydrophilic monomers to the copolymerization mixture. Such monomers include hydroxyalkyl acrylates and methacrylates wherein the alkyl group contains 1 to 4 carbon atoms, acrylic and methacrylic acid, acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl acrylate and methacrylate and N-vinylpyrrolidone. Alternatively, the wettability of the surface of contact lenses made from the novel copolymers can be improved by the application of a wetting agent such as, for example, a dilute aqueous solution of alkyldimethylbenzylammonium chloride, by exposure of the surface to a corona discharge or by chemical treatment of the surface with a strong oxidizing agent such as nitric acid.
The rigidity of the contact lenses prepared from materials useful in the practice of this invention may be varied by changing the ratio of comonomers and/or their chemical composition. Thus, contact lenses prepared from acrylate monomers are more flexible than those prepared from methacrylate monomers. A copolymer of a polysiloxanylalkyl methacrylate and an alkyl methacrylate may be fabricated into a contact lens which is more rigid than a lens prepared from the copolymer of the corresponding acrylates. The lower the alkyl methacrylate content of the copolymer the more flexible the contact lens prepared therefrom.
The rigidity of a contact lens prepared from the materials useful in the practice of this invention may be increased, if desired, by the incorporation into the copolymer composition of 0.01% to about 2% by weight of a crosslinking monomer such as a polyol dimethacrylate or diacrylate or a polyol acrylic ester of higher functionality, for example, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, neopentyl glycol diacrylate and pentaerythritol triacrylate or tetra-acrylate.
The refractive index is an important but noncritical characteristic of a contact lens. Thus, the refractive index of polymethylmethacrylate, the polymer most widely used in the fabrication of contact lenses, is 1.49. The refractive indices of the copolymers useful in the practice of this invention may be varied between 1.35 and 1.50 by varying the ratio and nature of the comonomers. In general, increasing the polysiloxanyl monomer content of the copolymer will decrease its refractive index. The nature of the substituents on the silicon atoms of the polysiloxanyl monomer also importantly affects the refractive index of the copolymer. Lower straight chain alkyl substituents produce copolymers of lower refractive index while polysiloxanyl monomers having phenyl substituents on the silicon atoms yield copolymers having a higher refractive index.
The following examples are presented to illustrate the practice of the invention and not as an indication of the limits of the scope thereof.
This example illustrates the synthesis of a representative polysiloxanylalkyl ester comonomer, pentamethyldisiloxanylmethyl methacrylate.
Distilled trimethylchlorosilane (635 ml., 5 moles), B.P. 59.9° C., is placed in a 1-liter, 3-necked, round-bottom flask equipped with a magnetic stirrer, a thermometer, a gas inlet tube and a Dry-Ice cooled reflux condenser whose outlet is connected to a water scrubber. After flushing the apparatus with dry nitrogen for 15 minutes, chlorine gas is introduced through the gas inlet tube and the flask is irradiated by ultraviolet light from a General Electric 15-watt germicidal lamp placed at a distance of 6 in. from the flask. Gaseous hydrogen chloride is evolved and absorbed in the water scrubber which contains a caustic soda solution and a small amount of phenolphthalein. The temperature is maintained in the range 30°-40° C. while chlorine is bubbled through the reaction mixture. After 30 hours of photochlorination, 5 moles of hydrogen chloride is evolved, as indicated by the discharge of the pink color in the water scrubber. The product is distilled through a column with 18 theoretic plates and the fraction distilling at 115° C. is collected. The yield of dimethylchloromethylchlorosilane (d25 =1.07) is 30%.
134 ml. dimethylchloromethylchlorosilane (1 mole) and 127 ml. (1 mole) of trimethylchlorosilane are mixed and shaken thoroughly. When 600 ml. of distilled water is added, exothermic hydrolytic reactions occur immediately. The mixture is shaken on a mechanical shaker overnight to complete hydrolysis. The upper oily layer is separated and is dried over anhydrous sodium carbonate. After drying, the product is distilled through a column of 13 theoretical plates and the fraction which distills at 151°-152° C. is collected. The yield of pentamethylchloromethyldisiloxane (B.P. 151.8° C., d25 =0.910, nD 20 =1.4106) is 30%.
30 ml. pentamethylchloromethyldisiloxane (0.14 mole), 13.8 ml. (0.16 mole) distilled methacrylic acid, 21.0 ml. (0.15 mole) triethylamine, 30 ml. xylene and 0.8 g. hyroquinone are mixed and refluxed for 16 hours. Triethylamine hydrochloride precipitates and is filtered. The filtrate is mixed with 1 g. of hydroquinone and 1 g. of copper powder. Xylene is distilled from the mixture at atmospheric pressure. The distillation apparatus is then connected to a vacuum line and the fraction which distills at 73°-75° C. under 4-5 mm. Hg pressure is collected. The yield of pentamethyldisiloxanylmethyl methacrylate (B.P. 73°-74° C./4 mm. Hg, d20 =0.910, nD 20 =1.420) is 45%.
The disiloxane monomer recovered by distillation contains co-distilled hydroquinone. Purification is accomplished by washing the monomer with aqueous alkali solution containing 25% sodium carbonate and 1% sodium hydroxide until the aqueous layer is colorless. The oily monomer layer is then washed with water until neutral and dried over anhydrous sodium carbonate. The dried monomer is refrigerated until used.
This example illustrates the preparation of a representative oxygen-permeable copolymer.
A mixture of 35 parts of the disiloxane monomer of Example 1, 65 parts of methyl methacrylate and 0.004 ml. of tert-butyl peroxypivalate per ml. of monomer mixture is placed in a polypropylene Petri dish to a height of one-eighth of an inch. The dish is covered and placed in a vacuum oven which has been purged with nitrogen. The oven is closed and the temperature is maintained at 45° C. for 20 hours. The copolymer disc is hard, colorless, transparent and rigid. The oxygen permeability is 500 cc.-mil/100 in.2 /24 hr./atm.
The oxygen permeability of a disc of polymethylmethacrylate is 34 cc.-mil/100 in.2 /24 hr./atm. while that of a disc of polyhydroxyethylmethacrylate is 13 cc.-mil/100 in.2 /24 hr./atm.
A cylindrical plug having dimensions of 1/4 inch thickness and 1/2 inch diameter is prepared by copolymerizing the 35/65 disiloxane monomer/methyl methacrylate mixture in a polyethylene cap at 45° C. for 20 hours. The plug is machined, cut, polished and finished to a concavo-convex lens.
These examples illustrate the preparation and properties of copolymers containing varying proportions of a siloxanyl monomer, methyl methacrylate, and a hydrophilic monomer (hydroxyethyl methacrylate).
Mixtures of the disiloxane monomer of Example 1 (DSM), methyl methacrylate (MMA), hydroxyethyl methacrylate (HEMA) and tert-butyl peroxy pivalate (0.004 ml. per ml. of monomer mixture) is polymerized in polyethylene caps under the conditions shown in the following table:
______________________________________
Composition, wt. % Temp. Time
Example
DSM MMA HEMA °C.
hr. Properties*
______________________________________
3 20 75 5 50 6.5 T, H, R
4 35 60 5 45 20 T, H, R
5 44 50 6 50 48 T, H, SR
6 45 50 5 45 20 T, H. SR
7 45 49 6 70 1 T, H, SR
50 16
8 51 40 9 75 2.5 T, H. SR
9 65 30 5 60 4 NT, S, E
______________________________________
*T = transparent;
H = hard;
R = Rigid;
SR = Semirigid;
NT = hazy;
S = soft;
E = elastomeric
The polymerized plugs are machined and finished in the usual manner to lenses with a concave surface on one side and a convex surface on the opposite side. The lenses are easily wetted by water and an aqueous saline solution.
This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
A disc is prepared in the manner described in Example 2 from a mixture of 45 parts of the disiloxane monomer of Example 1, 50 parts of methyl methacrylate and 5 parts of hydroxyethylmethacrylate using tert-butyl peroxypivalate as catalyst. The polymerization is carried out at 45° C. for 20 hours. The resultant disc is colorless, transparent, hard and semi-rigid. The surface of the disc is readily wetted by water and saline solution. The oxygen permeability of the terpolymer is 765 cc.-mil/100 in.2 /24 hr./atm.
This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
A disc prepared in the same manner described in Example 2 by polymerizing a mixture of 20 parts of the disiloxane monomer of Example 1, 75 parts of methyl methacrylate, 5 parts of hydroxyethyl methacrylate and 0.004 ml. of tert-butyl peroxypivalate per ml. of monomer mixture, at 50° C. has an oxygen permeability of 135 cc.-mil/100 in.2 /24 hr./atm. Lenses cut and machined from the disc are transparent, hard and rigid.
These examples illustrate the preparation and properties of copolymers of a siloxanyl monomer with various proportions of other methacrylate ester comonomers.
Cylindrical plugs are prepared in the manner described in Example 3 from mixtures of the disiloxane monomer (DSM) of Example 1, methyl methacrylate (MMA), octadecyl methacrylate (ODMA), hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) by polymerization at 70° C. for 2.5 hours using tert-butyl peroxypivalate as catalyst. The properties of lenses prepared from the plugs are shown in the following table:
______________________________________ Ex- am- Composition, wt. % Prop- ple DSM MMA ODMA HEMA EGDMA erties ______________________________________ 12 35 30 30 5 0 T, H, E 13 45 30 20 5 0 T, S, E 14 45 38 10 5 2 T, S, R ______________________________________
This example illustrates the synthesis of 1,1,1-tris(trimethylsiloxy)methacrylatopropylsilane.
23.8 g. (13.0 ml.) of concentrated sulfuric acid is added slowly with stirring to a mixture of 11.6 g. (14.7 ml.) of absolute ethanol and 16.5 ml. of water. The mixture is cooled in a water bath.
Methacrylatopropyltrimethoxysilane (0.1 mole, 24.8 g.), is mixed with 0.3 mole (39.6 g.) of trimethylacetoxysilane in a flask equipped with a magnetic stirrer. Ethylsulfuric acid (6.5 g.), prepared as described above, is added dropwise from a dropping funnel into the stirred mixture. The flask is cooled during the addition of the ethylsulfuric acid catalyst solution in an ice water bath. After completion of the catalyst addition, the solution is stirred at room temperature for two days. The upper oily layer is then separated, washed with sodium bicarbonate solution, washed with water and then dried over anhydrous sodium sulfate. The produce is distilled under vacuum to remove ethyl acetate. The distillation flask is immersed in a water bath whose temperature is maintained at 40°-45° C. to prevent premature polymerization of the monomer. The yield of tris(trimethylsiloxy)methacrylatopropylsilane is 86% and the density of the monomer is 0.989 g./cc. at 20° C. The monomer is refrigerated until used.
This example illustrates the preparation of a copolymer of methyl methacrylate with the novel polysiloxanyl ester of Example 15.
A cylindrical plug is prepared by polymerizing a mixture of 40 parts of tris(trimethylsiloxy)-α-methacryloxypropylsilane and 60 parts of methyl methacrylate in the presence of tert-butyl peroxypivalate at 50° C. Lenses prepared from the plug are hard, transparent and oxygen permeable.
This example illustrates the preparation of various copolymers of polysiloxanyl esters and various alkyl acrylates or methacrylates. The polysiloxanyl ester comonomers are prepared according to the general techniques of Examples 1 and 15. The copolymer is prepared according to the general technique of Example 2. All copolymers resulting are transparent, hard and rigid so as to be suitable for contact lens manufacture. The oxygen permeability of the copolymers varies from 300-500 cc.-mil/100 in.2 /24 hr./atm. as measured by the technique previously described.
__________________________________________________________________________
POLYSILOXANYL ESTER ALKANOL ESTER
Wt. % in Wt. % in
.Iadd.Example.Iaddend.
Copolymer
Monomer Copolymer
Monomer
__________________________________________________________________________
17 35 heptamethyltrisiloxanylethyl acrylate
65 2-ethylhexyl acrylate
18 30 isobutylhexamethyltrisiloxanylmethyl methacrylate
70 t-butyl methacrylate
19 30 n-propyloctamethyltetrasiloxanylpropyl methacrylate
70 decyl methacrylate
20 25 tri-i-propyltetramethyltrisiloxanylethyl acrylate
75 isopropyl acrylate
21 25 t-butyltetramethyldisiloxanylethyl acrylate
75 methyl acrylate
22 20 n-pentylhexamethyltrisiloxanylmethyl methacrylate
80 ethyl methacrylate
23 20 phenyltetramethyldisiloxanylethyl acrylate
80 octadecyl acrylate
24 20 phenyltetraethyldisiloxanylethyl methacrylate
80 hexyl methacrylate
25 15 triphenyldimethylsiloxanylmethyl acrylate
85 methyl acrylate
26 15 tris(trimethylsiloxy)-γ-methacryloxypropylsilane
85 methyl methacrylate
27 15 methyldi(trimethylsiloxy)-methacryloxymethylsilane
85 n-propyl methacrylate
28 10 pentamethyldi(trimethylsiloxy)-acryloxymethylsilane
90 ethyl acrylate
__________________________________________________________________________
As illustrated by Examples 17-28, it is preferred to use a straight chain alkanol ester monomer if the polysiloxanyl ester monomer is a branched chain compound, and vice versa. Also, it is preferred to employ two acrylate or two methacrylate comonomers to prepare the copolymer, rather than an acrylate monomer and a methacrylate monomer. Finally, where more complex polysiloxanyl ester comonomers are employed, the proportion of polysiloxanyl ester is lower, e.g., 10-20%, than if simpler polysiloxanyl esters are employed. In general, the presence of larger, more complex substituents on the interior silicon atoms tend to increase the refractive index of the copolymer, all other factors being equal.
Claims (3)
1. A new composition of matter specially adapted for the production of contact lenses having increased oxygen permeability, said new composition being a solid copolymer of comonomers consisting essentially of:
(a) about 10 to 60 parts by weight of a polysiloxanylalkyl ester of the structure ##STR4## wherein:
(1) X and Y are selected from the class consisting of C1 -C5 alkyl groups, phenyl groups and Z groups,
(2) Z is a group of the structure ##STR5## (3) A is selected from the class consisting of C1 -C5 alkyl groups and phenyl groups,
(4) R is selected from the class consisting of methyl groups and hydrogen,
(5) m is an integer from one to five, and
(6) n is an integer from one to three; and
(b) about 40 to 90 parts by weight of an ester of a C1 -C20 monohydric alkanol and an acid selected from the class consisting of acrylic and methacrylic acids..].
2. As a new article of manufacture, a contact lens having increased oxygen permeability .Iadd.in comparison with poly(methylmethacrylate).Iaddend., said lens being fabricated from .[.the copolymer composition of claim 1,.]. .Iadd.a solid copolymer of comonomers consisting essentially of:
(a) about 10 to 60 parts by weight of a polysiloxanylalkyl ester of the structure ##STR6## wherein (1) X and Y are selected from the class consisting of C1 -C5 alkyl groups, phenyl groups and Z groups,
(2) Z is a group of the structure ##STR7## (3) A is selected from the class consisting of C1 -C5 alkyl groups and phenyl groups,
(4) R is selected from the class consisting of methyl groups and hydrogen,
(5) m is an integer from one to five, and
(6) n is an integer from one to three; and
(b) about 40 to 90 parts by weight of an ester of a C1 -C20 monohydric alkanol and an acid selected from the class consisting of acrylic and methacrylic acids,
said lens .Iaddend.having a refractive index of from 1.35 to 1.50. .Iadd.
3. The contact lens of claim 2 wherein said solid copolymer of comonomers includes as a comonomer a minor amount of a crosslinking monomer. .Iaddend. .Iadd. 4. The contact lens of claim 3 wherein said cross-linking monomer is a polyol dimethacrylate or a polyol diacrylate. .Iaddend..Iadd. 5. The contact lens of claim 3 wherein said cross-linking monomer is present in an amount equal to about 0.01% to about 2% by weight of said copolymer. .Iaddend..Iadd. 6. The contact lens of claim 5 wherein said cross-linking monomer is a polyol dimethacrylate or a polyol diacrylate. .Iaddend. .Iadd. 7. The contact lens of claim 3 wherein said solid copolymer of comonomers includes as a comonomer a minor amount of a wetting monomer. .Iaddend. .Iadd. 8. The contact lens of claim 7 wherein said wetting monomer is methacrylic acid. .Iaddend..Iadd. 9. The contact lens of claim 7 wherein said wetting monomer is present in an amount equal to about 0.1% to about 10% by weight of said copolymer. .Iaddend..Iadd. 10. The contact lens of claim 9 wherein said wetting monomer is methacrylic acid. .Iaddend..Iadd. 11. The contact lens of claim 2 wherein said solid copolymer of comonomers includes as a comonomer a minor amount of a wetting monomer. .Iaddend..Iadd. 12. The contact lens of claim 11 wherein said wetting monomer is methacrylic acid. .Iaddend..Iadd. 13. The contact lens of claim 11 wherein said wetting monomer is present in an amount equal to about 0.1% to about 10% by weight of said copolymer. .Iaddend..Iadd. 14. The contact lens of claim 13 wherein said wetting monomer is methacrylic acid. .Iaddend. .Iadd. 15. The contact lens of claims 2 or 3 wherein a wetting agent is applied to the surface of said lens. .Iaddend..Iadd. 16. The contact lens of claim 15 wherein said wetting agent is a dilute aqueous solution of an alkyldimethylbenzylammonium chloride. .Iaddend..Iadd. 17. The contact lens of claims 2 or 3 wherein the wettability of the surface of said lens is improved by exposure of the surface to a corona discharge. .Iaddend..Iadd. 18. The contact lens of claims 2 or 3 wherein the wettability of the surface of said lens is improved by treatment of the surface with a strong oxidizing agent. .Iaddend..Iadd. 19. The contact lens of claim 18 wherein said strong oxidizing agent is nitric acid. .Iaddend.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/215,486 USRE31406E (en) | 1972-06-16 | 1980-12-11 | Oxygen permeable contact lens composition, methods and article of manufacture |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00263541A US3808178A (en) | 1972-06-16 | 1972-06-16 | Oxygen-permeable contact lens composition,methods and article of manufacture |
| US06/215,486 USRE31406E (en) | 1972-06-16 | 1980-12-11 | Oxygen permeable contact lens composition, methods and article of manufacture |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00263541A Reissue US3808178A (en) | 1972-06-16 | 1972-06-16 | Oxygen-permeable contact lens composition,methods and article of manufacture |
| US05931355 Continuation | 1978-08-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE31406E true USRE31406E (en) | 1983-10-04 |
Family
ID=26910083
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/215,486 Expired - Lifetime USRE31406E (en) | 1972-06-16 | 1980-12-11 | Oxygen permeable contact lens composition, methods and article of manufacture |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USRE31406E (en) |
Cited By (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4507452A (en) | 1984-03-08 | 1985-03-26 | John D. McCarry | Silicone hydride contact lens and polymer |
| US4633003A (en) | 1985-11-25 | 1986-12-30 | Alcon Laboratories, Inc. | Siloxane monomers for ophthalmic applications |
| US4645811A (en) | 1984-04-02 | 1987-02-24 | Oculus Contact Lens Company | Material used for optical devices |
| US4690993A (en) | 1985-11-25 | 1987-09-01 | Alcon Laboratories, Inc. | p-(2-Hydroxy hexafluoroisopropyl) styrene [HFIS] monomer for ophthalmic applications |
| US4711943A (en) | 1985-04-26 | 1987-12-08 | Sola U.S.A. Inc. | Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom |
| US4715999A (en) | 1984-11-07 | 1987-12-29 | Schott Glaswerke | Process of making optical blanks |
| US4854089A (en) | 1985-04-05 | 1989-08-08 | Sola U.S.A. Inc. | Method of making a rigid gas permeable bifocal contact lens |
| US4997897A (en) * | 1990-04-03 | 1991-03-05 | Bausch & Lomb Incorporated | Polymerizable dye |
| US5055602A (en) * | 1989-05-02 | 1991-10-08 | Bausch & Lomb Incorporated | Polymerizable dye |
| US5177167A (en) * | 1988-07-08 | 1993-01-05 | Mitsubishi Rayon Co., Ltd. | Oxygen-permeable shaped articles and process for producing same |
| US5206097A (en) * | 1991-06-05 | 1993-04-27 | Motorola, Inc. | Battery package having a communication window |
| US5331067A (en) * | 1990-04-10 | 1994-07-19 | Permeable Technologies, Inc. | Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment |
| US5371147A (en) * | 1990-10-11 | 1994-12-06 | Permeable Technologies, Inc. | Silicone-containing acrylic star polymers, block copolymers and macromonomers |
| US5399612A (en) * | 1990-12-20 | 1995-03-21 | S. C. Johnson & Son, Inc. | Blended polymeric compositions |
| US5438098A (en) * | 1991-03-25 | 1995-08-01 | Nippon Petrochemicals Co., Ltd. | Thermoplastic resin composition |
| US5986001A (en) | 1993-06-16 | 1999-11-16 | Rasor Associates, Inc. | Ocular lens composition and method of formation |
| US6036314A (en) | 1999-01-26 | 2000-03-14 | Wolfson; Leonard G. | Apertured contact lenses |
| US6630522B2 (en) * | 2001-02-16 | 2003-10-07 | Kusumoto Chemicals Ltd. | Flow-and-leveling agents for paints and links |
| US6951894B1 (en) | 1994-09-06 | 2005-10-04 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US7468398B2 (en) | 1994-09-06 | 2008-12-23 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| WO2014126830A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Method and apparatus for three-dimensional fabrication |
| WO2014126837A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Continuous liquid interphase printing |
| WO2015142546A1 (en) | 2014-03-21 | 2015-09-24 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication with gas injection through carrier |
| WO2015195920A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing method using increased light intensity and apparatus therefore |
| WO2015195909A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing using tiled light engines |
| WO2015195924A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing with reciprocal feeding of polymerizable liquid |
| WO2015200179A1 (en) | 2014-06-23 | 2015-12-30 | Carbon3D, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
| WO2016025579A1 (en) | 2014-08-12 | 2016-02-18 | Carbon3D, Inc. | Three-dimensional printing with build plates having a smooth or patterned surface and related methods |
| WO2016109550A1 (en) | 2014-12-31 | 2016-07-07 | Carbon3D, Inc. | Three-dimensional printing of objects with breathing orifices |
| WO2016112090A1 (en) | 2015-01-07 | 2016-07-14 | Carbon3D, Inc. | Microfluidic devices and methods of making the same |
| WO2016112084A1 (en) | 2015-01-06 | 2016-07-14 | Carbon3D, Inc. | Build plate for three dimensional printing having a rough or patterned surface |
| WO2016115236A1 (en) | 2015-01-13 | 2016-07-21 | Carbon3D, Inc. | Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods |
| WO2016123506A1 (en) | 2015-01-30 | 2016-08-04 | Carbon3D, Inc. | Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices |
| WO2016126779A1 (en) | 2015-02-05 | 2016-08-11 | Carbon3D, Inc. | Method of additive manufacturing by fabrication through multiple zones |
| WO2016140888A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with variable slice thickness |
| WO2016140891A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Continuous liquid interface production with sequential patterned exposure |
| WO2016140886A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with multiple operating modes |
| WO2016145050A1 (en) | 2015-03-10 | 2016-09-15 | Carbon3D, Inc. | Microfluidic devices having flexible features and methods of making the same |
| WO2016149097A1 (en) | 2015-03-13 | 2016-09-22 | Carbon3D, Inc. | Three-dimensional printing with reduced pressure build plate unit |
| WO2016149151A1 (en) | 2015-03-13 | 2016-09-22 | Carbon3D, Inc. | Three-dimensional printing with concurrent delivery of different polymerizable liquids |
| WO2016149104A1 (en) | 2015-03-13 | 2016-09-22 | Carbon3D, Inc. | Three-dimensional printing with flexible build plates |
| WO2017053783A1 (en) | 2015-09-25 | 2017-03-30 | Carbon3D, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
| WO2017112653A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Dual precursor resin systems for additive manufacturing with dual cure resins |
| WO2017112682A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins |
| WO2017112483A2 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Accelerants for additive manufacturing with dual cure resins |
| WO2017112521A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Production of flexible products by additive manufacturing with dual cure resins |
| WO2017112571A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products |
| WO2018006018A1 (en) | 2016-07-01 | 2018-01-04 | Carbon, Inc. | Three-dimensional printing method and apparatus for reducing bubbles by de-gassing through build plate |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2922807A (en) * | 1957-02-01 | 1960-01-26 | Dow Corning | Preparation of acryloxyalkylorganodisiloxanes |
| US2956044A (en) * | 1956-08-06 | 1960-10-11 | Dow Corning | Acryloxymethylsilicon polymers |
| US3203919A (en) * | 1962-09-19 | 1965-08-31 | Du Pont | Acrylic/siloxane copolymer, polysiloxane composition containing same, and article coated with the composition |
| US3228741A (en) * | 1962-06-29 | 1966-01-11 | Mueller Welt Contact Lenses In | Corneal contact lens fabricated from transparent silicone rubber |
| US3431046A (en) * | 1964-02-14 | 1969-03-04 | Studies Inc | Flexible polyethylene corneal contact lens |
| US3661735A (en) * | 1969-10-14 | 1972-05-09 | Johnson & Johnson | Shaped articles having improved surface properties and corona discharge methods and apparatus for making the same |
-
1980
- 1980-12-11 US US06/215,486 patent/USRE31406E/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2956044A (en) * | 1956-08-06 | 1960-10-11 | Dow Corning | Acryloxymethylsilicon polymers |
| US2922807A (en) * | 1957-02-01 | 1960-01-26 | Dow Corning | Preparation of acryloxyalkylorganodisiloxanes |
| US3228741A (en) * | 1962-06-29 | 1966-01-11 | Mueller Welt Contact Lenses In | Corneal contact lens fabricated from transparent silicone rubber |
| US3203919A (en) * | 1962-09-19 | 1965-08-31 | Du Pont | Acrylic/siloxane copolymer, polysiloxane composition containing same, and article coated with the composition |
| US3431046A (en) * | 1964-02-14 | 1969-03-04 | Studies Inc | Flexible polyethylene corneal contact lens |
| US3661735A (en) * | 1969-10-14 | 1972-05-09 | Johnson & Johnson | Shaped articles having improved surface properties and corona discharge methods and apparatus for making the same |
Non-Patent Citations (4)
| Title |
|---|
| Bull. Acad. Sci. USSR, Chem., No. 4, pp. 467-472 (1957). * |
| Physicians' Desk Reference, p. 575 (1969). * |
| R. L. Merker et al., Journal of Org. Chem., 21, pp. 1537-1539 (1956). * |
| R. L. Merker et al., Journal of Pol. Sci., 25, Issue No. 108, pp. 115-117 (1957). * |
Cited By (68)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4507452A (en) | 1984-03-08 | 1985-03-26 | John D. McCarry | Silicone hydride contact lens and polymer |
| US4645811A (en) | 1984-04-02 | 1987-02-24 | Oculus Contact Lens Company | Material used for optical devices |
| US4715999A (en) | 1984-11-07 | 1987-12-29 | Schott Glaswerke | Process of making optical blanks |
| US4854089A (en) | 1985-04-05 | 1989-08-08 | Sola U.S.A. Inc. | Method of making a rigid gas permeable bifocal contact lens |
| US4711943A (en) | 1985-04-26 | 1987-12-08 | Sola U.S.A. Inc. | Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom |
| US4690993A (en) | 1985-11-25 | 1987-09-01 | Alcon Laboratories, Inc. | p-(2-Hydroxy hexafluoroisopropyl) styrene [HFIS] monomer for ophthalmic applications |
| US4633003A (en) | 1985-11-25 | 1986-12-30 | Alcon Laboratories, Inc. | Siloxane monomers for ophthalmic applications |
| US5177167A (en) * | 1988-07-08 | 1993-01-05 | Mitsubishi Rayon Co., Ltd. | Oxygen-permeable shaped articles and process for producing same |
| US5055602A (en) * | 1989-05-02 | 1991-10-08 | Bausch & Lomb Incorporated | Polymerizable dye |
| US4997897A (en) * | 1990-04-03 | 1991-03-05 | Bausch & Lomb Incorporated | Polymerizable dye |
| US5331067A (en) * | 1990-04-10 | 1994-07-19 | Permeable Technologies, Inc. | Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment |
| US5371147A (en) * | 1990-10-11 | 1994-12-06 | Permeable Technologies, Inc. | Silicone-containing acrylic star polymers, block copolymers and macromonomers |
| US5399612A (en) * | 1990-12-20 | 1995-03-21 | S. C. Johnson & Son, Inc. | Blended polymeric compositions |
| US5438098A (en) * | 1991-03-25 | 1995-08-01 | Nippon Petrochemicals Co., Ltd. | Thermoplastic resin composition |
| US5206097A (en) * | 1991-06-05 | 1993-04-27 | Motorola, Inc. | Battery package having a communication window |
| US5986001A (en) | 1993-06-16 | 1999-11-16 | Rasor Associates, Inc. | Ocular lens composition and method of formation |
| US8568626B2 (en) | 1994-09-06 | 2013-10-29 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US6951894B1 (en) | 1994-09-06 | 2005-10-04 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US7468398B2 (en) | 1994-09-06 | 2008-12-23 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US7538146B2 (en) | 1994-09-06 | 2009-05-26 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US7553880B2 (en) | 1994-09-06 | 2009-06-30 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US8415404B2 (en) | 1994-09-06 | 2013-04-09 | Ciba Vision Corporation | Extended wear ophthalmic lens |
| US9612455B2 (en) | 1995-04-04 | 2017-04-04 | Novartis Ag | Extended wear ophthalmic lens |
| US6036314A (en) | 1999-01-26 | 2000-03-14 | Wolfson; Leonard G. | Apertured contact lenses |
| US6630522B2 (en) * | 2001-02-16 | 2003-10-07 | Kusumoto Chemicals Ltd. | Flow-and-leveling agents for paints and links |
| WO2014126830A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Method and apparatus for three-dimensional fabrication |
| WO2014126837A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Continuous liquid interphase printing |
| WO2014126834A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Method and apparatus for three-dimensional fabrication with feed through carrier |
| EP3358405A1 (en) | 2013-02-12 | 2018-08-08 | Carbon, Inc. | Method and apparatus for three-dimensional fabrication |
| EP3203318A1 (en) | 2013-02-12 | 2017-08-09 | CARBON3D, Inc. | Continuous liquid interphase printing |
| EP3187938A1 (en) | 2013-02-12 | 2017-07-05 | CARBON3D, Inc. | Method and apparatus for three-dimensional fabrication with feed through carrier |
| WO2015142546A1 (en) | 2014-03-21 | 2015-09-24 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication with gas injection through carrier |
| WO2015195920A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing method using increased light intensity and apparatus therefore |
| WO2015195909A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing using tiled light engines |
| WO2015195924A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing with reciprocal feeding of polymerizable liquid |
| WO2015200173A1 (en) | 2014-06-23 | 2015-12-30 | Carbon3D, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
| US11707893B2 (en) | 2014-06-23 | 2023-07-25 | Carbon, Inc. | Methods for producing three-dimensional objects with apparatus having feed channels |
| WO2015200201A1 (en) | 2014-06-23 | 2015-12-30 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
| WO2015200179A1 (en) | 2014-06-23 | 2015-12-30 | Carbon3D, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
| EP4074485A1 (en) | 2014-06-23 | 2022-10-19 | Carbon, Inc. | Three-dimensional objects produced from materials having multiple mechanisms of hardening |
| EP4079484A1 (en) | 2014-06-23 | 2022-10-26 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
| US12179435B2 (en) | 2014-06-23 | 2024-12-31 | Carbon, Inc. | Methods of producing three-dimensional objects with apparatus having feed channels |
| US12172382B2 (en) | 2014-06-23 | 2024-12-24 | Carbon, Inc. | Methods for producing three-dimensional objects |
| WO2015200189A1 (en) | 2014-06-23 | 2015-12-30 | Carbon3D, Inc. | Three-dimensional objects produced from materials having multiple mechanisms of hardening |
| US11850803B2 (en) | 2014-06-23 | 2023-12-26 | Carbon, Inc. | Methods for producing three-dimensional objects with apparatus having feed channels |
| WO2016025579A1 (en) | 2014-08-12 | 2016-02-18 | Carbon3D, Inc. | Three-dimensional printing with build plates having a smooth or patterned surface and related methods |
| WO2016109550A1 (en) | 2014-12-31 | 2016-07-07 | Carbon3D, Inc. | Three-dimensional printing of objects with breathing orifices |
| WO2016112084A1 (en) | 2015-01-06 | 2016-07-14 | Carbon3D, Inc. | Build plate for three dimensional printing having a rough or patterned surface |
| WO2016112090A1 (en) | 2015-01-07 | 2016-07-14 | Carbon3D, Inc. | Microfluidic devices and methods of making the same |
| WO2016115236A1 (en) | 2015-01-13 | 2016-07-21 | Carbon3D, Inc. | Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods |
| WO2016123506A1 (en) | 2015-01-30 | 2016-08-04 | Carbon3D, Inc. | Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices |
| WO2016126779A1 (en) | 2015-02-05 | 2016-08-11 | Carbon3D, Inc. | Method of additive manufacturing by fabrication through multiple zones |
| WO2016140886A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with multiple operating modes |
| WO2016140888A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with variable slice thickness |
| WO2016140891A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Continuous liquid interface production with sequential patterned exposure |
| WO2016145050A1 (en) | 2015-03-10 | 2016-09-15 | Carbon3D, Inc. | Microfluidic devices having flexible features and methods of making the same |
| WO2016149097A1 (en) | 2015-03-13 | 2016-09-22 | Carbon3D, Inc. | Three-dimensional printing with reduced pressure build plate unit |
| WO2016149151A1 (en) | 2015-03-13 | 2016-09-22 | Carbon3D, Inc. | Three-dimensional printing with concurrent delivery of different polymerizable liquids |
| WO2016149104A1 (en) | 2015-03-13 | 2016-09-22 | Carbon3D, Inc. | Three-dimensional printing with flexible build plates |
| WO2017053783A1 (en) | 2015-09-25 | 2017-03-30 | Carbon3D, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
| WO2017112682A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins |
| WO2017112653A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Dual precursor resin systems for additive manufacturing with dual cure resins |
| WO2017112483A2 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Accelerants for additive manufacturing with dual cure resins |
| WO2017112571A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products |
| WO2017112521A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Production of flexible products by additive manufacturing with dual cure resins |
| WO2018006029A1 (en) | 2016-07-01 | 2018-01-04 | Carbon, Inc. | Three-dimensional printing with build plates having reduced pressure and/or channels for increased fluid flow |
| WO2018006018A1 (en) | 2016-07-01 | 2018-01-04 | Carbon, Inc. | Three-dimensional printing method and apparatus for reducing bubbles by de-gassing through build plate |
| US11685117B2 (en) | 2016-07-01 | 2023-06-27 | Carbon, Inc. | Three-dimensional printing methods for reducing bubbles by de-gassing through build plate |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE31406E (en) | Oxygen permeable contact lens composition, methods and article of manufacture | |
| US3808178A (en) | Oxygen-permeable contact lens composition,methods and article of manufacture | |
| US4120570A (en) | Method for correcting visual defects, compositions and articles of manufacture useful therein | |
| US4343927A (en) | Hydrophilic, soft and oxygen permeable copolymer compositions | |
| US3808179A (en) | Oxygen-permeable contact lens composition,methods and article of manufacture | |
| US4182822A (en) | Hydrophilic, soft and oxygen permeable copolymer composition | |
| US4525563A (en) | Oxygen permeable soft contact lens composition | |
| US4419505A (en) | Contact lens composition, article and method of manufacture | |
| US4235985A (en) | Polymer for contact lens and contact lens made thereof | |
| US4463149A (en) | Silicone-containing contact lens material and contact lenses made thereof | |
| US4743667A (en) | Contact lens material | |
| JPS5929194B2 (en) | Methyldi(trimethylsiloxy)silylpropylglycerol methacrylate | |
| IE840453L (en) | Polysiloxane composition with improved surface wetting¹characteristics for contact lenses | |
| JPH0270713A (en) | Dimethylacrylamide copolymer hydrogel having high oxygen permeability | |
| JP4144088B2 (en) | Contact lens polymer and contact lens using the same | |
| EP0194277A1 (en) | Alkylsilane contact lens and polymer | |
| EP0524557A2 (en) | Ocular lens material | |
| US4868260A (en) | Hard contact lens material consisting of alkyl fumarate and silicon-alkyl fumarate copolymers | |
| EP0075004A1 (en) | Silicone methacrylate hydrogels for contact lenses | |
| US4410674A (en) | Silicone-vinyl acetate composition for contact lenses | |
| US4500695A (en) | Silicone-vinyl acetate composition for contact lenses | |
| JPH0117129B2 (en) | ||
| US5142009A (en) | Hard contact lens material | |
| JPS61264319A (en) | oxygen permeable contact lenses | |
| CA1049191A (en) | Oxygen-permeable contact lens composition, methods and article of manufacture |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SOLA U.S.A. INC., 1100 EAST BELL ROAD, PHOENIX, AR Free format text: ASSIGNS NUNC PRO TUNC AS OF DECEMBER 19, 1985 THE ENTIRE INTEREST.;ASSIGNOR:SYNTEX (U.S.A.) INC. A CORP. OF DE.;REEL/FRAME:004561/0861 Effective date: 19860520 |