USRE29654E - Preparation of hydrocarbon resins using zirconium tetrachloride - Google Patents
Preparation of hydrocarbon resins using zirconium tetrachloride Download PDFInfo
- Publication number
- USRE29654E USRE29654E US05825051 US82505177A USRE29654E US RE29654 E USRE29654 E US RE29654E US 05825051 US05825051 US 05825051 US 82505177 A US82505177 A US 82505177A US RE29654 E USRE29654 E US RE29654E
- Authority
- US
- Grant status
- Grant
- Patent type
- Prior art keywords
- styrene
- alpha
- methyl
- process
- limonene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/06—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
- C08F4/16—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/06—Hydrocarbons
Abstract
Description
The present invention relates to the use of zirconium tetrachloride as a catalyst in polymerizing aromatic vinyl compounds.
More specifically, the present invention is directed to the making of copolymers of styrene with alpha-methyl styrene, or more preferably, terpolymers styrene with alpha-methyl styrene and a third monomer, most preferably limonene. There can also be used other terpenes such as alpha-pinene, beta-pinene or dipentene in place of all or part of the limonene. Normally, the limonene is employed as the more readily available di-limonene. There can also be used in place of the terpene vinyl toluene, e.g., p-vinyl toluene or t-butyl styrene, e.g., p-t-butyl styrene.
There can be formed styrene homopolymers as well as homopolymers of t-butyl styrene, d-limonene, alpha-methyl styrene, etc. There also can be formed tetrapolymers of styrene, t-butyl styrene, alpha-methyl styrene and a terpene, preferably d-limonene although the other terpenes set forth above can be used.
The use of zirconium tetrachloride produces light-colored resins with or without the d-limonene or other third monomer.
One of the advantages of using zirconium tetrachloride as a catalyst is that there are obtained good yields (over 90% based on the monomers) of resins having high melting points, i.e., over 95° C. (Ball and Ring) Thus, resins can be prepared having melting points up to 155° C and even higher with t-butyl styrene homopolymer. In the working examples, the melting points ranged from 103°-120° C. for the styrene homopolymer, the styrene-alpha methyl styrene copolymer, C, styrene-alpha-methyl styrene-d-limonene terpolymer.
When t-butyl styrene is present it generally yields a higher melting product. Thus, the tetrapolymer of styrene, t-butyl styrene, alpha-methyl styrene and di-limonene had a melting point of 125° C, and the homopolymer of t-butyl styrene can be made with a melting point even above 155° C.
The zirconium tetrachloride is usually employed in an amount of 0.1 to 8% by weight of the total polymerizable monomers. The catalyst employed preferably consists of or consists essentially of the zirconium tetrachloride.
The reaction can be carried out over a wide temperature range, e.g., 20 to 55° C with 30°-35° C being preferred. The temperature, however, is not a critical feature of the invention.
If there is utilized aluminum chloride as a replacement for zirconium tetrachloride wherein the catalyst is added to the monomer/solvent (direct method) there is experienced severe flash back, e.g., the localized heat of reaction violently erupts the reaction materials. When there is utilized aluminum chloride wherein the catalyst is first slurried in the solvent then the monomer is added over a period of time (reverse addition method) the resin obtained is low in melting point and yield. Zirconium tetrachloride gives better yields and higher melting points than aluminum chloride.
Boron trifluoride also gave lower melting point/lower yield resins in reverse additions than zirconium tetrachloride. Zinc chloride was ineffective as a catalyst. Ferric chloride gave a resin which was almost black in color.
Another advantage of the zirconium catalyst resins is that these resins when compounded into a hot melt adhesive exhibit excellent heat age characteristics and in this respect were superior to boron fluoride catalyzed resins.
Applicants have found that when utilizing the reverse addition method using zirconium tetrachloride the yield and melting point are significantly lower than when utilizing the direct method of catalyst addition.
The resins of the invention have utility as dry cleaning sizing agents which are utilized to give body to clothes after dry cleaning. They also are useful in hot melt adhesive compositions, particularly with paraffin wax and resinous ethylene-vinyl acetate copolymers, e.g., Elvax.
Compatibility of the resins of the invention is controlled by the monomer composition of the resin. Styrene in general promotes incompatibility with paraffin wax and ethylene vinyl acetate. Vinyl toluene and p-t-butyl styrene are more compatible than styrene, but not as compatible as limonene styrene. Terpenes such as those set forth above, e.g., d-limonene promote compatibility as does alpha-methyl styrene.
The polymers can also be molded to form cups. The optimum resin does not use a single monomer since styrene by itself produces a 100% yield of a much too incompatible water-white resin. Alpha-methyl styrene by itself produces a resin which has too low a melting point. d-Limonene also by itself produces a soft resin with a poor yield. In order to optimize compatibility, yield, and a melting point it is necessary to judiciously select the proper monomers and ratios.
Applicants have found that for use in hot melt adhesives that the ratio of 10-40 weight percent of styrene and 90-60 weight percent of alpha-methyl styrene is optimum for a copolymer.
In making terpolymers there is generally employed 5 to 50% by weight styrene, 5 to 80 % alpha-methyl styrene and 5 to 50 % of terpene, e.g., p-limonene or other third component. In making tetrapolymers there is generally employed 5 to 50 % styrene, 5 to 80 % alpha-methyl styrene, 5 to 60 % terpene and 5 to 50 % t-butyl styrene.
When the reaction is carried out in a solvent there can be used as solvents, e.g., aromatic hydrocarbon such as xylene, benzene, toluene, or aliphatic hydrocarbons, e.g., heptane or mineral spirits.
Unless otherwise indicated all parts and percentages are by weight.
______________________________________A Alpha-methyl styrene 750 gramsB Styrene 250C Xylene 650D Zirconium tetrachloride 10E Water 100F Water 100G Water 100______________________________________
Materials A, B, and C were placed in a three-neck flask equipped with agitator, reflux condenser and thermometer. The temperature was brought to 30° C. and Material D was added over 20 minutes. The temperature was controlled by cooling to maintain 30°-35° C. The reaction was held at 30°-35° C for one hour and then material E was added. The mixture was stirred for 1/2 hour, then the bottom water layer was removed. The resin solution was subsequently washed with materials F and G similarly. The resin was then distilled atmospherically to 200° C. yielding a water-white resin with a melting point of 103° C. and a yield of 960 grams. (96%)
______________________________________A Alpha methyl styrene 333 gramsB Styrene 333C d-limonene 333D Xylene 650E Zirconium tetrachloride 20F Water 100G Water 100H Water 100______________________________________
Materials A, B, C, and D were placed in a three-liter, three-necked flask equipped as in Example 1. The temperature was brought to 30° C. and Material E was added over 20 minutes controlling the temperature at 30°-35°. The reaction proceeded for 1 hour at 30°-35°. Then material F was added. The mixture was stirred at 75° C. for 1/2 hour. The layers were separated and the bottom water layer was removed. Material G was added and the resin solution was again washed and the water layer removed. Material H was similarly utilized to wash the resin solution. The resin was then distilled atmospherically to 200° C. then steamed with indirect steam for 15 minutes. The yield was 950 grams (95%), MP was 120° C., and the color was less than 1 on the Gardner Scale.
______________________________________Hot Melt adhesive Formulation______________________________________A Paraffin Wax 25 partsB Resin 40 partsC Elvax 260* 35 parts______________________________________ Ethylene vinyl acetate copolymer, melt index (5-6), vinyl acetate content 28% product of E.I.DuPont de Nemours
Load A into a 250 ml Beaker. Bring to 300° F. and gradually add B to dissolve it. Add C gradually keeping the temperature at 325° to 350° F. Hold with agitation until the mixture is homogeneous.
Hot melt adhesives were prepared using the formulation of Example 3. The resins of Examples 1 and 2 were compared with commercially available hot melt resins for resistance to thermal degradation showing their much increased resistance to color change and resistance to skimming.
Then grams of hot melt sample was placed in an aluminum weighing dish with an exposed surface area of approximately three square inches. The dish was placed in an oven at 350° F. for 96 hours. The condition of the hot melt adhesive was noted upon removal from the oven and compared with an original sample for color change and skimming. The less skim and the lighter the color the better the aging character.
______________________________________ Original Aged at 350° F. for 96 hours Color Skim Color Skim______________________________________Example 1 White None Egg white NoneExample 2 White None Off white NoneCRJ-683(1) Grey None Black Small Amount brownWingtac 95(2) Light None Black Small Amount yellowST-5115(3) Yellow None Dark brown Medium Amount______________________________________ (1)CRJ-683 is a commercially available piperylene stream resin having a M of 95° C. manufactured by Schenectady Chemicals, Inc. (2)Wingtac-95 is a commercially available piperylene resin manufactured b Goodyear Chemical with a MP of 95° C. (3)ST-5115 is a commercially available terpene resin (a beta pinene resin melting at 115° C. manufactured by Schenectady Chemicals, Inc.
The cloud point of a hot melt adhesive, i.e., the temperature at which the molten adhesive becomes turbid, is controlled by the ratios of monomers in the resin. For example:
______________________________________d-limonene (grams) 38 35 1/2 34 1/2 33 1/2Alpha-methyl styrene (grams) 38 35 1/2 34 1/2 33 1/2Styrene (grams) 24 29 31 33 1/2Cloud point of hot meltadhesive 145° F. 160° F. 186° F. 230° F.______________________________________
As can be seen, minor changes in the percentage of styrene cause major changes in compatibility (cloud point). The above resins all utilized two percent zirconium tetrachloride as a catalyst (based on total monomers) and they were produced similarly to Example 2.
______________________________________A p-t-butyl styrene 750gramsB Styrene 250C Xylene 650D Zirconium Tetrachloride 3.5E Water 100F Water 100G Water 100______________________________________
The above formulation was processed in a similar manner to Example 1 yielding 997 grams of water white resin with a melting point of 155° C.
______________________________________A alpha methyl styrene 750gramsB Styrene 250C Heptane 650D Zirconium Tetrachloride 5E Water 100F Water 100G Water 100______________________________________
The above formulation was processed in a similar manner to Example 1 yielding 978 grams of a water white polymer with a melting point of 120° C.
______________________________________A Styrene 1000gramsB Xylene 650C Zirconium Tetrachloride 5D Water 100E Water 100F Water 100______________________________________
The above ingredients were processed in a similar manner to Example 1 yielding 1042 grams of a water white resin with a melting point of 110° C.
______________________________________A Styrene 250 gramsB p-t-butyl styrene 250C alpha methyl styrene 250D d-limonene 250E Xylene 650F Zirconium Tetrachloride 10G Water 100H Water 100I Water 100______________________________________
The above formulation was processed in a similar manner to Example 1 with A, B, C .[.and.]. D .Iadd.and E .Iaddend.being placed in flask initially yielding 1011 grams of a water white resin with a melting point of 125° C.
The ranges of proportions of terpolymers and tetrapolymers can be varied at the will of the synthesizer. Normally the blends of monomers are selected to obtain whatever solubility parameter is desired. It is even possible to prepare viscous liquid polymers, e.g., homopolymers of d-limonene, which are useful as adhesives.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3919181A US3919181A (en) | 1973-10-11 | 1973-10-11 | Preparation of hydrocarbon resins using zirconium tetrachloride |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US3919181A Reissue US3919181A (en) | 1973-10-11 | 1973-10-11 | Preparation of hydrocarbon resins using zirconium tetrachloride |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE29654E true USRE29654E (en) | 1978-05-30 |
Family
ID=23603771
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3919181A Expired - Lifetime US3919181A (en) | 1973-10-11 | 1973-10-11 | Preparation of hydrocarbon resins using zirconium tetrachloride |
US05825051 Expired - Lifetime USRE29654E (en) | 1973-10-11 | 1977-08-16 | Preparation of hydrocarbon resins using zirconium tetrachloride |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3919181A Expired - Lifetime US3919181A (en) | 1973-10-11 | 1973-10-11 | Preparation of hydrocarbon resins using zirconium tetrachloride |
Country Status (6)
Country | Link |
---|---|
US (2) | US3919181A (en) |
JP (1) | JPS5736925B2 (en) |
DE (1) | DE2436842A1 (en) |
ES (1) | ES427287A1 (en) |
FR (1) | FR2247474B3 (en) |
GB (1) | GB1488010A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050137373A1 (en) * | 2003-12-19 | 2005-06-23 | Sosa Jose M. | Synthesis of branched styrenic copolymers with p-t-butylstyrene |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394235A (en) * | 1980-07-14 | 1983-07-19 | Rj Archer Inc. | Heat-sealable polypropylene blends and methods for their preparation |
JPH0638727U (en) * | 1992-11-13 | 1994-05-24 | 株式会社関西製作所 | Lifting device of the floor portion of the bed, etc. |
US5362316A (en) * | 1993-02-05 | 1994-11-08 | Imperbel America Corporation | Resinous cut-back compositions and methods of preparing the same |
US9708477B2 (en) * | 2014-12-17 | 2017-07-18 | Toyo Tire & Rubber Co., Ltd. | Copolymer, rubber composition and pneumatic tire |
CN106008815A (en) * | 2016-06-27 | 2016-10-12 | 梧州市嘉盈树胶有限公司 | Preparation method of light-colored terpene resin |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1939932A (en) * | 1931-03-30 | 1933-12-19 | Dayton Synthetic Chemicals Inc | Prepared resin |
US2060404A (en) * | 1932-06-15 | 1936-11-10 | Monsanto Petroleum Chemicals I | Decolorization of resins |
US2383084A (en) * | 1942-04-06 | 1945-08-21 | Hercules Powder Co Ltd | Terpene resins |
US2389240A (en) * | 1940-11-07 | 1945-11-20 | Phillips Petroleum Co | Process for the conversion of hydrocarbons |
US2436614A (en) * | 1942-07-10 | 1948-02-24 | Standard Oil Dev Co | Solid styrene polymer formation at low temperatures |
US2507338A (en) * | 1945-06-09 | 1950-05-09 | Atlantic Refining Co | Polymerization of alpha alkyl styrenes |
US2556488A (en) * | 1942-07-28 | 1951-06-12 | Sherwin Williams Co | Manufacture of polystyrene |
GB719098A (en) | 1951-03-31 | 1954-11-24 | Standard Oil Dev Co | Improvements in or relating to low temperature polymerization process |
GB778639A (en) | 1954-08-16 | 1957-07-10 | Du Pont | Improvements in or relating to the preparation of polyethylene and copolymers of ethylene |
GB801407A (en) | 1955-05-23 | 1958-09-10 | Exxon Research Engineering Co | Polymerization process and catalyst therefor |
GB853848A (en) | 1956-01-04 | 1960-11-09 | Ethyl Corp | Polymerization of olefins |
GB880809A (en) | 1958-02-14 | 1961-10-25 | Bayer Ag | Polymerisation of ethylenically unsaturated compounds and a catalyst therefor |
GB910514A (en) | 1958-04-24 | 1962-11-14 | Monsanto Chemicals | Process of polymerisation and catalysts for use therein |
GB970374A (en) | 1961-04-14 | 1964-09-23 | Firestone Tire & Rubber Co | Polymerization process and catalysts |
US3470145A (en) * | 1967-03-08 | 1969-09-30 | Geigy Chem Corp | Copolymers of alpha mono-olefins and terpenes |
US3478005A (en) * | 1966-04-27 | 1969-11-11 | Neville Chemical Co | Terpene copolymers |
US3640981A (en) * | 1969-04-23 | 1972-02-08 | Reichhold Chemicals Inc | Vinyl toluene-alpha methyl styrene co-polymers and method of preparing the same |
US3642636A (en) * | 1969-12-18 | 1972-02-15 | Chevron Res | Lubricating oil containing para-t-butyl-alpha-methylstyrene polymers |
US3654250A (en) * | 1969-11-17 | 1972-04-04 | Reichhold Chemicals Inc | Copolymers from para tertiary butyl styrene and alpha methyl styrene and method for producing same |
US3725506A (en) * | 1970-11-16 | 1973-04-03 | Basf Ag | Manufacture of copolymers of styrene and {60 -methylstyrene |
US3753961A (en) * | 1971-12-03 | 1973-08-21 | Goodyear Tire & Rubber | Resinous composition |
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1939932A (en) * | 1931-03-30 | 1933-12-19 | Dayton Synthetic Chemicals Inc | Prepared resin |
US2060404A (en) * | 1932-06-15 | 1936-11-10 | Monsanto Petroleum Chemicals I | Decolorization of resins |
US2389240A (en) * | 1940-11-07 | 1945-11-20 | Phillips Petroleum Co | Process for the conversion of hydrocarbons |
US2383084A (en) * | 1942-04-06 | 1945-08-21 | Hercules Powder Co Ltd | Terpene resins |
US2436614A (en) * | 1942-07-10 | 1948-02-24 | Standard Oil Dev Co | Solid styrene polymer formation at low temperatures |
US2556488A (en) * | 1942-07-28 | 1951-06-12 | Sherwin Williams Co | Manufacture of polystyrene |
US2507338A (en) * | 1945-06-09 | 1950-05-09 | Atlantic Refining Co | Polymerization of alpha alkyl styrenes |
GB719098A (en) | 1951-03-31 | 1954-11-24 | Standard Oil Dev Co | Improvements in or relating to low temperature polymerization process |
GB778639A (en) | 1954-08-16 | 1957-07-10 | Du Pont | Improvements in or relating to the preparation of polyethylene and copolymers of ethylene |
GB801407A (en) | 1955-05-23 | 1958-09-10 | Exxon Research Engineering Co | Polymerization process and catalyst therefor |
GB853848A (en) | 1956-01-04 | 1960-11-09 | Ethyl Corp | Polymerization of olefins |
GB880809A (en) | 1958-02-14 | 1961-10-25 | Bayer Ag | Polymerisation of ethylenically unsaturated compounds and a catalyst therefor |
GB910514A (en) | 1958-04-24 | 1962-11-14 | Monsanto Chemicals | Process of polymerisation and catalysts for use therein |
GB970374A (en) | 1961-04-14 | 1964-09-23 | Firestone Tire & Rubber Co | Polymerization process and catalysts |
US3478005A (en) * | 1966-04-27 | 1969-11-11 | Neville Chemical Co | Terpene copolymers |
US3470145A (en) * | 1967-03-08 | 1969-09-30 | Geigy Chem Corp | Copolymers of alpha mono-olefins and terpenes |
US3640981A (en) * | 1969-04-23 | 1972-02-08 | Reichhold Chemicals Inc | Vinyl toluene-alpha methyl styrene co-polymers and method of preparing the same |
US3654250A (en) * | 1969-11-17 | 1972-04-04 | Reichhold Chemicals Inc | Copolymers from para tertiary butyl styrene and alpha methyl styrene and method for producing same |
US3642636A (en) * | 1969-12-18 | 1972-02-15 | Chevron Res | Lubricating oil containing para-t-butyl-alpha-methylstyrene polymers |
US3725506A (en) * | 1970-11-16 | 1973-04-03 | Basf Ag | Manufacture of copolymers of styrene and {60 -methylstyrene |
US3753961A (en) * | 1971-12-03 | 1973-08-21 | Goodyear Tire & Rubber | Resinous composition |
Non-Patent Citations (3)
Title |
---|
Calloway, N. D., "Friedel-Crafts Synthesis", in Chemical Reviews, 1935, vol. 17, pp. 327, 374-377. * |
Gonzenbach et al., "Terpene Resins", in Encyclopedia of Polymer Science, vol. 13, pp. 578-579 and 594-595. * |
Roberts, W. J. and Day, A. R., J. Amer. Chem. Soc., 1950, 72, pp. 1226-1230. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050137373A1 (en) * | 2003-12-19 | 2005-06-23 | Sosa Jose M. | Synthesis of branched styrenic copolymers with p-t-butylstyrene |
WO2005066227A1 (en) * | 2003-12-19 | 2005-07-21 | Fina Technology, Inc. | SYNTHESIS OF BRANCHED STYRENIC COPOLYMERS WITH p-t-BUTYLSTYRENE |
US6982309B2 (en) * | 2003-12-19 | 2006-01-03 | Fina Technology, Inc. | Synthesis of branched styrenic copolymers with p-t-butylstyrene |
Also Published As
Publication number | Publication date | Type |
---|---|---|
JP1145994C (en) | grant | |
JPS5066587A (en) | 1975-06-04 | application |
JPS5736925B2 (en) | 1982-08-06 | grant |
ES427287A1 (en) | 1976-09-16 | application |
GB1488010A (en) | 1977-10-05 | application |
DE2436842A1 (en) | 1975-04-17 | application |
FR2247474B3 (en) | 1977-07-22 | grant |
FR2247474A1 (en) | 1975-05-09 | application |
US3919181A (en) | 1975-11-11 | grant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Coran et al. | Rubber-thermoplastic compositions. Part V. Selecting polymers for thermoplastic vulcanizates | |
US3850858A (en) | Hot melt pressure sensitive adhesives | |
US3926878A (en) | Hot-melt compositions comprising E/VA copolymer and hydrogenated petroleum resin | |
US5120355A (en) | Water-repellent composition | |
US4250052A (en) | Catalyst structure and a process for its preparation | |
US4078132A (en) | "Process for preparing petroleum resins having low softening points and narrow molecular weight ranges" | |
US4146521A (en) | Polyethylene containing hot melt adhesives | |
US4011388A (en) | Process for preparing emulsions by polymerization of aqueous monomer-polymer dispersions | |
US4143858A (en) | Substantially amorphous polyolefins useful as pressure-sensitive adhesives | |
US3523095A (en) | Extender resin for vinyl tile formulations,compositions containing it and process for making it | |
US3953386A (en) | Aqueous emulsions containing homogeneous particles of cellulosic ester/acrylic polymers | |
US4127619A (en) | Polyethylene containing hot melt adhesives | |
US4186258A (en) | Substantially amorphous polyolefins useful as pressure-sensitive adhesives | |
US4075242A (en) | Low molecular weight acrylates or methacrylates | |
US3085986A (en) | Composition comprising a low viscosity styrene-maleic anhydride copolymer and a polyhydric alcohol | |
US4256809A (en) | Ambient or low-temperature curable coatings for leather and other flexible substrates | |
US2411954A (en) | Treatment of polyunsaturated esters with polythiols and products produced thereby | |
US4129557A (en) | Process for producing copolymerized resins | |
US4514554A (en) | Petroleum resin and pressure sensitive adhesive formulations utilizing same as tackifier | |
US3880788A (en) | Modified natural resin binder and process for preparation | |
US4824921A (en) | Petroleum resins and their production | |
US2276094A (en) | Alpha, beta-unsaturated primary alcohol esters of silicic and boric acids | |
US3154600A (en) | Methacrylate sirups and their preparation, and preparation of reinforced plastic articles employing same | |
US4079102A (en) | Printing ink binder | |
US3979352A (en) | Aqueous base-soluble resin compositions |