US9988532B2 - Flame retardant thermoplastic elastomers - Google Patents
Flame retardant thermoplastic elastomers Download PDFInfo
- Publication number
- US9988532B2 US9988532B2 US14/786,847 US201414786847A US9988532B2 US 9988532 B2 US9988532 B2 US 9988532B2 US 201414786847 A US201414786847 A US 201414786847A US 9988532 B2 US9988532 B2 US 9988532B2
- Authority
- US
- United States
- Prior art keywords
- styrene
- poly
- thermoplastic elastomer
- composition
- phenylene ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 229920002725 thermoplastic elastomer Polymers 0.000 title claims abstract description 78
- 239000003063 flame retardant Substances 0.000 title claims abstract description 32
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229920001955 polyphenylene ether Polymers 0.000 claims abstract description 28
- 229920006132 styrene block copolymer Polymers 0.000 claims abstract description 22
- 229920000642 polymer Polymers 0.000 claims abstract description 18
- 239000000049 pigment Substances 0.000 claims abstract description 17
- 238000009413 insulation Methods 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 12
- -1 Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-1,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidinyl)imino]-1,6-hexanediyl[(2,2,6,6-tetramethyl-4-piperidinyl)imino]] Polymers 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 41
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 19
- 239000003921 oil Substances 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 19
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 18
- 229920003023 plastic Polymers 0.000 claims description 18
- 239000004033 plastic Substances 0.000 claims description 18
- 239000000654 additive Substances 0.000 claims description 16
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 11
- 229920000388 Polyphosphate Polymers 0.000 claims description 10
- 239000001205 polyphosphate Substances 0.000 claims description 10
- 235000011176 polyphosphates Nutrition 0.000 claims description 10
- 239000003963 antioxidant agent Substances 0.000 claims description 9
- 239000004408 titanium dioxide Substances 0.000 claims description 8
- 239000003381 stabilizer Substances 0.000 claims description 7
- 229920000877 Melamine resin Polymers 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 230000004323 axial length Effects 0.000 claims description 5
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 239000001993 wax Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229920005629 polypropylene homopolymer Polymers 0.000 claims description 4
- 229920001519 homopolymer Polymers 0.000 claims description 3
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 claims description 2
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical class CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 claims description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004604 Blowing Agent Substances 0.000 claims description 2
- 239000004606 Fillers/Extenders Substances 0.000 claims description 2
- 239000004609 Impact Modifier Substances 0.000 claims description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 claims description 2
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 claims description 2
- 239000002318 adhesion promoter Substances 0.000 claims description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 2
- 230000000844 anti-bacterial effect Effects 0.000 claims description 2
- 229940088710 antibiotic agent Drugs 0.000 claims description 2
- 239000002216 antistatic agent Substances 0.000 claims description 2
- 239000003139 biocide Substances 0.000 claims description 2
- 239000002981 blocking agent Substances 0.000 claims description 2
- 238000007664 blowing Methods 0.000 claims description 2
- 239000007767 bonding agent Substances 0.000 claims description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 239000004088 foaming agent Substances 0.000 claims description 2
- 239000000417 fungicide Substances 0.000 claims description 2
- 239000003999 initiator Substances 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 229910052618 mica group Inorganic materials 0.000 claims description 2
- MMSLOZQEMPDGPI-UHFFFAOYSA-N p-Mentha-1,3,5,8-tetraene Chemical compound CC(=C)C1=CC=C(C)C=C1 MMSLOZQEMPDGPI-UHFFFAOYSA-N 0.000 claims description 2
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 claims description 2
- 150000004756 silanes Chemical class 0.000 claims description 2
- 239000000779 smoke Substances 0.000 claims description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 38
- 239000012963 UV stabilizer Substances 0.000 abstract description 21
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 150000003017 phosphorus Chemical class 0.000 abstract description 2
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 abstract 1
- 235000019198 oils Nutrition 0.000 description 18
- 239000004615 ingredient Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 229920002633 Kraton (polymer) Polymers 0.000 description 9
- ORECYURYFJYPKY-UHFFFAOYSA-N n,n'-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexane-1,6-diamine;2,4,6-trichloro-1,3,5-triazine;2,4,4-trimethylpentan-2-amine Chemical compound CC(C)(C)CC(C)(C)N.ClC1=NC(Cl)=NC(Cl)=N1.C1C(C)(C)NC(C)(C)CC1NCCCCCCNC1CC(C)(C)NC(C)(C)C1 ORECYURYFJYPKY-UHFFFAOYSA-N 0.000 description 9
- 230000003078 antioxidant effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- JLZIIHMTTRXXIN-UHFFFAOYSA-N 2-(2-hydroxy-4-methoxybenzoyl)benzoic acid Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1C(O)=O JLZIIHMTTRXXIN-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 230000006750 UV protection Effects 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000004611 light stabiliser Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000003878 thermal aging Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000013036 UV Light Stabilizer Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 229920001276 ammonium polyphosphate Polymers 0.000 description 4
- 125000001841 imino group Chemical group [H]N=* 0.000 description 4
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OLFNXLXEGXRUOI-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-phenylpropan-2-yl)phenol Chemical compound C=1C(N2N=C3C=CC=CC3=N2)=C(O)C(C(C)(C)C=2C=CC=CC=2)=CC=1C(C)(C)C1=CC=CC=C1 OLFNXLXEGXRUOI-UHFFFAOYSA-N 0.000 description 3
- 239000004594 Masterbatch (MB) Substances 0.000 description 3
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 229920005669 high impact polystyrene Polymers 0.000 description 3
- 239000004797 high-impact polystyrene Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 239000012463 white pigment Substances 0.000 description 3
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical class C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 2
- XYXJKPCGSGVSBO-UHFFFAOYSA-N 1,3,5-tris[(4-tert-butyl-3-hydroxy-2,6-dimethylphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1CN1C(=O)N(CC=2C(=C(O)C(=CC=2C)C(C)(C)C)C)C(=O)N(CC=2C(=C(O)C(=CC=2C)C(C)(C)C)C)C1=O XYXJKPCGSGVSBO-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- YEXOWHQZWLCHHD-UHFFFAOYSA-N 3,5-ditert-butyl-4-hydroxybenzoic acid Chemical compound CC(C)(C)C1=CC(C(O)=O)=CC(C(C)(C)C)=C1O YEXOWHQZWLCHHD-UHFFFAOYSA-N 0.000 description 2
- AIBRSVLEQRWAEG-UHFFFAOYSA-N 3,9-bis(2,4-ditert-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP1OCC2(COP(OC=3C(=CC(=CC=3)C(C)(C)C)C(C)(C)C)OC2)CO1 AIBRSVLEQRWAEG-UHFFFAOYSA-N 0.000 description 2
- 241001247482 Amsonia Species 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000001055 blue pigment Substances 0.000 description 2
- 229920003244 diene elastomer Polymers 0.000 description 2
- 125000002897 diene group Chemical group 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000007706 flame test Methods 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- HNMCSUXJLGGQFO-UHFFFAOYSA-N hexaaluminum;hexasodium;tetrathietane;hexasilicate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].S1SSS1.S1SSS1.[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] HNMCSUXJLGGQFO-UHFFFAOYSA-N 0.000 description 2
- NZYMWGXNIUZYRC-UHFFFAOYSA-N hexadecyl 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NZYMWGXNIUZYRC-UHFFFAOYSA-N 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- GUSFEBGYPWJUSS-UHFFFAOYSA-N pentaazanium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O GUSFEBGYPWJUSS-UHFFFAOYSA-N 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229940037312 stearamide Drugs 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 229920002397 thermoplastic olefin Polymers 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920006342 thermoplastic vulcanizate Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ABFCPWCUXLLRSC-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol Chemical compound C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1)C(C)(C)C)C(C)(C)C ABFCPWCUXLLRSC-UHFFFAOYSA-N 0.000 description 1
- RGASRBUYZODJTG-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1)C(C)(C)C)C(C)(C)C RGASRBUYZODJTG-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- ZSSVCEUEVMALRD-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 ZSSVCEUEVMALRD-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoic acid Chemical compound CC(C)(C)C1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241001379910 Ephemera danica Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000285023 Formosa Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000766699 Taphrina amentorum Species 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- DSSYKIVIOFKYAU-UHFFFAOYSA-N camphor Chemical compound C1CC2(C)C(=O)CC1C2(C)C DSSYKIVIOFKYAU-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- ZJIPHXXDPROMEF-UHFFFAOYSA-N dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O ZJIPHXXDPROMEF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3472—Five-membered rings
- C08K5/3475—Five-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
- C08L53/025—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/308—Wires with resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/427—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34926—Triazines also containing heterocyclic groups other than triazine groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/53—Phosphorus bound to oxygen bound to oxygen and to carbon only
- C08K5/5313—Phosphinic compounds, e.g. R2=P(:O)OR'
Definitions
- thermoplastic elastomers polymer compounds which exhibit elasticity while remaining thermoplastic, which are flame retardant, resistant to ultraviolet light, and contain polyphenylene ether.
- thermoplastic elastomers combine the benefits of elastomeric properties of thermoset polymers, such as vulcanized rubber, with the processing properties of thermoplastic polymers.
- Thermoplastic elastomers presently are prepared from fossil-fuel derived polymer resins, such as styrene block copolymers (SBCs), thermoplastic vulcanizates (TPV), thermoplastic olefins (TPO), copolyesters (COPE), thermoplastic urethanes (TPU), copolyamide (COPA), and most recently olefin block copolymers (OBCs).
- SBCs styrene block copolymers
- TPV thermoplastic vulcanizates
- TPO thermoplastic olefins
- COE copolyesters
- TPU thermoplastic urethanes
- COPA copolyamide
- OBCs olefin block copolymers
- thermoplastic elastomers have included polyphenylene ether (PPE).
- PPE polyphenylene ether
- U.S. Pat. No. 6,838,503 Yin et al.
- U.S Pat. No. 7,005,465 Sato
- the formulations disclosed in these two patents apparently do not have sufficient elongation to satisfy Underwriters' Laboratory Test 62 (UL 62), which requires, among other things, more than 200% tensile elongation before aging and retention of more than 75% of that tensile elongation after aging at 121° C. for 168 hours or preferably at 136° C. for 168 hours.
- UL 62 Underwriters' Laboratory Test 62
- thermoplastic elastomer compound More recently, an excellent thermoplastic elastomer compound has been disclosed in United States Patent Application Publication No. 20120037396 (Gu), which is incorporated by reference herein.
- the flame-retardant thermoplastic elastomer compound so disclosed has polyphenylene ether, a hydrogenated styrene block copolymer, at least one solid non-halogenated phosphorus containing flame retardant, and a nucleated olefinic polymer.
- the TPE compound has a before-aging tensile elongation of >200% and an after-aging tensile elongation residual of at least 75%, according to the UL 62 test, which makes it useful as an insulation layer, a jacketing layer, or both for protected electrical lines such as alternating current wire and cable products, accessory cables, and variety of injection molded electrical or electronic parts.
- the TPE compound was suitable for interior uses.
- TPE made from PPE which is resistant to ultraviolet (UV) light and which also passes the entire requirements of the UL 62 test, especially with respect to tensile elongation (a) before and (b) after undergoing thermal aging as described above, (c) a wire and cable deformation of less than 50% after undergoing weighted, thermal aging at 150° C. for one hour, and (d) the VW-1 vertical cable burn.
- UV ultraviolet
- the present invention has found a unique combination of ingredients to make a non-halogen, non-red phosphorous flame retardant TPE containing PPE which passes all parts of the UL 62 test.
- the flame retardant can be non-halogen and still satisfy all parts of the UL 62 test. It has been found that the thermoplastic elastomer of the present invention can be flexible, stretchy, flame retardant without halogens or red phosphorus, and soft.
- the non-halogenated flame retardant can be solid particles which are not sensitive to water, which is important for underwater resistivity of plastic articles made from the TPE and provide long term flame retardant properties and continued good mechanical properties in the presence of water or high humidity.
- solid particle flame retardants used for this invention have no negative effect on the elasticity of the TPE.
- the TPEs of the present invention have a good surface appearance, can be made at high extrusion speeds comparable to what is used for polyvinyl chloride (PVC) wire and cable insulation and jacketing (even using the same screw design as used for PVC production), and can pass the even more stringent European Union 70° C./48 hr underwater insulation resistance requirement.
- the TPEs also have excellent underwater thermal aging which requires endurance after underwater exposure to 70° C. for 168 hours.
- the present invention solves the problem of finding a commercially practical non-halogenated flame retardant TPE made from PPE which is flexible, durable, and has a before-aging tensile elongation of >200% and an after-aging tensile elongation residual of more than 75%, passes 150° C. deformation test and VW-1 flame test among other testing requirements according to the UL 62 test.
- This new TPE passes the tests sufficient to be useful as insulation, jacketing, or both for wire and cable, including especially alternating current (AC) wire and cable insulation and jacketing.
- Wire and cable is an industry term for a line of axial length which conducts electricity or other electromagnetic signals and is protected by electric insulation layers, jacketing layers, or both. Therefore, whether in the form of wire or in the form of cable, the term “protected electrical line” will be used to denote either or both.
- the TPE compound contains PPE, it has been found that the TPE is very sensitive to ultraviolet light exposure, for even one day. This sensitivity can limit the possible uses of the TPE despite its other advantages.
- thermoplastic elastomer compound comprising from about 10 to about 60 weight percent of a polyphenylene ether; from about 10 to about 60 weight percent of a hydrogenated styrenic block copolymer; from about 5 to about 30 weight percent of at least one solid non-halogen flame retardant selected from the group consisting of organo-phosphinate, melamine polyphosphate, and combinations thereof; from about 5 to about 40 weight percent of a nucleated olefinic polymer; from about 1 weight percent to an effective amount of Phenol, 2,2′-methylene-bis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)); from about 1 weight percent to an effective amount of Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-1,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidin
- Another aspect of the invention is a plastic article molded or extruded from the TPE of the present invention.
- a protected electrical line comprising (a) wire or cable having an axial length and (b) at least one layer of the TPE of the present invention enveloping at least a portion of the axial length of the wire or cable, wherein the protected electrical line is resistant to UV light as measured by less than 1 Delta E color variation after 10 days of QUV testing according to ASTM D4587 (UVA, 340 nm, 0.77 watt/m 2 , 60° C. for 8 hours light and 50° C. for 4 hours dark condensation).
- PPE also known as poly(2,6-dimethylphenol)
- thermoplastic resin marketed commercially by a variety of companies.
- non-limiting examples of types of PPE can include poly(2,6-dimethyl-1,4-phenylene ether), poly(2,6-diethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6-propyl-1,4-phenylene ether), poly(2,6-dipropyl-1,4-phenylene ether), poly(2-ethyl-6-propyl-1,4-phenylene ether), poly(2,6-dimethoxy -1,4-phenylene ether), poly(2,6-di(chloro methyl)-1,4-phenylene ether), poly(2,6-di(bromo methyl)-1,4-phenylene ether), poly(2,6-diphenyl-1,4-phenylene ether), poly(2,6-ditoluyl-1,4-phenylene ether), poly(2,6-di-ditoluyl-1
- PPE resins are often a blend of polyphenylene ether with an aromatic vinyl group thermoplastic resin.
- non-limiting examples of the aromatic vinyl group thermoplastic resin can include homopolymers of styrene or its derivatives, as well as copolymers of styrene and p-methyl styrene, alpha-methyl styrene, alpha-methyl-p-methyl styrene, chlorostyrene, bromostyrene, etc.
- the rubber-modified polystyrene (HIPS) formed from 70 to 99% by weight of aromatic vinyl compound mentioned above and 1 to 30% by weight of diene rubber, can also be used.
- diene rubber used in HIPS examples include homopolymers of conjugated diene group compounds such as butadiene, isoprene, chloroprene, etc.; copolymers of conjugated diene group compounds and unsaturated nitro compounds or aromatic vinyl compounds; as well as natural rubber, etc. These can be used in the form of one type or in the form of mixture of two or more than two types. Poly butadiene-butadiene-styrene copolymer is often preferred.
- HIPS can be obtained by methods such as emulsification polymerization, suspension polymerization, lump state polymerization, solution polymerization, or by combining these methods.
- aromatic vinyl group resins include styrene-acrylonitrile-acrylate copolymer, FPDM group rubber-modified polystyrene, acrylate rubber-modified styrene-acrylonitrile copolymer and others.
- thermoplastic elastomer is needed to add flexibility to the PPE.
- any commercial thermoplastic elastomer fundamentally is a candidate for use to render the PPE more flexible.
- Styrene block copolymers (SBC) as a class are acceptable for making the TPE more flexible.
- SBC Styrene block copolymers
- a highly hydrogenated SBC is used.
- highly hydrogenated SBCs include styrene-ethylene butylene-styrene polymers, styrene-ethylene propylene-styrene polymers, hydrogenated styrene-isoprene block copolymers, and hydrogenated styrene-butadiene block copolymers, and combinations of them.
- the preferred thermoplastic elastomer is a styrenic block copolymer, more preferably one which is hydrogenated such as styrene-ethylene-butylene-styrene (SEBS) or styrene-ethylene-ethylene-propylene-styrene (SEEPS) in a variety of grades.
- SEBS styrene-ethylene-butylene-styrene
- SEEPS styrene-ethylene-ethylene-propylene-styrene
- thermoplastic elastomers useful for this invention: those which require the presence of plasticizing oil and those which do not.
- the first type of hydrogenated TPE which requires plasticizing oil should have a weight average molecular weight of between about 70,000 and about 160,000 with a preferred molecular weight of about 100,000.
- the ratio of styrenic end-block to olefinic mid-block should range from about 20/80 to about 40/60, and preferably about 30/70.
- the second type of hydrogenated TPE which does not require plasticizing oil should have a weight average molecular weight of less than about 230,000 and styrenic end-block content of less than about 22%. Also, the mid-block can have a relatively higher vinyl content than typical SEBS TPEs.
- Hydrogenated styrene block copolymers are commercially available from a number of sources, preferably the Kraton G brand series from Kraton Polymers. Of the various G grades, Kraton G1642, Kraton G1643 (for non-oil formulations), Kraton G1650, Kraton G1652, and Kraton G1654H are desirable. Also Kraton MD6945 SEBS (for non-oil formulations) is useful. Also Septon 4033 SEEPS, which has a similar molecular weight and size of styrenic end-blocks as Kraton G1650, and Kuraray Q1250, a proprietary block copolymer with a different endblock than styrene, can be used.
- the TPE for use as wire and cable insulation or jacketing or both must be flame retardant to satisfy building requirements and codes for mammalian-occupied spaces.
- the TPEs of the present invention employ either organo-phosphinates or melamine polyphosphates or both.
- These two types of flame retardants are solid particles which are particularly suitable for use in the TPE compounds of the present invention because they are far less likely to migrate within the compound after it has been finally formed into a plastic article such as a sleeve of insulation or jacketing for a wire or a cable. Also as explained above, these two types of solid non-halogenated flame retardants contribute to underwater resistivity, durability in high humidity conditions, etc.
- Organo-phosphinate is commercially available as a proprietary compound from Clariant Corporation marketed under the brands Exolit OP 930, Exolit OP 935, Exolit OP 1311, Exolit OP 1312, and Exolit OP 1230.
- organo-phosphinates are also useful as synergists for other flame retardant materials, such as melamine polyphosphate or polyammonium polyphosphate or proprietary equivalent performers such as Amfine FP-2100J from Amfine Chemical Corporation.
- flame retardant materials such as melamine polyphosphate or polyammonium polyphosphate or proprietary equivalent performers such as Amfine FP-2100J from Amfine Chemical Corporation.
- Each of these latter flame retardant materials alone is not very effective at low concentration in the TPE formulation, but a blend of the organo-phosphinate in a small amount with any of them is very effective for flame retardancy even if the total concentration of flame retardants remains minor.
- organo-phosphinate and melamine polyphosphate offers the best performance at reasonable cost in wire and cable insulation or jacketing when striving to pass the underwater thermal aging test and underwater insulation resistance test because neither of the chemicals is overtly sensitive to water.
- Melamine polyphosphate is commercially available both from Hangzhou JLS Flame Retardants Chemicals Co., Hangzhou Zhejiang, China as JLS-PNA and JLS-PNB brand flame retardant additives and from Ciba Specialty Chemicals as Melaspur 200 brand flame retardant additive.
- APP polyammonium polyphosphate
- PNP1C polyammonium polyphosphate
- PNP1D flame retardant additives
- Clariant is Another major APP supplier.
- Amfine FP-2100J and FP-2200 are proprietary nitrogen-phosphorous based flame retardant products from Amfine Chemical Corporation.
- TPE compounds disclosed by Yin et al. and Sato are known that their compound apparently does not have a tensile elongation before aging of more than 200% and did not report performance of 150° C. heat deformation or tensile elongation retention after thermal aging, these properties being required by the UL 62 safety standard. While not limited to a particular theory, it is believed that the use by Yin et al. and Sato of liquid non-halogenated flame retardant(s) is at least a contributing factor to the failure to have a tensile elongation before aging of more than 200%.
- the TPE of the present invention benefits from an amount of nucleated olefinic polymer, preferably a nucleated polypropylene homopolymer, to assist in processing of the TPE into its final shape and to contribute to the 150° C. heat deformation heat resistance of the plastic article made from the TPE.
- Any commercially available nucleated olefinic polymer is a candidate for use in the TPE.
- a commercial example of a nucleated polypropylene homopolymer is Formolene 5144L brand polypropylene from Formosa Plastics.
- a second example is a nucleated homo-polypropylene PP1043N (5 Melt Flow Index) from ExxonMobil.
- a tackifier also known as a midblock SBC modifier, is also used in the TPE. Any commercially available tackifier is a candidate for use in the TPE.
- Non-limiting examples of tackifiers include Escorez 5000 series tackifiers, such as Grades 5340 and 5320 from ExxonMobil Chemicals; Regalite R1125, Regalite R1100, Regalrez 1139, Regalrez 1126, Regalrez 1094, Plastolyn R1140, Eastotac H 140-W, and Eastotac H125-W tackifiers from Eastman Chemicals; and Arkon P100, Arkon P115, Arkon P125, and Arkon P140A tackifiers from Arakawa Chemicals.
- Presently preferred as a tackifier is Plastolyn R1140 tackifier from Eastman Chemicals.
- UV light stabilizers found unexpectedly to work well together in the present invention are:
- Phenol 2,2′-methylene-bis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)) (TinuvinTM 360 very low volatile benzotriazole UV absorber from BASF); and
- an antioxidant can be used in an amount of less than 1 weight percent and preferably about 0.05 weight percent, namely: Amines, bis(hydrogenated tallow alkyl), oxidized / PHENOL, 2,4-BIS(1,1-DIMETHYLETHYL)-, PHOSPHITE (3:1) (IrgastabTM FS 301FF Phenol free processing stabilizer system from BASF).
- plasticizing oil may be necessary to improve flow and flexibility of the resulting TPE.
- Any oil conventionally used to plasticize a SBC is a candidate for use, such as mineral oil, vegetable oil, synthetic oil, etc.
- a presently preferred oil is Drakeoil 600 brand oil from Drake Oil Co. of Syracuse, New York, USA.
- thermoplastic elastomer compounds of the present invention can include conventional plastics additives in an amount that is sufficient to obtain a desired processing or performance property for the compound. The amount should not be wasteful of the additive nor detrimental to the processing or performance of the compound.
- plastics additives in an amount that is sufficient to obtain a desired processing or performance property for the compound. The amount should not be wasteful of the additive nor detrimental to the processing or performance of the compound.
- Those skilled in the art of thermoplastics compounding without undue experimentation but with reference to such treatises as Plastics Additives Database (2004) from Plastics Design Library (elsevier.com website), can select from many different types of additives for inclusion into the compounds of the present invention.
- Non-limiting examples of optional additives include adhesion promoters; biocides (antibacterials, fungicides, and mildewcides), anti-fogging agents; anti-static agents; bonding, blowing and foaming agents; dispersants; fillers and extenders; smoke suppressants; expandable char formers; impact modifiers; initiators; lubricants; micas; pigments, colorants and dyes; oils and plasticizers; processing aids; other polymers; release agents; silanes, titanates and zirconates; slip and anti-blocking agents; stabilizers; stearates; tackifiers; viscosity regulators; waxes; and combinations of them.
- Table 1a for SBC which requires plasticizing oil, shows the acceptable, desirable, and preferable ranges of ingredients for the thermoplastic elastomer compound of the present invention, (so long as the particular combination results in a TPE which has an elongation of more than 200%).
- the preparation of compounds of the present invention is uncomplicated once the proper ingredients have been selected.
- the compound of the present can be made in batch or continuous operations.
- Extruder speeds can range from about 300 to about 700 revolutions per minute (rpm), and preferably from about 500 rpm.
- the output from the extruder is pelletized for later extrusion or molding into polymeric articles.
- any plastic article needing flexibility, elongation, flame retardance, UV resistance, and the physical properties of PPE can benefit from TPEs of the present invention.
- any plastic article which employs flexible polyvinyl chloride compounds can now be served by TPEs of the present invention.
- the TPEs can be especially useful as insulation or jacketing layers or both used with protected electrical line (wire or cable or both) which requires flame retardant properties and sufficient physical properties to pass the UL 62 safety standard. Electrical power wires and cables fit this category. With the UV resistance added to the TPE compounds, the compounds in the final shape can be used in circumstances where there is continuing exposure to ultraviolet light.
- TPE compounds of the present invention also pass the VW-1 and V-0 flame tests, they are also suitable as insulation or jacketing layers for accessory wire or accessory cable that need not meet all parts of the UL 62 safety standard.
- plastic articles which need strong physical properties arising from PPE and non-halogenated flame retardance can benefit from TPE compounds of this invention.
- Such plastic articles are typically injection molded into precise electrical or electronic parts, such as connectors, junction boxes, etc.
- Table 2 shows sources of ingredients for the examples of UV light resistance.
- Table 3 shows the formulations of the masterbatches of UV light stabilizers to be later combined with the LC370-195 grade TPE described above. The performance requirement for success was less than 1.0 Delta E variation after 10 days of exposure to QUV light testing, according to the procedures and equipment specified in ASTM D4587 (UVA, 340 nm, 0.77 watt/m 2 , 60° C. for 8 hours light and 50° C. for 4 hours dark condensation).
- the masterbatches were made by 25mm twin screw extrustion with the barrel and die temperatures ranged from 170° C. (338° F.) to 180° C. (356° F.) with the melt temperature of 196° C. (382° F.).
- the pre-mixing was performed with a Sack Mixer to get the uniform distribution of the additives with mild mixing speed for one minute.
- a 20/60/20 screen pack was used to generate back pressure and improve the dispersion quality.
- the vacuum was applied in one of the barrel zones to remove volatiles during extrusion.
- the molded chips for QUV testing were made by injection molding with the temperature setup rangeing from 160° C. (320° F.) to 190° C. (374° F.). The mold temperature was maintained as cool with water circulation.
- the mold chip dimension was 6.35 cm ⁇ 8.89 cm (2.5 inch ⁇ 3.5 inch) with a set of stepwise thicknesses that was 0.15 cm (60 mil) at the top of the mold chip and 0.076 cm (30 mil) thickness at the bottom of the mold chip.
- the masterbatches were pre-blended with the FR TPE by a bag shaking and fed into the injection molding hopper. The color reading was performed on the flat side of the mold chips (the side opposite the side having different thickness dimensions identified above) before and after QUV testing.
- Comparative Example A was a control with no UV stabilizer masterbatch added. Its performance after even one day was unsatisfactory and after 10 days was fatal.
- Comparative Examples B and C using masterbatches M-1 and M-2 at a letdown ratio of 7%, were all failures, despite the selection of conventional UV stabilizers such as the CyasorbTM UV stabilizers and the CyanoxTM UV stabilizer.
- Comparative Example D and Example 1 introduced the use of Tinuvin 360 UV stabilizer and Chimassorb 944 FDL UV stabilizer. While Comparative Example D was insufficient in amount because of its letdown ratio of 7% (resulting in the Tinuvin 360 UV stabilizer and Chimassorb 944 FDL UV stabilizer each being present at about 0.6 weight percent), Example 1 did show acceptable Delta E values and therefore served as a launching point for Comparative Example H and Example 1 identified below, to adjust to a different color for matching purposes.
- Comparative Examples E and F were failures because Tinuvin 234 was used instead of Tinuvin 360, even at two different letdown ratios and even though Chimassorb 944 FDL UV stabilizer was also used.
- Example G used IrgastabTM Antioxidant instead of SongnoxTM Antioxidant (to better resist “gas fading”) as ingredients but maintained the same usage of Tinuvin 360 UV stabilizer and Chimassorb 944 FDL UV stabilizer. Significantly, without the pigments also present as in the other masterbatches, this un-pigmented compound failed. Thus, Example 2 which restored the pigments to the UV stabilization ingredients yielded an unpredictable result.
- TPE compounds having UV resistance unexpectedly found from the use of Tinuvin 360 UV stabilizer and Chimassorb 944 FDL UV stabilizer to make insulation or jacketing for protected electrical line (wire, cable, or both) which can pass the UL 62 test and have less than 1 Delta E color variation after 10 days of QUV testing according to ASTM D4587 (UVA, 340 nm, 0.77 watt/m 2 , 60° C. for 8 hours light and 50° C. for 4 hours dark condensation). Also, these Examples inform the art of these compounds being suitable for injected molded TPE-based plastic articles which need flame retardance and UV resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
TABLE 1a |
Ranges of Ingredients |
Ingredient (Wt. Percent) | Acceptable | Desirable | Preferable |
Polyphenylene Ether (blended | 10-50 | 15-40 | 20-35 |
or unblended) | |||
Hydrogenated Styrenic Block | 10-50 | 15-45 | 20-40 |
Copolymer (requiring oil) | |||
Solid, Non-Halogenated Flame | 5-30 | 5-25 | 10-20 |
Retardant | |||
Nucleated Olefinic Polymer | 5-30 | 5-25 | 5-20 |
Oil | 5-30 | 5-25 | 5-20 |
Tackifier | 5-25 | 5-20 | 5-15 |
UV Light Stabilizer | 1-4 | 1-2 | 1.2-1.3 |
Titanium Dioxide Pigment | 2-10 | 3-8 | 3.5-7 |
Other Additives | 0-5 | 0.5-2 | 0.7-1.5 |
TABLE 1b |
Ranges of Ingredients |
Ingredient (Wt. Percent) | Acceptable | Desirable | Preferable |
Polyphenylene Ether (blended | 10-60 | 15-50 | 20-50 |
or unblended) | |||
Hydrogenated Styrenic Block | 20-60 | 25-55 | 30-50 |
Copolymer (not requiring oil) | |||
Solid, Non-Halogenated Flame | 5-30 | 5-25 | 10-20 |
Retardant | |||
Nucleated Olefinic Polymer | 5-40 | 5-35 | 10-30 |
UV Light Stabilizer | 1-4 | 1-2 | 1.2-1.3 |
Titanium Dioxide Pigment | 2-10 | 3-8 | 3.5-7 |
Optional Oil | 0-10 | 0-7 | 0-5 |
Tackifier | 0-20 | 0-10 | 0-5 |
Other Additives | 0-5 | 0.5-2 | 0.7-1.5 |
TABLE 2 |
Ingredients |
Chemical Name or Description | Purpose | Commercial Source |
1% Areosperse black pigment + 99% Ethylene Bis | Black pigment in Wax | PolyOne |
Stearamide Wax | ||
3,5-di-t-Butyl-4-Hydroxybenzoic Acid, Hexadecyl | Light Stabilizer | Cytec |
Ester (Cyasorb UV-2908) | ||
4-piperidol,2,2,6,6- tetramethyl- RPW stearin | Hinder Amine Light | Cytec |
(fatty acids mixture) (Cyasorb UV 3853S) | Stabilizer | |
Amines, bis(hydrogenated tallow alkyl), oxidized/ | Phenol free processing | BASF |
PHENOL, 2,4-BIS(1,1-DIMETHYLETHYL)-, | stabilizer | |
PHOSPHITE (3:1) (Irgastab FS 301FF) | system/Antioxidant | |
Bis(2.4-di-tert-butylphenyl) pentaerythritol | Stabilizer/Antioxidant | Songwon |
diphosphite (Songnox 6260 PW) | ||
Phenol, 2,2′-methylene-bis(6-(2H-benzotriazol-2- | Very low volatile | BASF |
yl)-4-(1,1,3,3-tetramethylbutyl)) (Tinuvin 360) | benzotriazole UV absorber | |
Phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1- | Very low volatile | BASF |
methyl-1-phenylethyl) (Tinuvin 234) | benzotriazole UV absorber | |
Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-1,3,5- | Oligomeric Hindered | BASF |
triazine-2,4-diyl][(2,2,6,6-tetramethyl-4- | Amine Light Stabilizer | |
piperidinyl)imino]-1,6-hexanediyl[(2,2,6,6- | (HALS) | |
tetramethyl-4-piperidinyl)imino]]) (Chimassorb | ||
944 FDL (Beads)) | ||
Polypropylene (PROFAX 6301 PP FLAKE) | Carrier Resin | Basell |
Sodium Alumino Sulphosilicate Blue Pigment | Blue Pigment | NUBIOLA USA |
Blue 29 | ||
Sodium Aluminosilicate Violet Pigment Violet 15 | Violet Pigment | NUBIOLA USA |
(Nubix V-8) | ||
Substituted Amine Oligomer (Cyasorb UV-3529) | Light Stabilizer | Cytec |
Substituted Heterocycle of S-Triazine Class | Light Absorber | Cytec |
(Cyasorb UV 1164) | ||
Titanium Dioxide (Tiona 696) | Weatherable White pigment | CRISTAL INORGANIC |
CHEMICALS SWITZERLAND | ||
Titanium Dioxide (Tronox 470) | White pigment | HUNTSMAN TIOXIDE/CRISTAL |
INORGANIC CHEMICALS | ||
SWITZERLAND | ||
Tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-s- | Antioxidant | Cytec |
triazine-2,4,6-(1H,3H, 5H)-trione (Cyanox 1790) | ||
Tris(2,4-di-tert-butylphenyl) phosphite/ | Antioxidant/Stabilizer | Songwon |
Tetrakis[methylene(3,5-di-tert-butyl-4- | ||
hydroxyhydrocinnamate)] methane (Songnox 11B | ||
PW) | ||
TABLE 3 |
Masterbatch Formulations |
Ingredients | M-1 | M-2 | M-3 | M-4 | M-5 | M-6 |
Titanium Dioxide (Tronox 470) | 50 | |||||
Titanium Dioxide (Tiona 696) | 50 | 50 | 50 | 36.71 | ||
Sodium Aluminosilicate Violet Pigment Violet 15 (Nubix V-8) | 1.8 | 1.8 | 1.8 | 1.8 | 1.62 | |
1% Areosperse black pigment + 99% Ethylene Bis | 0.5 | 0.5 | 0.5 | 0.5 | 0.44 | |
Stearamide Wax | ||||||
Sodium Alumino Sulphosilicate Blue | 0.94 | 0.94 | 0.94 | 0.94 | 0.66 | |
Pigment Blue 29 | ||||||
Amines, bis(hydrogenated tallow alkyl), oxidized/PHENOL, | 0.72 | 0.42 | ||||
2,4-BIS(1,1-DIMETHYLETHYL)-, PHOSPHITE (3:1) | ||||||
(Irgastab FS 301FF) | ||||||
Phenol, 2,2′-methylene-bis(6-(2H-benzotriazol-2-yl)-4- | 8.57 | 17.14 | 10 | |||
(1,1,3,3-tetramethylbutyl)) (Tinuvin 360) | ||||||
Phenol, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1- | 4.29 | |||||
phenylethyl) (Tinuvin 234) | ||||||
Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-1,3,5-triazine-2,4- | 8.57 | 4.29 | 17.14 | 10 | ||
diyl][(2,2,6,6-tetramethyl-4-piperidinyl)imino]-1,6- | ||||||
hexanediyl[(2,2,6,6-tetramethyl-4-piperidinyl)imino]]) | ||||||
(Chimassorb 944 FDL (Beads)) | ||||||
Tris(2,4-di-tert-butylphenyl)phosphite/ | 2.85 | 1.43 | ||||
Tetrakis[methylene(3,5-di-tert-butyl-4- | ||||||
hydroxyhydrocinnamate)] methane (Songnox 11B PW) | ||||||
Bis(2.4-di-tert-butylphenyl) pentaerythritol diphosphite | 2.14 | 2.86 | ||||
(Songnox 6260 PW) | ||||||
Tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-s-triazine- | 0.71 | |||||
2,4,6-(1H,3H,5H)-trione (Cyanox 1790) | ||||||
Substituted Heterocycle of S-Triazine Class (Cyasorb UV | 5.71 | 5.71 | ||||
1164) | ||||||
Substituted Amine Oligomer (Cyasorb UV-3529) | 5.71 | 5.71 | ||||
4-piperidol,2,2,6,6- tetramethyl- RPW stearin (fatty acids | 5.71 | 7.14 | ||||
mixture) (Cyasorb UV 3853S) | ||||||
3,5-di-t-Butyl-4-Hydroxybenzoic Acid, Hexadecyl Ester | 2.86 | |||||
(Cyasorb UV-2908) | ||||||
Polypropylene (PROFAX 6301 PP FLAKE) | 26.78 | 22.48 | 26.77 | 36.75 | 65 | 40.15 |
100 | 100 | 100 | 100 | 100 | 100 | |
TABLE 4 |
TPE Compound Formulations and Test Results |
Weight Percent | A | B | C | D | E | F | 1 | G | 2 |
LC370-195 TPE (PolyOne) | 100 | 93 | 93 | 93 | 93 | 86 | 86 | 93 | 88 |
M-1 | 7 | ||||||||
M-2 | 7 | ||||||||
M-3 | 7 | 14 | |||||||
M-4 | 7 | 14 | |||||||
M-5 | 7 | ||||||||
M-6 | 12 | ||||||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Wt. % of Tinuvin 360 | 1.2 | 1.2 | 1.2 | ||||||
Wt. % of Chimassorb 944 FDL | 1.2 | 1.2 | 1.2 | ||||||
QUV After Day 1 | 5.85 | No Data | 3.27 | 0.23 | 0.32 | 0.23 | 0.62 | 5.26 | 0.98 |
QUV After Day 2 | 6.02 | 3.30 | No Data | 0.63 | 1.48 | 0.38 | 0.60 | 3.46 | 0.76 |
QUV After Day 3 | 9.45 | 4.57 | No Data | 2.79 | 2.66 | 0.99 | No Data | 4.24 | 0.73 |
QUV After Day 4 | 12.56 | No Data | No Data | 3.74 | 4.56 | 1.91 | 0.72 | 4.04 | 0.63 |
QUV After Day 5 | No Data | No Data | No Data | 1.83 | 5.52 | 2.46 | 0.25 | No Data | No Data |
QUV After Day 6 | No Data | No Data | No Data | 2.41 | 6.79 | 3.35 | 0.41 | No Data | No Data |
QUV After Day 7 | 18.68 | No Data | No Data | 2.42 | 8.10 | 3.95 | 0.29 | 6.82 | 0.72 |
QUV After Day 8 | 20.53 | No Data | No Data | 2.99 | 9.12 | 4.76 | 0.21 | 7.63 | 0.66 |
QUV After Day 9 | 21.00 | No Data | No Data | No Data | No Data | No Data | 7.43 | 0.46 | |
QUV After Day 10 | 21.67 | 8.41 | No Data | No Data | No Data | No Data | No Data | 0.88 | |
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/786,847 US9988532B2 (en) | 2013-04-25 | 2014-04-18 | Flame retardant thermoplastic elastomers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361816095P | 2013-04-25 | 2013-04-25 | |
PCT/US2014/034585 WO2014176119A1 (en) | 2013-04-25 | 2014-04-18 | Flame retardant thermoplastic elastomers |
US14/786,847 US9988532B2 (en) | 2013-04-25 | 2014-04-18 | Flame retardant thermoplastic elastomers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160075874A1 US20160075874A1 (en) | 2016-03-17 |
US9988532B2 true US9988532B2 (en) | 2018-06-05 |
Family
ID=51792307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/786,847 Active 2034-11-21 US9988532B2 (en) | 2013-04-25 | 2014-04-18 | Flame retardant thermoplastic elastomers |
Country Status (2)
Country | Link |
---|---|
US (1) | US9988532B2 (en) |
WO (1) | WO2014176119A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11713394B2 (en) | 2016-12-28 | 2023-08-01 | Sabic Global Technologies, B.V. | Sheets including polyphenylene and an aryl salicylate and methods of making the same |
KR102328888B1 (en) | 2016-12-28 | 2021-11-22 | 사빅 글로벌 테크놀러지스 비.브이. | Multi-layered sheet comprising polyphenylene and polypropylene, and method for manufacturing the same |
US11787978B2 (en) * | 2019-01-31 | 2023-10-17 | Synthomer Adhesive Technologies Llc | Product assembly adhesives comprising low volatile tackifier compositions |
CN115038751A (en) * | 2019-10-15 | 2022-09-09 | 埃万特公司 | Halogen-free flame-retardant thermoplastic elastomer |
CN115028986B (en) * | 2022-06-27 | 2023-06-23 | 重庆泰山电缆有限公司 | Cable sheath material and preparation method thereof |
Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959412A (en) | 1989-02-27 | 1990-09-25 | Arizona Chemical Company | High shear tackifier resins |
US5455292A (en) | 1992-08-06 | 1995-10-03 | Asahi Kasei Kogyo Kabushiki Kaisha | Hydrolytically stable, halogen-free flame retardant resin composition |
US5705556A (en) | 1996-03-05 | 1998-01-06 | Shell Oil Company | Modified styrenic block copolymer compounds having improved elastic performance |
US5807915A (en) | 1995-09-28 | 1998-09-15 | Arizona Chemical Company | Polyphenylene oxide delivery system for adhesive compositions |
JPH1119971A (en) | 1997-06-30 | 1999-01-26 | Tsukuba Seiko Kk | Sealing molding machine |
US5965251A (en) | 1996-12-23 | 1999-10-12 | Kaneka Corporation | Laminated foam sheet and the molded body thereof for vehicle interior |
US6255371B1 (en) | 1999-07-22 | 2001-07-03 | Clariant Gmbh | Flame-retardant combination |
US6503993B1 (en) | 1997-11-07 | 2003-01-07 | Borealis Technology Oy | Propylene polymers and products thereof |
US20030082362A1 (en) | 2001-07-31 | 2003-05-01 | Khandpur Ashish K. | High cohesive strength pressure sensitive adhesive foam |
US6576700B2 (en) | 2000-04-12 | 2003-06-10 | General Electric Company | High flow polyphenylene ether formulations |
US20030175488A1 (en) * | 2001-11-30 | 2003-09-18 | General Electric Company | Multilayer articles comprising resorcinol arylate polyester and method for making thereof |
WO2004011504A2 (en) | 2002-07-23 | 2004-02-05 | Arkema | Halogen-free flameproof composition based on aromatic vinyl polymer, polyphenylene ether, phosphorus compounds and phenolic resin |
US6809159B2 (en) | 2000-04-13 | 2004-10-26 | General Electric Company | High flow polyphenylene ether formulations with dendritic polymers |
US6838503B2 (en) | 2001-07-03 | 2005-01-04 | General Electric Compa | Flame-retardant composition and article |
US20050197464A1 (en) | 2004-03-03 | 2005-09-08 | Kraton Polymers U.S. Llc | Polymeric compositions containing block copolymers having high flow and high elasticity |
US7005465B2 (en) | 2002-08-07 | 2006-02-28 | General Electric | Resin composition for wire and cable coverings |
US7211639B2 (en) | 2003-10-03 | 2007-05-01 | General Electric Company | Composition comprising functionalized poly(arylene ether) and ethylene-alkyl (meth)acrylate copolymer, method for the preparation thereof, and articles prepared therefrom |
US7217885B2 (en) | 2004-12-17 | 2007-05-15 | General Electric Company | Covering for conductors |
US7220917B2 (en) | 2004-12-17 | 2007-05-22 | General Electric Company | Electrical wire and method of making an electrical wire |
US7332677B2 (en) | 2004-12-17 | 2008-02-19 | General Electric Company | Multiconductor cable assemblies and methods of making multiconductor cable assemblies |
US20080193755A1 (en) * | 2007-02-09 | 2008-08-14 | Olivier Guise | Extrusion die, methods of coating a wire core, and a coated wire by the extrusion die and methods |
US7435776B2 (en) | 2004-03-05 | 2008-10-14 | Gls Corporation | Block copolymer composition for overmolding any nylon |
US20080251271A1 (en) | 2007-04-10 | 2008-10-16 | Albert Jeyakumar | Water-resistant wire coil, wire winding, and motor, and method of increasing motor power |
US7504585B2 (en) | 2004-12-17 | 2009-03-17 | Sabic Innovative Plastics Ip B.V. | Thermoplastic composition, coated conductor, and methods for making and testing the same |
US20090093584A1 (en) | 2007-10-09 | 2009-04-09 | Kraton Polymers U.S. Llc | End Use Applications Prepared From Certain Block Copolymers |
US7544728B2 (en) | 2006-04-19 | 2009-06-09 | Asahi Kasei Chemicals Corporation | Production process of polyphenylene ether composition |
US7576150B2 (en) | 2007-02-28 | 2009-08-18 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition, method, and article |
US7585906B2 (en) | 2007-02-28 | 2009-09-08 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition, method, and article |
US7589281B2 (en) | 2007-09-27 | 2009-09-15 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US7622522B2 (en) | 2007-09-27 | 2009-11-24 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US20100012373A1 (en) | 2008-07-16 | 2010-01-21 | Sabic Innovative Plastics, Ip B.V. | Poly(arylene ether) composition and a covered conductor with thin wall and small size conductor |
US7655714B2 (en) | 2007-09-27 | 2010-02-02 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US7678852B2 (en) | 2007-06-14 | 2010-03-16 | Ciba Corporation | Flame retardant compositions |
WO2010030478A2 (en) | 2008-09-11 | 2010-03-18 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition, method, and article background of the invention |
JP2010118207A (en) | 2008-11-12 | 2010-05-27 | Sumitomo Electric Ind Ltd | Halogen-free flame-retardant insulated electric wire |
US7741564B2 (en) | 2004-12-17 | 2010-06-22 | Sabic Innovative Plastics Ip B.V. | Electrical wire and method of making an electrical wire |
US7776441B2 (en) | 2004-12-17 | 2010-08-17 | Sabic Innovative Plastics Ip B.V. | Flexible poly(arylene ether) composition and articles thereof |
US7790790B2 (en) | 2006-11-14 | 2010-09-07 | E. I. Du Pont De Nemours And Company | Flame retardant thermoplastic elastomer compositions |
US20110196080A1 (en) * | 2007-08-01 | 2011-08-11 | Kuraray Co., Ltd. | Polyamide composition |
US20120037396A1 (en) * | 2009-04-29 | 2012-02-16 | Polyone Corporation | Flame retardant thermoplastic elastomers |
US8129451B2 (en) | 2007-11-29 | 2012-03-06 | Bridgestone Corporation | Sealing film for solar cell and solar cell obtained by use of the sealing film |
US8278376B2 (en) | 2007-09-27 | 2012-10-02 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US20130280532A1 (en) | 2007-09-28 | 2013-10-24 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition and its use in the fabrication of extruded articles and coated wire |
US8658898B2 (en) | 2009-04-13 | 2014-02-25 | Yazaki Corporation | Resin composition for heat-resistant electrical wire, and heat-resistant electrical wire |
US20140133812A1 (en) | 2011-06-14 | 2014-05-15 | Mitsubishi Rayon Co., Ltd. | Composition for jacketing optical fiber and optical fiber cable |
US20140171575A1 (en) * | 2012-12-14 | 2014-06-19 | Sabic Innovative Plastics Ip B.V. | Thermally conductive flame retardant polymer compositions and uses thereof |
US8901214B2 (en) | 2006-08-03 | 2014-12-02 | Asahi Kasei Chemicals Corporation | Flame-retardant resin composition |
US9120923B2 (en) | 2011-05-31 | 2015-09-01 | Polyone Corporation | Thermoplastic elastomer compounds exhibiting superior compression set properties |
US9187640B2 (en) | 2011-06-20 | 2015-11-17 | Asahi Kasei Chemicals Corporation | Polyphenylene ether-based resin composition and method for producing the same |
-
2014
- 2014-04-18 WO PCT/US2014/034585 patent/WO2014176119A1/en active Application Filing
- 2014-04-18 US US14/786,847 patent/US9988532B2/en active Active
Patent Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959412A (en) | 1989-02-27 | 1990-09-25 | Arizona Chemical Company | High shear tackifier resins |
US5455292A (en) | 1992-08-06 | 1995-10-03 | Asahi Kasei Kogyo Kabushiki Kaisha | Hydrolytically stable, halogen-free flame retardant resin composition |
US5807915A (en) | 1995-09-28 | 1998-09-15 | Arizona Chemical Company | Polyphenylene oxide delivery system for adhesive compositions |
US5910526A (en) | 1995-09-28 | 1999-06-08 | Arizona Chemical Company | Polyphenylene oxide delivery system for adhesive compositions |
US5705556A (en) | 1996-03-05 | 1998-01-06 | Shell Oil Company | Modified styrenic block copolymer compounds having improved elastic performance |
US5965251A (en) | 1996-12-23 | 1999-10-12 | Kaneka Corporation | Laminated foam sheet and the molded body thereof for vehicle interior |
JPH1119971A (en) | 1997-06-30 | 1999-01-26 | Tsukuba Seiko Kk | Sealing molding machine |
US6503993B1 (en) | 1997-11-07 | 2003-01-07 | Borealis Technology Oy | Propylene polymers and products thereof |
US6255371B1 (en) | 1999-07-22 | 2001-07-03 | Clariant Gmbh | Flame-retardant combination |
US6576700B2 (en) | 2000-04-12 | 2003-06-10 | General Electric Company | High flow polyphenylene ether formulations |
US6809159B2 (en) | 2000-04-13 | 2004-10-26 | General Electric Company | High flow polyphenylene ether formulations with dendritic polymers |
US6838503B2 (en) | 2001-07-03 | 2005-01-04 | General Electric Compa | Flame-retardant composition and article |
US20030082362A1 (en) | 2001-07-31 | 2003-05-01 | Khandpur Ashish K. | High cohesive strength pressure sensitive adhesive foam |
US20030175488A1 (en) * | 2001-11-30 | 2003-09-18 | General Electric Company | Multilayer articles comprising resorcinol arylate polyester and method for making thereof |
WO2004011504A2 (en) | 2002-07-23 | 2004-02-05 | Arkema | Halogen-free flameproof composition based on aromatic vinyl polymer, polyphenylene ether, phosphorus compounds and phenolic resin |
US7005465B2 (en) | 2002-08-07 | 2006-02-28 | General Electric | Resin composition for wire and cable coverings |
US7211639B2 (en) | 2003-10-03 | 2007-05-01 | General Electric Company | Composition comprising functionalized poly(arylene ether) and ethylene-alkyl (meth)acrylate copolymer, method for the preparation thereof, and articles prepared therefrom |
US20050197464A1 (en) | 2004-03-03 | 2005-09-08 | Kraton Polymers U.S. Llc | Polymeric compositions containing block copolymers having high flow and high elasticity |
US7842747B2 (en) | 2004-03-05 | 2010-11-30 | Gls Corporation | Block copolymer composition for overmolding any nylon |
US7435776B2 (en) | 2004-03-05 | 2008-10-14 | Gls Corporation | Block copolymer composition for overmolding any nylon |
US7332677B2 (en) | 2004-12-17 | 2008-02-19 | General Electric Company | Multiconductor cable assemblies and methods of making multiconductor cable assemblies |
US7220917B2 (en) | 2004-12-17 | 2007-05-22 | General Electric Company | Electrical wire and method of making an electrical wire |
US8563131B2 (en) | 2004-12-17 | 2013-10-22 | Sabic Innovative Plastics Ip B.V. | Flexible poly(arylene ether) composition and articles thereof |
US7504585B2 (en) | 2004-12-17 | 2009-03-17 | Sabic Innovative Plastics Ip B.V. | Thermoplastic composition, coated conductor, and methods for making and testing the same |
US7217885B2 (en) | 2004-12-17 | 2007-05-15 | General Electric Company | Covering for conductors |
US7741564B2 (en) | 2004-12-17 | 2010-06-22 | Sabic Innovative Plastics Ip B.V. | Electrical wire and method of making an electrical wire |
US7776441B2 (en) | 2004-12-17 | 2010-08-17 | Sabic Innovative Plastics Ip B.V. | Flexible poly(arylene ether) composition and articles thereof |
US7544728B2 (en) | 2006-04-19 | 2009-06-09 | Asahi Kasei Chemicals Corporation | Production process of polyphenylene ether composition |
US8901214B2 (en) | 2006-08-03 | 2014-12-02 | Asahi Kasei Chemicals Corporation | Flame-retardant resin composition |
US7790790B2 (en) | 2006-11-14 | 2010-09-07 | E. I. Du Pont De Nemours And Company | Flame retardant thermoplastic elastomer compositions |
US20080193755A1 (en) * | 2007-02-09 | 2008-08-14 | Olivier Guise | Extrusion die, methods of coating a wire core, and a coated wire by the extrusion die and methods |
US7585906B2 (en) | 2007-02-28 | 2009-09-08 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition, method, and article |
US7576150B2 (en) | 2007-02-28 | 2009-08-18 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition, method, and article |
US20080251271A1 (en) | 2007-04-10 | 2008-10-16 | Albert Jeyakumar | Water-resistant wire coil, wire winding, and motor, and method of increasing motor power |
US7678852B2 (en) | 2007-06-14 | 2010-03-16 | Ciba Corporation | Flame retardant compositions |
US20110196080A1 (en) * | 2007-08-01 | 2011-08-11 | Kuraray Co., Ltd. | Polyamide composition |
US7655714B2 (en) | 2007-09-27 | 2010-02-02 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US7622522B2 (en) | 2007-09-27 | 2009-11-24 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US7589281B2 (en) | 2007-09-27 | 2009-09-15 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US8278376B2 (en) | 2007-09-27 | 2012-10-02 | Sabic Innovative Plastics Ip B.V. | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire |
US20130280532A1 (en) | 2007-09-28 | 2013-10-24 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition and its use in the fabrication of extruded articles and coated wire |
US20090093584A1 (en) | 2007-10-09 | 2009-04-09 | Kraton Polymers U.S. Llc | End Use Applications Prepared From Certain Block Copolymers |
US8129451B2 (en) | 2007-11-29 | 2012-03-06 | Bridgestone Corporation | Sealing film for solar cell and solar cell obtained by use of the sealing film |
US20100012373A1 (en) | 2008-07-16 | 2010-01-21 | Sabic Innovative Plastics, Ip B.V. | Poly(arylene ether) composition and a covered conductor with thin wall and small size conductor |
WO2010030478A2 (en) | 2008-09-11 | 2010-03-18 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether) composition, method, and article background of the invention |
JP2010118207A (en) | 2008-11-12 | 2010-05-27 | Sumitomo Electric Ind Ltd | Halogen-free flame-retardant insulated electric wire |
US8658898B2 (en) | 2009-04-13 | 2014-02-25 | Yazaki Corporation | Resin composition for heat-resistant electrical wire, and heat-resistant electrical wire |
US20120037396A1 (en) * | 2009-04-29 | 2012-02-16 | Polyone Corporation | Flame retardant thermoplastic elastomers |
US9120923B2 (en) | 2011-05-31 | 2015-09-01 | Polyone Corporation | Thermoplastic elastomer compounds exhibiting superior compression set properties |
US20140133812A1 (en) | 2011-06-14 | 2014-05-15 | Mitsubishi Rayon Co., Ltd. | Composition for jacketing optical fiber and optical fiber cable |
US9187640B2 (en) | 2011-06-20 | 2015-11-17 | Asahi Kasei Chemicals Corporation | Polyphenylene ether-based resin composition and method for producing the same |
US20140171575A1 (en) * | 2012-12-14 | 2014-06-19 | Sabic Innovative Plastics Ip B.V. | Thermally conductive flame retardant polymer compositions and uses thereof |
Non-Patent Citations (1)
Title |
---|
Hangzhou JLS Flame Retardants Chemical Co., Ltd.: Material Data Safety Sheet, JLS-APP Version 05.0, Revision Date Mar. 18, 2009. |
Also Published As
Publication number | Publication date |
---|---|
WO2014176119A1 (en) | 2014-10-30 |
US20160075874A1 (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9558867B2 (en) | Flame retardant thermoplastic elastomers | |
US9988532B2 (en) | Flame retardant thermoplastic elastomers | |
US8278376B2 (en) | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire | |
US7622522B2 (en) | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire | |
US7576150B2 (en) | Poly(arylene ether) composition, method, and article | |
US7585906B2 (en) | Poly(arylene ether) composition, method, and article | |
JP5253803B2 (en) | Halogen-free flame retardant polyamide composition with improved electrical properties | |
US7417083B2 (en) | Flame retardant composition | |
EP2652033B1 (en) | Halogen-free, flame retardant composition for wire and cable applications | |
KR101765349B1 (en) | Thermoplastic elastomer compositions comprising intumescent flame retardants and non-phosphorous-based flame retardant synergists | |
EP2814886B1 (en) | Stain and color change resistant poly(phenylene ether) composition | |
US6737456B2 (en) | Fire-retardant polyolefin compositions | |
US7655714B2 (en) | Flame-retardant poly(arylene ether) composition and its use as a covering for coated wire | |
US8354463B2 (en) | Flame retardant thermoplastic elastomers | |
US20150252214A1 (en) | Flexible, wrinkle resistant poly (phenylene ether) cable jacketing composition | |
WO1992017537A1 (en) | Flame retardant thermoplastic resin composition with intumescent flame retardant | |
US20050285086A1 (en) | Flame retardant composition | |
WO2002074852A1 (en) | Flame-retardant polyolefin resin composition | |
JP2021502459A (en) | A novel flame retardant composition for polyolefins | |
WO2024122297A1 (en) | Flame-retardant composition, flame-retardant resin composition and molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: AVIENT CORPORATION, OHIO Free format text: CHANGE OF NAME;ASSIGNOR:POLYONE CORPORATION;REEL/FRAME:053197/0141 Effective date: 20200630 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: WELLS FARGO CAPITAL FINANCE, LLC, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:AVIENT CORPORATION;COLORMATRIX HOLDINGS, INC.;REEL/FRAME:067697/0369 Effective date: 20240610 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNORS:AVIENT CORPORATION;COLORMATRIX HOLDINGS, INC.;REEL/FRAME:067699/0676 Effective date: 20240610 |