US9868423B2 - Pressure generating apparatus for a braking system of a motor vehicle, hydraulic assemblage for interacting with the pressure generating apparatus, braking system, and method for installing a braking system for a motor vehicle - Google Patents

Pressure generating apparatus for a braking system of a motor vehicle, hydraulic assemblage for interacting with the pressure generating apparatus, braking system, and method for installing a braking system for a motor vehicle Download PDF

Info

Publication number
US9868423B2
US9868423B2 US14/964,852 US201514964852A US9868423B2 US 9868423 B2 US9868423 B2 US 9868423B2 US 201514964852 A US201514964852 A US 201514964852A US 9868423 B2 US9868423 B2 US 9868423B2
Authority
US
United States
Prior art keywords
housing component
hydraulic
embodied
assemblage
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/964,852
Other versions
US20170166177A1 (en
Inventor
Andreas Weh
Juergen Tandler
Matthias Mayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAYR, MATTHIAS, TANDLER, JUERGEN, WEH, ANDREAS
Publication of US20170166177A1 publication Critical patent/US20170166177A1/en
Application granted granted Critical
Publication of US9868423B2 publication Critical patent/US9868423B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4018Pump units characterised by their drive mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4031Pump units characterised by their construction or mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/047Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being pin-and-slot mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/4086Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device

Definitions

  • the present invention relates to a pressure generating apparatus for a braking system of a motor vehicle.
  • the invention further relates to a hydraulic assemblage for interacting with the pressure generating apparatus.
  • the invention additionally relates to a braking system for a motor vehicle.
  • the invention moreover relates to a method for installing a braking system for a motor vehicle
  • Hydraulic vehicle braking systems conventionally have piston pumps to generate brake pressure.
  • Patent document DE 10 2008 002 740 A1 discusses a piston pump in particular for brake pressure regulation in a hydraulic vehicle braking system.
  • the piston pump has an outlet valve housed in a valve cover.
  • An outflow conduit of the piston pump opens into a pressure medium conduit of a pump housing. This pressure medium conduit is located, when viewed along the longitudinal axis of the piston pump, above an end, located in the interior of the pump housing, of the valve cover.
  • a cylinder-piston arrangement in which a drive device is furnished which is embodied to displace the piston axially in an opening, provided therefor, of a hydraulic assemblage, can furthermore alternatively be provided for pressure generation.
  • the present invention creates a pressure generating apparatus for a braking system of a motor vehicle, having a first housing component that has a flange-shaped portion for coupling the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion that is insertable into an opening embodied in the hydraulic assemblage for reception of the first housing component, a piston being axially displaceable in the hollow-cylindrically embodied portion by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and having a second housing component that has the electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first
  • the present invention furthermore creates a hydraulic assemblage for interacting with the pressure generating apparatus, which assemblage is embodied so that the flange-shaped portion of the first housing component is couplable to the hydraulic assemblage, and the opening of the hydraulic assemblage is embodied so that the second, hollow-cylindrically embodied portion of the first housing component, in which the piston is axially displaceable, is insertable into the opening of the hydraulic assemblage for reception of the first housing component.
  • the present invention furthermore creates a braking system for a motor vehicle having the pressure generating apparatus according to the present invention and having the hydraulic assemblage according to the present invention for interacting with the pressure generating apparatus.
  • the present invention furthermore creates a method for installing a braking system for a motor vehicle.
  • the method encompasses mounting a first housing component of the pressure generating apparatus of the braking system on a second housing component of the pressure generating apparatus of the braking system, the first housing component having a flange-shaped portion for coupling the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion in which a piston is axially displaceable by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and the second housing component having an electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component,
  • the method furthermore encompasses mounting of a first portion of the flange of the first housing component on the hydraulic assemblage.
  • the method moreover encompasses a simultaneous insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into an opening embodied in the hydraulic assemblage.
  • An idea of the present invention is to provide a pressure generating apparatus in which a first housing component and an electric motor received in a second housing component are disposed sequentially, and to hydraulically couple the pressure generating apparatus to a hydraulic assemblage.
  • the pressure generating apparatus like the electric motor, is intended to be a pre-tested unit. Development costs and capital costs can thereby be reduced. It is thus possible to design an overall system that requires the smallest possible box volume. This is advantageous especially with compact vehicles, since they have limited installation space.
  • a further advantage is that a conventional electric motor, for example a brushless DC motor, can be used. Thanks to the compact design of the pressure generating apparatus, for example, penetration of a circuit board of a control apparatus disposed on an opposite side of the hydraulic assemblage can be avoided, which likewise results in a cost reduction.
  • a first opening is embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component, which opening is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container. Effective coupling of the first housing component via the first hydraulic line of the hydraulic assemblage to the equalizing container can thereby be achieved.
  • a second opening is embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component, which opening is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a second hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component. Effective coupling of the first housing component to the second hydraulic line of the hydraulic assemblage can thereby be achieved.
  • the transmission gear set is embodied by a planetary gear set that is disposed on a side, located opposite the second, hollow-cylindrically embodied portion of the first housing component, of the flange-shaped portion of the first housing component, or on the electric motor of the second housing component.
  • This kind of disposition of the gear set allows the electric motor to be connected directly to the gear set upon connection of the first housing component to the second housing component.
  • a compact design for the pressure generating apparatus can thereby advantageously be achieved.
  • the screw drive is embodied by a ball screw drive, the piston being connected to the spindle of the screw drive via a form-locking connection. It is thereby possible to prevent co-rotation of the spindle, or of the piston of the first housing component, from being caused by the rotation of the rotor of the electric motor which causes a nut of the screw drive to rotate.
  • the piston has on a peripheral surface at least one protrusion that is receivable, in a cutout embodied in the first housing component and/or the hydraulic assemblage, so that the piston is nonrotatably axially displaceable.
  • the piston can thus be received nonrotatably in the cutout embodied in the hydraulic assemblage.
  • a first hydraulic line embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to a compensating container, is embodied in the hydraulic assemblage, which line is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a first opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component. Effective coupling of the first housing component to the first hydraulic line of the hydraulic assemblage can thereby be achieved.
  • a second hydraulic line embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, is embodied in the hydraulic assemblage, which line is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component. Effective coupling of the first housing component to the second hydraulic line of the hydraulic assemblage can thereby be achieved.
  • the second hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component are disposed substantially tangentially to the opening of the hydraulic assemblage for reception of the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage. Simple and secure contacting of the first line to the opening of the hydraulic assemblage can thereby be achieved.
  • a first opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange, is connected to a first hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container.
  • Simple, reliable, and space-optimized disposition of the first housing component in the hydraulic assemblage can thereby be achieved.
  • a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is connected to a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component.
  • Simple, reliable, and space-optimized disposition of the first housing component in the hydraulic assemblage can thereby be achieved.
  • the second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component are disposed substantially tangentially to the opening of the hydraulic assemblage for reception of the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage. Simple and secure contacting of respective lines of the first housing component and of the second housing component to the opening of the hydraulic assemblage can thereby be achieved.
  • FIG. 1 is an exploded view of a sub-region of a braking system of a motor vehicle, according to a embodiment of the invention.
  • FIG. 2 is an exploded view of a first housing component according to the embodiment of the invention.
  • FIG. 3 schematically depicts a line layout of a hydraulic assemblage, according to the embodiment of the invention.
  • FIG. 4 a is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
  • FIG. 4 b is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
  • FIG. 5 is a flow chart of a method for installing the braking system for a motor vehicle, according to the embodiment of the invention.
  • FIG. 1 is an exploded view of a sub-region of a braking system of a motor vehicle, according to a embodiment of the invention.
  • Braking system 1 has a pressure generating apparatus 10 and a hydraulic assemblage 20 . Other components of braking system 1 are not further described in the interest of simplification.
  • Pressure generating apparatus 10 is embodied so that it is mountable on hydraulic assemblage 20 .
  • Hydraulic assemblage 20 has an opening 22 that is embodied to receive a first housing component 12 of pressure generating apparatus 10 .
  • a sealing element 25 is disposed between pressure generating apparatus 10 and hydraulic assemblage 20 to seal the connection between pressure generating apparatus 10 and hydraulic assemblage 20 .
  • Pressure generating apparatus 10 has first housing component 12 as well as a second housing component 24 that has an electric motor.
  • First housing component 12 has a flange-shaped portion 18 a for coupling first housing component 12 onto hydraulic assemblage 20 of braking system 1 , and a hollow-cylindrically embodied portion 18 b that is insertable into opening 22 embodied in hydraulic assemblage 20 for the reception of first housing component 12 .
  • First housing component 12 and second housing component 24 are fitted together, which may be along an axis disposed parallel to the axial displacement direction of piston 16 , so that a flange 24 a embodied on second housing component 24 adjacent to first housing component 12 , which flange is congruent with flange-shaped portion 18 a of first housing component 12 , is mounted on flange-shaped portion 18 a of first housing component 12 , and second housing component 24 completely surrounds transmission gear set 13 .
  • the axis disposed parallel to the axial displacement direction of piston 16 may be identical to the axial displacement direction of piston 16 .
  • Transmission gear set 13 may be embodied as a planetary gear set that is disposed on a side, located opposite the second, hollow-cylindrically embodied portion 18 b of first housing component 12 , of first portion 18 a of first housing component 12 .
  • Second portion 18 b of first housing component 12 may be insertable in a form-locking manner into opening 22 of hydraulic assemblage 20 .
  • both second portion 18 b of first housing component 12 and opening 22 of hydraulic assemblage 20 are of cylindrical configuration. Alternatively, they can also have a different suitable shape that is suitable for providing a form-locking connection between second portion 18 b and opening 22 of hydraulic assemblage 20 .
  • Second housing component 24 furthermore has a connector 26 for coupling to a control apparatus of braking system 1 .
  • Hydraulic assemblage 20 may have an orifice 31 for the reception of connector 26 , so that connector 26 is guidable through hydraulic assemblage 20 .
  • Orifice 31 of hydraulic assemblage 20 may be disposed below opening 22 for the reception of first housing component 12 .
  • orifice 31 can also be provided at a different suitable location in the housing of hydraulic assemblage 20 .
  • FIG. 2 is an exploded view of a first housing component according to the embodiment of the invention.
  • a piston 16 is axially displaceable by a screw drive 14 in hollow-cylindrically embodied portion 18 b , to generate a hydraulic pressure of braking system 1 , screw drive 14 having a nut 14 a drivable by an electric motor via a transmission gear set 13 , and a spindle 15 , spindle 15 being axially displaceable by a rotary motion of nut 14 a , piston 16 being connected to spindle 15 of screw drive 14 so that piston 16 moves along with the spindle of screw drive 14 .
  • the axially displaceable piston 16 is insertable into first housing component 12 .
  • the axially displaceable piston 16 is drivable by a screw drive 14 .
  • Screw drive 14 may be embodied by a ball screw drive.
  • a spindle 15 of screw drive 14 is advantageously connected to the axially displaceable piston 16 of first housing component 12 by a threaded connection.
  • spindle 15 of screw drive 14 can be connected to the axially displaceable piston 16 of first housing component 12 , for example, by a welded connection.
  • a seal 27 embodied by two sealing rings is furthermore disposed between first housing component 12 and the axially displaceable piston 16 .
  • the sealing rings hydraulically seal off an interior space of second portion 18 b of first housing component 12 .
  • a bearing element 28 and a support element 29 are furthermore provided on a drive side of the axially displaceable piston 16 .
  • Gear set 13 furthermore has a plurality of planet gears 13 a , bolts 13 b insertable into planet gears 13 a , and a ring gear 13 c that is in engagement with planet gears 13 a .
  • a sun gear connected to a drive shaft of the electric motor (not shown in FIG. 2 ) is in engagement with planet gears 13 a of gear set 13 when the pressure generating apparatus is in the installed state.
  • FIG. 3 schematically depicts a line layout of a hydraulic assemblage according to the embodiment of the invention.
  • Opening 22 embodied in hydraulic assemblage 20 for reception of first housing component 12 (not shown in FIG. 3 ), is disposed in hydraulic assemblage 20 substantially centeredly and below a tandem master cylinder 30 of braking system 1 . Opening 22 of hydraulic assemblage 20 is connected to a first hydraulic line 20 a for the outflow of hydraulic fluid from first housing component 12 (not shown in FIG. 3 ) via hydraulic assemblage 20 to a compensating container.
  • First hydraulic line 20 a may have the function of volume equalization between an internal volume of the second, hollow-cylindrically embodied portion 18 b of first housing component 12 and the equalizing container.
  • first hydraulic line 20 a is connected for this purpose to the equalizing container (not shown in FIG. 3 ).
  • Opening 22 of hydraulic assemblage 20 is furthermore connected to a second hydraulic line 20 b for the outflow of hydraulic fluid from first housing component 12 (not shown in FIG. 3 ) via hydraulic assemblage 20 to wheel brake cylinders of braking system 1 , and for back-venting of hydraulic fluid from the equalizing container via hydraulic assemblage 20 to first housing component 12 .
  • a hydraulic line for back-venting of hydraulic fluid from the equalizing container via hydraulic assemblage 20 to first housing component 12 can also be provided separately from second hydraulic line 20 b .
  • First hydraulic line 20 a and second hydraulic line 20 b may be each embodied as recesses.
  • Second hydraulic line 20 b thus may have two functions. On the one hand, upon generation of a pressure, by the axially displaceable piston of first housing component 12 , hydraulic fluid flows from first housing component 12 to hydraulic assemblage 20 and from there to wheel brake cylinders of braking system 1 .
  • second hydraulic line 20 b serves for back-venting of hydraulic fluid, upon a return of the piston of first housing component 12 from an extended position into the retracted position or zero position, from the equalizing container via hydraulic assemblage 20 to first housing component 12 .
  • First hydraulic line 20 a and second hydraulic line 20 b are disposed substantially tangentially to opening 22 of hydraulic assemblage 20 .
  • First hydraulic line 20 a and second hydraulic line 20 b are connected to opening 22 of hydraulic assemblage 20 which may be by an orifice disposed radially with respect to opening 22 of hydraulic assemblage 20 .
  • first hydraulic line 20 a and second hydraulic line 20 b can also be connected directly to opening 22 of hydraulic assemblage 20 .
  • First hydraulic line 20 a for the outflow of hydraulic fluid from first housing component 12 (not shown in FIG. 3 ) via hydraulic assemblage 20 to the equalizing container may be disposed so that it is connectable, when first housing component 12 is in the installed state in hydraulic assemblage 20 , to first opening 19 a embodied on the peripheral surface of the second, hollow-cylindrically embodied portion of first housing component 12 .
  • Second hydraulic line 20 b may be disposed so that it is connectable, when first housing component 12 is in the installed state in hydraulic assemblage 20 , to second opening 19 b embodied on the peripheral surface of the second, hollow-cylindrically embodied portion 18 b of first housing component 12 .
  • FIG. 4 a is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
  • FIG. 4 a shows the axially displaceable piston 16 of first housing component 12 in a retracted position.
  • a pressure space or cylinder volume 32 of first housing component 12 is maximal.
  • Hydraulic fluid flows by second hydraulic line 20 b (not shown in FIG. 4 a ) from first housing component 12 via hydraulic assemblage 20 to wheel brake cylinders of braking system 1 .
  • First housing component 12 may be disposed so that it penetrates through hydraulic assemblage 20 in the region of the second, hollow-cylindrically embodied portion 18 b of first housing component 12 . It is thereby advantageously possible to achieve a more compact configuration of the braking system that encompasses pressure generating apparatus 10 installed on hydraulic assemblage 20 .
  • FIG. 4 b is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
  • FIG. 4 b shows the axially displaceable piston of first housing component 12 in a completely extended position.
  • piston 16 With piston 16 in the present position, piston 16 is disposed at a distal end portion of the hollow-cylindrically embodied portion 18 b of first housing component 12 .
  • hydraulic fluid then flows, by second hydraulic line 20 b for back-venting, from the equalizing container via hydraulic assemblage 20 to first housing component 12 .
  • FIG. 5 is a flow chart of a method for installing the braking system for a motor vehicle, according to the embodiment of the invention.
  • the method encompasses mounting S 1 a first housing component of the pressure generating apparatus of the braking system on a second housing component of the pressure generating apparatus of the braking system, the first housing component having a flange-shaped portion for coupling the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion in which a piston is axially displaceable by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and the second housing component having an electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the
  • the method further encompasses mounting (S 2 ) a first portion of the flange of the first housing component on the hydraulic assemblage.
  • the method furthermore encompasses simultaneous insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into an opening embodied in the hydraulic assemblage.
  • a first opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is connected S 4 to a first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container.
  • a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is furthermore connected S 5 to a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component.
  • a hydraulic line for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component can also be provided separately from the second hydraulic line.
  • the first hydraulic line embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to the compensating container
  • the second hydraulic line embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, are disposed substantially tangentially to the opening of the hydraulic assemblage for reception of the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage.
  • a different suitable drive system can also be provided for energy transfer between the electric motor and the first housing component.
  • Guidance of the piston of the first housing component can furthermore be provided in a different manner, and using other suitable bearing elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

A pressure generating apparatus for a braking system of a motor vehicle, a flange embodied on a second housing component adjacent to a first housing component, which flange is congruent with a flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds a transmission gear set of the first housing component. Also described is a hydraulic assemblage for interacting with the pressure generating apparatus, to a braking system for a motor vehicle, and to a method for installing a braking system for a motor vehicle.

Description

RELATED APPLICATION INFORMATION
The present application claims priority to and the benefit of German patent application no. 10 2014 225 595.3, which was filed in Germany on Dec. 11, 2014, the disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to a pressure generating apparatus for a braking system of a motor vehicle. The invention further relates to a hydraulic assemblage for interacting with the pressure generating apparatus. The invention additionally relates to a braking system for a motor vehicle. The invention moreover relates to a method for installing a braking system for a motor vehicle
BACKGROUND INFORMATION
Hydraulic vehicle braking systems conventionally have piston pumps to generate brake pressure.
Patent document DE 10 2008 002 740 A1 discusses a piston pump in particular for brake pressure regulation in a hydraulic vehicle braking system. To control the flow of pressure medium, the piston pump has an outlet valve housed in a valve cover. An outflow conduit of the piston pump opens into a pressure medium conduit of a pump housing. This pressure medium conduit is located, when viewed along the longitudinal axis of the piston pump, above an end, located in the interior of the pump housing, of the valve cover.
A cylinder-piston arrangement in which a drive device is furnished which is embodied to displace the piston axially in an opening, provided therefor, of a hydraulic assemblage, can furthermore alternatively be provided for pressure generation.
SUMMARY OF THE INVENTION
The present invention creates a pressure generating apparatus for a braking system of a motor vehicle, having a first housing component that has a flange-shaped portion for coupling the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion that is insertable into an opening embodied in the hydraulic assemblage for reception of the first housing component, a piston being axially displaceable in the hollow-cylindrically embodied portion by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and having a second housing component that has the electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set.
The present invention furthermore creates a hydraulic assemblage for interacting with the pressure generating apparatus, which assemblage is embodied so that the flange-shaped portion of the first housing component is couplable to the hydraulic assemblage, and the opening of the hydraulic assemblage is embodied so that the second, hollow-cylindrically embodied portion of the first housing component, in which the piston is axially displaceable, is insertable into the opening of the hydraulic assemblage for reception of the first housing component.
The present invention furthermore creates a braking system for a motor vehicle having the pressure generating apparatus according to the present invention and having the hydraulic assemblage according to the present invention for interacting with the pressure generating apparatus.
The present invention furthermore creates a method for installing a braking system for a motor vehicle. The method encompasses mounting a first housing component of the pressure generating apparatus of the braking system on a second housing component of the pressure generating apparatus of the braking system, the first housing component having a flange-shaped portion for coupling the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion in which a piston is axially displaceable by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and the second housing component having an electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set. The method furthermore encompasses mounting of a first portion of the flange of the first housing component on the hydraulic assemblage. The method moreover encompasses a simultaneous insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into an opening embodied in the hydraulic assemblage.
An idea of the present invention is to provide a pressure generating apparatus in which a first housing component and an electric motor received in a second housing component are disposed sequentially, and to hydraulically couple the pressure generating apparatus to a hydraulic assemblage. The pressure generating apparatus, like the electric motor, is intended to be a pre-tested unit. Development costs and capital costs can thereby be reduced. It is thus possible to design an overall system that requires the smallest possible box volume. This is advantageous especially with compact vehicles, since they have limited installation space. A further advantage is that a conventional electric motor, for example a brushless DC motor, can be used. Thanks to the compact design of the pressure generating apparatus, for example, penetration of a circuit board of a control apparatus disposed on an opposite side of the hydraulic assemblage can be avoided, which likewise results in a cost reduction.
Advantageous embodiments and refinements are evident from the further descriptions herein and from the description with reference to the Figures.
According to a refinement provision is made that a first opening is embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component, which opening is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container. Effective coupling of the first housing component via the first hydraulic line of the hydraulic assemblage to the equalizing container can thereby be achieved.
According to a further refinement provision is made that a second opening is embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component, which opening is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a second hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component. Effective coupling of the first housing component to the second hydraulic line of the hydraulic assemblage can thereby be achieved.
According to a further refinement, provision is made that the transmission gear set is embodied by a planetary gear set that is disposed on a side, located opposite the second, hollow-cylindrically embodied portion of the first housing component, of the flange-shaped portion of the first housing component, or on the electric motor of the second housing component. This kind of disposition of the gear set allows the electric motor to be connected directly to the gear set upon connection of the first housing component to the second housing component. A compact design for the pressure generating apparatus can thereby advantageously be achieved.
According to a further refinement, provision is made that the screw drive is embodied by a ball screw drive, the piston being connected to the spindle of the screw drive via a form-locking connection. It is thereby possible to prevent co-rotation of the spindle, or of the piston of the first housing component, from being caused by the rotation of the rotor of the electric motor which causes a nut of the screw drive to rotate.
According to a further refinement, provision is made that the piston has on a peripheral surface at least one protrusion that is receivable, in a cutout embodied in the first housing component and/or the hydraulic assemblage, so that the piston is nonrotatably axially displaceable. The piston can thus be received nonrotatably in the cutout embodied in the hydraulic assemblage.
According to a further refinement, provision is made that a first hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to a compensating container, is embodied in the hydraulic assemblage, which line is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a first opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component. Effective coupling of the first housing component to the first hydraulic line of the hydraulic assemblage can thereby be achieved.
According to a further refinement, provision is made that a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, is embodied in the hydraulic assemblage, which line is disposed, when the first housing component is in the installed state in the hydraulic assemblage, so that it is connectable to a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component. Effective coupling of the first housing component to the second hydraulic line of the hydraulic assemblage can thereby be achieved.
According to a further refinement, provision is made that the first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to the compensating container, and the second hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, are disposed substantially tangentially to the opening of the hydraulic assemblage for reception of the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage. Simple and secure contacting of the first line to the opening of the hydraulic assemblage can thereby be achieved.
According to a further refinement, provision is made that upon insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into the opening embodied in the hydraulic assemblage, a first opening, embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange, is connected to a first hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container. Simple, reliable, and space-optimized disposition of the first housing component in the hydraulic assemblage can thereby be achieved.
According to a further refinement, provision is made that upon insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into the opening embodied in the hydraulic assemblage, a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is connected to a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component. Simple, reliable, and space-optimized disposition of the first housing component in the hydraulic assemblage can thereby be achieved.
According to a further refinement, provision is made that the first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to the compensating container, and the second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, are disposed substantially tangentially to the opening of the hydraulic assemblage for reception of the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage. Simple and secure contacting of respective lines of the first housing component and of the second housing component to the opening of the hydraulic assemblage can thereby be achieved.
The embodiments and refinements that have been described can be combined in any way with one another.
Further possible embodiments, refinements, and implementations of the invention also encompass combinations, not explicitly recited, of features of the invention that are described above or hereinafter with reference to the exemplifying embodiments.
The appended drawings are intended to provide further elucidation of the embodiments of the invention. They illustrate embodiments, and in combination with the description serve to explain principles and concepts of the invention.
Other embodiments, and many of the advantages recited, may be gathered with reference to the drawings. The elements depicted in the drawings are not necessarily shown accurately to scale with one another.
In the Figures of the drawings, identical reference characters denote identical or functionally identical elements, constituents, or components unless indicated to the contrary.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded view of a sub-region of a braking system of a motor vehicle, according to a embodiment of the invention.
FIG. 2 is an exploded view of a first housing component according to the embodiment of the invention.
FIG. 3 schematically depicts a line layout of a hydraulic assemblage, according to the embodiment of the invention.
FIG. 4a is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
FIG. 4b is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
FIG. 5 is a flow chart of a method for installing the braking system for a motor vehicle, according to the embodiment of the invention.
DETAILED DESCRIPTION
FIG. 1 is an exploded view of a sub-region of a braking system of a motor vehicle, according to a embodiment of the invention.
Braking system 1 has a pressure generating apparatus 10 and a hydraulic assemblage 20. Other components of braking system 1 are not further described in the interest of simplification.
Pressure generating apparatus 10 is embodied so that it is mountable on hydraulic assemblage 20. Hydraulic assemblage 20 has an opening 22 that is embodied to receive a first housing component 12 of pressure generating apparatus 10. In the installed state, a sealing element 25 is disposed between pressure generating apparatus 10 and hydraulic assemblage 20 to seal the connection between pressure generating apparatus 10 and hydraulic assemblage 20.
Pressure generating apparatus 10 has first housing component 12 as well as a second housing component 24 that has an electric motor. First housing component 12 has a flange-shaped portion 18 a for coupling first housing component 12 onto hydraulic assemblage 20 of braking system 1, and a hollow-cylindrically embodied portion 18 b that is insertable into opening 22 embodied in hydraulic assemblage 20 for the reception of first housing component 12.
First housing component 12 and second housing component 24 are fitted together, which may be along an axis disposed parallel to the axial displacement direction of piston 16, so that a flange 24 a embodied on second housing component 24 adjacent to first housing component 12, which flange is congruent with flange-shaped portion 18 a of first housing component 12, is mounted on flange-shaped portion 18 a of first housing component 12, and second housing component 24 completely surrounds transmission gear set 13. The axis disposed parallel to the axial displacement direction of piston 16 may be identical to the axial displacement direction of piston 16.
Transmission gear set 13 may be embodied as a planetary gear set that is disposed on a side, located opposite the second, hollow-cylindrically embodied portion 18 b of first housing component 12, of first portion 18 a of first housing component 12.
Second portion 18 b of first housing component 12 may be insertable in a form-locking manner into opening 22 of hydraulic assemblage 20. In the present exemplifying embodiment, both second portion 18 b of first housing component 12 and opening 22 of hydraulic assemblage 20 are of cylindrical configuration. Alternatively, they can also have a different suitable shape that is suitable for providing a form-locking connection between second portion 18 b and opening 22 of hydraulic assemblage 20.
Second housing component 24 furthermore has a connector 26 for coupling to a control apparatus of braking system 1. Hydraulic assemblage 20 may have an orifice 31 for the reception of connector 26, so that connector 26 is guidable through hydraulic assemblage 20. Orifice 31 of hydraulic assemblage 20 may be disposed below opening 22 for the reception of first housing component 12. Alternatively, orifice 31 can also be provided at a different suitable location in the housing of hydraulic assemblage 20.
FIG. 2 is an exploded view of a first housing component according to the embodiment of the invention.
A piston 16 is axially displaceable by a screw drive 14 in hollow-cylindrically embodied portion 18 b, to generate a hydraulic pressure of braking system 1, screw drive 14 having a nut 14 a drivable by an electric motor via a transmission gear set 13, and a spindle 15, spindle 15 being axially displaceable by a rotary motion of nut 14 a, piston 16 being connected to spindle 15 of screw drive 14 so that piston 16 moves along with the spindle of screw drive 14.
The axially displaceable piston 16 is insertable into first housing component 12. The axially displaceable piston 16 is drivable by a screw drive 14. Screw drive 14 may be embodied by a ball screw drive. A spindle 15 of screw drive 14 is advantageously connected to the axially displaceable piston 16 of first housing component 12 by a threaded connection. Alternatively, spindle 15 of screw drive 14 can be connected to the axially displaceable piston 16 of first housing component 12, for example, by a welded connection.
A seal 27 embodied by two sealing rings is furthermore disposed between first housing component 12 and the axially displaceable piston 16. The sealing rings hydraulically seal off an interior space of second portion 18 b of first housing component 12. A bearing element 28 and a support element 29 are furthermore provided on a drive side of the axially displaceable piston 16. Gear set 13 furthermore has a plurality of planet gears 13 a, bolts 13 b insertable into planet gears 13 a, and a ring gear 13 c that is in engagement with planet gears 13 a. A sun gear connected to a drive shaft of the electric motor (not shown in FIG. 2) is in engagement with planet gears 13 a of gear set 13 when the pressure generating apparatus is in the installed state.
FIG. 3 schematically depicts a line layout of a hydraulic assemblage according to the embodiment of the invention.
Opening 22 embodied in hydraulic assemblage 20, for reception of first housing component 12 (not shown in FIG. 3), is disposed in hydraulic assemblage 20 substantially centeredly and below a tandem master cylinder 30 of braking system 1. Opening 22 of hydraulic assemblage 20 is connected to a first hydraulic line 20 a for the outflow of hydraulic fluid from first housing component 12 (not shown in FIG. 3) via hydraulic assemblage 20 to a compensating container.
First hydraulic line 20 a may have the function of volume equalization between an internal volume of the second, hollow-cylindrically embodied portion 18 b of first housing component 12 and the equalizing container.
Upon volume equalization, the pressure generating apparatus being in a state in which the axially displaceable piston of first housing component 12 is disposed in a retracted position or zero position, hydraulic fluid flows from first housing component 12 via hydraulic assemblage 20 to the equalizing container, so that in the case of an expansion (resulting, for example, from heating) of hydraulic fluid, no unintended pressure is generated in the lines. First hydraulic line 20 a is connected for this purpose to the equalizing container (not shown in FIG. 3).
Opening 22 of hydraulic assemblage 20 is furthermore connected to a second hydraulic line 20 b for the outflow of hydraulic fluid from first housing component 12 (not shown in FIG. 3) via hydraulic assemblage 20 to wheel brake cylinders of braking system 1, and for back-venting of hydraulic fluid from the equalizing container via hydraulic assemblage 20 to first housing component 12. Alternatively, a hydraulic line for back-venting of hydraulic fluid from the equalizing container via hydraulic assemblage 20 to first housing component 12 can also be provided separately from second hydraulic line 20 b. First hydraulic line 20 a and second hydraulic line 20 b may be each embodied as recesses.
Second hydraulic line 20 b thus may have two functions. On the one hand, upon generation of a pressure, by the axially displaceable piston of first housing component 12, hydraulic fluid flows from first housing component 12 to hydraulic assemblage 20 and from there to wheel brake cylinders of braking system 1.
On the other hand, second hydraulic line 20 b serves for back-venting of hydraulic fluid, upon a return of the piston of first housing component 12 from an extended position into the retracted position or zero position, from the equalizing container via hydraulic assemblage 20 to first housing component 12.
First hydraulic line 20 a and second hydraulic line 20 b are disposed substantially tangentially to opening 22 of hydraulic assemblage 20. First hydraulic line 20 a and second hydraulic line 20 b are connected to opening 22 of hydraulic assemblage 20 which may be by an orifice disposed radially with respect to opening 22 of hydraulic assemblage 20.
Alternatively, first hydraulic line 20 a and second hydraulic line 20 b can also be connected directly to opening 22 of hydraulic assemblage 20.
First hydraulic line 20 a for the outflow of hydraulic fluid from first housing component 12 (not shown in FIG. 3) via hydraulic assemblage 20 to the equalizing container may be disposed so that it is connectable, when first housing component 12 is in the installed state in hydraulic assemblage 20, to first opening 19 a embodied on the peripheral surface of the second, hollow-cylindrically embodied portion of first housing component 12.
Second hydraulic line 20 b may be disposed so that it is connectable, when first housing component 12 is in the installed state in hydraulic assemblage 20, to second opening 19 b embodied on the peripheral surface of the second, hollow-cylindrically embodied portion 18 b of first housing component 12.
FIG. 4a is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
FIG. 4a shows the axially displaceable piston 16 of first housing component 12 in a retracted position. With piston 16 in the present position, a pressure space or cylinder volume 32 of first housing component 12 is maximal. When piston 16 is axially displaced by screw drive 14, a pressure buildup occurs. Hydraulic fluid flows by second hydraulic line 20 b (not shown in FIG. 4a ) from first housing component 12 via hydraulic assemblage 20 to wheel brake cylinders of braking system 1.
First housing component 12 may be disposed so that it penetrates through hydraulic assemblage 20 in the region of the second, hollow-cylindrically embodied portion 18 b of first housing component 12. It is thereby advantageously possible to achieve a more compact configuration of the braking system that encompasses pressure generating apparatus 10 installed on hydraulic assemblage 20.
FIG. 4b is a cross-sectional view of a pressure generating apparatus installed on the hydraulic assemblage, according to the embodiment of the invention.
FIG. 4b shows the axially displaceable piston of first housing component 12 in a completely extended position. With piston 16 in the present position, piston 16 is disposed at a distal end portion of the hollow-cylindrically embodied portion 18 b of first housing component 12. When piston 16 is moved back toward a retracted position, hydraulic fluid then flows, by second hydraulic line 20 b for back-venting, from the equalizing container via hydraulic assemblage 20 to first housing component 12.
FIG. 5 is a flow chart of a method for installing the braking system for a motor vehicle, according to the embodiment of the invention.
The method encompasses mounting S1 a first housing component of the pressure generating apparatus of the braking system on a second housing component of the pressure generating apparatus of the braking system, the first housing component having a flange-shaped portion for coupling the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion in which a piston is axially displaceable by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and the second housing component having an electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set.
The method further encompasses mounting (S2) a first portion of the flange of the first housing component on the hydraulic assemblage. The method furthermore encompasses simultaneous insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into an opening embodied in the hydraulic assemblage.
Upon insertion S3 of the second, hollow-cylindrically embodied portion of the flange of the first housing component into the opening embodied in the hydraulic assemblage, a first opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is connected S4 to a first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container.
Upon insertion S3 of the second, hollow-cylindrically embodied portion of the flange of the first housing component into the opening embodied in the hydraulic assemblage, a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is furthermore connected S5 to a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component. Alternatively, a hydraulic line for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component can also be provided separately from the second hydraulic line.
The first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to the compensating container, and the second hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, are disposed substantially tangentially to the opening of the hydraulic assemblage for reception of the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage.
Although the present invention was described above with reference to exemplifying embodiments, it is not limited thereto but instead is modifiable in many ways. In particular, the invention can be changed or modified in a multiplicity of ways without deviating from the essence of the invention.
For example, a different suitable drive system can also be provided for energy transfer between the electric motor and the first housing component. Guidance of the piston of the first housing component can furthermore be provided in a different manner, and using other suitable bearing elements.

Claims (15)

What is claimed is:
1. A pressure generating apparatus for a braking system of a motor vehicle, comprising:
a first housing component having a flange-shaped portion to couple the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion that is insertable into an opening in the hydraulic assemblage for receiving the first housing component, a piston being axially displaceable in the hollow-cylindrically embodied portion by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and
a second housing component having the electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set.
2. The pressure generating apparatus of claim 1, wherein a first opening is on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component, which opening is disposed, when the first housing component is in an installed state in the hydraulic assemblage, so that it is connectable to a first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container.
3. The pressure generating apparatus of claim 1, wherein a second opening is on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component, which opening is disposed, when the first housing component is in an installed state in the hydraulic assemblage, so that it is connectable to a second hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component.
4. The pressure generating apparatus of claim 1, wherein the transmission gear set is embodied by a planetary gear set that is disposed on a side, located opposite the second, hollow-cylindrically embodied portion of the first housing component, of the flange-shaped portion of the first housing component, or on the electric motor of the second housing component.
5. The pressure generating apparatus of claim 1, wherein the screw drive is embodied by a ball screw drive, the piston being connected to the spindle of the screw drive via a form-locking connection.
6. The pressure generating apparatus of claim 1, wherein the piston has on an outer peripheral surface at least one protrusion that is receivable, in a cutout embodied in the first housing component and/or the hydraulic assemblage, so that the piston is nonrotatably axially displaceable.
7. A hydraulic assemblage of a braking system for interacting with a pressure generating apparatus, comprising:
an hydraulic assembly configured to be coupleable to a flange-shaped portion of the first housing component, and having an opening embodied so that a second, hollow-cylindrically embodied portion of the first housing component, in which a piston is axially displaceable, is insertable into the opening for receiving the first housing component;
wherein the pressure generating apparatus includes:
the first housing component having the flange-shaped portion to couple to the hydraulic assembly, and the hollow-cylindrically embodied portion that is insertable into the opening in the hydraulic assembly for receiving the first housing component, the piston being axially displaceable in the hollow-cylindrically embodied portion by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and
a second housing component having the electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set.
8. The hydraulic assemblage of claim 7, wherein a first hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to a compensating container, is embodied in the hydraulic assembly, which line is disposed, when the first housing component is in an installed state in the hydraulic assembly, so that it is connectable to a first opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component.
9. The hydraulic assemblage of claim 7, wherein a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assembly to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, is embodied in the hydraulic assembly, which line is disposed, when the first housing component is in an installed state in the hydraulic assembly, so that it is connectable to a second opening on a peripheral surface of the second, hollow-cylindrically embodied portion of the first housing component.
10. The hydraulic assemblage of claim 8, wherein the first hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assembly to a compensating container, and the second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assembly to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assembly to the first housing component, are disposed substantially tangentially to the opening of the hydraulic assembly to receive the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assembly.
11. A braking system for a motor vehicle, comprising:
a pressure generating apparatus; and
a hydraulic assemblage for interacting with the pressure generating apparatus;
wherein the pressure generating apparatus includes:
a first housing component having a flange-shaped portion to couple the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion that is insertable into an opening in the hydraulic assemblage for receiving the first housing component, a piston being axially displaceable in the hollow-cylindrically embodied portion by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and
a second housing component having the electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set; and
wherein the hydraulic assemblage is configured to be coupleable to the flange-shaped portion of the first housing component, and having an opening embodied so that a second, hollow-cylindrically embodied portion of the first housing component, in which a piston is axially displaceable, is insertable into the opening for receiving the first housing component.
12. A method for installing a braking system for a motor vehicle, the method comprising:
mounting a first housing component of the a pressure generating apparatus of the braking system on a second housing component of the pressure generating apparatus, the first housing component having a flange-shaped portion to couple the first housing component to a hydraulic assemblage of the braking system, and a hollow-cylindrically embodied portion in which a piston is axially displaceable by a screw drive to generate a hydraulic pressure of the braking system, the screw drive having a nut drivable by an electric motor via a transmission gear set, and a spindle, the spindle being axially displaceable by a rotary motion of the nut, the piston being connected to the spindle of the screw drive so that the piston moves along with the spindle of the screw drive; and the second housing component having an electric motor for driving the screw drive by the transmission gear set disposed on the first housing component or on the second housing component, the first housing component and the second housing component being fitted together, along an axis disposed parallel to the axial displacement direction of the piston, so that a flange embodied on the second housing component adjacent to the first housing component, which flange is congruent with the flange-shaped portion of the first housing component, is mounted on the flange-shaped portion of the first housing component, and the second housing component completely surrounds the transmission gear set;
mounting a first portion of the flange of the first housing component on the hydraulic assemblage; and
simultaneously inserting the second, hollow-cylindrically embodied portion of the flange of the first housing component into an opening in the hydraulic assemblage.
13. The method of claim 12, wherein upon insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into the opening embodied in the hydraulic assemblage, a first opening, embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange, is connected to a first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to an equalizing container.
14. The method of claim 12, wherein upon insertion of the second, hollow-cylindrically embodied portion of the flange of the first housing component into the opening embodied in the hydraulic assemblage, a second opening embodied on a peripheral surface of the second, hollow-cylindrically embodied portion of the flange is connected to a second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the equalizing container via the hydraulic assemblage to the first housing component.
15. The method of claim 13, wherein the first hydraulic line, embodied at least in part as a recess, of the hydraulic assemblage, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to the compensating container, and the second hydraulic line, embodied at least in part as a recess, for the outflow of hydraulic fluid from the first housing component via the hydraulic assemblage to wheel brake cylinders of the braking system and/or for back-venting of hydraulic fluid from the compensating container via the hydraulic assemblage to the first housing component, are disposed substantially tangentially to the opening of the hydraulic assemblage to receive the first housing component, and contact the opening directly or via an orifice disposed radially with respect to the opening of the hydraulic assemblage.
US14/964,852 2014-12-11 2015-12-10 Pressure generating apparatus for a braking system of a motor vehicle, hydraulic assemblage for interacting with the pressure generating apparatus, braking system, and method for installing a braking system for a motor vehicle Active 2036-03-23 US9868423B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225595 2014-12-11
DE102014225595.3A DE102014225595A1 (en) 2014-12-11 2014-12-11 Pressure generating device for a brake system of a motor vehicle, hydraulic unit for interacting with the pressure generating device, brake system and method for mounting a brake system for a motor vehicle

Publications (2)

Publication Number Publication Date
US20170166177A1 US20170166177A1 (en) 2017-06-15
US9868423B2 true US9868423B2 (en) 2018-01-16

Family

ID=56082524

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/964,852 Active 2036-03-23 US9868423B2 (en) 2014-12-11 2015-12-10 Pressure generating apparatus for a braking system of a motor vehicle, hydraulic assemblage for interacting with the pressure generating apparatus, braking system, and method for installing a braking system for a motor vehicle

Country Status (3)

Country Link
US (1) US9868423B2 (en)
CN (1) CN105691375B (en)
DE (1) DE102014225595A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170030445A1 (en) * 2015-07-31 2017-02-02 Robert Bosch Gmbh Rotation/translation converter gear unit
US20180009425A1 (en) * 2016-07-06 2018-01-11 Mando Corporation Actuator assembly for integrated dynamic brake apparatus
US20190031164A1 (en) * 2016-02-12 2019-01-31 Robert Bosch Gmbh Hydraulic block for a braking system of a motor vehicle, and braking system for a motor vehicle
US20190100182A1 (en) * 2016-03-21 2019-04-04 Ipgate Ag Actuation device for a hydraulic actuation system, in particular a motor vehicle brake or an electrified clutch actuator, optionally with gear actuator
US10385847B2 (en) * 2014-02-27 2019-08-20 Agilent Technologies, Inc. Rigid piston-actuator-assembly supported for performing a pendulum-type tolerance compensation motion
US20200094800A1 (en) * 2016-12-21 2020-03-26 Robert Bosch Gmbh Hydraulic Block for a Hydraulic Assembly of a Slip Control System of a Hydraulic Vehicle Brake System
US10864896B2 (en) * 2016-09-07 2020-12-15 Robert Bosch Gmbh Hydraulic block for a hydraulic assembly of a slip control system of a hydraulic vehicle brake system
US20220274574A1 (en) * 2019-08-19 2022-09-01 Robert Bosch Gmbh Hydraulic block for a hydraulic unit of a hydraulic power vehicle braking system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016113395B4 (en) * 2016-07-20 2018-05-09 Sfs Intec Holding Ag Vehicle service brake with electromechanical-hydraulic brake boost
DE102017204407A1 (en) * 2017-03-16 2018-09-20 Robert Bosch Gmbh Hydraulic block for a hydraulic power-operated vehicle brake system
DE102017214593A1 (en) * 2017-08-22 2019-02-28 Robert Bosch Gmbh Piston pump unit for a hydraulic power-operated vehicle brake system
DE102017214859A1 (en) 2017-08-24 2019-02-28 Robert Bosch Gmbh Piston pump unit for a hydraulic vehicle brake system
JP7060494B2 (en) * 2018-11-21 2022-04-26 豊田合成株式会社 Steering wheel
CN112664440B (en) * 2019-10-16 2022-04-15 比亚迪股份有限公司 Piston pump set for brake system and control method thereof
DE102019218481A1 (en) * 2019-11-28 2021-06-02 Robert Bosch Gmbh Hydraulic block for a hydraulic unit of an external hydraulic vehicle brake system
DE102020215519A1 (en) * 2020-12-09 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Hydraulic block for a hydraulic externally powered vehicle brake system
US20230106780A1 (en) * 2021-10-01 2023-04-06 Board Of Regents, The University Of Texas System Reciprocating Pump
GB2612331B (en) * 2021-10-28 2023-12-13 Continental Automotive Tech Gmbh Motor sealing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004741A1 (en) * 1986-12-23 1988-06-30 Allied Corporation Electrically operated disc brake
US5439278A (en) * 1993-08-23 1995-08-08 Nissan Motor Co., Ltd. Cam actuated anti-lock braking system modulator
US5558409A (en) * 1994-12-14 1996-09-24 General Motors Corporation Electrohydraulic braking system
US6230492B1 (en) * 1996-08-30 2001-05-15 Kelsey-Hayes Company Electrically actuated hydraulic power cylinder
US6416138B1 (en) * 1999-11-24 2002-07-09 William Lunceford Barnett Slave operated self-contained hydraulic brake system for towed trailers and other vehicles
US20030209940A1 (en) * 2002-02-20 2003-11-13 Shozo Inage Brake apparatus with orifices for restricting brake fluid pressure pulsation
US20080048492A1 (en) * 2006-08-22 2008-02-28 Advics Co., Ltd. Actuator for controlling brake fluid pressure
DE102008002740A1 (en) 2008-06-27 2009-12-31 Robert Bosch Gmbh piston pump
WO2014086517A1 (en) * 2012-12-07 2014-06-12 Robert Bosch Gmbh Hydraulic pump assembly for a hydraulic vehicle brake system, hydraulic vehicle brake system with such a hydraulic pump assembly and method for manufacturing the hydraulic pump assembly
US20150298674A1 (en) * 2014-04-22 2015-10-22 Robert Bosch Gmbh Pump Housing Arrangement of a Hydraulic Assembly of a Vehicle Brake System

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058726A1 (en) * 2004-12-06 2006-06-08 Lucas Automotive Gmbh Pressure generator for a vehicle brake system and mounting method for the pressure generator
JP5320377B2 (en) * 2010-12-08 2013-10-23 本田技研工業株式会社 Hydraulic modulator
DE102012213216A1 (en) * 2011-08-15 2013-02-21 Continental Teves Ag & Co. Ohg Brake actuation unit
DE102013217257A1 (en) * 2012-09-03 2014-04-03 Robert Bosch Gmbh Hydraulic unit of a vehicle brake system with a motor shaft bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004741A1 (en) * 1986-12-23 1988-06-30 Allied Corporation Electrically operated disc brake
US5439278A (en) * 1993-08-23 1995-08-08 Nissan Motor Co., Ltd. Cam actuated anti-lock braking system modulator
US5558409A (en) * 1994-12-14 1996-09-24 General Motors Corporation Electrohydraulic braking system
US6230492B1 (en) * 1996-08-30 2001-05-15 Kelsey-Hayes Company Electrically actuated hydraulic power cylinder
US6416138B1 (en) * 1999-11-24 2002-07-09 William Lunceford Barnett Slave operated self-contained hydraulic brake system for towed trailers and other vehicles
US20030209940A1 (en) * 2002-02-20 2003-11-13 Shozo Inage Brake apparatus with orifices for restricting brake fluid pressure pulsation
US20080048492A1 (en) * 2006-08-22 2008-02-28 Advics Co., Ltd. Actuator for controlling brake fluid pressure
DE102008002740A1 (en) 2008-06-27 2009-12-31 Robert Bosch Gmbh piston pump
WO2014086517A1 (en) * 2012-12-07 2014-06-12 Robert Bosch Gmbh Hydraulic pump assembly for a hydraulic vehicle brake system, hydraulic vehicle brake system with such a hydraulic pump assembly and method for manufacturing the hydraulic pump assembly
US20150298674A1 (en) * 2014-04-22 2015-10-22 Robert Bosch Gmbh Pump Housing Arrangement of a Hydraulic Assembly of a Vehicle Brake System

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385847B2 (en) * 2014-02-27 2019-08-20 Agilent Technologies, Inc. Rigid piston-actuator-assembly supported for performing a pendulum-type tolerance compensation motion
US20170030445A1 (en) * 2015-07-31 2017-02-02 Robert Bosch Gmbh Rotation/translation converter gear unit
US10378623B2 (en) * 2015-07-31 2019-08-13 Robert Bosch Gmbh Rotation/translation converter gear unit
US20190031164A1 (en) * 2016-02-12 2019-01-31 Robert Bosch Gmbh Hydraulic block for a braking system of a motor vehicle, and braking system for a motor vehicle
US10780868B2 (en) * 2016-02-12 2020-09-22 Robert Bosch Gmbh Hydraulic block for a braking system of a motor vehicle, and braking system for a motor vehicle
US10933853B2 (en) * 2016-03-21 2021-03-02 Ipgate Ag Actuation device for a hydraulic actuation system, in particular a motor vehicle brake or an electrified clutch actuator, optionally with gear actuator
US20190100182A1 (en) * 2016-03-21 2019-04-04 Ipgate Ag Actuation device for a hydraulic actuation system, in particular a motor vehicle brake or an electrified clutch actuator, optionally with gear actuator
US11554765B2 (en) 2016-03-21 2023-01-17 Ipgate Ag Actuation device for a hydraulic actuation system, in particular a motor vehicle brake or an electrified clutch actuator, optionally with gear actuator
US11897439B2 (en) 2016-03-21 2024-02-13 Ipgate Ag Actuation device for a hydraulic actuation system, in particular a motor vehicle brake or an electrified clutch actuator, optionally with gear actuator
US20180009425A1 (en) * 2016-07-06 2018-01-11 Mando Corporation Actuator assembly for integrated dynamic brake apparatus
US10960865B2 (en) * 2016-07-06 2021-03-30 Mando Corporation Actuator assembly for integrated dynamic brake apparatus
US10864896B2 (en) * 2016-09-07 2020-12-15 Robert Bosch Gmbh Hydraulic block for a hydraulic assembly of a slip control system of a hydraulic vehicle brake system
US20200094800A1 (en) * 2016-12-21 2020-03-26 Robert Bosch Gmbh Hydraulic Block for a Hydraulic Assembly of a Slip Control System of a Hydraulic Vehicle Brake System
US11014544B2 (en) * 2016-12-21 2021-05-25 Robert Bosch Gmbh Hydraulic block for a hydraulic assembly of a slip control system of a hydraulic vehicle brake system
US20220274574A1 (en) * 2019-08-19 2022-09-01 Robert Bosch Gmbh Hydraulic block for a hydraulic unit of a hydraulic power vehicle braking system

Also Published As

Publication number Publication date
CN105691375B (en) 2020-05-08
US20170166177A1 (en) 2017-06-15
DE102014225595A1 (en) 2016-06-16
CN105691375A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
US9868423B2 (en) Pressure generating apparatus for a braking system of a motor vehicle, hydraulic assemblage for interacting with the pressure generating apparatus, braking system, and method for installing a braking system for a motor vehicle
US20170259799A1 (en) Piston assembly for a pressure-generating device of a braking system of a motor vehicle
CN108778869B (en) Operating device for a hydraulic operating system
US10150458B2 (en) Hydraulics block and hydraulic unit
EP2494228B1 (en) Hydrostatic clutch actuator
KR102379917B1 (en) Electro-hydraulic external force pressure generator
EP1997702B1 (en) Electrically driven brake booster
JP5729577B2 (en) Electric booster
US20170110933A1 (en) Stator assembly for wheel motor and stub axle support therefor
US20130270047A1 (en) Electric parking brake
KR102493133B1 (en) Brake apparatus having detachable pump housing
CN107074226B (en) Electric booster
EP2673510B1 (en) Combined power take-off and hydraulic pump assembly
JP2007093008A (en) Combined regular and parking brake system
KR102257873B1 (en) Pump for integrated brake appatus
EP3590777A1 (en) Motor module and abs hydraulic unit
US10196082B2 (en) Power steering apparatus
CN114954406B (en) Pressure supply unit for a brake system
US20220212647A1 (en) Electromechanically driveable brake pressure generator for a hydraulic braking system of a vehicle, and vehicle including an electromechanical brake pressure generator
US20200017079A1 (en) Pressure generating device for a braking system of a vehicle
KR102663651B1 (en) Pressure supply unit for a brake system of a vehicle
CN105934598A (en) Hydraulic cylinder unit with flexible attachment structure
CN102596646A (en) Hydraulic cylinder
JP5212147B2 (en) Electric pump unit
KR102608300B1 (en) Oil pressure generator for brake system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEH, ANDREAS;TANDLER, JUERGEN;MAYR, MATTHIAS;SIGNING DATES FROM 20151101 TO 20160112;REEL/FRAME:037811/0826

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4