US9702426B2 - Three speed adjustable shock absorber having one or more microvalves - Google Patents

Three speed adjustable shock absorber having one or more microvalves Download PDF

Info

Publication number
US9702426B2
US9702426B2 US14/832,521 US201514832521A US9702426B2 US 9702426 B2 US9702426 B2 US 9702426B2 US 201514832521 A US201514832521 A US 201514832521A US 9702426 B2 US9702426 B2 US 9702426B2
Authority
US
United States
Prior art keywords
shock absorber
compression
valve
adjustable shock
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/832,521
Other versions
US20160069414A1 (en
Inventor
Colin B. Bingle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dunan Microstaq Inc
Original Assignee
Dunan Microstaq Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dunan Microstaq Inc filed Critical Dunan Microstaq Inc
Priority to US14/832,521 priority Critical patent/US9702426B2/en
Assigned to DUNAN MICROSTAQ, INC. reassignment DUNAN MICROSTAQ, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BINGLE, COLIN B.
Publication of US20160069414A1 publication Critical patent/US20160069414A1/en
Application granted granted Critical
Publication of US9702426B2 publication Critical patent/US9702426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/064Units characterised by the location or shape of the expansion chamber
    • F16F9/065Expansion chamber provided on the upper or lower end of a damper, separately there from or laterally on the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/066Units characterised by the partition, baffle or like element
    • F16F9/067Partitions of the piston type, e.g. sliding pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity

Definitions

  • This invention relates to shock absorbers.
  • this invention relates to an improved structure for an adjustable shock absorber that includes one or more microvalves to control fluid flow in a valve assembly arranged between working chambers in a shock absorber pressure tube and/or in a shock absorber reservoir.
  • shock absorbers are used in connection with automotive suspension systems to dampen vibrations, control rate of weight transfer, and improve vehicle comfort and performance. To perform these functions, shock absorbers are generally connected between the body and the suspension of the motor vehicle.
  • Common shock absorbers for automobiles may be either a mono-tube design or a dual-tube design.
  • a piston is located within a pressure tube and is connected to the sprung mass of the vehicle through a piston rod.
  • the pressure tube is connected to the unsprung mass of the vehicle.
  • the piston divides the pressure tube into an upper working chamber and a lower working chamber.
  • a conventional piston includes compression valves, which limit the flow of damping fluid from the lower working chamber to the upper working chamber during a compression stroke, and rebound valves, which limit the flow of damping fluid from the upper working chamber to the lower working chamber during a rebound or extension stroke. Because the compression valves and the rebound valves have the ability to limit the flow of damping fluid, the shock absorber is able to produce a damping force which counteracts the vibrations and weight transfer which would otherwise be transmitted from the unsprung mass to the sprung mass.
  • a fluid reservoir is defined between the pressure tube and a reservoir tube which is positioned around the pressure tube.
  • a base valve assembly may be located between the lower working chamber and a fluid reservoir to control the flow of damping fluid.
  • compression valves are located in the base valve assembly.
  • the base valve assembly will include a check valve assembly which allows unrestricted fluid flow in one direction into the lower chamber from the reservoir during a rebound stroke. The compression valves of the base valve assembly and the compression valves of the piston assembly together produce the damping force during a compression stroke, and the rebound valves of the piston produces the damping force during a rebound or extension stroke.
  • the valve assemblies in the shock absorber control fluid flow between the two chambers and the reservoir during the stroking of the shock absorber. By controlling the fluid flow between the two chambers and the reservoir, pressure drops and pressure increases occur, and contribute to the damping forces of the shock absorber.
  • the valve assemblies can be used to tune the damping forces to control ride and handling as well as noise, vibration, and harshness.
  • Shock absorbers may be adjustable to meet driver preferences. For example, a driver may prefer a softer performance or feel on rough roads and a firmer feel on smooth roads. Generally, the greater degree to which the flow of damping fluid within the lower working chamber is restricted, the greater are the damping forces provided by the shock absorber. Thus, a soft compression and rebound stroke is produced when the flow of damping fluid is relatively unrestricted and a firm compression and rebound stroke is produced when the flow of damping fluid is restricted.
  • a conventional base valve assembly is not adjustable between desired soft, medium, and firm performance settings.
  • the adjustable shock absorber includes a housing defining an enclosed working space.
  • a wall is formed in the working space and separates the working space into first and second fluid chambers.
  • a compression valve is formed in the wall and a microvalve is attached to the compression valve and is operable to control fluid flow through the compression valve.
  • FIG. 1 is perspective view of an automobile that shows the basic structure of a suspension system that includes coil springs and shock absorbers according to this invention at each wheel.
  • FIG. 2 is a side elevation view, partially in section, of a mono-tube shock absorber according to this invention and including a piston within a pressure tube and a remote reservoir having a base valve assembly therein.
  • FIG. 3 is a cross sectional view of a portion of a remote reservoir showing a conventional base valve assembly within the remote reservoir housing.
  • FIG. 4 is a cross sectional view of a portion of the remote reservoir illustrated in FIG. 2 showing an improved base valve assembly according to the invention.
  • FIG. 5A is a bottom plan view of the improved base valve assembly body illustrated in FIG. 4 .
  • FIG. 5B is a top plan view of the improved base valve assembly body illustrated in FIG. 4 .
  • FIG. 6 is a flow chart showing the process of selecting a desired ride or feel of the adjustable shock absorber according to the invention.
  • FIG. 7 is an enlarged cross-sectional view of a portion of the piston assembly illustrated in FIG. 2 showing an improved piston according to the invention.
  • FIG. 8 is an exploded perspective view of a basic structure of a microvalve including a cover plate, an intermediate plate, and a base plate.
  • FIG. 9 is a perspective view of the basic structure of the microvalve illustrated in FIG. 8 shown assembled.
  • FIG. 10 is a plan view of an inner surface of the cover plate illustrated in FIGS. 8 and 9 .
  • FIG. 11 is a plan view of the intermediate plate illustrated in FIGS. 8 and 9 .
  • FIG. 12 is a plan view of an inner surface of the base plate illustrated in FIGS. 8 and 9 .
  • FIG. 13 is a perspective view of a portion of the inner surface of the cover plate illustrated in FIG. 10 .
  • FIG. 14 is a perspective view of a portion of the inner surface of the base plate illustrated in FIG. 12 .
  • FIG. 15 is a sectional elevational view of the cover plate, the intermediate plate, and the base plate illustrated in FIGS. 10 through 14 shown assembled.
  • FIG. 1 a vehicle 50 which includes a suspension system incorporating an improved adjustable shock absorber in accordance with the present invention.
  • the vehicle 50 includes a rear suspension 52 , a front suspension 54 , and a body 56 .
  • the rear suspension 52 may have a transversely extending rear axle assembly (not shown) adapted to operatively support a pair of rear wheels 58 .
  • the rear axle assembly is operatively connected to the body 56 by means of a pair of shock absorbers 60 and a pair of helical coil springs 62 .
  • the front suspension 54 may include a transversely extending front axle assembly (not shown) to operatively support a pair of front wheels 64 .
  • the front axle assembly is operatively connected to the body 56 by means of a second pair of shock absorbers 60 and by a pair of helical coil springs 68 .
  • the shock absorbers 60 serve to dampen the relative motion of the unsprung mass; i.e., the wheels 64 and the front and rear suspension systems 54 and 52 , respectively, and the sprung mass; i.e., the body 56 .
  • shock absorber 60 refers to dampers in general and thus will include struts, such as MacPherson struts.
  • the damping characteristics of the adjustable shock absorbers 60 may be controlled in a conventional manner. By controlling the damping characteristics of the adjustable shock absorbers 60 , the adjustable shock absorbers 60 are able to dampen the relative movement between the body 56 and the suspension of the motor vehicle 50 in such a manner as to simultaneously optimize both ride comfort and road handling ability.
  • the illustrated mono-tube shock absorber 70 includes a cylindrical housing or pressure tube 72 , a piston assembly 74 disposed in the pressure tube 72 , a remote reservoir 76 , and a fluid conduit 78 that provides fluid communication between the pressure tube 72 and the remote reservoir 76 .
  • the pressure tube 72 defines a working chamber 80 .
  • the piston assembly 74 is slidably disposed in the pressure tube 72 and divides the working chamber 80 into a first or lower working chamber 80 a and a second or upper working chamber 80 b.
  • the piston assembly 74 includes a piston 82 and a piston rod 84 attached to the piston 82 .
  • the piston rod 84 extends through the upper working chamber 80 b and through an upper end cap 86 which closes a first end (upper end when viewing FIG. 2 ) of the pressure tube 72 .
  • the distal end of the piston rod 84 is configured to be secured to the sprung mass; i.e., the body 56 of the vehicle 50 .
  • An end 72 a of the pressure tube 72 opposite the piston rod 84 is configured to be secured to the unsprung mass; i.e., the front and rear suspension systems 54 and 52 , respectively.
  • the piston 82 is configured for sliding engagement with an inside surface of the pressure tube 72 without generating undue friction.
  • the piston 82 is also configured to provide a fluid seal between the upper working chamber 80 b and the lower working chamber 80 a. Valves (not shown in FIG. 2 ), such as compression and rebound valves in the piston 82 control the movement of fluid between the upper and lower working chambers 80 b and 80 a, respectively.
  • the piston 82 may be attached to the piston rod 84 by a threaded fastener 88 . Alternatively, the piston 82 may be attached to the piston rod 84 by any desired means, such as by welding.
  • the remote reservoir 76 is conventional in the art and includes a substantially tubular housing 90 attached to the pressure tube 72 .
  • the housing 90 is attached to a side wall of the pressure tube 72 .
  • the housing 90 may be attached to any desired portion of the pressure tube 72 .
  • a conventional base valve assembly 91 is mounted within the remote reservoir 76 .
  • the base valve assembly 91 includes a base 92 which separates the housing 90 into a first or lower working chamber 90 a and an upper chamber or reservoir 90 b.
  • the base 92 is substantially cup-shaped, having an annular side wall 92 a and an end wall 92 b.
  • the side wall 92 a is configured for sealing engagement with an inside surface of the housing 90 .
  • a resilient seal 108 such as an O-ring, may be disposed between the side wall 92 a and the inside surface of the housing 90 .
  • the seal 108 is disposed in a circumferential groove 92 c formed in an outside surface of the side wall 92 a.
  • the seal 108 may be disposed in a circumferential groove (not shown) formed in an inside surface of the housing 90 .
  • the conventional base valve assembly 91 includes at least one compression valve 110 .
  • the compression valve 110 is shown as a compression pin/spring valve.
  • the conventional base valve assembly 91 also includes one replenishing valve 122 .
  • the compression valve 110 and the replenishing valve 122 may be any other suitable valve, such as a conventional disc valve.
  • the compression valve 110 includes a substantially cylindrical valve seat 111 .
  • a pin 114 includes a shaft 114 a and a disc shaped retainer 114 b attached at a first end of the shaft 114 a.
  • a mounting plate 115 is positioned below the end wall 92 b in the chamber 90 a.
  • a second end of the shaft 114 a extends through an aperture in the end wall 92 b and is secured to the end wall 92 b by the mounting plate 115 .
  • a disc shaped valve plate 116 includes a centrally formed pin aperture 113 .
  • the shaft 114 a extends through the aperture 113 and is attached to the valve plate 116 .
  • a spring 118 is disposed between the valve plate 116 and the retainer 114 b and urges the valve plate 116 into contact with the valve seat 111 .
  • a conduit 120 is formed through the mounting plate 115 and the shaft 114 a of the pin 114 and provides fluid communication between the chamber 90 a and the valve seat 111 .
  • the conduit 120 includes an axially extending portion 120 a and a transverse portion 120 b having at least one opening in the valve seat 111 below the valve plate 116 .
  • the replenishing valve 122 includes a pin 124 .
  • the pin 124 has a tapered valve plate 125 and an outwardly extending shaft 126 .
  • the tapered valve plate 125 is seated in a valve seat 92 d formed in the end wall 92 b.
  • the valve seat 92 d has a diameter that is smaller than the outside diameter of the valve plate 125 .
  • a spring 127 is attached at one end to a distal end of the shaft 126 . The other end of the spring 127 engages the end wall 92 b and urges the valve plate 125 away from the chamber 90 a and into contact with the valve seat 92 d.
  • one or more small fluid flow channels may be formed in the valve seat 92 d to allow a small, continuous flow of fluid through the end wall 92 b.
  • the compression valve 110 may be designed with a pre-set opening pressure by selecting a spring constant for the spring 118 and/or selecting the diameter of the conduit 120 to achieve a desired pre-set opening pressure.
  • the replenishing valve 122 may be designed with a pre-set opening pressure by selecting a spring constant for the spring 127 to achieve a desired pre-set opening pressure.
  • the conventional base valve assembly 91 operates in a known manner such that when the piston assembly 74 travels in the direction of the arrow A, as shown in FIG. 2 , fluid pressure increases in the lower working chamber 80 a, the chamber 90 a, and on the end wall 92 b. This increase in pressure will continue until the pre-set opening pressure of the compression valve 110 is reached. Once the pre-set opening pressure of the compression valve 110 is reached, fluid pressure operates against the valve plate 116 to compress the spring 118 and unseat the valve plate 116 from the valve seat 111 . The fluid pressure in the chamber 90 a further holds the replenishing valve 122 in the closed position.
  • compression valve 110 and one replenishing valve 122 are illustrated, it will be understood that any desired number of compression valves 110 and replenishing valves 122 may be provided. Additionally, if multiple valves 110 and 122 are provided, the additional valves may be designed with pre-set opening pressures different from the valves 110 and 122 .
  • the base valve assembly 100 is mounted within the housing 90 of the remote reservoir 76 .
  • the housing 90 defines an interior chamber or space 104 .
  • the base valve assembly 100 includes a base 106 which separates the interior space 104 into a first or lower working chamber 104 a and an upper chamber or reservoir chamber 104 b.
  • the base 106 is substantially cup shaped and has an annular side wall 106 a and an end wall 106 b.
  • the side wall 106 a is configured for sealing engagement with an inside surface of the housing 90 .
  • a resilient seal 108 such as an O-ring, may be disposed between the side wall 106 a and the inside surface of the housing 90 .
  • the seal 108 is disposed in a circumferential groove 106 c formed in an outside surface of the side wall 106 a.
  • the seal 108 may be disposed in a circumferential groove (not shown) formed in an inside surface of the housing 90 .
  • the base 106 includes the replenishing valve 122 and four valves configured to control the flow of fluid between the lower working chamber 104 a of the remote reservoir 76 and the reservoir chamber 104 b of the remote reservoir 76 , and thus change the force/velocity characteristics of the shock absorber's performance curve.
  • a shock absorber performance curve typically includes three portions: a low speed portion, a mid speed portion, and a high speed portion. The low speed portion is typically controlled by an orifice, and the mid and high speed portions are typically controlled by compression valves in a valve assembly, such as the base valve assembly 91 .
  • three compression valves 110 A, 110 B, and 110 C are pre-set to operate in response to high speed and mid speed operation of the shock absorber.
  • These pre-set configurations of the compression valves 110 A, 110 B, and 110 C correspond to a soft, a medium, and a firm compression force displacement performance curves, and further correspond to soft, medium, and firm feel of the shock absorber, as experienced by a vehicle occupant.
  • a second compression valve 112 is configured to adjust the low speed characteristic of the performance curve.
  • a second embodiment of the replenishing valve 142 is shown in FIGS. 5A and 5B , and includes the pin 144 and a conical spring 147 .
  • the compression valve 110 A may be configured with a relatively large diameter conduit 120 and with a spring 118 having a relatively low spring rate; i.e. a soft spring.
  • the compression valve 110 B may be configured with a relatively small diameter conduit 120 and with a spring 118 having a relatively high spring rate; i.e. a firm or stiff spring.
  • the compression valve 110 C may be configured with a conduit 120 having a diameter intermediate the diameters of the conduits 120 in the compression valves 110 A and 110 B configured for a soft and a firm feel, respectively.
  • the compression valve 110 C may be configured with a spring 118 having a spring rate intermediate the spring rates of the springs 118 in the valves 110 A and 110 B configured for soft and firm feel, respectively.
  • the replenishing valve 122 includes the pin 124 having the tapered valve plate 125 and the outwardly extending shaft 126 .
  • the tapered valve plate 125 is seated in a valve seat 106 d formed in the end wall 106 b.
  • the replenishing valve 142 is substantially similar to the replenishing valve 122 , but includes the conical spring 147 and the pin 144 .
  • the compression valves 110 A, 110 B, and 110 C are also formed as described above, and each valve 110 A, 110 B, and 110 C additionally has a microvalve 1 attached thereto, the purpose for which will be described below.
  • the conduit 120 formed through a mounting plate 130 and the shaft 114 a of the pin 114 provides fluid communication between the microvalve 1 and the valve seat 111 .
  • the mounting plate 130 includes a second conduit 128 formed therethrough. The conduit 128 provides fluid communication between the working chamber 104 a and the microvalve 1 .
  • the second compression valve 112 is similar to the compression valves 110 A, 110 B, and 110 C and includes the pin 114 , the valve plate 116 urged into contact with the valve seat 111 by the spring 118 , the mounting plate 130 , and the microvalve 1 .
  • a conduit 132 is formed through the mounting plate 130 and the entire axial length of the shaft 114 a of the pin 114 and provides fluid communication between the microvalve 1 and the reservoir chamber 104 b.
  • the microvalves 1 may be configured as normally closed or normally open valves that can be selectively actuated, such as by a vehicle driver, as diagrammatically illustrated in FIG. 6 .
  • a vehicle driver For example, when the driver desires a soft ride, the driver may engage an actuator (not shown) in the vehicle to initiate fluid flow through the microvalve 1 attached to the compression valve 110 A configured for a soft ride or feel, allowing a relatively large flow of fluid through the compression valve 110 A and into the reservoir chamber 104 b.
  • the driver may engage the actuator (not shown) in the vehicle to initiate fluid flow through the microvalve 1 attached to the compression valve 110 B configured for a firm ride or feel, allowing a relatively small flow of fluid through the compression valve 110 B and into the reservoir chamber 104 b.
  • the driver may engage the actuator (not shown) in the vehicle to initiate fluid flow through the microvalve 1 attached to the compression valve 110 C configured for a ride or feel intermediate the soft ride or feel and the firm ride or feel, allowing a flow of fluid through the compression valve 110 C and into the reservoir chamber 104 b that is intermediate the relatively large flow of fluid through the compression valve 110 A and the relatively small flow of fluid through the compression valve 110 B.
  • two or three of the compression valves 110 A, 110 B, and 110 C may be operated simultaneously by simultaneous actuation of their attached microvalves 1 .
  • simultaneous operation of the valves 110 A, 110 B, and 110 C provides the vehicle operator with additional ride or feel options, especially in the intermediate range between the soft and firm feel settings.
  • fluid flow through the valves 110 A, 110 B, and 110 C may be fine tuned using the pulse width modulation (PWM) capability of the microvalves 1 .
  • PWM pulse width modulation
  • the second compression valve 112 is configured to allow only the minimal fluid flow necessary during low speed operation of the shock absorber 70 .
  • the microvalve 1 attached to the second compression valve 112 may be configured to provide within the range of about 10 to about 100 percent of the maximum fluid flow capability of the second compression valve 112 .
  • the second compression valve 112 may be replaced by one or more orifices (not shown) through which the microvalve may control the flow of fluid to the reservoir chamber 104 b.
  • the shock absorber 70 may be any shock absorber with a base valve assembly, such as a dual-tube shock absorber.
  • the shock absorber 70 may be a mono-tube shock absorber without a remote reservoir or a dual-tube shock absorber without a remote reservoir, wherein the improved base valve assembly 100 is mounted within the pressure tube of the mono-tube or the dual-tube shock absorber.
  • the piston assembly 274 is similar to the piston assembly 74 and is disposed in the cylindrical pressure tube 272 .
  • the pressure tube 272 defines a working chamber 280 .
  • the piston assembly 274 is slidably disposed in the pressure tube 272 and divides the working chamber 280 into a first or lower working chamber 280 a and a second or upper working chamber 280 b.
  • the piston assembly 274 includes a piston 282 and a piston rod 284 attached to the piston 282 .
  • the piston 282 of the piston assembly 274 may include one or more compression valves, one of which is shown schematically at 210 .
  • the compression valves 210 are similar to the compression valves 110 A, 110 B, and 110 C and may be pre-set to correspond to a desired soft, medium, and/or firm feel of the shock absorber, as experienced by a vehicle occupant.
  • the piston 282 may include a second compression valve, shown schematically at 212 , configured to adjust the low speed characteristic of the performance curve.
  • the second compression valve 212 is also similar to the second compression valve 112 .
  • Each of the compression valves 210 and the second compression valve 212 has one of the microvalves 1 attached thereto.
  • the microvalves 1 may be configured as normally closed or normally open valves that can be selectively actuated, such as by a vehicle driver, as diagrammatically illustrated in FIG. 6 to control the flow of fluid through the microvalve 1 , and therefore through the compression 210 and 212 , to achieve a desired ride characteristic, such as a soft ride, a medium ride, or a firm ride.
  • the second embodiment of the piston assembly 274 may be used with the improved base valve assembly 100 .
  • the second embodiment of the piston assembly 274 may be used with the conventional base valve assembly 91 .
  • a micro-electro-mechanical system is a system that not only includes both electrical and mechanical components, but is additionally physically small, typically including features having sizes that are generally in the range of about ten micrometers or smaller.
  • micro-machining is commonly understood to relate to the production of three-dimensional structures and moving parts of such micro-electro-mechanical system devices.
  • micro-electro-mechanical systems used modified integrated circuit (e.g., computer chip) fabrication techniques (such as chemical etching) and materials (such as silicon semiconductor material), which were micro-machined to provide these very small electrical and mechanical components. More recently, however, other micro-machining techniques and materials have become available.
  • microvalve means a valve including features having sizes that are generally in the range of about ten micrometers or smaller and, thus, is also at least partially formed by micro-machining.
  • microvalve device means a micro-machined device that includes a microvalve, but further includes additional components. It should be noted that if components other than a microvalve are included in the microvalve device, these other components may be either micro-machined components or standard-sized (i.e., larger) components. Similarly, a micro-machined device may include both micro-machined components and standard-sized components.
  • microvalve structures are known in the art for controlling the flow of fluid through a fluid circuit.
  • One well known microvalve structure includes a displaceable member that is supported within a closed internal cavity provided in a valve body for pivoting or other movement between a closed position and an opened position. When disposed in the closed position, the displaceable member substantially blocks a first fluid port that is otherwise in fluid communication with a second fluid port, thereby preventing fluid from flowing between the first and second fluid ports. When disposed in the opened condition, the displaceable member does not substantially block the first fluid port from fluid communication with the second fluid port, thereby permitting fluid to flow between the first and second fluid ports.
  • the illustrated microvalve 1 includes a cover plate 2 , an intermediate plate 3 , and a base plate 4 .
  • the cover plate 2 has an outer surface 5 and an inner surface 6 .
  • the cover plate 2 also has one or more openings (two of such openings 2 a and 2 b are shown in the illustrated embodiment) formed therethrough that, in a manner that is well known in the art, allow one or more electrically conductive wires (not shown) to pass therethrough.
  • the intermediate plate 3 has a first surface 7 and a second surface 8 .
  • the base plate 4 has an inner surface 9 and an outer surface 10 .
  • the base plate 4 also has a one or more openings (three of such openings 4 a, 4 b, and 4 c are shown in the illustrated embodiment) formed therethrough that, in a manner that is well known in the art, allow fluid to flow into and out of the microvalve 1 .
  • the inner surface 6 of the cover plate 2 engages the first surface 7 of the intermediate plate 3
  • the inner surface 9 of the base plate 4 engages the second surface 8 of the intermediate plate 3
  • the cover plate 2 , the intermediate plate 3 , and the base plate 4 may be retained in this orientation in any desired manner.
  • portions of the cover plate 2 and/or the base plate 4 may be bonded to the intermediate plate 3 , such as by fusion bonding, chemical bonding, or physically bonding (such as, for example, mechanical fasteners and/or adhesives).
  • the cover plate 2 , the intermediate plate 3 , and the base plate 4 may be composed of any desired material or combination of materials.
  • the cover plate 2 , the intermediate plate 3 , and the base plate 4 may be composed of silicon and/or similar materials.
  • the cover plate 2 includes an actuator cavity, indicated generally at 11 , that is provided on the inner surface 6 thereof.
  • the illustrated actuator cavity 11 includes an upper actuator arm cavity portion 11 a , a central actuator arm cavity portion 11 b, a lower actuator arm cavity portion 11 c, an actuator rib cavity portion 11 d, an actuator spine cavity portion 11 e, and an actuator hinge cavity portion 11 f .
  • the upper actuator arm cavity portion 11 a has a pair of recessed areas 12 a and 12 b provided therein.
  • the illustrated actuator cavity 11 also has one or more pressure equalization depressions 13 provided therein.
  • the cover plate 2 has a first sealing structure 14 a that extends from the bottom surface of the actuator cavity 11 and completely about the perimeter of the first recessed area 12 a.
  • the cover plate 2 also has a second sealing structure 14 b that extends from the bottom surface of the actuator cavity 11 and completely about the perimeter of the second recessed area 12 b.
  • each of the sealing structures 14 a and 14 b is a wall that is generally trapezoidal in cross-sectional shape and includes four linearly-extending wall segments that extend adjacent to the four sides of the recessed areas 12 a and 12 b.
  • the sealing structures 14 a and 14 b may be formed having any desired cross-sectional shape or combination of shapes, and may further extend in any desired manner (linearly or otherwise) about the recessed areas 12 a and 12 b.
  • the sealing structures 14 a and 14 b may be formed substantially as shown in FIGS. 10 and 13 , but may have rounded corners between adjacent linearly-extending wall segments, have one or more non-linearly-extending wall segments, or be entirely non-linear in shape. The purpose for the sealing structures 14 a and 14 b will be explained below.
  • the conventional intermediate plate 3 includes a movable valve member or displaceable member, indicated generally at 30 , that includes a sealing portion 31 having a pair of openings 31 a and 31 b formed therethrough.
  • the sealing portion 31 is connected through an elongated arm portion 32 to a hinge portion 33 that is formed integrally with the conventional intermediate plate 3 .
  • the intermediate plate 3 also includes an actuator including a plurality of actuator ribs 34 that is connected through a central spine 35 to the elongated arm portion 32 at a location that is intermediate of the sealing portion 31 and the hinge portion 33 .
  • first ends of a first portion of the plurality of actuator ribs 34 are flexibly joined at first ends thereof to a first non-moving part of the intermediate plate 3 .
  • Second ends of the first portion of the plurality of actuator ribs 34 are connected to the central spine 35 .
  • the first non-moving part of the intermediate plate 3 is electrically connected to a first bond pad (not shown) that is provided on the intermediate plate 3 .
  • first ends of a second portion of the plurality of actuator ribs 34 (the lower ribs 34 when viewing FIG. 11 ) are flexibly joined at first ends thereof to a second non-moving part of the intermediate plate 3 .
  • Second ends of the second portion of the plurality of actuator ribs 34 are also connected to the central spine 35 .
  • the second non-moving part of the intermediate plate 3 is electrically connected to a second bond pad (not shown) that is provided on the intermediate plate 3 .
  • the second bond pad is electrically isolated from the first bond pad, other than through the plurality of actuator ribs 34 .
  • electrical current may be passed from the first bond pad through the plurality of actuator ribs 34 to the second bond pad.
  • Such electrical current causes thermal expansion of the plurality of actuator ribs 34 , which causes axial movement of the central spine 35 .
  • the central spine 35 is connected to the elongated arm portion 32 . Consequently, axial movement of the central spine 35 causes the elongated arm portion 32 (and, therefore, the sealing portion 31 ) of the displaceable member 30 to pivot about the hinge portion 33 or otherwise move relative to the rest of the intermediate plate 3 (such movement occurring within a plane defined by the rest of the intermediate plate 3 ).
  • the illustrated displaceable member 30 functions as a conventional micro-electro-mechanical system thermal actuator.
  • the base plate 4 includes an actuator cavity, indicated generally at 40 , that is provided on the inner surface 9 thereof.
  • the illustrated actuator cavity 40 includes an upper actuator arm cavity portion 40 a, a central actuator arm cavity portion 40 b, a lower actuator arm cavity portion 40 c, an actuator rib cavity portion 40 d , an actuator spine cavity portion 40 e, and a hinge cavity portion 40 f.
  • the illustrated actuator cavity 40 also has one or more pressure equalization depressions 41 provided therein.
  • the base plate 4 has a first sealing structure 42 a that extends from the bottom surface of the actuator cavity 40 and completely about the perimeter of the first opening 4 a.
  • the base plate 4 also has a second sealing structure 42 b that extends from the bottom surface of the actuator cavity 40 and completely about the perimeter of the second opening 4 b.
  • each of the sealing structures 42 a and 42 b is a wall that is generally trapezoidal in cross-sectional shape and includes four linearly-extending wall segments that extend adjacent to the openings 4 a and 4 b .
  • the sealing structures 42 a and 42 b may be formed having any desired cross-sectional shape or combination of shapes, and may further extend in any desired manner (linearly or otherwise) about the openings 4 a and 4 b.
  • the sealing structures 42 a and 42 b may have rounded corners between adjacent linearly-extending wall segments, have one or more non-linearly-extending wall segments, or be entirely non-linear in shape. The purpose for the sealing structures 42 a and 42 b will be explained below.
  • FIG. 15 illustrates the structure of the assembled conventional microvalve 1 shown in FIGS. 10 through 14 .
  • non-recessed portions of the inner surface 6 of the cover plate 2 engage corresponding non-recessed portions of the first surface 7 of the intermediate plate 3 .
  • non-recessed portions of the inner surface 9 of the base plate 4 engage corresponding non-recessed portions of the second surface 8 of the intermediate plate 3 .
  • the upper actuator arm cavity portion 11 a provided on the cover plate 2 , the intermediate plate 3 , and the upper actuator arm cavity portion 40 a provided on the base plate 4 all cooperate to define a closed internal cavity in which the sealing portion 31 of the displaceable member 30 is disposed for relative pivoting movement (movement to the left and to the right when viewing FIG. 15 ).
  • the microvalve 1 may be used as a control valve in a shock absorber, such as the shock absorber 70 shown in FIGS. 2 through 5 .
  • the embodiment of the microvalve 1 illustrated in FIGS. 8 through 15 is packaged in a conventional U-flow configuration, wherein the openings 4 a and 4 b (which define the outlet and inlet for the flow of fluid through the microvalve 1 ) are located on the same side (the base plate 4 side) of the microvalve 1 .
  • the microvalve 1 may be packaged in a conventional through-flow configuration, wherein the openings 4 a and 4 b are located on opposite sides (on the cover plate 2 and the base plate 4 sides) of the microvalve 1 .
  • the structure and manner of operation of such a through-flow configured microvalve is otherwise similar to the embodiment of the microvalve 1 described herein.

Abstract

An adjustable shock absorber includes a housing defining an enclosed working space. A wall is formed in the working space and separates the working space into first and second fluid chambers. A compression valve is formed in the wall and a microvalve is attached to the compression valve and is operable to control fluid flow through the compression valve.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No. 62/047,382, filed Sep. 8, 2014, the disclosure of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
This invention relates to shock absorbers. In particular, this invention relates to an improved structure for an adjustable shock absorber that includes one or more microvalves to control fluid flow in a valve assembly arranged between working chambers in a shock absorber pressure tube and/or in a shock absorber reservoir.
Shock absorbers are used in connection with automotive suspension systems to dampen vibrations, control rate of weight transfer, and improve vehicle comfort and performance. To perform these functions, shock absorbers are generally connected between the body and the suspension of the motor vehicle.
Common shock absorbers for automobiles may be either a mono-tube design or a dual-tube design. In the mono-tube design, a piston is located within a pressure tube and is connected to the sprung mass of the vehicle through a piston rod. The pressure tube is connected to the unsprung mass of the vehicle. The piston divides the pressure tube into an upper working chamber and a lower working chamber. A conventional piston includes compression valves, which limit the flow of damping fluid from the lower working chamber to the upper working chamber during a compression stroke, and rebound valves, which limit the flow of damping fluid from the upper working chamber to the lower working chamber during a rebound or extension stroke. Because the compression valves and the rebound valves have the ability to limit the flow of damping fluid, the shock absorber is able to produce a damping force which counteracts the vibrations and weight transfer which would otherwise be transmitted from the unsprung mass to the sprung mass.
In a dual-tube shock absorber, a fluid reservoir is defined between the pressure tube and a reservoir tube which is positioned around the pressure tube. In both a mono-tube and a dual-tube shock absorber, a base valve assembly may be located between the lower working chamber and a fluid reservoir to control the flow of damping fluid. In such a shock absorber, compression valves are located in the base valve assembly. In addition to the compression valves, the base valve assembly will include a check valve assembly which allows unrestricted fluid flow in one direction into the lower chamber from the reservoir during a rebound stroke. The compression valves of the base valve assembly and the compression valves of the piston assembly together produce the damping force during a compression stroke, and the rebound valves of the piston produces the damping force during a rebound or extension stroke.
The valve assemblies in the shock absorber control fluid flow between the two chambers and the reservoir during the stroking of the shock absorber. By controlling the fluid flow between the two chambers and the reservoir, pressure drops and pressure increases occur, and contribute to the damping forces of the shock absorber. The valve assemblies can be used to tune the damping forces to control ride and handling as well as noise, vibration, and harshness.
Shock absorbers may be adjustable to meet driver preferences. For example, a driver may prefer a softer performance or feel on rough roads and a firmer feel on smooth roads. Generally, the greater degree to which the flow of damping fluid within the lower working chamber is restricted, the greater are the damping forces provided by the shock absorber. Thus, a soft compression and rebound stroke is produced when the flow of damping fluid is relatively unrestricted and a firm compression and rebound stroke is produced when the flow of damping fluid is restricted.
However, a conventional base valve assembly is not adjustable between desired soft, medium, and firm performance settings. Thus, it would be desirable to provide an improved structure for a valve assembly arranged between working chambers in a shock absorber pressure tube and/or in a shock absorber reservoir.
SUMMARY OF THE INVENTION
This invention relates to an improved structure for a shock absorber that includes a base valve assembly with microvalves that allows the valves in the base valve assembly to be adjusted to meet driver preferred shock absorber performance or feel, such as a softer feel and a firmer feel. In one embodiment, the adjustable shock absorber includes a housing defining an enclosed working space. A wall is formed in the working space and separates the working space into first and second fluid chambers. A compression valve is formed in the wall and a microvalve is attached to the compression valve and is operable to control fluid flow through the compression valve.
Various advantages of the invention will become apparent to those skilled in the art from the following detailed description, when read in view of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is perspective view of an automobile that shows the basic structure of a suspension system that includes coil springs and shock absorbers according to this invention at each wheel.
FIG. 2 is a side elevation view, partially in section, of a mono-tube shock absorber according to this invention and including a piston within a pressure tube and a remote reservoir having a base valve assembly therein.
FIG. 3 is a cross sectional view of a portion of a remote reservoir showing a conventional base valve assembly within the remote reservoir housing.
FIG. 4 is a cross sectional view of a portion of the remote reservoir illustrated in FIG. 2 showing an improved base valve assembly according to the invention.
FIG. 5A is a bottom plan view of the improved base valve assembly body illustrated in FIG. 4.
FIG. 5B is a top plan view of the improved base valve assembly body illustrated in FIG. 4.
FIG. 6 is a flow chart showing the process of selecting a desired ride or feel of the adjustable shock absorber according to the invention.
FIG. 7 is an enlarged cross-sectional view of a portion of the piston assembly illustrated in FIG. 2 showing an improved piston according to the invention.
FIG. 8 is an exploded perspective view of a basic structure of a microvalve including a cover plate, an intermediate plate, and a base plate.
FIG. 9 is a perspective view of the basic structure of the microvalve illustrated in FIG. 8 shown assembled.
FIG. 10 is a plan view of an inner surface of the cover plate illustrated in FIGS. 8 and 9.
FIG. 11 is a plan view of the intermediate plate illustrated in FIGS. 8 and 9.
FIG. 12 is a plan view of an inner surface of the base plate illustrated in FIGS. 8 and 9.
FIG. 13 is a perspective view of a portion of the inner surface of the cover plate illustrated in FIG. 10.
FIG. 14 is a perspective view of a portion of the inner surface of the base plate illustrated in FIG. 12.
FIG. 15 is a sectional elevational view of the cover plate, the intermediate plate, and the base plate illustrated in FIGS. 10 through 14 shown assembled.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings, there is illustrated in FIG. 1 a vehicle 50 which includes a suspension system incorporating an improved adjustable shock absorber in accordance with the present invention. The vehicle 50 includes a rear suspension 52, a front suspension 54, and a body 56. The rear suspension 52 may have a transversely extending rear axle assembly (not shown) adapted to operatively support a pair of rear wheels 58. The rear axle assembly is operatively connected to the body 56 by means of a pair of shock absorbers 60 and a pair of helical coil springs 62. Similarly, the front suspension 54 may include a transversely extending front axle assembly (not shown) to operatively support a pair of front wheels 64. The front axle assembly is operatively connected to the body 56 by means of a second pair of shock absorbers 60 and by a pair of helical coil springs 68.
The shock absorbers 60 serve to dampen the relative motion of the unsprung mass; i.e., the wheels 64 and the front and rear suspension systems 54 and 52, respectively, and the sprung mass; i.e., the body 56.
While the vehicle 50 has been illustrated as a passenger car, the shock absorbers 60 may be used with other types of vehicles or in other applications, such as vehicles incorporating independent front and/or independent rear suspension systems. Further, the term “shock absorber” as used herein refers to dampers in general and thus will include struts, such as MacPherson struts.
The damping characteristics of the adjustable shock absorbers 60 may be controlled in a conventional manner. By controlling the damping characteristics of the adjustable shock absorbers 60, the adjustable shock absorbers 60 are able to dampen the relative movement between the body 56 and the suspension of the motor vehicle 50 in such a manner as to simultaneously optimize both ride comfort and road handling ability.
Referring to FIG. 2, there is illustrated an improved structure for a mono-tube shock absorber 70 in accordance with this invention. The illustrated mono-tube shock absorber 70 includes a cylindrical housing or pressure tube 72, a piston assembly 74 disposed in the pressure tube 72, a remote reservoir 76, and a fluid conduit 78 that provides fluid communication between the pressure tube 72 and the remote reservoir 76.
The pressure tube 72 defines a working chamber 80. The piston assembly 74 is slidably disposed in the pressure tube 72 and divides the working chamber 80 into a first or lower working chamber 80 a and a second or upper working chamber 80 b. The piston assembly 74 includes a piston 82 and a piston rod 84 attached to the piston 82. The piston rod 84 extends through the upper working chamber 80 b and through an upper end cap 86 which closes a first end (upper end when viewing FIG. 2) of the pressure tube 72. The distal end of the piston rod 84 is configured to be secured to the sprung mass; i.e., the body 56 of the vehicle 50. An end 72 a of the pressure tube 72 opposite the piston rod 84 is configured to be secured to the unsprung mass; i.e., the front and rear suspension systems 54 and 52, respectively. The piston 82 is configured for sliding engagement with an inside surface of the pressure tube 72 without generating undue friction. The piston 82 is also configured to provide a fluid seal between the upper working chamber 80 b and the lower working chamber 80 a. Valves (not shown in FIG. 2), such as compression and rebound valves in the piston 82 control the movement of fluid between the upper and lower working chambers 80 b and 80 a, respectively. The piston 82 may be attached to the piston rod 84 by a threaded fastener 88. Alternatively, the piston 82 may be attached to the piston rod 84 by any desired means, such as by welding.
The remote reservoir 76 is conventional in the art and includes a substantially tubular housing 90 attached to the pressure tube 72. In the illustrated embodiment, the housing 90 is attached to a side wall of the pressure tube 72. Alternatively, the housing 90 may be attached to any desired portion of the pressure tube 72.
As best shown in FIG. 3, a conventional base valve assembly 91 is mounted within the remote reservoir 76. The base valve assembly 91 includes a base 92 which separates the housing 90 into a first or lower working chamber 90 a and an upper chamber or reservoir 90 b.
The base 92 is substantially cup-shaped, having an annular side wall 92 a and an end wall 92 b. The side wall 92 a is configured for sealing engagement with an inside surface of the housing 90. If desired, a resilient seal 108, such as an O-ring, may be disposed between the side wall 92 a and the inside surface of the housing 90. In the illustrated embodiment, the seal 108 is disposed in a circumferential groove 92 c formed in an outside surface of the side wall 92 a. Alternatively, the seal 108 may be disposed in a circumferential groove (not shown) formed in an inside surface of the housing 90.
The conventional base valve assembly 91 includes at least one compression valve 110. In the illustrated embodiment, the compression valve 110 is shown as a compression pin/spring valve. The conventional base valve assembly 91 also includes one replenishing valve 122. Alternatively, the compression valve 110 and the replenishing valve 122 may be any other suitable valve, such as a conventional disc valve.
The compression valve 110 includes a substantially cylindrical valve seat 111. A pin 114 includes a shaft 114 a and a disc shaped retainer 114 b attached at a first end of the shaft 114 a. A mounting plate 115 is positioned below the end wall 92 b in the chamber 90 a. A second end of the shaft 114 a extends through an aperture in the end wall 92 b and is secured to the end wall 92 b by the mounting plate 115. A disc shaped valve plate 116 includes a centrally formed pin aperture 113. The shaft 114 a extends through the aperture 113 and is attached to the valve plate 116. A spring 118 is disposed between the valve plate 116 and the retainer 114 b and urges the valve plate 116 into contact with the valve seat 111. A conduit 120 is formed through the mounting plate 115 and the shaft 114 a of the pin 114 and provides fluid communication between the chamber 90 a and the valve seat 111. The conduit 120 includes an axially extending portion 120 a and a transverse portion 120 b having at least one opening in the valve seat 111 below the valve plate 116.
The replenishing valve 122 includes a pin 124. The pin 124 has a tapered valve plate 125 and an outwardly extending shaft 126. The tapered valve plate 125 is seated in a valve seat 92 d formed in the end wall 92 b. The valve seat 92 d has a diameter that is smaller than the outside diameter of the valve plate 125. A spring 127 is attached at one end to a distal end of the shaft 126. The other end of the spring 127 engages the end wall 92 b and urges the valve plate 125 away from the chamber 90 a and into contact with the valve seat 92 d. Although not shown in FIG. 3, one or more small fluid flow channels may be formed in the valve seat 92 d to allow a small, continuous flow of fluid through the end wall 92 b.
The compression valve 110 may be designed with a pre-set opening pressure by selecting a spring constant for the spring 118 and/or selecting the diameter of the conduit 120 to achieve a desired pre-set opening pressure. Similarly, the replenishing valve 122 may be designed with a pre-set opening pressure by selecting a spring constant for the spring 127 to achieve a desired pre-set opening pressure.
The conventional base valve assembly 91 operates in a known manner such that when the piston assembly 74 travels in the direction of the arrow A, as shown in FIG. 2, fluid pressure increases in the lower working chamber 80 a, the chamber 90 a, and on the end wall 92 b. This increase in pressure will continue until the pre-set opening pressure of the compression valve 110 is reached. Once the pre-set opening pressure of the compression valve 110 is reached, fluid pressure operates against the valve plate 116 to compress the spring 118 and unseat the valve plate 116 from the valve seat 111. The fluid pressure in the chamber 90 a further holds the replenishing valve 122 in the closed position.
When the piston assembly 74 travels in the reverse direction, i.e., in the direction of the arrow B, as shown in FIG. 2, fluid pressure in the chamber 90 a falls below that of the reservoir 90 b. When the falling fluid pressure in the chamber 90 a reaches a level less that the pre-set opening pressure of the compression valve 110, the compression valve 110 is urged into a closed position. When the pressure in the reservoir 90 b exceeds pre-set opening pressure of the replenishing valve 122, fluid pressure in the reservoir 90 b operates against the valve plate 125 to compress the spring 127 and unseat the valve plate 125 from the valve seat 92 d, allowing fluid flow from the reservoir 90 b to the chamber 90 a.
Although only one compression valve 110 and one replenishing valve 122 are illustrated, it will be understood that any desired number of compression valves 110 and replenishing valves 122 may be provided. Additionally, if multiple valves 110 and 122 are provided, the additional valves may be designed with pre-set opening pressures different from the valves 110 and 122.
Referring to FIG. 4, a portion of a first embodiment of an improved base valve assembly is shown at 100. The base valve assembly 100 is mounted within the housing 90 of the remote reservoir 76. The housing 90 defines an interior chamber or space 104. The base valve assembly 100 includes a base 106 which separates the interior space 104 into a first or lower working chamber 104 a and an upper chamber or reservoir chamber 104 b.
The base 106 is substantially cup shaped and has an annular side wall 106 a and an end wall 106 b. The side wall 106 a is configured for sealing engagement with an inside surface of the housing 90. If desired, a resilient seal 108, such as an O-ring, may be disposed between the side wall 106 a and the inside surface of the housing 90. In the illustrated embodiment, the seal 108 is disposed in a circumferential groove 106 c formed in an outside surface of the side wall 106 a. Alternatively, the seal 108 may be disposed in a circumferential groove (not shown) formed in an inside surface of the housing 90.
Referring now to FIGS. 4, 5A, and 5B the base 106 includes the replenishing valve 122 and four valves configured to control the flow of fluid between the lower working chamber 104 a of the remote reservoir 76 and the reservoir chamber 104 b of the remote reservoir 76, and thus change the force/velocity characteristics of the shock absorber's performance curve. A shock absorber performance curve typically includes three portions: a low speed portion, a mid speed portion, and a high speed portion. The low speed portion is typically controlled by an orifice, and the mid and high speed portions are typically controlled by compression valves in a valve assembly, such as the base valve assembly 91.
As shown in FIGS. 5A and 5B, three compression valves 110A, 110B, and 110C are pre-set to operate in response to high speed and mid speed operation of the shock absorber. These pre-set configurations of the compression valves 110A, 110B, and 110C correspond to a soft, a medium, and a firm compression force displacement performance curves, and further correspond to soft, medium, and firm feel of the shock absorber, as experienced by a vehicle occupant. Additionally, a second compression valve 112 is configured to adjust the low speed characteristic of the performance curve. A second embodiment of the replenishing valve 142 is shown in FIGS. 5A and 5B, and includes the pin 144 and a conical spring 147.
For example, for a soft ride or feel, the compression valve 110A may be configured with a relatively large diameter conduit 120 and with a spring 118 having a relatively low spring rate; i.e. a soft spring. Conversely, for a firm ride or feel, the compression valve 110B may be configured with a relatively small diameter conduit 120 and with a spring 118 having a relatively high spring rate; i.e. a firm or stiff spring. For a ride or feel that is intermediate the soft and firm feel, the compression valve 110C may be configured with a conduit 120 having a diameter intermediate the diameters of the conduits 120 in the compression valves 110A and 110B configured for a soft and a firm feel, respectively. Similarly, the compression valve 110C may be configured with a spring 118 having a spring rate intermediate the spring rates of the springs 118 in the valves 110A and 110B configured for soft and firm feel, respectively.
As described above, the replenishing valve 122 includes the pin 124 having the tapered valve plate 125 and the outwardly extending shaft 126. In the embodiment illustrated in FIG. 4, the tapered valve plate 125 is seated in a valve seat 106 d formed in the end wall 106 b. The replenishing valve 142 is substantially similar to the replenishing valve 122, but includes the conical spring 147 and the pin 144.
The compression valves 110A, 110B, and 110C are also formed as described above, and each valve 110A, 110B, and 110C additionally has a microvalve 1 attached thereto, the purpose for which will be described below. The conduit 120 formed through a mounting plate 130 and the shaft 114 a of the pin 114 provides fluid communication between the microvalve 1 and the valve seat 111. Further, the mounting plate 130 includes a second conduit 128 formed therethrough. The conduit 128 provides fluid communication between the working chamber 104 a and the microvalve 1.
The second compression valve 112 is similar to the compression valves 110A, 110B, and 110C and includes the pin 114, the valve plate 116 urged into contact with the valve seat 111 by the spring 118, the mounting plate 130, and the microvalve 1. A conduit 132 is formed through the mounting plate 130 and the entire axial length of the shaft 114 a of the pin 114 and provides fluid communication between the microvalve 1 and the reservoir chamber 104 b.
In the illustrated embodiment, the microvalves 1 may be configured as normally closed or normally open valves that can be selectively actuated, such as by a vehicle driver, as diagrammatically illustrated in FIG. 6. For example, when the driver desires a soft ride, the driver may engage an actuator (not shown) in the vehicle to initiate fluid flow through the microvalve 1 attached to the compression valve 110A configured for a soft ride or feel, allowing a relatively large flow of fluid through the compression valve 110A and into the reservoir chamber 104 b. Similarly, when the driver desires a firm ride, the driver may engage the actuator (not shown) in the vehicle to initiate fluid flow through the microvalve 1 attached to the compression valve 110B configured for a firm ride or feel, allowing a relatively small flow of fluid through the compression valve 110B and into the reservoir chamber 104 b. Further, when the driver desires a medium ride, or a ride that is intermediate the soft and the firm rides, the driver may engage the actuator (not shown) in the vehicle to initiate fluid flow through the microvalve 1 attached to the compression valve 110C configured for a ride or feel intermediate the soft ride or feel and the firm ride or feel, allowing a flow of fluid through the compression valve 110C and into the reservoir chamber 104 b that is intermediate the relatively large flow of fluid through the compression valve 110A and the relatively small flow of fluid through the compression valve 110B.
Alternatively, if desired, two or three of the compression valves 110A, 110B, and 110C may be operated simultaneously by simultaneous actuation of their attached microvalves 1. Such simultaneous operation of the valves 110A, 110B, and 110C provides the vehicle operator with additional ride or feel options, especially in the intermediate range between the soft and firm feel settings. Additionally, fluid flow through the valves 110A, 110B, and 110C may be fine tuned using the pulse width modulation (PWM) capability of the microvalves 1.
The second compression valve 112 is configured to allow only the minimal fluid flow necessary during low speed operation of the shock absorber 70. In the illustrated embodiment, the microvalve 1 attached to the second compression valve 112 may be configured to provide within the range of about 10 to about 100 percent of the maximum fluid flow capability of the second compression valve 112. Alternatively, the second compression valve 112 may be replaced by one or more orifices (not shown) through which the microvalve may control the flow of fluid to the reservoir chamber 104 b.
Although illustrated as a mono-tube shock absorber with a remote reservoir, the shock absorber 70 may be any shock absorber with a base valve assembly, such as a dual-tube shock absorber. Alternatively, the shock absorber 70 may be a mono-tube shock absorber without a remote reservoir or a dual-tube shock absorber without a remote reservoir, wherein the improved base valve assembly 100 is mounted within the pressure tube of the mono-tube or the dual-tube shock absorber.
Referring to FIG. 7, a portion of a second embodiment of the piston assembly is shown at 274. The piston assembly 274 is similar to the piston assembly 74 and is disposed in the cylindrical pressure tube 272. The pressure tube 272 defines a working chamber 280. The piston assembly 274 is slidably disposed in the pressure tube 272 and divides the working chamber 280 into a first or lower working chamber 280 a and a second or upper working chamber 280 b. The piston assembly 274 includes a piston 282 and a piston rod 284 attached to the piston 282.
Like the base 106 of the remote reservoir 76, the piston 282 of the piston assembly 274 may include one or more compression valves, one of which is shown schematically at 210. The compression valves 210 are similar to the compression valves 110A, 110B, and 110C and may be pre-set to correspond to a desired soft, medium, and/or firm feel of the shock absorber, as experienced by a vehicle occupant. Additionally, the piston 282 may include a second compression valve, shown schematically at 212, configured to adjust the low speed characteristic of the performance curve. The second compression valve 212 is also similar to the second compression valve 112.
Each of the compression valves 210 and the second compression valve 212 has one of the microvalves 1 attached thereto. As described above, the microvalves 1 may be configured as normally closed or normally open valves that can be selectively actuated, such as by a vehicle driver, as diagrammatically illustrated in FIG. 6 to control the flow of fluid through the microvalve 1, and therefore through the compression 210 and 212, to achieve a desired ride characteristic, such as a soft ride, a medium ride, or a firm ride.
The second embodiment of the piston assembly 274 may be used with the improved base valve assembly 100. Alternatively, the second embodiment of the piston assembly 274 may be used with the conventional base valve assembly 91.
Generally speaking, a micro-electro-mechanical system is a system that not only includes both electrical and mechanical components, but is additionally physically small, typically including features having sizes that are generally in the range of about ten micrometers or smaller. The term “micro-machining” is commonly understood to relate to the production of three-dimensional structures and moving parts of such micro-electro-mechanical system devices. In the past, micro-electro-mechanical systems used modified integrated circuit (e.g., computer chip) fabrication techniques (such as chemical etching) and materials (such as silicon semiconductor material), which were micro-machined to provide these very small electrical and mechanical components. More recently, however, other micro-machining techniques and materials have become available.
As used herein, the term “microvalve” means a valve including features having sizes that are generally in the range of about ten micrometers or smaller and, thus, is also at least partially formed by micro-machining. Lastly, as used herein, the term “microvalve device” means a micro-machined device that includes a microvalve, but further includes additional components. It should be noted that if components other than a microvalve are included in the microvalve device, these other components may be either micro-machined components or standard-sized (i.e., larger) components. Similarly, a micro-machined device may include both micro-machined components and standard-sized components.
A variety of microvalve structures are known in the art for controlling the flow of fluid through a fluid circuit. One well known microvalve structure includes a displaceable member that is supported within a closed internal cavity provided in a valve body for pivoting or other movement between a closed position and an opened position. When disposed in the closed position, the displaceable member substantially blocks a first fluid port that is otherwise in fluid communication with a second fluid port, thereby preventing fluid from flowing between the first and second fluid ports. When disposed in the opened condition, the displaceable member does not substantially block the first fluid port from fluid communication with the second fluid port, thereby permitting fluid to flow between the first and second fluid ports.
Referring again to the drawings, there is illustrated in FIGS. 8 through 15 a basic structure of the conventional microvalve 1. The illustrated microvalve 1 includes a cover plate 2, an intermediate plate 3, and a base plate 4. The cover plate 2 has an outer surface 5 and an inner surface 6. The cover plate 2 also has one or more openings (two of such openings 2 a and 2 b are shown in the illustrated embodiment) formed therethrough that, in a manner that is well known in the art, allow one or more electrically conductive wires (not shown) to pass therethrough. The intermediate plate 3 has a first surface 7 and a second surface 8. The base plate 4 has an inner surface 9 and an outer surface 10. The base plate 4 also has a one or more openings (three of such openings 4 a, 4 b, and 4 c are shown in the illustrated embodiment) formed therethrough that, in a manner that is well known in the art, allow fluid to flow into and out of the microvalve 1.
When the microvalve 1 is assembled as shown in FIG. 9, the inner surface 6 of the cover plate 2 engages the first surface 7 of the intermediate plate 3, and the inner surface 9 of the base plate 4 engages the second surface 8 of the intermediate plate 3. The cover plate 2, the intermediate plate 3, and the base plate 4 may be retained in this orientation in any desired manner. For example, portions of the cover plate 2 and/or the base plate 4 may be bonded to the intermediate plate 3, such as by fusion bonding, chemical bonding, or physically bonding (such as, for example, mechanical fasteners and/or adhesives). The cover plate 2, the intermediate plate 3, and the base plate 4 may be composed of any desired material or combination of materials. For example, the cover plate 2, the intermediate plate 3, and the base plate 4 may be composed of silicon and/or similar materials.
The structure of the inner surface 6 of the cover plate 2 for the microvalve 1 is illustrated in detail in FIGS. 10 and 13. As shown therein, the cover plate 2 includes an actuator cavity, indicated generally at 11, that is provided on the inner surface 6 thereof. The illustrated actuator cavity 11 includes an upper actuator arm cavity portion 11 a, a central actuator arm cavity portion 11 b, a lower actuator arm cavity portion 11 c, an actuator rib cavity portion 11 d, an actuator spine cavity portion 11 e, and an actuator hinge cavity portion 11 f. The upper actuator arm cavity portion 11 a has a pair of recessed areas 12 a and 12 b provided therein. The illustrated actuator cavity 11 also has one or more pressure equalization depressions 13 provided therein.
The cover plate 2 has a first sealing structure 14 a that extends from the bottom surface of the actuator cavity 11 and completely about the perimeter of the first recessed area 12 a. Similarly, the cover plate 2 also has a second sealing structure 14 b that extends from the bottom surface of the actuator cavity 11 and completely about the perimeter of the second recessed area 12 b. In the illustrated embodiment, each of the sealing structures 14 a and 14 b is a wall that is generally trapezoidal in cross-sectional shape and includes four linearly-extending wall segments that extend adjacent to the four sides of the recessed areas 12 a and 12 b. However, the sealing structures 14 a and 14 b may be formed having any desired cross-sectional shape or combination of shapes, and may further extend in any desired manner (linearly or otherwise) about the recessed areas 12 a and 12 b. For example, the sealing structures 14 a and 14 b may be formed substantially as shown in FIGS. 10 and 13, but may have rounded corners between adjacent linearly-extending wall segments, have one or more non-linearly-extending wall segments, or be entirely non-linear in shape. The purpose for the sealing structures 14 a and 14 b will be explained below.
The structure of the first surface 7 of the intermediate plate 3 for the microvalve 1 is illustrated in detail in FIG. 11. As shown therein, the conventional intermediate plate 3 includes a movable valve member or displaceable member, indicated generally at 30, that includes a sealing portion 31 having a pair of openings 31 a and 31 b formed therethrough. The sealing portion 31 is connected through an elongated arm portion 32 to a hinge portion 33 that is formed integrally with the conventional intermediate plate 3. The intermediate plate 3 also includes an actuator including a plurality of actuator ribs 34 that is connected through a central spine 35 to the elongated arm portion 32 at a location that is intermediate of the sealing portion 31 and the hinge portion 33.
As shown in FIG. 11, first ends of a first portion of the plurality of actuator ribs 34 (the upper ribs 34 when viewing FIG. 11) are flexibly joined at first ends thereof to a first non-moving part of the intermediate plate 3. Second ends of the first portion of the plurality of actuator ribs 34 are connected to the central spine 35. The first non-moving part of the intermediate plate 3 is electrically connected to a first bond pad (not shown) that is provided on the intermediate plate 3. Similarly, first ends of a second portion of the plurality of actuator ribs 34 (the lower ribs 34 when viewing FIG. 11) are flexibly joined at first ends thereof to a second non-moving part of the intermediate plate 3. Second ends of the second portion of the plurality of actuator ribs 34 are also connected to the central spine 35. The second non-moving part of the intermediate plate 3 is electrically connected to a second bond pad (not shown) that is provided on the intermediate plate 3. The second bond pad is electrically isolated from the first bond pad, other than through the plurality of actuator ribs 34.
In a manner that is well known in the art, electrical current may be passed from the first bond pad through the plurality of actuator ribs 34 to the second bond pad. Such electrical current causes thermal expansion of the plurality of actuator ribs 34, which causes axial movement of the central spine 35. As described above, the central spine 35 is connected to the elongated arm portion 32. Consequently, axial movement of the central spine 35 causes the elongated arm portion 32 (and, therefore, the sealing portion 31) of the displaceable member 30 to pivot about the hinge portion 33 or otherwise move relative to the rest of the intermediate plate 3 (such movement occurring within a plane defined by the rest of the intermediate plate 3). Thus, the illustrated displaceable member 30 functions as a conventional micro-electro-mechanical system thermal actuator.
The structure of the inner surface 9 of the base plate 4 is illustrated in detail in FIGS. 12 and 14. As shown therein, the base plate 4 includes an actuator cavity, indicated generally at 40, that is provided on the inner surface 9 thereof. The illustrated actuator cavity 40 includes an upper actuator arm cavity portion 40 a, a central actuator arm cavity portion 40 b, a lower actuator arm cavity portion 40 c, an actuator rib cavity portion 40 d, an actuator spine cavity portion 40 e, and a hinge cavity portion 40 f. The illustrated actuator cavity 40 also has one or more pressure equalization depressions 41 provided therein.
The base plate 4 has a first sealing structure 42 a that extends from the bottom surface of the actuator cavity 40 and completely about the perimeter of the first opening 4 a. Similarly, the base plate 4 also has a second sealing structure 42 b that extends from the bottom surface of the actuator cavity 40 and completely about the perimeter of the second opening 4 b. In the illustrated embodiment, each of the sealing structures 42 a and 42 b is a wall that is generally trapezoidal in cross-sectional shape and includes four linearly-extending wall segments that extend adjacent to the openings 4 a and 4 b. However, the sealing structures 42 a and 42 b may be formed having any desired cross-sectional shape or combination of shapes, and may further extend in any desired manner (linearly or otherwise) about the openings 4 a and 4 b. For example, the sealing structures 42 a and 42 b may have rounded corners between adjacent linearly-extending wall segments, have one or more non-linearly-extending wall segments, or be entirely non-linear in shape. The purpose for the sealing structures 42 a and 42 b will be explained below.
FIG. 15 illustrates the structure of the assembled conventional microvalve 1 shown in FIGS. 10 through 14. As shown therein, non-recessed portions of the inner surface 6 of the cover plate 2 engage corresponding non-recessed portions of the first surface 7 of the intermediate plate 3. Similarly, non-recessed portions of the inner surface 9 of the base plate 4 engage corresponding non-recessed portions of the second surface 8 of the intermediate plate 3. The upper actuator arm cavity portion 11 a provided on the cover plate 2, the intermediate plate 3, and the upper actuator arm cavity portion 40 a provided on the base plate 4 all cooperate to define a closed internal cavity in which the sealing portion 31 of the displaceable member 30 is disposed for relative pivoting movement (movement to the left and to the right when viewing FIG. 15).
The microvalve 1 may be used as a control valve in a shock absorber, such as the shock absorber 70 shown in FIGS. 2 through 5. The embodiment of the microvalve 1 illustrated in FIGS. 8 through 15 is packaged in a conventional U-flow configuration, wherein the openings 4 a and 4 b (which define the outlet and inlet for the flow of fluid through the microvalve 1) are located on the same side (the base plate 4 side) of the microvalve 1. Alternatively, the microvalve 1 may be packaged in a conventional through-flow configuration, wherein the openings 4 a and 4 b are located on opposite sides (on the cover plate 2 and the base plate 4 sides) of the microvalve 1. The structure and manner of operation of such a through-flow configured microvalve is otherwise similar to the embodiment of the microvalve 1 described herein.
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.

Claims (16)

What is claimed is:
1. An adjustable shock absorber comprising:
a housing defining an enclosed working space;
a wall formed in the working space and separating the working space into first and second fluid chambers, the wall defining a base of a valve assembly, wherein the first fluid chamber is a working chamber, and wherein the second fluid chamber is a fluid reservoir;
a plurality of compression valves formed in the wall, wherein the plurality of compression valves have pre-set configurations, and wherein the pre-set configurations of two of the plurality of compression valves correspond to a soft and a firm feel of the shock absorber, as experienced by a vehicle occupant; and
a microvalve attached to at least one compression valve and operable to adjust fluid flow through the compression valve to one of a plurality of fluid flow rates.
2. The adjustable shock absorber according to claim 1, wherein the housing defines a remote fluid reservoir fluidly connected to a working chamber in a pressure tube of the adjustable shock absorber.
3. The adjustable shock absorber according to claim 1, wherein each compression valve is a compression pin/spring valve configured to selectively allow fluid flow from the working chamber to the fluid reservoir, and to prevent fluid flow from the fluid reservoir to the working chamber.
4. The adjustable shock absorber according to claim 1, wherein the pre-set configuration of a third of the plurality of compression valves corresponds to a medium feel of the shock absorber, as experienced by a vehicle occupant.
5. A method of adjusting a performance characteristic of an adjustable shock absorber, the method comprising:
selecting one of a soft, a medium, and a firm ride characteristic of the adjustable shock absorber; and
actuating one of a microvalve operatively connected to each one of three compression valves formed in a wall formed in an enclosed working space of a housing, the wall separating the working space into first and second fluid chambers;
wherein the microvalve is operable to control fluid flow through each of the three compression valves to which the microvalve is attached;
wherein a first one of the three compression valves is pre-set to correspond to a soft feel of the shock absorber, as experienced by a vehicle occupant;
wherein a second one of the three compression valves is pre-set to correspond to a medium feel of the shock absorber, as experienced by a vehicle occupant; and
wherein a third one of the three compression valves is pre-set to correspond to a firm feel of the shock absorber, as experienced by a vehicle occupant.
6. The method according to claim 5, wherein the housing defines a remote fluid reservoir fluidly connected to a working chamber in a pressure tube of the adjustable shock absorber.
7. The method according to claim 5, wherein the housing defines a pressure tube of the adjustable shock absorber.
8. An adjustable shock absorber comprising:
a housing defining an enclosed working space;
a wall formed in the working space and separating the working space into first and second fluid chambers;
a first compression valve formed in the wall;
a second compression valve formed in the wall and configured to allow only a minimal fluid flow necessary during low speed operation of the adjustable shock absorber; and
a microvalve attached to the first and second compression valves and operable to adjust fluid flow through the first and second compression valves to one of a plurality of fluid flow rates.
9. The adjustable shock absorber according to claim 8, further including an orifice formed through the wall, the orifice defining the second compression valve and configured to allow only a minimal fluid flow necessary during low speed operation of the adjustable shock absorber.
10. An adjustable shock absorber comprising:
a housing defining a pressure tube of the adjustable shock absorber, the pressure tube having an enclosed working space;
a wall formed in the working space and separating the working space into first and second fluid chambers, the wall defining an axially movable piston, wherein the first fluid chamber is a first working chamber, and wherein the second fluid chamber is a second working chamber;
a compression valve formed in the wall; and
a microvalve attached to the compression valve and operable to adjust fluid flow through the compression valve to one of a plurality of fluid flow rates.
11. The adjustable shock absorber according to claim 10, wherein the compression valve is a compression pin/spring valve configured to selectively allow fluid flow from the first working chamber to the second working chamber, and to prevent fluid flow from the second working chamber to the first working chamber.
12. The adjustable shock absorber according to claim 10, wherein the compression valve is one of a plurality of compression valves.
13. The adjustable shock absorber according to claim 12, wherein the plurality of compression valves have pre-set configurations, and wherein the pre-set configurations of two of the plurality of compression valves correspond to a soft and a firm feel of the shock absorber, as experienced by a vehicle occupant.
14. The adjustable shock absorber according to claim 13, wherein the pre-set configuration of a third of the plurality of compression valves corresponds to a medium feel of the shock absorber, as experienced by a vehicle occupant.
15. The adjustable shock absorber according to claim 10, further including:
a second compression valve configured to allow only a minimal fluid flow necessary during low speed operation of the adjustable shock absorber; and
a microvalve attached to the second compression valve and operable to control fluid flow through the second compression valve.
16. The adjustable shock absorber according to claim 10, further including:
an orifice formed through the wall, the orifice configured to allow only a minimal fluid flow necessary during low speed operation of the adjustable shock absorber; and
a microvalve attached to the orifice and operable to control fluid flow through the orifice.
US14/832,521 2014-09-08 2015-08-21 Three speed adjustable shock absorber having one or more microvalves Active US9702426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/832,521 US9702426B2 (en) 2014-09-08 2015-08-21 Three speed adjustable shock absorber having one or more microvalves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462047382P 2014-09-08 2014-09-08
US14/832,521 US9702426B2 (en) 2014-09-08 2015-08-21 Three speed adjustable shock absorber having one or more microvalves

Publications (2)

Publication Number Publication Date
US20160069414A1 US20160069414A1 (en) 2016-03-10
US9702426B2 true US9702426B2 (en) 2017-07-11

Family

ID=55437137

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/832,521 Active US9702426B2 (en) 2014-09-08 2015-08-21 Three speed adjustable shock absorber having one or more microvalves

Country Status (2)

Country Link
US (1) US9702426B2 (en)
CN (1) CN105485232B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702426B2 (en) * 2014-09-08 2017-07-11 Dunan Microstaq, Inc. Three speed adjustable shock absorber having one or more microvalves
CN106286683A (en) * 2016-08-30 2017-01-04 胡立宇 A kind of amortisseur

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518553A (en) * 1945-10-18 1950-08-15 Gabriel Co Closure plate and valve assembly for shock absorbers
US4054277A (en) * 1974-10-11 1977-10-18 Jacques Marie Michel Sirven Hydraulic shock absorber
US4936424A (en) * 1989-05-09 1990-06-26 Costa Vince F Hydraulic shock absorber with pressure sensitive external valving
US20030098612A1 (en) * 1998-09-03 2003-05-29 Maluf Nadim I. Proportional micromechanical device
US6659241B2 (en) * 2001-08-22 2003-12-09 Meritor Heavy Vehicle Technology, Llc Shock absorber compression damping adjustment
US6860369B2 (en) 1998-10-26 2005-03-01 Mannesmann Sachs Ag Vibration damper with variable damping force
US20050056507A1 (en) 2003-09-15 2005-03-17 Molina Simon Anne De Shock absorber staged valving system
EP1664583B1 (en) 2003-09-15 2011-02-16 Tenneco Automotive Operating Company Inc. Integrated tagging system for an electronic shock absorber
US20110127455A1 (en) * 2008-08-09 2011-06-02 Microstaq, Inc. Improved Microvalve Device
US20120090426A1 (en) * 2010-10-15 2012-04-19 GM Global Technology Operations LLC Micro electro-mechanical system (mems) based hydraulic control system for full hybrid vehicles
US8794407B2 (en) 2009-11-18 2014-08-05 Tenneco Automotive Operating Company Inc. Velocity progressive valving

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055134A (en) * 1998-08-06 2000-02-22 Fuji Heavy Ind Ltd Flywheel device for composite material
US9702426B2 (en) * 2014-09-08 2017-07-11 Dunan Microstaq, Inc. Three speed adjustable shock absorber having one or more microvalves

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518553A (en) * 1945-10-18 1950-08-15 Gabriel Co Closure plate and valve assembly for shock absorbers
US4054277A (en) * 1974-10-11 1977-10-18 Jacques Marie Michel Sirven Hydraulic shock absorber
US4936424A (en) * 1989-05-09 1990-06-26 Costa Vince F Hydraulic shock absorber with pressure sensitive external valving
US20030098612A1 (en) * 1998-09-03 2003-05-29 Maluf Nadim I. Proportional micromechanical device
US6860369B2 (en) 1998-10-26 2005-03-01 Mannesmann Sachs Ag Vibration damper with variable damping force
US6659241B2 (en) * 2001-08-22 2003-12-09 Meritor Heavy Vehicle Technology, Llc Shock absorber compression damping adjustment
US20050056507A1 (en) 2003-09-15 2005-03-17 Molina Simon Anne De Shock absorber staged valving system
EP1664583B1 (en) 2003-09-15 2011-02-16 Tenneco Automotive Operating Company Inc. Integrated tagging system for an electronic shock absorber
US20110127455A1 (en) * 2008-08-09 2011-06-02 Microstaq, Inc. Improved Microvalve Device
US8662468B2 (en) 2008-08-09 2014-03-04 Dunan Microstaq, Inc. Microvalve device
US8794407B2 (en) 2009-11-18 2014-08-05 Tenneco Automotive Operating Company Inc. Velocity progressive valving
US20120090426A1 (en) * 2010-10-15 2012-04-19 GM Global Technology Operations LLC Micro electro-mechanical system (mems) based hydraulic control system for full hybrid vehicles

Also Published As

Publication number Publication date
CN105485232B (en) 2019-05-14
CN105485232A (en) 2016-04-13
US20160069414A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP6502547B2 (en) shock absorber
EP2158416B1 (en) Junction bleed
EP1158202B1 (en) Independently tunable variable bleed orifice
US6290035B1 (en) Acceleration sensitive damping for automotive dampers
JP6486366B2 (en) Shock absorber with frequency-dependent passive valve
US8210330B2 (en) Electronically controlled frequency dependent damping
CN113195932B (en) Damper with single external control valve
CN107091294B (en) Shock absorber with check disc for orifice passage
JP6212551B2 (en) Dual range damping system for shock absorber
CN114810911B (en) Stroke dependent damper assembly
JP2010525256A (en) Shock absorber with continuously variable valve for baseline valve
JPH05209643A (en) Piston assembly
US9587703B2 (en) Variable radius spring disc for vehicle shock absorber
WO2016085868A1 (en) Shock absorber having orifice check disc
US6382372B1 (en) Ported disc variable bleed orifice
US9702426B2 (en) Three speed adjustable shock absorber having one or more microvalves
EP1167810B1 (en) Shock absorber having ported plate low speed tunability
US5113979A (en) Base valve for a shock absorber
US5518090A (en) Piston post for a damper

Legal Events

Date Code Title Description
AS Assignment

Owner name: DUNAN MICROSTAQ, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BINGLE, COLIN B.;REEL/FRAME:036436/0866

Effective date: 20150824

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4