US9560722B2 - Power system-on-chip architecture - Google Patents
Power system-on-chip architecture Download PDFInfo
- Publication number
- US9560722B2 US9560722B2 US14/779,853 US201414779853A US9560722B2 US 9560722 B2 US9560722 B2 US 9560722B2 US 201414779853 A US201414779853 A US 201414779853A US 9560722 B2 US9560722 B2 US 9560722B2
- Authority
- US
- United States
- Prior art keywords
- integrated circuits
- substrate
- lighting
- layer
- lighting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 230000010354 integration Effects 0.000 claims abstract description 11
- 239000004065 semiconductor Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 18
- 239000003344 environmental pollutant Substances 0.000 claims description 15
- 231100000719 pollutant Toxicity 0.000 claims description 15
- 239000003990 capacitor Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000809 air pollutant Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000001658 differential optical absorption spectrophotometry Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000000347 anisotropic wet etching Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000003403 water pollutant Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H05B37/0227—
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/002—Refractors for light sources using microoptical elements for redirecting or diffusing light
- F21V5/004—Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/486—Via connections through the substrate with or without pins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/54—Encapsulations having a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/642—Heat extraction or cooling elements characterized by the shape
-
- H05B33/0854—
-
- H05B37/0218—
-
- H05B37/0272—
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/19—Controlling the light source by remote control via wireless transmission
- H05B47/195—Controlling the light source by remote control via wireless transmission the transmission using visible or infrared light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/10—Outdoor lighting
- F21W2131/103—Outdoor lighting of streets or roads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/005—Processes relating to semiconductor body packages relating to encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0058—Processes relating to semiconductor body packages relating to optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0075—Processes relating to semiconductor body packages relating to heat extraction or cooling elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Definitions
- Embodiments of the invention relate to a power system-on-chip architecture. Particularly, a structure and platform that integrates solid state lighting, signal processing, control circuits, semiconductor power switches, and passive components is discussed herein, as well as exemplary applications.
- Solid state lighting (SSL) technology (such as light emitting diodes (LEDs)) is promising for lighting, illumination and display applications. Due to higher efficiency and longer life time compared with conventional incandescent and fluorescent lamps, costs of electricity consumption, replacement costs and maintenance costs can be significantly reduced by using SSL. Also, by using signal processing and control circuits to directly control pixels in an SSL display, the SSL technology may find wide applications in micro-display, projection display and other areas to achieve high performance, high efficiency and eco-friendly systems.
- the driver module occupies a large volume.
- the circuit board for the driver module includes a power transformer, a power switch, several capacitors, and a controller.
- passive components (transformer, capacitor) of the driver module also occupy a large volume (the large volume of the transformer is due to the reason that the offline voltage is relatively high (110 VAC ⁇ 220 VAC), so at tens of kHz range, the required inductance value of the transformer is large).
- Embodiments of the invention provide a power system-on-chip architecture suitable for SSL lighting and display applications that is cost-effective and compact.
- the architecture includes three layers with different functions: 1) an integrated circuits layer, 2) an embedded passive components layer, and 3) a bonded layer. These layers are interconnected and integrated in an efficient manner so that the cost and volume of the device is minimized.
- FIG. 1 is a diagram depicting an overall conceptual schematic of an embodiment of the invention.
- FIG. 2A is a diagram depicting a top view of an integrated power system-on-chip architecture of an exemplary device.
- FIG. 2B is a diagram depicting a bottom view of an integrated power system-on-chip architecture of the exemplary device depicted in FIG. 2A .
- FIG. 2C is a diagram depicting a cross-sectional view (along cross-section line A-A′ in FIG. 2A ) of an integrated power system-on-chip architecture of the exemplary device depicted in FIG. 2A .
- FIG. 3 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of another exemplary device.
- FIG. 4 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- FIG. 5 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- FIG. 6 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- FIG. 7 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- FIGS. 8A to 8G are diagrams depicting steps for fabricating a device having an integrated power system-on-chip architecture in accordance with an exemplary embodiment of the present invention.
- FIG. 9 depicts an exemplary traffic light device.
- FIG. 10 depicts an example of deployment of pollutant sensing using the intelligent traffic lighting device.
- embodiments of the invention relate to an architecture having a layered structure.
- the architecture includes three different parts.
- the high level of integration offered by utilizing the substrate according to this architecture avoids the costs of material, assembly and discrete components, and the costs for testing and reworking of discrete components.
- the high level of integration also significantly reduces the volume of the device.
- FIG. 1 is a diagram depicting an overall conceptual schematic of an embodiment of the invention.
- the depicted device has an architecture that is divided into three layers with different functions: an integrated circuits layer ( 11 ), an embedded passive components layer ( 12 ), and a bonded layer ( 13 ).
- the integrated circuits layer ( 11 ) includes, for example, signal processing circuits and control circuits for lighting and illumination.
- the embedded passive component layer ( 12 ) includes, for example, inductors, transformers and capacitors, as well as vias for connecting the embedded passive components with the integrated circuits layer ( 11 ).
- the bonded layer ( 13 ) includes SSL lighting components and/or other lighting components, as well as semiconductor power switches.
- FIG. 2A is a diagram depicting a top view of an integrated power system-on-chip architecture of an exemplary device.
- a semiconductor is typically used for the substrate ( 21 ).
- the “front” (or “top”) side of this substrate ( 21 ) includes a lighting component ( 22 ), which may be an SSL lighting/display component, signal processing and control circuits ( 23 ) for the lighting component, power management circuits ( 24 ), and semiconductor power switches for power conversion ( 25 ).
- the substrate ( 21 ) is silicon
- the lighting component ( 22 ) is a GaN-based LED array
- the semiconductor power switches ( 25 ) are silicon-based power transistors or compound power transistors (e.g., GaN power transistors or SiC power transistors).
- compound power transistor can work at higher frequencies for the same breakdown voltage. Therefore, by increasing the switching frequency of the converter in a power management module, the required inductance and capacitance values for the device can be reduced for ease of integration.
- FIG. 2B is a diagram depicting a bottom view of an integrated power system-on-chip architecture of an exemplary device.
- the “back” (or “bottom”) side of the substrate ( 21 ) includes an embedded magnetic component ( 26 ) that includes transformers and inductors.
- the back side of the substrate ( 21 ) also include embedded capacitors ( 27 ).
- FIG. 2C is a diagram depicting a cross-sectional view (along cross-section line A-A′ in FIG. 2A ) of an integrated power system-on-chip architecture in an exemplary device.
- the three layers of the device can be seen in this depiction: the integrated circuits layer ( 11 ), the embedded passive components layer ( 12 ), and the bonded layer ( 13 ).
- the integrated circuits layer ( 11 ) includes signal processing and control circuits. These signal processing and control circuits include the signal processing and control circuits for the lighting component (shown in FIG. 2A as element ( 23 ) but not depicted in FIG. 2C ), power management circuits ( 24 ), and matrix circuits ( 22 ′) further used to control the lighting component ( 22 ).
- the matrix circuits ( 22 ′) are part of a driver circuit array capable of individually and modulating each pixel of the lighting component ( 22 ).
- the embedded passive components layer ( 12 ) includes embedded magnetic components ( 26 ) and capacitors ( 27 ).
- the architecture provides a large volume for placing the passive components in the substrate ( 21 ), making the integration of large inductance magnetic components (e.g., ⁇ 100 ⁇ H or more) and a high-density integrated capacitor feasible.
- the passive components are connected to the integrated circuits layer ( 11 ) through vias ( 28 ). As can be seen in FIG. 2C , the passive components do not consume valuable area on the front side of the substrate, and provide an ultra-compact architecture for the device.
- the bonded layer ( 13 ) includes the lighting component ( 22 ) (e.g., SSL lighting/display components) and semiconductor power switches ( 25 ).
- the components of the bonded layer ( 13 ) can be connected with the integrated circuits layer ( 11 ) through solder bumps ( 29 ).
- FIGS. 2A-2C are illustrative of an exemplary embodiment of the invention and that the layout and composition of the various depicted components can be varied for other embodiments in various applications. Examples of some of these various other embodiments are depicted in FIGS. 3-7 .
- FIG. 3 is a diagram depicting a cross-sectional view (similar to FIG. 2C ) of an integrated power system-on-chip architecture of an exemplary device that is different from the exemplary device depicted in FIG. 2C .
- the vias ( 28 ) in the embedded passive components layer ( 12 ) connect the integrated circuits layer ( 11 ) to the back/bottom surface of the substrate ( 21 ) (instead of stopping at the top of the grooves for the passive components as depicted in FIG. 2C ).
- FIG. 4 is a diagram depicting a cross-sectional view (similar to FIG. 2C ) of an integrated power system-on-chip architecture of another exemplary device that is also different from the exemplary device depicted in FIG. 2C .
- supplementary structures are included.
- An under-fill ( 201 ) is provided between the components of the bonded layer (the semiconductor power switches ( 25 ) and lighting component ( 22 )) and the components of the integrated circuit layer ( 11 ).
- the under-fill ( 201 ) enhances the mechanical reliability and heat dissipation for the components of the bonded layer.
- the underfill is a silica-coated aluminum nitride (SCAN).
- a thermal routing structure ( 202 ) is incorporated in the substrate ( 21 ) for further improving the heat dissipation within the device.
- FIG. 5 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- semiconductor power switches ( 31 ) are monolithically integrated with the substrate ( 21 ) by an epitaxial process (rather than flip-chip bonded).
- the monolithically integrated semiconductor power switches ( 31 ) are still considered herein to be a part of the bonded layer ( 13 ).
- FIG. 6 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- a lighting component ( 32 ) is monolithically integrated with the substrate ( 21 ) by an epitaxial process (rather than flip-chip bonded).
- the monolithically integrated lighting component ( 32 ) is still considered herein to be a part of the bonded layer ( 13 ).
- FIG. 7 is a diagram depicting a cross-sectional view of an integrated power system-on-chip architecture of yet another exemplary device.
- both semiconductor power switches ( 31 ) and a lighting component ( 32 ) are monolithically integrated with the substrate ( 21 ) by an epitaxial process (rather than flip-chip bonded).
- FIGS. 8A to 8G are diagrams depicting steps for fabricating a device having an integrated power system-on-chip architecture in accordance with an exemplary embodiment of the present invention.
- FIG. 8A illustrates the starting substrate ( 21 ).
- the substrate is a single crystalline semiconductor, such as silicon.
- FIG. 8B illustrates the formation of integrated circuits for signal processing and power management control, including matrix circuits ( 22 ′) and power management circuits ( 24 ). These circuits can be formed on the substrate ( 21 ) using conventional integrated circuits technologies.
- FIG. 8C illustrates the formation of vias in substrate ( 21 ). The vias can be fabricated using dry etching, such as a deep reactive-iron-etch (DRIE) process. The vias are then isolated from substrate ( 21 ) by deposited dielectric material. After that, the vias are filled with conductive material such as copper or highly doped polysilicon.
- DRIE deep reactive-iron-etch
- FIG. 8D illustrates the formation of grooves ( 41 ) in the backside of the substrate.
- the grooves are fabricated by etching. Both wet etching and dry etching can be used to form the grooves.
- wet anisotropic etching e.g., using TMAH or KOH
- dry etching can be used to from grooves with a vertical sidewall.
- Gray-scale lithography can be used to form grooves with sidewalls having controllable slope.
- the depths of the groove formed in the substrate are large enough to expose the end of the vias ( 28 ).
- FIG. 8E illustrates the formation of passive components in the groove.
- the passive components includes magnetic components ( 26 ) (e.g., transformers, inductors) and capacitors ( 27 ). Since the volume of the groove is large, the inductance of integrated magnetic components ( 26 ) can be very large, and, for capacitors, the capacitance density can be significantly improved by utilizing the large available volume in the groove.
- magnetic components e.g., transformers, inductors
- capacitors 27 . Since the volume of the groove is large, the inductance of integrated magnetic components ( 26 ) can be very large, and, for capacitors, the capacitance density can be significantly improved by utilizing the large available volume in the groove.
- FIG. 8F illustrates the formation of semiconductor power switches ( 25 ).
- the semiconductor power switches ( 25 ) are flip-chip bonded to the substrate ( 21 ) through solder bumps ( 29 ).
- FIG. 8G illustrates the formation of the lighting component ( 22 ) (e.g., an SSL lighting/display components).
- the lighting component ( 22 ) is an SSL lighting components, such as LED matrix, and is flip-chip bonded to the substrate ( 21 ) through solder bumps ( 29 ).
- the semiconductor power switches ( 25 ) and the lighting component ( 22 ) may be monolithically integrated with the substrate, without using solder bumps, through an epitaxial process.
- the Lau publication further provides empirical data relating to components of the embedded passive component layer in exemplary embodiments of the device architecture discussed herein (e.g., backside silicon-embedded inductors (BSEIs) and integrated inductors with magnetic cores). Empirical data relating to flip-chip bonding is also discussed.
- BSEIs backside silicon-embedded inductors
- Empirical data relating to flip-chip bonding is also discussed.
- Embodiments of the inventive principles discussed herein are applicable in a variety of contexts.
- One application, as discussed above, is SSL lighting, where the lighting component ( 22 ) includes an SSL lighting component, and the overall device is an efficient and compact lighting device having a power system-on-chip architecture.
- the lighting component ( 22 ) further includes an optical component such as a lens or an array of micro-lenses.
- the optical component may be bonded to the substrate using flip-chip technology or may be monolithically integrated with the substrate.
- Empirical data relating to an example where an InGaN LED with a sapphire surface having silica microspheres coated thereon shows that the addition of the optical component in these exemplary devices can increase output and efficiency.
- sensing devices such as sensors for air and water pollutant
- intelligent traffic systems such as air and water pollutant
- both these functions are served by a single intelligent traffic light device utilizing the power system-on-chip architecture discussed herein.
- a field of application is in visible light communications (VLC).
- VLC visible light communications
- a small lighting device utilizing the power system-on-chip architecture described herein may be used in combination with an optical projection lens to achieve 2-in-1 (using a single lighting apparatus to show pedestrian signals), 3-in-1 (using a single lighting apparatus to show traffic signals), or even 5-in-1 (using a single lighting apparatus to show both pedestrian signals and traffic signals) traffic light devices that are efficient and cost-effective.
- An exemplary traffic light device is shown in FIG. 9 , where the traffic light device is able to utilize one or two small lighting devices and one or two optical projection lens to provide a relatively more compact traffic light.
- Intelligent traffic light devices may further include components allowing for pollutant sensing and visible light communications (VLC) as discussed below.
- VLC visible light communications
- photonic sensors may be embedded in (or replace) the lighting component in the bonded layer of the power system-on-chip architecture.
- Optical excitation, signal detection and processing, as well as optical data communications, are performed by the device while it operates in its normal functional mode. Apart from simply sampling ambient light level, the device functions through measuring scattering, absorption and/or fluorescence of target substances as required for air or water pollution monitoring.
- Such devices can be deployed in large numbers for collecting a wide range of data including ambient light intensity for performing active lighting control and relative concentrations of pollutants in different districts.
- the device contains a flip-chip bonded LED array.
- the LED array is individually modulated, and radiation through the air will be collected by on-chip detectors embedded in another LED light within a reasonable distance.
- the signal processing circuit will output the absorption and scattering level for the surrounding area, indicating the presence (or absence) of pollutants.
- FIG. 10 An example of deployment of pollutant sensing using the intelligent traffic lighting device discussed above is provided in FIG. 10 .
- a pair of opposite facing pedestrian traffic lights offers a suitable sensor deployment scenario, as the traffic lights are at the appropriate height and they are networked by the transportation department. As a result, the traffic lights can provide pollutant concentration mapping and time-correlated data.
- the lighting device in sensing applications has the capability to modulate different color light source, and thus enables the development of a photonic source and detector pair to perform both narrow band and broad band sensing for air pollutants.
- Differential optical absorption spectroscopy (DOAS) is applied to sense chemical pollutants in the air, while broadband scattering measurement is used to sense the aerosols.
- the particulate matter (PM) in the path will scatter the light, while the chemical pollutants will absorb the light.
- the absorption and scattering in spherical coordinates can be characterized in Eqn. 1 below:
- the absorption coefficients ⁇ a ( ⁇ ) and the scattering coefficients ⁇ s ( ⁇ ) are both proportional to the target molecule concentrations and depends on the light wavelength. Therefore, by measuring the attenuation components at different wavelengths, various pollutant concentrations can be estimated.
- the scattering in the air mainly follows the Rayleigh scattering and Mie scattering, which affects broadband light spectrum.
- chemical pollutants only absorb narrowband light. Therefore, effects of different pollutants can be separated from the received light spectrum.
- concentrations of major chemical pollutants such as O 3 and NO x can be measured.
- the typical air extinction coefficient ranges from 0.01 km ⁇ 1 in pollution-free air to 1 km ⁇ 1 in extremely polluted air. For example, with ⁇ 20 m separation between a source and detector pair, the air path attenuation can range between 0.02% and 2%. Given that the typical LED traffic light intensity is about 1500-2000 lumen, after the radiation losses, the estimated received light intensity at the detector is around 0.4 lux.
- the background sun light intensity can be as high as 10 klux.
- a typical photodiode can provide 0.5 A/W responsivity. So, when used as the detection device, it will provide 270-pA signal photocurrent and 7- ⁇ A sunlight photocurrent.
- the slow and irregularly changing sunlight intensity can be cancelled using a feedback loop for background “noise” calibration.
- One approach is to modulate the source LED with a specific “signature frequency,” e.g. 100 kHz, in order to facilitate synchronized lock-in detection at the receiver.
- optical filters may also be utilized to further remove unwanted background sunlight.
- optical components may take the form of customized plastic optics ready for direct mounting on the lighting device. Specific components may be used to perform beam collimation, control of field of view and spectral analysis, either through interference filtering or grating dispersion on the outgoing and return optical radiation. Further, embedded signal processing ICs for sensing data recovery may be implemented to ensure that the final device fits in with other functionalities of the traffic light system.
- VLC Visible Light Communications
- an LED light signal generated by a lighting device having a power system-on-chip architecture may be modulated with information for visible light communications.
- intelligent traffic lighting devices as discussed above are equipped with appropriate signal processing and control circuitry to allow for broadcasting of data (such as pollution and traffic data), such that mobile devices equipped with photonic wireless transceivers are able to communicate wirelessly with the intelligent traffic light (as illustrated in FIG. 10 by the two individuals carrying mobile devices).
- data such as pollution and traffic data
- mobile devices equipped with photonic wireless transceivers are able to communicate wirelessly with the intelligent traffic light (as illustrated in FIG. 10 by the two individuals carrying mobile devices).
- embodiments of the invention which use GaN LED pixels in SSL lighting devices utilizing the power system-on-chip architecture described herein, are able to achieve VLC with substantially less loading.
- an orthogonal frequency diffusion multiplexing (OFDM) transmitter can be readily realized.
- the light (transmitted power) combining occurs in the free space because all the data steam uses the same carrier, namely the visible light.
- the drive current for each LED acts as the sub-carrier signal in the OFDM transmitter.
- a high-speed serial data stream is first separated, i.e.
- each sub-carrier which in turn is used to modulate each LED pixel, or pixel group.
- the drive current must maintain a constant DC level to keep the light intensity stable (not data-dependent)
- phase-shift keying or Manchester coding may be employed to keep a constant RMS level of the sub-carrier (drive current).
- the VLC transmitter based on matrix circuits for individual modulating each pixel can readily be implemented in standard CMOS to attain good energy efficiency. Furthermore, since the same VLC transmitter can also function as the environmental sensor source signal generator, both the electronic hardware and the energy for operation are reused. In the sensor mode, the pixels can be grouped together to increase the signal intensity when the background sunlight is strong or to cover more air sample volume. As, previously mentioned, “signature” modulation frequencies for lock-in synchronization may be employed to facilitate the suppression of the background sunlight.
- the matrix circuits thus offer a fitting circuit platform to implement this scheme on the source side, as each pixel can be driven at different frequencies.
- visible light can be detected using either a photodiode or a CMOS image sensor depending on the intended deployment conditions such as distance from transmitter, line of sight, and background light level.
- a standard trans-impedance amplifier (TIA) with the front-end photodiode either flip-chipped onto the CMOS IC “base” layer, or embedded within the CMOS substrate is used to convert the incoming current signal from the photodiode to a voltage for further signal processing.
- the close proximity of the photodiode and the TIA will reduce the parasitic loadings that are otherwise present in discrete implementation. As a result, the noise level of the receiver front-end (RFE) should be lower, as better shielding can be added without introducing unacceptable loading effects.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Ceramic Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Description
-
- First, a substrate is used to build signal processing and control circuits as well as power management control circuits. It will be appreciated that the signal processing and control circuits and power management control circuits can be fabricated on the substrate using conventional IC fabrication process on a front side of the substrate. These signal processing and control circuits and power management control circuits on the front side of the substrate make up what is referred to herein as the integrated circuits layer.
- Second, the substrate can accommodate passive components, including inductors, transformers, and capacitors, for example, on a back side of the substrate. These passive components are embedded at the backside of the substrate and connected to the front side of the substrate (the integrated circuits layer) through vias. By this embedded approach, the volume of the substrate (e.g., a silicon substrate) is efficiently utilized and the size of the device is minimized. The embedded passive components on the back side of the substrate make up what is referred to herein as the embedded passive component layer.
- Third, the substrate also serves as an interposer: SSL devices/chips and semiconductor switches can be bonded to the substrate and connected with other components on the substrate by bonding technology, such as flip-chip bonding. These SSL devices/chips and semiconductor switches constitute what is referred to herein as the bonded layer.
The first term is due to the absorption. The second term is due to the scattering. The absorption coefficients ∈a(λ) and the scattering coefficients ∈s(λ) are both proportional to the target molecule concentrations and depends on the light wavelength. Therefore, by measuring the attenuation components at different wavelengths, various pollutant concentrations can be estimated.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/779,853 US9560722B2 (en) | 2013-03-25 | 2014-03-25 | Power system-on-chip architecture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361852933P | 2013-03-25 | 2013-03-25 | |
PCT/CN2014/000324 WO2014154023A1 (en) | 2013-03-25 | 2014-03-25 | Power system-on-chip architecture |
US14/779,853 US9560722B2 (en) | 2013-03-25 | 2014-03-25 | Power system-on-chip architecture |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160323968A1 US20160323968A1 (en) | 2016-11-03 |
US9560722B2 true US9560722B2 (en) | 2017-01-31 |
Family
ID=51622427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/779,853 Active US9560722B2 (en) | 2013-03-25 | 2014-03-25 | Power system-on-chip architecture |
Country Status (3)
Country | Link |
---|---|
US (1) | US9560722B2 (en) |
CN (1) | CN105264661B (en) |
WO (1) | WO2014154023A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180158987A1 (en) * | 2016-12-02 | 2018-06-07 | Innolux Corporation | Display device |
WO2020126664A1 (en) * | 2018-12-18 | 2020-06-25 | Osram Opto Semiconductors Gmbh | Lighting device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10229630B2 (en) * | 2014-05-14 | 2019-03-12 | The Hong Kong University Of Science And Technology | Passive-matrix light-emitting diodes on silicon micro-display |
US9648701B1 (en) | 2015-12-31 | 2017-05-09 | General Electric Company | Multi-functional optical sensor for indoor lighting systems |
CN106230505B (en) * | 2016-07-19 | 2018-11-13 | 中国科学技术大学 | Optimal input distribution acquiring method in a kind of intelligent transportation system based on visible light communication |
US10244590B2 (en) * | 2016-09-29 | 2019-03-26 | The Regents Of The University Of California | Visible light communication system-on-a-chip |
DE102016219200A1 (en) * | 2016-10-04 | 2018-04-05 | Tridonic Gmbh & Co Kg | Integrated arrangement of modulated light points for communication by means of visible light |
DE102017106959A1 (en) * | 2017-03-31 | 2018-10-04 | Osram Opto Semiconductors Gmbh | Lighting device and lighting system |
CN110752201B (en) * | 2019-10-31 | 2022-04-15 | 京东方科技集团股份有限公司 | Display back plate, preparation method thereof and display device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6646491B2 (en) | 2001-05-18 | 2003-11-11 | Eugene Robert Worley, Sr. | LED lamp package for packaging an LED driver with an LED |
US20060163589A1 (en) * | 2005-01-21 | 2006-07-27 | Zhaoyang Fan | Heterogeneous integrated high voltage DC/AC light emitter |
CN101154656A (en) | 2006-09-30 | 2008-04-02 | 香港微晶先进封装技术有限公司 | Multi-chip light emitting diode module group structure and method of producing the same |
CN102403309A (en) | 2010-09-10 | 2012-04-04 | 三星Led株式会社 | Light emitting device |
US8272757B1 (en) * | 2005-06-03 | 2012-09-25 | Ac Led Lighting, L.L.C. | Light emitting diode lamp capable of high AC/DC voltage operation |
US20130032826A1 (en) | 2011-08-04 | 2013-02-07 | Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense | Integrated Apparatus Including Driver Chips, a Power Supply and LED Chips on an Isolative Substrate |
US20140264410A1 (en) * | 2013-03-14 | 2014-09-18 | Tsmc Solid State Lighting Ltd. | LED with IC Integrated Lighting Module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6005262A (en) * | 1997-08-20 | 1999-12-21 | Lucent Technologies Inc. | Flip-chip bonded VCSEL CMOS circuit with silicon monitor detector |
CN102347325B (en) * | 2010-07-30 | 2016-06-15 | 晶元光电股份有限公司 | Integrated light-emitting device and manufacture method thereof |
-
2014
- 2014-03-25 US US14/779,853 patent/US9560722B2/en active Active
- 2014-03-25 WO PCT/CN2014/000324 patent/WO2014154023A1/en active Application Filing
- 2014-03-25 CN CN201480015874.2A patent/CN105264661B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6646491B2 (en) | 2001-05-18 | 2003-11-11 | Eugene Robert Worley, Sr. | LED lamp package for packaging an LED driver with an LED |
US20060163589A1 (en) * | 2005-01-21 | 2006-07-27 | Zhaoyang Fan | Heterogeneous integrated high voltage DC/AC light emitter |
US8272757B1 (en) * | 2005-06-03 | 2012-09-25 | Ac Led Lighting, L.L.C. | Light emitting diode lamp capable of high AC/DC voltage operation |
CN101154656A (en) | 2006-09-30 | 2008-04-02 | 香港微晶先进封装技术有限公司 | Multi-chip light emitting diode module group structure and method of producing the same |
CN102403309A (en) | 2010-09-10 | 2012-04-04 | 三星Led株式会社 | Light emitting device |
US20130032826A1 (en) | 2011-08-04 | 2013-02-07 | Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense | Integrated Apparatus Including Driver Chips, a Power Supply and LED Chips on an Isolative Substrate |
US20140264410A1 (en) * | 2013-03-14 | 2014-09-18 | Tsmc Solid State Lighting Ltd. | LED with IC Integrated Lighting Module |
Non-Patent Citations (7)
Title |
---|
"Metacapacitors(TM): Next Generation Power Electronics for LED Lighting and Other Application", CUNY Energy Institute, pp. 1-10. |
"Metacapacitors™: Next Generation Power Electronics for LED Lighting and Other Application", CUNY Energy Institute, pp. 1-10. |
"Solid State Lighting Research and Development: Manufacturing Roadmap (2012)", U.S. Department of Energy, Aug. 2012, (93 pages total). |
Araghchini, M., et al., "A Technology Overview of the PowerChip Development Program," IEEE Transactions on Power Electronics, vol. 28, No. 9, pp. 4182-4201, (Sep. 2013). |
International Search Report from parent PCT application No. PCT/CN2014/000324, dated Jun. 11, 2014 (total 2 pages). |
Kline, M., et al., "A Transformerless Galvanically Isolated Switched Capacitor LED Driver," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb., pp. 2357-2360. |
Lau, Kei May, et al., "Cost-Effective and Eco-friendly LED System-on-a-Chip", The 10th China International Forum on Solid State Lighting, Beijing China (Nov. 2013). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180158987A1 (en) * | 2016-12-02 | 2018-06-07 | Innolux Corporation | Display device |
US10319880B2 (en) * | 2016-12-02 | 2019-06-11 | Innolux Corporation | Display device |
WO2020126664A1 (en) * | 2018-12-18 | 2020-06-25 | Osram Opto Semiconductors Gmbh | Lighting device |
US11391427B2 (en) | 2018-12-18 | 2022-07-19 | Osram Opto Semiconductors Gmbh | Lighting device including pixelated light-emitting semiconductor chip, and method of making same |
Also Published As
Publication number | Publication date |
---|---|
CN105264661B (en) | 2018-01-16 |
US20160323968A1 (en) | 2016-11-03 |
CN105264661A (en) | 2016-01-20 |
WO2014154023A1 (en) | 2014-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9560722B2 (en) | Power system-on-chip architecture | |
JP7140835B2 (en) | III-Nitride Multi-Wavelength Light Emitting Diode | |
KR101508976B1 (en) | navigation system and method using visible light communication | |
JP5743548B2 (en) | Lighting device | |
US7329895B2 (en) | Dual wavelength detector | |
EP3748703B1 (en) | Converter with glass layers | |
Santos et al. | Hybrid GaN LED with capillary-bonded II–VI MQW color-converting membrane for visible light communications | |
WO2014166268A1 (en) | Multiple-input and multiple-output visible light transmitting device and method and receiving device and method | |
CN106784121B (en) | Surface plasmons photodetector and preparation method thereof | |
KR101660943B1 (en) | Near-infrared photodetector and image sensor employing the same and manufacturing method thereof | |
TWI324397B (en) | Radiation detector | |
CN113728563B (en) | Ultraviolet detection with high-speed wavelength conversion layer | |
de Graaf et al. | Illumination source identification using a CMOS optical microsystem | |
Cai et al. | Influence of multiple quantum well number on modulation bandwidth of InGaN/GaN light-emitting diodes | |
Joshi et al. | Low-noise UV-to-SWIR broadband photodiodes for large-format focal plane array sensors | |
Geyer et al. | Dual-band ultraviolet-short-wavelength infrared imaging via luminescent downshifting with colloidal quantum dots | |
Wang et al. | Visible light communication in III-nitride quantum-well diode | |
US20240363786A1 (en) | Optical component | |
Louro et al. | Photodetection of modulated light of white RGB LEDs with a-SiC: H device | |
Wang et al. | Study of monolithic integrated solar blind GaN-based photodetectors | |
CN103996737A (en) | Visible-light avalanche photodetector with isolated absorption layer and multiplication layer and filtering function | |
KR20200085098A (en) | Semiconductor device package | |
KR20180034081A (en) | Semiconductor device and photo detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUE, CHIK PATRICK;SIN, JOHNNY KIN ON;LAU, KEI MAY;REEL/FRAME:037025/0978 Effective date: 20151112 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |