US9547027B2 - Dynamically measuring power consumption in a processor - Google Patents

Dynamically measuring power consumption in a processor Download PDF

Info

Publication number
US9547027B2
US9547027B2 US13/996,266 US201213996266A US9547027B2 US 9547027 B2 US9547027 B2 US 9547027B2 US 201213996266 A US201213996266 A US 201213996266A US 9547027 B2 US9547027 B2 US 9547027B2
Authority
US
United States
Prior art keywords
power consumption
processor
consumption level
power
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/996,266
Other versions
US20140195828A1 (en
Inventor
Ankush Varma
Krishnakanth V. Sistla
Martin T. Rowland
Vivek Garg
James S. Burns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to PCT/US2012/031464 priority Critical patent/WO2013147849A1/en
Publication of US20140195828A1 publication Critical patent/US20140195828A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROWLAND, MARTIN T., SISTLA, KRISHNAKANTH V., BURNS, JAMES S., GARG, VIVEK, VARMA, ANKUSH
Application granted granted Critical
Publication of US9547027B2 publication Critical patent/US9547027B2/en
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3243Power saving in microcontroller unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • Y02B60/1217
    • Y02B60/1239
    • Y02B60/1285
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/12Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon the main processing unit
    • Y02D10/126Frequency modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/15Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon peripherals
    • Y02D10/152Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon peripherals the peripheral being a memory control unit [MCU]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/17Power management
    • Y02D10/172Controlling the supply voltage

Abstract

In one embodiment, the present invention includes a processor having multiple cores to independently execute instructions, a first sensor to measure a first power consumption level of the processor based at least in part on events occurring on the cores, and a hybrid logic to combine the first power consumption level and a second power consumption level. Other embodiments are described and claimed.

Description

TECHNICAL FIELD

The field relates to semiconductor devices for use in a variety of systems.

BACKGROUND

Advances in semiconductor processing and logic design have permitted an increase in the amount of logic that may be present on integrated circuit devices. As a result, computer system configurations have evolved from a single or multiple integrated circuits in a system to multiple hardware threads, multiple cores, multiple devices, and/or complete systems on individual integrated circuits. Additionally, as the density of integrated circuits has grown, the power requirements for computing systems (from embedded systems to servers) have also escalated. Furthermore, software inefficiencies, and its requirements of hardware, have also caused an increase in computing device energy consumption. In fact, some studies indicate that computing devices consume a sizeable percentage of the entire electricity supply for a country, such as the United States of America. As a result, there is a vital need for energy efficiency and conservation associated with integrated circuits. These needs will increase as servers, desktop computers, notebooks, ultrabooks, tablets, mobile phones, processors, embedded systems, etc. become even more prevalent (from inclusion in the typical computer, automobiles, and televisions to biotechnology).

Power management for integrated circuits such as processors (used in both server and client systems) depends on accurate measurements of estimates of current processor power consumption. Various components of a processor may have their voltage and frequency modulated to stay within specified power limits. Since exceeding a power constraint is undesirable, processors are tuned to always stay under the power limit. Errors in power measurement are accounted for as a guardband, resulting in reduced power being available for processor performance.

Consider a processor that has a 100 watt (W) power limit, also referred to as a thermal design power (TDP), and a +/−5% error in power measurement. Since the processor must stay below its power limit, it caps power when a power consumption of 95 W is measured, making 5 W unavailable for use because it is reserved as a guardband. The size of this guardband is directly proportional to the amount of the error. These guardbands thus reduce available power. Further, inaccuracies of different types of power monitors can vary at low and high loads.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system in accordance with one embodiment of the present invention.

FIG. 2 is a flow diagram of a method in accordance with an embodiment of the present invention.

FIG. 3 is a flow diagram of combining multiple power consumption level calculations in accordance with one embodiment of the present invention.

FIG. 4 is a flow diagram of a method for performing a correlation-based combination of multiple power sensors in accordance with an embodiment of the present invention.

FIG. 5 is a flow diagram of a method of performing power measurements in accordance with another embodiment of the present invention.

FIG. 6 is a block diagram of a processor in accordance with an embodiment of the present invention.

FIG. 7 is a block diagram of a multi-domain processor in accordance with another embodiment of the present invention.

FIG. 8 is a block diagram of a system in accordance with an embodiment of the present invention.

FIG. 9 is a block diagram of a multiprocessor system with a point-to-point (PtP) interconnect in accordance with one embodiment of the present invention.

FIG. 10 is a block diagram of a partially connected quad processor system in accordance with one embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments may be used to provide a power measurement for a processor that is highly accurate at all load levels of the processor. To this end, embodiments can obtain information both from a digital power meter and a voltage regulator-based current sensor to determine power consumption levels from such sensor information. More specifically, embodiments may generate a combined or hybrid power measurement based on sensor information obtained from these multiple power sensors. In this way, a more accurate power measurement can be obtained. Then based on this accurate power measurement, a greater power head room is realized. Thus based on this power information, a processor may be controlled to operate at higher operating frequencies and/or voltages to realize greater performance within a given power budget.

Referring now to FIG. 1, shown is a block diagram of a portion of a system in accordance with an embodiment of the present invention. As shown in FIG. 1, system 100 may include various components, including a processor 110 which as shown is a multicore processor. Processor 110 may be coupled to a power supply 150 via an external voltage regulator 160, which may perform a first voltage conversion to provide a primary regulated voltage to processor 110.

As seen, processor 110 may be a single die processor including multiple cores 120 a-120 n. In addition, each core may be associated with an individual voltage regulator 125 a-125 n. Accordingly, a fully integrated voltage regulator (FIVR) implementation may be provided to allow for fine-grained control of voltage and thus power and performance of each individual core. As such, each core can operate at an independent voltage and frequency, enabling great flexibility and affording wide opportunities for balancing power consumption with performance. As further seen, each core 120 can include at least one event counter 122 0-122 n to count certain events occurring on the core, such as instructions that use certain core circuitry (e.g., high power circuitry). This event information can be used to provide sensor information for a digital power meter in accordance with an embodiment of the present invention. Note that in some embodiments, the cores themselves may contain a digital power meter to use this information to generate a power consumption level for the core, and communicate this information to a power control unit described below.

Also although only a single event counter per core is shown for ease of illustration, understand that the scope of the present invention is not limited in this regard. For example, in other implementations of a number of event counters can be present per core. Each counter can be configured to count a number of instructions executed of a given type in the corresponding core. For example, all instructions of an instruction set architecture (ISA) can be associated with one of these counters, where instructions of roughly the same power consumption level (e.g., due to the units of the core used for such instruction's execution) can be associated or bucketed with the same counter. In this way, a relatively accurate measure of actual power consumption based on the instructions being executed in the cores can be achieved. In one embodiment, each of these counters may be associated with a given weight value, generally corresponding to its relative power consumption level. Thus in one embodiment, a digital power meter (DPM) can operate based on counting events, assigning an energy weight to each event, and scaling for temperature. The rate at which various events occur is an indicator of the dynamic power consumption of the processor.

Further understand that instead of having an internal (to the core) digital power meter, instead the weighted count information from each of the event counters (of each core) can be provided to logic of a power control unit that can perform digital power measurements based on this information. In addition, this power controller-based digital power meter can further receive information from other portions of a processor such as uncore or system agent circuitry, interface circuitry, interconnect circuitry and so forth. Based on all such information, this digital power meter can generate a relatively accurate measure of power consumption. Note that for the system agent or uncore circuitry, the information may be associated with cache accesses. For interconnect circuitry, relative bandwidth may be used as an indication of power consumption. Similarly, for interface circuitry, a measure of the amount of data packets sent and received can be a good proxy for power consumption. While such a digital power meter can be relatively accurate across a full load line of the processor, it can be very difficult to tune the meter appropriately for the various operations and events occurring within the processor. Accordingly, a hybrid power meter in accordance with an embodiment of the present invention can improve the accuracy without the need for more complex tuning of a digital power meter.

Still referring to FIG. 1, additional components may be present within the processor including an input/output interface 132, another interface 134, and an integrated memory controller 136. As seen, each of these components may be powered by another integrated voltage regulator 125 x. In one embodiment, interface 132 may be in accordance with the Intel® Quick Path Interconnect (QPI) protocol, which provides for point-to-point (PtP) links in a cache coherent protocol that includes multiple layers including a physical layer, a link layer and a protocol layer. In turn, interface 134 may be in accordance with a Peripheral Component Interconnect Express (PCIe™) specification, e.g., the PCI Express™ Specification Base Specification version 2.0 (published Jan. 17, 2007).

Also shown is a power control unit (PCU) 138, which may include hardware, software and firmware to perform power management operations with regard to processor 110. In various embodiments, PCU 138 may include logic to perform digital power measurements, as described above. In addition, PCU 138 may include logic to perform hybrid power measurements in accordance with an embodiment of the present invention. Furthermore, PCU 138 may be coupled via a dedicated interface to external voltage regulator 160. In this way, PCU 138 can instruct the voltage regulator to provide a requested regulated voltage to the processor. In addition, voltage regulator 160 can provide information regarding its current delivery to the processor. In different implementations, voltage regulator 160 can store this information in a register of the voltage regulator that the PCU accesses. Or a current sensor, located either in voltage regulator 160 or on the path between voltage regulator 160 and PCU 138 can provide this information. This current information can be used by power meter logic of PCU 138 to generate a power consumption level based on this current delivery. Thus a voltage regulator-based current sensor can directly measure the current supplied by voltage regulator 160 to the processor. When multiplied by the supply voltage, this provides a measurement of processor power consumption.

As will be described below, logic within PCU 138 can be used to both calculate power consumption levels in multiple manners, including as described above as well as possibly in other manners and then, using a hybrid power measurement logic in accordance with an embodiment of the present invention, determine a hybrid power consumption level based on a combination of these individual power consumption levels.

While not shown for ease of illustration, understand that additional components may be present within processor 110 such as uncore logic, and other components such as internal memories, e.g., one or more levels of a cache memory hierarchy and so forth. Furthermore, while shown in the implementation of FIG. 1 with an integrated voltage regulator, embodiments are not so limited.

Although the following embodiments are described with reference to energy conservation and energy efficiency in specific integrated circuits, such as in computing platforms or processors, other embodiments are applicable to other types of integrated circuits and logic devices. Similar techniques and teachings of embodiments described herein may be applied to other types of circuits or semiconductor devices that may also benefit from better energy efficiency and energy conservation. For example, the disclosed embodiments are not limited to any particular type of computer systems, and may be also used in other devices, such as handheld devices, systems on chip (SoCs), and embedded applications. Some examples of handheld devices include cellular phones, Internet protocol devices, digital cameras, personal digital assistants (PDAs), and handheld PCs. Embedded applications typically include a microcontroller, a digital signal processor (DSP), network computers (NetPC), set-top boxes, network hubs, wide area network (WAN) switches, or any other system that can perform the functions and operations taught below. Moreover, the apparatus', methods, and systems described herein are not limited to physical computing devices, but may also relate to software optimizations for energy conservation and efficiency. As will become readily apparent in the description below, the embodiments of methods, apparatus', and systems described herein (whether in reference to hardware, firmware, software, or a combination thereof) are vital to a ‘green technology’ future, such as for power conservation and energy efficiency in products that encompass a large portion of the US economy.

Referring now to FIG. 2, shown is a flow diagram of a method in accordance with an embodiment of the present invention. As shown in FIG. 2, method 200 can be implemented by logic of a PCU. More specifically, method 200 can be implemented by hybrid power measurement logic of a PCU that can receive and process information from multiple power sensors.

As seen in FIG. 2, method 200 may begin by receiving sensor information from a digital power meter (block 210). As described above, in some embodiments at least portions of this digital power meter can be implemented within the PCU. From this sensor information, a first power consumption level of the processor can be calculated (block 220). For example, the logic can calculate a power consumption level based on the sensor information. As an example, this digital power meter can provide various information such as an indication of events occurring on various cores (e.g., instructions bucketed into different counters, which are weighted according to their relative power consumption) and other circuitry (e.g., as determined by cache activity, interconnect bandwidth, interface activity and so forth) of the processor. From this, a first power consumption level can be calculated. Note that in other embodiments, the first power consumption level can be received from the digital power meter itself.

Still referring to FIG. 2, similarly sensor information can be obtained from a current sensor such as a sensor that measures the current supplied by a voltage regulator to the processor (block 230). Different implementations of this current sensor may be present, from internal hardware of an external voltage regulator that provides power to the processor, to a current sensing circuit located in a path from the voltage regulator to the processor (and possibly within the processor itself). From this sensor information, control passes to block 240 where a second power consumption level can be calculated using this current sensor information. In one embodiment, the calculation may be implemented by multiplying the measured current by the supply voltage and thus a power consumption level corresponding to: P=IV, can be determined.

As further shown in FIG. 2, control next passes to block 250 where the first and second power consumption levels can be combined to obtain a hybrid power consumption level. As will be described further below, different manners of combining these different power consumption levels can occur. The different manners can range from using both of the power levels, e.g., according to scaled values, selecting a particular one of the power consumption levels based on a load level of the processor, or other such combinations.

Finally, control passes to block 260 where an operating frequency and/or voltage of the processor can be controlled based on this hybrid power consumption level and a power limit for the processor. As an example, typical processors can have a thermal design power (TDP) that corresponds to a maximum power dissipation that the processor can output (that can be handled by a cooling system). Using this as a maximum value and understanding a present loading of the processor and thus a current power consumption level (namely this hybrid power consumption level), in addition to obtaining a more accurate power measurement regardless of where on the load line the processor is executing, it may be possible to increase the operating frequency and/or voltage to thus obtain greater performance while remaining within the power budget, namely the TDP. Although shown at this high level in the embodiment of FIG. 2, understand the scope of the present invention is not limited in this regard.

As discussed, in different embodiments different manners of combining the power consumption levels determined by the different sensors can occur. Referring now to FIG. 3, shown is a flow diagram of one embodiment of combining multiple power consumption level calculations in accordance with an embodiment of the present invention. As seen in FIG. 3, method 300 may begin by determining whether the first power consumption level (which as discussed above is generated from sensor information received from a digital power meter) is less than a first threshold. If so, this is an indication that the processor is operating at a low load, meaning that relatively low processor utilization is occurring (e.g., as a relatively low number of instructions per cycle are being executed). At such low loads the digital power meter may provide a more accurate measure of processor power consumption than other techniques. Accordingly, control passes in FIG. 3 to block 315 where this first power consumption level can be used to control operating frequency and/or voltage.

If instead this first power consumption level is greater than the threshold, control passes to block 320 where instead the second power consumption level can be used to control operating frequency and/or voltage, as a current-based sensor may be more accurate at higher load levels. Although the scope of the present invention is not limited in this regard in some embodiments this threshold level may correspond to a load level of the processor between approximately 40 and 60% of a processor utilization, e.g., corresponding to roughly half of a TDP value of the processor.

Still other manners of combining power consumption levels determined by multiple power sensors can occur. As an example, a correlation-based combination can occur. In this way, one of the power consumption levels can be used to apply a correction factor to the other power consumption level. Assume for example given that a DPM may be accurate at low loads and a current sensor method is more accurate at higher loads, a correlation factor can be computed by executing a low power load and obtaining sensor information, and then executing a high power load and obtaining sensor information.

Referring now to FIG. 4, shown is a flow diagram of a method for performing a correlation-based combination of multiple power sensors in accordance with an embodiment of the present invention. As shown in FIG. 4, method 330 can begin by controlling a processor for a low power load (block 335). In one embodiment, this control operation can occur during a boot process in which a predetermined load is executed on the processor. During execution of this load, control passes to block 340 where the first and second power consumption levels can be calculated using sensor information from the digital power meter and the current sensor. In other implementations, rather than executing a low power load, which can be a predetermined load during a boot process, instead the PCU can control the processor to be in a predetermined low power state, e.g., by controlling the cores and other circuitry of the processor accordingly to thus obtain sensor information while the processor is in this low load state. In any event, calculations can occur as discussed above in FIG. 2, in one embodiment. Next an offset can be determined and stored based on these power consumption levels (block 345). In one embodiment, this offset can be determined as follows:
Offset=First Power Consumption Level−Second Power Consumption Level.

In one embodiment, this offset corresponding to the difference between the power consumption levels can be stored in a power management storage, e.g., present in a PCU. Although described as being stored within a storage of the PCU, understand the scope of the present invention is not limited in this regard. For example, in other implementations, this offset value (in other calibration values discussed further below) can be stored in a non-volatile storage, e.g., a non-volatile storage associated with the basic input/output system (BIOS).

Still referring to FIG. 4, next control passes to block 350 where the processor can be controlled for a high power load. During execution of this high power load, which again can occur during a boot process and may correspond to a predetermined load, at least the second power consumption level can be calculated using the sensor information from the current sensor (block 355). Control next passes to block 360 where a slope can be determined and stored based on the offset and the second power consumption level (namely the power consumption level obtained from the current sensor). In one embodiment, the slope can be determined according to:
Slope=(Second Power Consumption Level−Offset)/Second Power Consumption Level. Note that this slope can also be stored in the power management storage.

These operations as discussed above in FIG. 4 can be performed during a boot process. Or they can be performed under control of the PCU, e.g., when a different temperature level of the processor is reached (e.g., when a processor temperature exceeds a previous temperature by a threshold amount), responsive to a user request, or at another interval. After obtaining of these slope and offset values, the values can be used during normal operation.

Referring now to FIG. 5, shown is a flow diagram of a method of performing power measurements in accordance with another embodiment of the present invention. As shown in FIG. 5, method 370 may be used to measure power consumption during normal operation using these stored values. As seen, method 370 may begin by receiving sensor information from a current sensor (block 375). Control next passes to block 380 where a second power consumption level can be calculated using this current sensor information. Control then passes to block 385 where a hybrid power consumption level can be determined using this second power consumption level, and the slope and offset. In one embodiment, this hybrid power consumption level can be determined according to:
Hybrid=Second Power Consumption Level×Slope+Offset.

Accordingly, a hybrid power consumption level can be determined and can be used at block 390 to control the operating frequency and/or voltage of the processor. Although shown at this high level in the embodiment of FIGS. 4 and 5, understand the scope of the present invention is not limited in this regard. For example, in another implementation, the calculations can be performed to enable applying a correction factor to the power consumption level determined according to the digital power meter, where the correction factors are obtained using the power consumption levels from the digital power meter and the current sensor. And furthermore understand that different equations for generating the correction values and the hybrid power consumption level can occur in other embodiments.

Embodiments can be implemented in processors for various markets including server processors, desktop processors, mobile processors and so forth. Referring now to FIG. 6, shown is a block diagram of a processor in accordance with an embodiment of the present invention. As shown in FIG. 6, processor 400 may be a multicore processor including a plurality of cores 410 a-410 n. In one embodiment, each such core may be of an independent power domain and can be configured to enter and exit active states and/or maximum performance states based on workload. The various cores may be coupled via an interconnect 415 to a system agent or uncore 420 that includes various components. As seen, the uncore 420 may include a shared cache 430 which may be a last level cache. In addition, the uncore may include an integrated memory controller 440, various interfaces 450 and a power control unit 455.

In various embodiments, power control unit 455 may include a hybrid power meter logic 459 in accordance with an embodiment of the present invention. As described above, this power meter can receive sensor information from different power sensors, including a digital power meter and an analog or current-based sensor. Note that different implementations are possible, such as a hybrid power meter that receives sensor information from each of multiple pairs of such sensors, e.g., where each pair is associated with a given core. Or, digital power meters may be present in the individual cores (and other processor circuitry) and instead a single current sensor-based power meter may be present in the processor. Variations on these implementations are of course also possible.

Based on the information received from these various sensors, hybrid power meter logic 459 can combine the sensor information in a selected manner to obtain a very accurate measure of power consumption in the processor. In this way, processor 400 can be configured to operate with very little guardband from a maximum power consumption level, e.g., a TDP level of the processor.

With further reference to FIG. 6, processor 400 may communicate with a system memory 460, e.g., via a memory bus. In addition, by interfaces 450, connection can be made to various off-chip components such as peripheral devices, mass storage and so forth. While shown with this particular implementation in the embodiment of FIG. 6, the scope of the present invention is not limited in this regard.

Referring now to FIG. 7, shown is a block diagram of a multi-domain processor in accordance with another embodiment of the present invention. As shown in the embodiment of FIG. 7, processor 500 includes multiple domains. Specifically, a core domain 510 can include a plurality of cores 510 0-510 n, a graphics domain 520 can include one or more graphics engines, and a system agent domain 550 may further be present. In some embodiments, system agent domain 550 may execute at an independent frequency than the core domain and may remain powered on at all times to handle power control events and power management such that domains 510 and 520 can be controlled to dynamically enter into and exit low power states. Each of domains 510 and 520 may operate at different voltage and/or power. Note that while only shown with three domains, understand the scope of the present invention is not limited in this regard and additional domains can be present in other embodiments. For example, multiple core domains may be present each including at least one core.

In general, each core 510 may further include low level caches in addition to various execution units and additional processing elements. In turn, the various cores may be coupled to each other and to a shared cache memory formed of a plurality of units of a last level cache (LLC) 540 0-540 n. In various embodiments, LLC 540 may be shared amongst the cores and the graphics engine, as well as various media processing circuitry. As seen, a ring interconnect 530 thus couples the cores together, and provides interconnection between the cores, graphics domain 520 and system agent circuitry 550. In one embodiment, interconnect 530 can be part of the core domain. However in other embodiments the ring interconnect can be of its own domain.

As further seen, system agent domain 550 may include display controller 552 which may provide control of and an interface to an associated display. As further seen, system agent domain 550 may include a power control unit 555 which can include a hybrid power meter logic 559 in accordance with an embodiment of the present invention to dynamically and accurately measure power consumption in the processor to enable greater processor performance in view of greater available processing power. In various embodiments, this logic may execute the algorithms described above in one or more of FIGS. 2-5.

As further seen in FIG. 7, processor 500 can further include an integrated memory controller (IMC) 570 that can provide for an interface to a system memory, such as a dynamic random access memory (DRAM). Multiple interfaces 580 0-580 n may be present to enable interconnection between the processor and other circuitry. For example, in one embodiment at least one direct media interface (DMI) interface may be provided as well as one or more Peripheral Component Interconnect Express (PCI Express™ (PCIe™)) interfaces. Still further, to provide for communications between other agents such as additional processors or other circuitry, one or more interfaces in accordance with an Intel® Quick Path Interconnect (QPI) protocol may also be provided. Although shown at this high level in the embodiment of FIG. 7, understand the scope of the present invention is not limited in this regard.

Embodiments may be implemented in many different system types. Referring now to FIG. 8, shown is a block diagram of a system in accordance with an embodiment of the present invention. As shown in FIG. 8, multiprocessor system 600 is a point-to-point interconnect system, and includes a first processor 670 and a second processor 680 coupled via a point-to-point interconnect 650. As shown in FIG. 8, each of processors 670 and 680 may be multicore processors, including first and second processor cores (i.e., processor cores 674 a and 674 b and processor cores 684 a and 684 b), although potentially many more cores may be present in the processors. Each of the processors can include a PCU or other logic to perform hybrid power measurements, and corresponding operating frequency and/or voltage control, as described herein.

Still referring to FIG. 8, first processor 670 further includes a memory controller hub (MCH) 672 and point-to-point (P-P) interfaces 676 and 678. Similarly, second processor 680 includes a MCH 682 and P-P interfaces 686 and 688. As shown in FIG. 8, MCH's 672 and 682 couple the processors to respective memories, namely a memory 632 and a memory 634, which may be portions of system memory (e.g., DRAM) locally attached to the respective processors. First processor 670 and second processor 680 may be coupled to a chipset 690 via P-P interconnects 652 and 654, respectively. As shown in FIG. 8, chipset 690 includes P-P interfaces 694 and 698.

Furthermore, chipset 690 includes an interface 692 to couple chipset 690 with a high performance graphics engine 638, by a P-P interconnect 639. In turn, chipset 690 may be coupled to a first bus 616 via an interface 696. As shown in FIG. 8, various input/output (I/O) devices 614 may be coupled to first bus 616, along with a bus bridge 618 which couples first bus 616 to a second bus 620. Various devices may be coupled to second bus 620 including, for example, a keyboard/mouse 622, communication devices 626 and a data storage unit 628 such as a disk drive or other mass storage device which may include code 630, in one embodiment. Further, an audio I/O 624 may be coupled to second bus 620. Embodiments can be incorporated into other types of systems including mobile devices such as a smart cellular telephone, tablet computer, netbook, ultrabook, or so forth.

FIG. 9 is a block diagram of a system coupled with point-to-point (PtP) system interconnects in accordance with a given cache coherence protocol using QPI links as the system interconnect. In the embodiment shown, each processor 710 is coupled to two PtP links 725 and includes one instance of an integrated memory controller 715 that in turn is coupled to a corresponding local portion of a system memory 720. Each processor can perform hybrid power metering and corresponding power management policies as described herein. The processors are connected to an input/output hub (IOH) 730 using one link and the remaining link is used to connect the two processors.

Referring now to FIG. 10, shown is a block diagram of a system in accordance with another embodiment of the present invention. As shown in FIG. 10, system 800 may be a partially connected quad processor system in which each processor 810 (each of which may be multicore multi-domain processors) is coupled to each other processor via a PtP link and is coupled to a local portion of memory (e.g., dynamic random access memory (DRAM)) 820 via a memory interconnect coupled to an integrated memory controller 815 of the corresponding processor. In the partially connected system of FIG. 10, note the presence of two IOHs 830 and 840 such that processors 810 0 and 810 1 are directly coupled to IOH 830 and similarly processors 810 2 and 810 3 are directly coupled to IOH 840.

In one aspect, a processor includes multiple cores to independently execute instructions, a first sensor to measure a first power consumption level of the processor based at least in part on events occurring on the cores, and a hybrid logic to combine the first power consumption level with a second power consumption level determined based on a dynamic current provided to the processor. To this end, a power controller included in or coupled to the processor may control at least one of an operating frequency and a voltage of the processor based on this combined consumption level and a power limit of the processor.

In another aspect, a method includes receiving, in a first logic of a processor, sensor information from a digital power meter of the processor, and calculating a first power consumption level of the processor using this sensor information; receiving, in the logic, sensor information from a current sensor configured to measure a current delivered by a voltage regulator coupled to the processor and calculating a second power consumption level of the processor using the sensor information from the current sensor; and combining, in the first logic, the first and second power consumption levels to obtain a hybrid power consumption level of the processor. From this information and a power limit of the processor, an operating frequency and/or voltage of the processor can be controlled.

Yet another aspect includes a system with a multicore processor and a system memory. The cores may each include one or more event counters to count events occurring on the core, a digital power meter to calculate a first power consumption level based on the count information, a second power meter to calculate a second power consumption level based on a current delivered to the processor from a voltage regulator, and a power controller including logic to generate a combined power consumption level of the processor using the first and second power consumption levels.

In another aspect, a processor means includes execution means each for independently executing instructions, sensor means for measuring a first power consumption level of the processor means based at least in part on events occurring on the execution means, and means for combining the first power consumption level and a second power consumption level of the processor means determined based on a dynamic current provided to the processor means. In turn an operating frequency and/or voltage of the processor means can be controlled via a controller means based on the combined first and second power consumption levels and a power limit of the processor means.

Embodiments may be used in many different types of systems. For example, in one embodiment a communication device can be arranged to perform the various methods and techniques described herein. Of course, the scope of the present invention is not limited to a communication device, and instead other embodiments can be directed to other types of apparatus for processing instructions, or one or more machine readable media including instructions that in response to being executed on a computing device, cause the device to carry out one or more of the methods and techniques described herein.

Embodiments may be implemented in code and may be stored on a non-transitory storage medium having stored thereon instructions which can be used to program a system to perform the instructions. The storage medium may include, but is not limited to, any type of disk including floppy disks, optical disks, solid state drives (SSDs), compact disk read-only memories (CD-ROMs), compact disk rewritables (CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic random access memories (DRAMs), static random access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, or any other type of media suitable for storing electronic instructions.

While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims (15)

What is claimed is:
1. A processor comprising:
a plurality of cores to independently execute instructions;
a first sensor to measure a first power consumption level of the processor based at least in part on a plurality of events that occur on the plurality of cores; and
a first logic to combine the first power consumption level and a second power consumption level of the processor determined based on a value of a dynamic current provided to the processor, wherein the first logic is to execute a low power load on the processor and calculate the first and second power consumption levels using sensor information from the first sensor and the dynamic current, respectively, determine and store an offset based on the first and second power consumption levels, execute a high power load on the processor and calculate the second power consumption level using the dynamic current, determine and store a slope based on the offset and the calculated second power consumption level, and determine the combined power consumption level using another second power consumption level, the slope and the offset.
2. The processor of claim 1, further comprising a power controller to control at least one of an operating frequency and a voltage of the processor based on the combined first and second power consumption levels and a power limit of the processor.
3. The processor of claim 1, wherein the first sensor comprises a logic to receive counter information from a plurality of event counters associated with each of the plurality of cores and to measure the first power consumption level based on the counter information.
4. The processor of claim 1, wherein the first logic is to combine the first power consumption level and the second power consumption level by:
generation of a first correction factor using the first power consumption level and the second power consumption level; and
generation of a second correction factor using the second power consumption level and the first correction factor.
5. The processor of claim 4, wherein the first logic is to determine the combined power consumption level using the second power consumption level and the first and second correction factors.
6. A method comprising:
receiving, in a first logic of a processor, sensor information from a digital power meter of the processor, and calculating a first power consumption level of the processor using the sensor information from the digital power meter;
receiving, in the first logic, sensor information from a current sensor adapted to measure a current delivered by a voltage regulator coupled to the processor, and calculating a second power consumption level of the processor using the sensor information from the current sensor, including:
executing a low power load on the processor and calculating the first and second power consumption levels using the sensor information from the digital power meter and the sensor information from the current sensor, respectively, and determining and storing an offset based on the first and second power consumption levels; and
executing a high power load on the processor and calculating the second power consumption level using the sensor information from the current sensor, and determining and storing a slope based on the offset and the calculated second power consumption level; and
combining, in the first logic, the first power consumption level and another second power consumption level to obtain a hybrid power consumption level of the processor, using the another second power consumption level, the slope and the offset.
7. The method of claim 6, further comprising controlling at least one of an operating frequency and a voltage of the processor based on the hybrid power consumption level and a power limit of the processor.
8. The method of claim 7, wherein combining the first and second power consumption levels comprises:
if the first power consumption level is less than a threshold, using the first power consumption level to control the at least one of the operating frequency and the voltage; and
otherwise, using the second power consumption level to control the at least one of the operating frequency and the voltage.
9. The method of claim 7, wherein combining the first and second power consumption levels comprises:
generating a first correction factor using the first power consumption level and the second power consumption level; and
generating a second correction factor using the second power consumption level and the first correction factor.
10. The method of claim 9, further comprising determining the hybrid power consumption level using the second power consumption level and the first and second correction factors.
11. The method of claim 10, further comprising controlling at least one of an operating frequency and a voltage of the processor based on the hybrid power consumption level.
12. A system comprising:
a multicore processor including a plurality of cores to independently execute instructions, each of the plurality of cores including at least one event counter to count events that occur on the core, a digital power meter to calculate a first power consumption level based on information from the event counters, a second power meter to calculate a second power consumption level based on information regarding a current delivered to the multicore processor from a voltage regulator, and a power controller including a first logic to generate a combined power consumption level of the multicore processor using the first and second power consumption levels, wherein the first logic is to cause a low power load level to occur on the multicore processor and calculate the first and second power consumption levels during the low power load level, determine and store an offset based on first and second power consumption levels, cause a high power load level to occur on the multicore processor and calculate the second power consumption level during the high power load level, determine and store a slope based on the offset and the calculated second power consumption level, and determine the combined power consumption level using another second power consumption level, the slope and the offset;
the voltage regulator coupled to the multicore processor to provide a regulated voltage to the multicore processor, the voltage regulator including a current sensor to provide the information regarding the current delivered to the multicore processor; and
a dynamic random access memory (DRAM) coupled to the multicore processor.
13. The system of claim 12, wherein the first logic is to receive the second power consumption level during normal operation of the system.
14. A processor comprising:
a plurality of execution units each to independently execute instructions;
a first sensor to measure a first power consumption level of the processor based at least in part on a plurality of events that occur on the plurality of execution units;
a logic to combine the first power consumption level and a second power consumption level of the processor determined based on information regarding a dynamic current provided to the processor, the information obtained from a current sensor coupled to the processor to measure the dynamic current, wherein the logic is to:
cause a low power load level to occur on the processor, calculate the first and second power consumption levels during the low power load level, and determine and store an offset based on first and second power consumption levels; and
cause a high power load level to occur on the processor, calculate the second power consumption level during the high power load level, determine and store a slope based on the offset and the calculated second power consumption level, and determine a combined power consumption level using another second power consumption level, the slope and the offset.
15. The processor of claim 14, further comprising a controller to control at least one of an operating frequency and a voltage of the processor based on the combined first and second power consumption levels and a power limit of the processor.
US13/996,266 2012-03-30 2012-03-30 Dynamically measuring power consumption in a processor Active 2033-06-24 US9547027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2012/031464 WO2013147849A1 (en) 2012-03-30 2012-03-30 Dynamically measuring power consumption in a processor

Publications (2)

Publication Number Publication Date
US20140195828A1 US20140195828A1 (en) 2014-07-10
US9547027B2 true US9547027B2 (en) 2017-01-17

Family

ID=49260904

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/996,266 Active 2033-06-24 US9547027B2 (en) 2012-03-30 2012-03-30 Dynamically measuring power consumption in a processor

Country Status (3)

Country Link
US (1) US9547027B2 (en)
CN (1) CN104204825B (en)
WO (1) WO2013147849A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170300398A1 (en) * 2016-04-15 2017-10-19 Dell Products L.P. Voltage regulator power reporting offset system
US20170344093A1 (en) * 2016-05-31 2017-11-30 Taiwan Semiconductor Manufacturing Co., Ltd. Power estimation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766678B2 (en) * 2013-02-04 2017-09-19 Intel Corporation Multiple voltage identification (VID) power architecture, a digital synthesizable low dropout regulator, and apparatus for improving reliability of power gates
US9552034B2 (en) * 2014-04-29 2017-01-24 Qualcomm Incorporated Systems and methods for providing local hardware limit management and enforcement

Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163153A (en) 1989-06-12 1992-11-10 Grid Systems Corporation Low-power, standby mode computer
US5522087A (en) 1994-03-22 1996-05-28 Verifone Inc. System for selectively operating in different modes depending upon receiving signal from a host computer within a time window upon power up
US5590341A (en) 1994-09-30 1996-12-31 Intel Corporation Method and apparatus for reducing power consumption in a computer system using ready delay
US5621250A (en) 1995-07-31 1997-04-15 Ford Motor Company Wake-up interface and method for awakening an automotive electronics module
US5931950A (en) 1997-06-17 1999-08-03 Pc-Tel, Inc. Wake-up-on-ring power conservation for host signal processing communication system
US20010044909A1 (en) 2000-05-15 2001-11-22 Lg Electronics Inc. Method and apparatus for adjusting clock throttle rate based on usage of CPU
US20020194509A1 (en) 2001-06-15 2002-12-19 Microsoft Corporation Method and system for using idle threads to adaptively throttle a computer
EP1282030A1 (en) 2000-05-08 2003-02-05 Mitsubishi Denki Kabushiki Kaisha Computer system and computer-readable recording medium
US20030061383A1 (en) 2001-09-25 2003-03-27 Zilka Anthony M. Predicting processor inactivity for a controlled transition of power states
US20030065960A1 (en) * 2001-09-28 2003-04-03 Stefan Rusu Method and apparatus for adjusting the voltage and frequency to minimize power dissipation in a multiprocessor system
US6564328B1 (en) * 1999-12-23 2003-05-13 Intel Corporation Microprocessor with digital power throttle
US20040064752A1 (en) 2002-09-30 2004-04-01 Kazachinsky Itamar S. Method and apparatus for reducing clock frequency during low workload periods
US20040098560A1 (en) 2002-11-15 2004-05-20 Storvik Alvin C. Paging scheme for a microcontroller for extending available register space
US6748546B1 (en) 2000-09-26 2004-06-08 Sun Microsystems, Inc. Method and apparatus for reducing power consumption
US20040123170A1 (en) * 2002-12-23 2004-06-24 Tschanz James W. Method and apparatus for reducing power consumption through dynamic control of supply voltage and body bias
US20040139356A1 (en) 2003-01-10 2004-07-15 Kenneth Ma Method and apparatus for improving bus master performance
US6792392B1 (en) 2000-06-30 2004-09-14 Intel Corporation Method and apparatus for configuring and collecting performance counter data
US6823516B1 (en) 1999-08-10 2004-11-23 Intel Corporation System and method for dynamically adjusting to CPU performance changes
US6829713B2 (en) 2000-12-30 2004-12-07 Intel Corporation CPU power management based on utilization with lowest performance mode at the mid-utilization range
US20040268166A1 (en) 2003-06-30 2004-12-30 Farkas Keith Istvan Controlling power consumption of at least one computer system
US20050022038A1 (en) 2003-07-23 2005-01-27 Kaushik Shivnandan D. Determining target operating frequencies for a multiprocessor system
US20050033881A1 (en) 2003-07-08 2005-02-10 Benq Corporation Method and apparatus for multi-interrupt controller for reducing hardware interrupts to DSP
US20050132238A1 (en) 2003-12-16 2005-06-16 Murthi Nanja Performance monitoring based dynamic voltage and frequency scaling
US20050210905A1 (en) 2004-03-24 2005-09-29 Burns James S Separate thermal and electrical throttling limits in processors
US6996728B2 (en) 2002-04-26 2006-02-07 Hewlett-Packard Development Company, L.P. Managing power consumption based on utilization statistics
US7010708B2 (en) 2002-05-15 2006-03-07 Broadcom Corporation Method and apparatus for adaptive CPU power management
US20060050670A1 (en) 2004-09-07 2006-03-09 Jason Hillyard Method and system for low power mode management for complex bluetooth devices
US20060053326A1 (en) 2004-09-03 2006-03-09 Intel Corporation Coordinating idle state transitions in multi-core processors
US20060059286A1 (en) 2004-09-10 2006-03-16 Cavium Networks Multi-core debugger
US20060069936A1 (en) 2004-09-30 2006-03-30 Lint Bernard J Global and pseudo power state management for multiple processing elements
US20060090086A1 (en) 2004-10-27 2006-04-27 Efraim Rotem Method and apparatus to monitor power consumption of processor
US7043649B2 (en) 2002-11-20 2006-05-09 Portalplayer, Inc. System clock power management for chips with multiple processing modules
US20060117202A1 (en) 2004-11-29 2006-06-01 Grigorios Magklis Frequency and voltage scaling architecture
US7093147B2 (en) 2003-04-25 2006-08-15 Hewlett-Packard Development Company, L.P. Dynamically selecting processor cores for overall power efficiency
US20060184287A1 (en) 2005-02-15 2006-08-17 Belady Christian L System and method for controlling power to resources based on historical utilization data
US7111179B1 (en) 2001-10-11 2006-09-19 In-Hand Electronics, Inc. Method and apparatus for optimizing performance and battery life of electronic devices based on system and application parameters
US20070005995A1 (en) 2005-06-30 2007-01-04 Kardach James P Power management system for computing platform
US20070016817A1 (en) 2003-01-23 2007-01-18 David Albonesi Multiple clock domain microprocessor
US7194643B2 (en) 2003-09-29 2007-03-20 Intel Corporation Apparatus and method for an energy efficient clustered micro-architecture
US20070079294A1 (en) 2005-09-30 2007-04-05 Robert Knight Profiling using a user-level control mechanism
US20070106827A1 (en) 2005-11-08 2007-05-10 Boatright Bryan D Centralized interrupt controller
US20070156992A1 (en) 2005-12-30 2007-07-05 Intel Corporation Method and system for optimizing latency of dynamic memory sizing
US20070214342A1 (en) 2005-09-23 2007-09-13 Newburn Chris J System to profile and optimize user software in a managed run-time environment
US7272730B1 (en) 2003-07-31 2007-09-18 Hewlett-Packard Development Company, L.P. Application-driven method and apparatus for limiting power consumption in a processor-controlled hardware platform
US20070239398A1 (en) 2006-03-30 2007-10-11 Justin Song Performance state management
US20070245163A1 (en) 2006-03-03 2007-10-18 Yung-Hsiang Lu Power management in computer operating systems
US20080028240A1 (en) 2006-07-31 2008-01-31 Susumu Arai System and method for controlling processor low power states
US20080082844A1 (en) * 2006-10-03 2008-04-03 Soraya Ghiasi Method and System for Improving Processing Performance by Using Activity Factor Headroom
US20080168287A1 (en) * 2007-01-10 2008-07-10 Ibm Corporation Method and Apparatus for Power Throttling a Processor in an Information Handling System
US7412615B2 (en) 2003-02-10 2008-08-12 Sony Corporation Information processing equipment and power consumption control method
US20080244294A1 (en) * 2007-03-29 2008-10-02 Allarey Jose P Dynamic power reduction
US20080250260A1 (en) 2007-04-06 2008-10-09 Kabushiki Kaisha Toshiba Information processing apparatus, scheduler, and schedule control method of information processing apparatus
US7454632B2 (en) 2005-06-16 2008-11-18 Intel Corporation Reducing computing system power through idle synchronization
US20090006871A1 (en) 2007-06-28 2009-01-01 Yen-Cheng Liu Method, system, and apparatus for a core activity detector to facilitate dynamic power management in a distributed system
US7529956B2 (en) 2006-07-17 2009-05-05 Microsoft Corporation Granular reduction in power consumption
US7539885B2 (en) 2000-01-13 2009-05-26 Broadcom Corporation Method and apparatus for adaptive CPU power management
US20090150695A1 (en) 2007-12-10 2009-06-11 Justin Song Predicting future power level states for processor cores
US20090150696A1 (en) 2007-12-10 2009-06-11 Justin Song Transitioning a processor package to a low power state
US20090158067A1 (en) 2007-12-12 2009-06-18 Bodas Devadatta V Saving power in a computer system
US20090158061A1 (en) 2007-12-18 2009-06-18 Packet Digital Method and apparatus for on-demand power management
US20090172375A1 (en) 2004-12-30 2009-07-02 Intel Corporation Operating Point Management in Multi-Core Architectures
US20090172428A1 (en) 2007-12-26 2009-07-02 Jung Hwan Lee Apparatus and method for controlling power management
US20090235105A1 (en) 2008-03-11 2009-09-17 Alexander Branover Hardware Monitoring and Decision Making for Transitioning In and Out of Low-Power State
US20100083009A1 (en) * 2008-09-30 2010-04-01 Efraim Rotem Power management for processing unit
US20100115293A1 (en) 2008-10-31 2010-05-06 Efraim Rotem Deterministic management of dynamic thermal response of processors
US20100115309A1 (en) 2007-03-26 2010-05-06 Freescale Semiconductor, Inc. Anticipation of power on of a mobile device
US7730340B2 (en) 2007-02-16 2010-06-01 Intel Corporation Method and apparatus for dynamic voltage and frequency scaling
US20100146513A1 (en) 2008-12-09 2010-06-10 Intel Corporation Software-based Thread Remapping for power Savings
US20100191997A1 (en) 2006-06-06 2010-07-29 Intel Corporation Predict computing platform memory power utilization
US20100332877A1 (en) 2009-06-30 2010-12-30 Yarch Mark A Method and apparatus for reducing power consumption
US20110154090A1 (en) 2009-12-22 2011-06-23 Dixon Martin G Controlling Time Stamp Counter (TSC) Offsets For Mulitple Cores And Threads
US20120023345A1 (en) * 2010-07-21 2012-01-26 Naffziger Samuel D Managing current and power in a computing system
US20120079290A1 (en) 2010-09-23 2012-03-29 Pankaj Kumar Providing per core voltage and frequency control
US20120144217A1 (en) 2011-12-15 2012-06-07 Sistla Krishnakanth V Dynamically Modifying A Power/Performance Tradeoff Based On Processor Utilization
US20120204042A1 (en) 2011-12-15 2012-08-09 Sistla Krishnakanth V User Level Control Of Power Management Policies
US20120246506A1 (en) 2011-03-24 2012-09-27 Robert Knight Obtaining Power Profile Information With Low Overhead
US20130061064A1 (en) 2011-09-06 2013-03-07 Avinash N. Ananthakrishnan Dynamically Allocating A Power Budget Over Multiple Domains Of A Processor
US20130080804A1 (en) 2011-09-28 2013-03-28 Avinash N. Ananthakrishan Controlling Temperature Of Multiple Domains Of A Multi-Domain Processor
US20130080803A1 (en) 2011-09-28 2013-03-28 Avinash N. Ananthakrishnan Estimating Temperature Of A Processor Core In A Low Power State
US20130111121A1 (en) 2011-10-31 2013-05-02 Avinash N. Ananthakrishnan Dynamically Controlling Cache Size To Maximize Energy Efficiency
US20130111236A1 (en) 2011-10-27 2013-05-02 Avinash N. Ananthakrishnan Controlling Operating Frequency Of A Core Domain Via A Non-Core Domain Of A Multi-Domain Processor
US20130111120A1 (en) 2011-10-27 2013-05-02 Avinash N. Ananthakrishnan Enabling A Non-Core Domain To Control Memory Bandwidth
US20130111226A1 (en) 2011-10-31 2013-05-02 Avinash N. Ananthakrishnan Controlling A Turbo Mode Frequency Of A Processor

Patent Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163153A (en) 1989-06-12 1992-11-10 Grid Systems Corporation Low-power, standby mode computer
US5522087A (en) 1994-03-22 1996-05-28 Verifone Inc. System for selectively operating in different modes depending upon receiving signal from a host computer within a time window upon power up
US5590341A (en) 1994-09-30 1996-12-31 Intel Corporation Method and apparatus for reducing power consumption in a computer system using ready delay
US5621250A (en) 1995-07-31 1997-04-15 Ford Motor Company Wake-up interface and method for awakening an automotive electronics module
US5931950A (en) 1997-06-17 1999-08-03 Pc-Tel, Inc. Wake-up-on-ring power conservation for host signal processing communication system
US6823516B1 (en) 1999-08-10 2004-11-23 Intel Corporation System and method for dynamically adjusting to CPU performance changes
US6564328B1 (en) * 1999-12-23 2003-05-13 Intel Corporation Microprocessor with digital power throttle
US7539885B2 (en) 2000-01-13 2009-05-26 Broadcom Corporation Method and apparatus for adaptive CPU power management
EP1282030A1 (en) 2000-05-08 2003-02-05 Mitsubishi Denki Kabushiki Kaisha Computer system and computer-readable recording medium
US20010044909A1 (en) 2000-05-15 2001-11-22 Lg Electronics Inc. Method and apparatus for adjusting clock throttle rate based on usage of CPU
US6792392B1 (en) 2000-06-30 2004-09-14 Intel Corporation Method and apparatus for configuring and collecting performance counter data
US6748546B1 (en) 2000-09-26 2004-06-08 Sun Microsystems, Inc. Method and apparatus for reducing power consumption
US6829713B2 (en) 2000-12-30 2004-12-07 Intel Corporation CPU power management based on utilization with lowest performance mode at the mid-utilization range
US20020194509A1 (en) 2001-06-15 2002-12-19 Microsoft Corporation Method and system for using idle threads to adaptively throttle a computer
US20030061383A1 (en) 2001-09-25 2003-03-27 Zilka Anthony M. Predicting processor inactivity for a controlled transition of power states
CN1739080A (en) 2001-09-28 2006-02-22 英特尔公司 Method and apparatus for adjusting the voltage and frequency to minimize power dissipation in a multiprocessor system
US20030065960A1 (en) * 2001-09-28 2003-04-03 Stefan Rusu Method and apparatus for adjusting the voltage and frequency to minimize power dissipation in a multiprocessor system
US20070016814A1 (en) 2001-09-28 2007-01-18 Stefan Rusu Method and apparatus for adjusting the voltage and frequency to minimize power dissipation in a multiprocessor system
US7111179B1 (en) 2001-10-11 2006-09-19 In-Hand Electronics, Inc. Method and apparatus for optimizing performance and battery life of electronic devices based on system and application parameters
US6996728B2 (en) 2002-04-26 2006-02-07 Hewlett-Packard Development Company, L.P. Managing power consumption based on utilization statistics
US7010708B2 (en) 2002-05-15 2006-03-07 Broadcom Corporation Method and apparatus for adaptive CPU power management
US20040064752A1 (en) 2002-09-30 2004-04-01 Kazachinsky Itamar S. Method and apparatus for reducing clock frequency during low workload periods
US20040098560A1 (en) 2002-11-15 2004-05-20 Storvik Alvin C. Paging scheme for a microcontroller for extending available register space
US7043649B2 (en) 2002-11-20 2006-05-09 Portalplayer, Inc. System clock power management for chips with multiple processing modules
US20040123170A1 (en) * 2002-12-23 2004-06-24 Tschanz James W. Method and apparatus for reducing power consumption through dynamic control of supply voltage and body bias
US20040139356A1 (en) 2003-01-10 2004-07-15 Kenneth Ma Method and apparatus for improving bus master performance
US20070016817A1 (en) 2003-01-23 2007-01-18 David Albonesi Multiple clock domain microprocessor
US7412615B2 (en) 2003-02-10 2008-08-12 Sony Corporation Information processing equipment and power consumption control method
US7093147B2 (en) 2003-04-25 2006-08-15 Hewlett-Packard Development Company, L.P. Dynamically selecting processor cores for overall power efficiency
US20040268166A1 (en) 2003-06-30 2004-12-30 Farkas Keith Istvan Controlling power consumption of at least one computer system
US20050033881A1 (en) 2003-07-08 2005-02-10 Benq Corporation Method and apparatus for multi-interrupt controller for reducing hardware interrupts to DSP
US20050022038A1 (en) 2003-07-23 2005-01-27 Kaushik Shivnandan D. Determining target operating frequencies for a multiprocessor system
US7272730B1 (en) 2003-07-31 2007-09-18 Hewlett-Packard Development Company, L.P. Application-driven method and apparatus for limiting power consumption in a processor-controlled hardware platform
US7194643B2 (en) 2003-09-29 2007-03-20 Intel Corporation Apparatus and method for an energy efficient clustered micro-architecture
US20050132238A1 (en) 2003-12-16 2005-06-16 Murthi Nanja Performance monitoring based dynamic voltage and frequency scaling
US20050210905A1 (en) 2004-03-24 2005-09-29 Burns James S Separate thermal and electrical throttling limits in processors
US20060053326A1 (en) 2004-09-03 2006-03-09 Intel Corporation Coordinating idle state transitions in multi-core processors
US20060050670A1 (en) 2004-09-07 2006-03-09 Jason Hillyard Method and system for low power mode management for complex bluetooth devices
US20060059286A1 (en) 2004-09-10 2006-03-16 Cavium Networks Multi-core debugger
US20060069936A1 (en) 2004-09-30 2006-03-30 Lint Bernard J Global and pseudo power state management for multiple processing elements
US20060090086A1 (en) 2004-10-27 2006-04-27 Efraim Rotem Method and apparatus to monitor power consumption of processor
US7434073B2 (en) 2004-11-29 2008-10-07 Intel Corporation Frequency and voltage scaling architecture
US20060117202A1 (en) 2004-11-29 2006-06-01 Grigorios Magklis Frequency and voltage scaling architecture
US20090172375A1 (en) 2004-12-30 2009-07-02 Intel Corporation Operating Point Management in Multi-Core Architectures
US20060184287A1 (en) 2005-02-15 2006-08-17 Belady Christian L System and method for controlling power to resources based on historical utilization data
US7454632B2 (en) 2005-06-16 2008-11-18 Intel Corporation Reducing computing system power through idle synchronization
US20070005995A1 (en) 2005-06-30 2007-01-04 Kardach James P Power management system for computing platform
US20070214342A1 (en) 2005-09-23 2007-09-13 Newburn Chris J System to profile and optimize user software in a managed run-time environment
US20070079294A1 (en) 2005-09-30 2007-04-05 Robert Knight Profiling using a user-level control mechanism
US20070106827A1 (en) 2005-11-08 2007-05-10 Boatright Bryan D Centralized interrupt controller
US20070156992A1 (en) 2005-12-30 2007-07-05 Intel Corporation Method and system for optimizing latency of dynamic memory sizing
US20070245163A1 (en) 2006-03-03 2007-10-18 Yung-Hsiang Lu Power management in computer operating systems
US7437270B2 (en) 2006-03-30 2008-10-14 Intel Corporation Performance state management
US20070239398A1 (en) 2006-03-30 2007-10-11 Justin Song Performance state management
US20100191997A1 (en) 2006-06-06 2010-07-29 Intel Corporation Predict computing platform memory power utilization
US7529956B2 (en) 2006-07-17 2009-05-05 Microsoft Corporation Granular reduction in power consumption
US20080028240A1 (en) 2006-07-31 2008-01-31 Susumu Arai System and method for controlling processor low power states
US20080082844A1 (en) * 2006-10-03 2008-04-03 Soraya Ghiasi Method and System for Improving Processing Performance by Using Activity Factor Headroom
WO2008083906A2 (en) 2007-01-10 2008-07-17 International Business Machines Corporation Method and apparatus for power throttling a processor in an information handling system
US20080168287A1 (en) * 2007-01-10 2008-07-10 Ibm Corporation Method and Apparatus for Power Throttling a Processor in an Information Handling System
US7730340B2 (en) 2007-02-16 2010-06-01 Intel Corporation Method and apparatus for dynamic voltage and frequency scaling
US20100115309A1 (en) 2007-03-26 2010-05-06 Freescale Semiconductor, Inc. Anticipation of power on of a mobile device
US20080244294A1 (en) * 2007-03-29 2008-10-02 Allarey Jose P Dynamic power reduction
US20080250260A1 (en) 2007-04-06 2008-10-09 Kabushiki Kaisha Toshiba Information processing apparatus, scheduler, and schedule control method of information processing apparatus
US20090006871A1 (en) 2007-06-28 2009-01-01 Yen-Cheng Liu Method, system, and apparatus for a core activity detector to facilitate dynamic power management in a distributed system
US20090150696A1 (en) 2007-12-10 2009-06-11 Justin Song Transitioning a processor package to a low power state
US20090150695A1 (en) 2007-12-10 2009-06-11 Justin Song Predicting future power level states for processor cores
US20090158067A1 (en) 2007-12-12 2009-06-18 Bodas Devadatta V Saving power in a computer system
US20090158061A1 (en) 2007-12-18 2009-06-18 Packet Digital Method and apparatus for on-demand power management
US20090172428A1 (en) 2007-12-26 2009-07-02 Jung Hwan Lee Apparatus and method for controlling power management
US20090235105A1 (en) 2008-03-11 2009-09-17 Alexander Branover Hardware Monitoring and Decision Making for Transitioning In and Out of Low-Power State
US20100083009A1 (en) * 2008-09-30 2010-04-01 Efraim Rotem Power management for processing unit
US20100115293A1 (en) 2008-10-31 2010-05-06 Efraim Rotem Deterministic management of dynamic thermal response of processors
CN101901033A (en) 2008-10-31 2010-12-01 英特尔公司 Deterministic management of dynamic thermal response of processors
US20100146513A1 (en) 2008-12-09 2010-06-10 Intel Corporation Software-based Thread Remapping for power Savings
US20100332877A1 (en) 2009-06-30 2010-12-30 Yarch Mark A Method and apparatus for reducing power consumption
CN101937265A (en) 2009-06-30 2011-01-05 英特尔公司 Method and apparatus for reducing power consumption
US20110154090A1 (en) 2009-12-22 2011-06-23 Dixon Martin G Controlling Time Stamp Counter (TSC) Offsets For Mulitple Cores And Threads
US20120023345A1 (en) * 2010-07-21 2012-01-26 Naffziger Samuel D Managing current and power in a computing system
US20120079290A1 (en) 2010-09-23 2012-03-29 Pankaj Kumar Providing per core voltage and frequency control
US20120246506A1 (en) 2011-03-24 2012-09-27 Robert Knight Obtaining Power Profile Information With Low Overhead
US20130061064A1 (en) 2011-09-06 2013-03-07 Avinash N. Ananthakrishnan Dynamically Allocating A Power Budget Over Multiple Domains Of A Processor
US20130080804A1 (en) 2011-09-28 2013-03-28 Avinash N. Ananthakrishan Controlling Temperature Of Multiple Domains Of A Multi-Domain Processor
US20130080803A1 (en) 2011-09-28 2013-03-28 Avinash N. Ananthakrishnan Estimating Temperature Of A Processor Core In A Low Power State
US20130111236A1 (en) 2011-10-27 2013-05-02 Avinash N. Ananthakrishnan Controlling Operating Frequency Of A Core Domain Via A Non-Core Domain Of A Multi-Domain Processor
US20130111120A1 (en) 2011-10-27 2013-05-02 Avinash N. Ananthakrishnan Enabling A Non-Core Domain To Control Memory Bandwidth
US20130111121A1 (en) 2011-10-31 2013-05-02 Avinash N. Ananthakrishnan Dynamically Controlling Cache Size To Maximize Energy Efficiency
US20130111226A1 (en) 2011-10-31 2013-05-02 Avinash N. Ananthakrishnan Controlling A Turbo Mode Frequency Of A Processor
US20120144217A1 (en) 2011-12-15 2012-06-07 Sistla Krishnakanth V Dynamically Modifying A Power/Performance Tradeoff Based On Processor Utilization
US20120204042A1 (en) 2011-12-15 2012-08-09 Sistla Krishnakanth V User Level Control Of Power Management Policies

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
Anoop Iyer, et al., "Power and Performance Evaluation of Globally Asynchronous Locally Synchronous Processors," 2002, pp. 1-11.
Diana Marculescu, "Application Adaptive Energy Efficient Clustered Architectures," 2004, pp. 344-349.
Greg Semeraro, "Energy-Efficient Processor Design Using Multiple Clock Domains with Dynamic Voltage and Frequency Scaling," 2002, pp. 29-40.
Greg Semeraro, et al., "Dynamic Frequency and Voltage Control for a Multiple Clock Domain Architecture," 2002, pp. 1-12.
Greg Semeraro, et al., "Hiding Synchronization Delays in a GALS Processor Microarchitecture," 2004, pp. 1-13.
Grigorios Magklis, et al., "Profile-Based Dynamic Voltage and Frequency Scalling for a Multiple Clock Domain Microprocessor," 2003, pp. 1-12.
Intel Developer Forum, IDF2010, Opher Kahn, et al., "Intel Next Generation Microarchitecture Codename Sandy Bridge: New Processor Innovations," Sep. 13, 2010, 58 pages.
Intel Technology Journal, "Power and Thermal Management in the Intel Core Duo Processor," May 15, 2006, pp. 109-122.
International Application No. PCT/US2012/028865, filed Mar. 13, 2012, entitled "Providing Efficient Turbo Operation of a Processor," by Intel Corporation.
International Application No. PCT/US2012/028876, filed Mar. 13, 2012, entitled "Dynamically Computing an Electrical Design Point (EDP) for a Multicore Processor," by Intel Corporation.
International Application No. PCT/US2012/028902, filed Mar. 13, 2012, entitled "Dynamically Controlling Interconnect Frequency in a Processor," by Intel Corporation.
International Searching Authority, "Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority," mailed Nov. 16, 2012, in International application No. PCT/US2012/031464.
Joan-Manuel Parcerisa, et al., "Efficient Interconnects for Clustered Microarchitectures," 2002, pp. 1-10.
L. Benin!, et al., "System-Level Dynamic Power Management," 1999, pp. 23-31.
R. Todling, et al., "Some Strategies for Kalman Filtering and Smoothing," 1996, pp. 1-21.
R.E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," 1960, pp. 1-12.
Ravindra Jejurikar, et al., "Dynamic Slack Reclamation With Procrastination Scheduling in Real-Time Embedded Systems," 2005, pp. 13-17.
Ravindra Jejurikar, et al., "Leakage Aware Dynamic Voltage Scaling for Real-Time Embedded Systems," 2004, pp. 275-280.
Spec-Power and Performance, Design Overview V1.10, Standard Performance Information Corp., Oct. 21, 2008, 6 pages.
State Intellectual Property Office of the People's Republic of China, Second Office Action mailed Jun. 21, 2016 in Chinese Patent Application No. 201280072149.X.
State Intellectual Property Office, P.R. China, Office Action mailed Jan. 14, 2016, in Chinese Patent Application No. 201280072149.X.
U.S. Appl. No. 13/600,568, filed Aug. 31, 2012, entitled, "Configuring Power Management Functionality in a Processor," by Malini K. Bhandaru, et al.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170300398A1 (en) * 2016-04-15 2017-10-19 Dell Products L.P. Voltage regulator power reporting offset system
US10229027B2 (en) * 2016-04-15 2019-03-12 Dell Products L.P. Voltage regulator power reporting offset system
US20170344093A1 (en) * 2016-05-31 2017-11-30 Taiwan Semiconductor Manufacturing Co., Ltd. Power estimation
US10345883B2 (en) * 2016-05-31 2019-07-09 Taiwan Semiconductor Manufacturing Co., Ltd. Power estimation

Also Published As

Publication number Publication date
US20140195828A1 (en) 2014-07-10
CN104204825B (en) 2017-06-27
WO2013147849A1 (en) 2013-10-03
CN104204825A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
US7702931B2 (en) Adjusting power budgets of multiple servers
US9032226B2 (en) Providing per core voltage and frequency control
US9753530B2 (en) Distribution of tasks among asymmetric processing elements
JP5160033B2 (en) The method for performing power measurement and power saving with respect to a plurality of time frames, systems, and adjustment technique
US9026815B2 (en) Controlling operating frequency of a core domain via a non-core domain of a multi-domain processor
McCullough et al. Evaluating the effectiveness of model-based power characterization
CN102959510B (en) A method for computer modeling of resource consumption and power systems, and
US7174194B2 (en) Temperature field controlled scheduling for processing systems
US9235254B2 (en) Controlling temperature of multiple domains of a multi-domain processor using a cross-domain margin
US7895455B2 (en) Dynamic converter control for efficient operation
EP2466418A1 (en) Throttling memory in a computer system
US8402290B2 (en) Power management for multiple processor cores
US7681054B2 (en) Processing performance improvement using activity factor headroom
Stewart et al. Some joules are more precious than others: Managing renewable energy in the datacenter
US9323316B2 (en) Dynamically controlling interconnect frequency in a processor
US20130246820A1 (en) Method for adaptive performance optimization of the soc
US7739548B2 (en) Determining actual power consumption for system power performance states
US20060288241A1 (en) Performance conserving method for reducing power consumption in a server system
Lewis et al. Run-time Energy Consumption Estimation Based on Workload in Server Systems.
EP1182538A2 (en) Temperature field controlled scheduling for processing systems
US8555283B2 (en) Temperature-aware and energy-aware scheduling in a computer system
US20100115293A1 (en) Deterministic management of dynamic thermal response of processors
Goel et al. Portable, scalable, per-core power estimation for intelligent resource management
KR101991682B1 (en) A DVFS controlling method and A System-on Chip using thereof
US20090287909A1 (en) Dynamically Estimating Lifetime of a Semiconductor Device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VARMA, ANKUSH;SISTLA, KRISHNAKANTH V.;ROWLAND, MARTIN T.;AND OTHERS;SIGNING DATES FROM 20120328 TO 20140810;REEL/FRAME:033515/0109

STCF Information on status: patent grant

Free format text: PATENTED CASE