US9233238B2 - Drug releasing pelvic treatment system and method - Google Patents
Drug releasing pelvic treatment system and method Download PDFInfo
- Publication number
- US9233238B2 US9233238B2 US14/000,270 US201214000270A US9233238B2 US 9233238 B2 US9233238 B2 US 9233238B2 US 201214000270 A US201214000270 A US 201214000270A US 9233238 B2 US9233238 B2 US 9233238B2
- Authority
- US
- United States
- Prior art keywords
- tissue
- tissue penetrating
- penetrating members
- therapeutic agent
- pelvic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003814 drug Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title abstract description 29
- 238000011282 treatment Methods 0.000 title abstract description 15
- 229940079593 drug Drugs 0.000 title abstract description 11
- 230000000149 penetrating effect Effects 0.000 claims description 118
- 229940124597 therapeutic agent Drugs 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 39
- -1 poly(3-hydroxyvalerate) Polymers 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 16
- 238000003780 insertion Methods 0.000 claims description 13
- 230000037431 insertion Effects 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- 210000005036 nerve Anatomy 0.000 claims description 8
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 210000003708 urethra Anatomy 0.000 claims description 6
- 229920001710 Polyorthoester Polymers 0.000 claims description 5
- 229920001519 homopolymer Polymers 0.000 claims description 5
- 229920002791 poly-4-hydroxybutyrate Polymers 0.000 claims description 5
- 239000003053 toxin Substances 0.000 claims description 5
- 231100000765 toxin Toxicity 0.000 claims description 5
- 239000003242 anti bacterial agent Substances 0.000 claims description 4
- 230000001022 anti-muscarinic effect Effects 0.000 claims description 4
- 238000002513 implantation Methods 0.000 claims description 4
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 4
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 4
- 210000001215 vagina Anatomy 0.000 claims description 4
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 claims description 3
- 108030001720 Bontoxilysin Proteins 0.000 claims description 3
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 claims description 3
- 230000003115 biocidal effect Effects 0.000 claims description 3
- 229940053031 botulinum toxin Drugs 0.000 claims description 3
- 230000000973 chemotherapeutic effect Effects 0.000 claims description 3
- 229960001904 epirubicin Drugs 0.000 claims description 3
- 229960004857 mitomycin Drugs 0.000 claims description 3
- 229920000980 poly(hydroxybutyrate-co-hydroxyvalerate) Polymers 0.000 claims description 3
- 210000004291 uterus Anatomy 0.000 claims description 3
- RKUNBYITZUJHSG-FXUDXRNXSA-N (S)-atropine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@H]3CC[C@@H](C2)N3C)=CC=CC=C1 RKUNBYITZUJHSG-FXUDXRNXSA-N 0.000 claims description 2
- MXPOCMVWFLDDLZ-NSCUHMNNSA-N Apaziquone Chemical compound CN1C(\C=C\CO)=C(CO)C(C2=O)=C1C(=O)C=C2N1CC1 MXPOCMVWFLDDLZ-NSCUHMNNSA-N 0.000 claims description 2
- XIQVNETUBQGFHX-UHFFFAOYSA-N Ditropan Chemical compound C=1C=CC=CC=1C(O)(C(=O)OCC#CCN(CC)CC)C1CCCCC1 XIQVNETUBQGFHX-UHFFFAOYSA-N 0.000 claims description 2
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 229940009456 adriamycin Drugs 0.000 claims description 2
- 229960003022 amoxicillin Drugs 0.000 claims description 2
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 claims description 2
- 229950002465 apaziquone Drugs 0.000 claims description 2
- 239000002095 exotoxin Substances 0.000 claims description 2
- 108020001507 fusion proteins Proteins 0.000 claims description 2
- 102000037865 fusion proteins Human genes 0.000 claims description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 2
- 229960005277 gemcitabine Drugs 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 229960003210 hyoscyamine Drugs 0.000 claims description 2
- 229930005342 hyoscyamine Natural products 0.000 claims description 2
- 229960005434 oxybutynin Drugs 0.000 claims description 2
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920001306 poly(lactide-co-caprolactone) Polymers 0.000 claims description 2
- 239000002745 poly(ortho ester) Substances 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 229960003855 solifenacin Drugs 0.000 claims description 2
- FBOUYBDGKBSUES-VXKWHMMOSA-N solifenacin Chemical compound C1([C@H]2C3=CC=CC=C3CCN2C(O[C@@H]2C3CCN(CC3)C2)=O)=CC=CC=C1 FBOUYBDGKBSUES-VXKWHMMOSA-N 0.000 claims description 2
- 229960004045 tolterodine Drugs 0.000 claims description 2
- OOGJQPCLVADCPB-HXUWFJFHSA-N tolterodine Chemical compound C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(C)C=2)O)=CC=CC=C1 OOGJQPCLVADCPB-HXUWFJFHSA-N 0.000 claims description 2
- BDIAUFOIMFAIPU-UHFFFAOYSA-N valepotriate Natural products CC(C)CC(=O)OC1C=C(C(=COC2OC(=O)CC(C)C)COC(C)=O)C2C11CO1 BDIAUFOIMFAIPU-UHFFFAOYSA-N 0.000 claims description 2
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 claims description 2
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 claims 1
- 238000004090 dissolution Methods 0.000 claims 1
- 229960001221 pirarubicin Drugs 0.000 claims 1
- 229960000653 valrubicin Drugs 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 6
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000035475 disorder Diseases 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- 206010020853 Hypertonic bladder Diseases 0.000 description 6
- 208000009722 Overactive Urinary Bladder Diseases 0.000 description 6
- 206010066218 Stress Urinary Incontinence Diseases 0.000 description 6
- 208000020629 overactive bladder Diseases 0.000 description 6
- 150000003431 steroids Chemical group 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 206010019909 Hernia Diseases 0.000 description 4
- 206010046543 Urinary incontinence Diseases 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000013013 elastic material Substances 0.000 description 4
- 239000013536 elastomeric material Substances 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 235000014655 lactic acid Nutrition 0.000 description 4
- 239000004310 lactic acid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 210000002700 urine Anatomy 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 201000004989 Enterocele Diseases 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 239000004037 angiogenesis inhibitor Substances 0.000 description 3
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 3
- 230000001028 anti-proliverative effect Effects 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 208000013823 pelvic organ prolapse Diseases 0.000 description 3
- 229920001432 poly(L-lactide) Polymers 0.000 description 3
- 229920000117 poly(dioxanone) Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 2
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 206010011803 Cystocele Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 208000012287 Prolapse Diseases 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 208000026062 Tissue disease Diseases 0.000 description 2
- 108010057266 Type A Botulinum Toxins Proteins 0.000 description 2
- 206010046814 Uterine prolapse Diseases 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940089093 botox Drugs 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003149 muscarinic antagonist Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000000622 polydioxanone Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000005070 sphincter Anatomy 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- PROQIPRRNZUXQM-UHFFFAOYSA-N (16alpha,17betaOH)-Estra-1,3,5(10)-triene-3,16,17-triol Natural products OC1=CC=C2C3CCC(C)(C(C(O)C4)O)C4C3CCC2=C1 PROQIPRRNZUXQM-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- ZPHYPKKFSHAVOE-YZIXBPQXSA-N (7s,9s)-7-[(2r,4s,5s,6s)-4-amino-6-methyl-5-[(2r)-oxan-2-yl]oxyoxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@@H]1CCCCO1 ZPHYPKKFSHAVOE-YZIXBPQXSA-N 0.000 description 1
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- ZESRJSPZRDMNHY-YFWFAHHUSA-N 11-deoxycorticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 ZESRJSPZRDMNHY-YFWFAHHUSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- DBPWSSGDRRHUNT-CEGNMAFCSA-N 17α-hydroxyprogesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 DBPWSSGDRRHUNT-CEGNMAFCSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- WZRJTRPJURQBRM-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 WZRJTRPJURQBRM-UHFFFAOYSA-N 0.000 description 1
- QGXBDMJGAMFCBF-HLUDHZFRSA-N 5α-Androsterone Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC[C@H]21 QGXBDMJGAMFCBF-HLUDHZFRSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 206010065360 Anal prolapse Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- OMFXVFTZEKFJBZ-UHFFFAOYSA-N Corticosterone Natural products O=C1CCC2(C)C3C(O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 OMFXVFTZEKFJBZ-UHFFFAOYSA-N 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- QGXBDMJGAMFCBF-UHFFFAOYSA-N Etiocholanolone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC21 QGXBDMJGAMFCBF-UHFFFAOYSA-N 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 208000023610 Pelvic Floor disease Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 206010038084 Rectocele Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 208000000921 Urge Urinary Incontinence Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 206010046798 Uterine leiomyoma Diseases 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- 206010046940 Vaginal prolapse Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229960002478 aldosterone Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 229940061641 androsterone Drugs 0.000 description 1
- 230000003510 anti-fibrotic effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- NPGNOVNWUSPMDP-UTEPHESZSA-N chembl1650818 Chemical compound N(/[C@H]1[C@@H]2N(C1=O)[C@H](C(S2)(C)C)C(=O)OCOC(=O)C(C)(C)C)=C\N1CCCCCC1 NPGNOVNWUSPMDP-UTEPHESZSA-N 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229950006229 chloroprednisone Drugs 0.000 description 1
- NPSLCOWKFFNQKK-ZPSUVKRCSA-N chloroprednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3C[C@H](Cl)C2=C1 NPSLCOWKFFNQKK-ZPSUVKRCSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229940047766 co-trimoxazole Drugs 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- OMFXVFTZEKFJBZ-HJTSIMOOSA-N corticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OMFXVFTZEKFJBZ-HJTSIMOOSA-N 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- ZESRJSPZRDMNHY-UHFFFAOYSA-N de-oxy corticosterone Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 ZESRJSPZRDMNHY-UHFFFAOYSA-N 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 229960003654 desoxycortone Drugs 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 1
- 229960001348 estriol Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920005560 fluorosilicone rubber Polymers 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229960002899 hydroxyprogesterone Drugs 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 229960005280 isotretinoin Drugs 0.000 description 1
- 150000002560 ketene acetals Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 201000010260 leiomyoma Diseases 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 229960001977 loracarbef Drugs 0.000 description 1
- JAPHQRWPEGVNBT-UTUOFQBUSA-M loracarbef anion Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)N)=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-M 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229960000564 nitrofurantoin Drugs 0.000 description 1
- NXFQHRVNIOXGAQ-YCRREMRBSA-N nitrofurantoin Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)NC(=O)C1 NXFQHRVNIOXGAQ-YCRREMRBSA-N 0.000 description 1
- ZDHCJEIGTNNEMY-XGXHKTLJSA-N norethandrolone Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1CC[C@](CC)(O)[C@@]1(C)CC2 ZDHCJEIGTNNEMY-XGXHKTLJSA-N 0.000 description 1
- 229960000492 norethandrolone Drugs 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 210000003903 pelvic floor Anatomy 0.000 description 1
- 229960004212 pivmecillinam Drugs 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 description 1
- 229950009819 zotarolimus Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0069—Devices for implanting pellets, e.g. markers or solid medicaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/20—Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/105—Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1086—Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0023—Drug applicators using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/04—General characteristics of the apparatus implanted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
- A61M31/002—Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
Definitions
- the present invention relates generally to surgical methods and apparatus and, more specifically, to implantable devices adapted to provide therapeutic treatment to pelvic tissue or organs.
- Pelvic health for men and women is a medical area of increasing importance, at least in part due to an aging population.
- pelvic ailments include incontinence (e.g., fecal and urinary), pelvic tissue prolapse (e.g., female vaginal prolapse), and conditions of the pelvic floor.
- Urinary incontinence can further be classified as including different types, such as stress urinary incontinence (SUI), urge urinary incontinence, mixed urinary incontinence, among others.
- Other pelvic floor disorders include cystocele, rectocele, enterocele, and prolapse such as anal, uterine and vaginal vault prolapse.
- a cystocele is a hernia of the bladder, usually into the vagina and introitus. Pelvic disorders such as these can result from weakness or damage to normal pelvic support systems.
- Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine.
- Male or female stress urinary incontinence (SUI) generally occurs when the patient is physically stressed.
- vaginal vault prolapse can result in the distension of the vaginal apex outside of the vagina.
- An enterocele is a vaginal hernia in which the peritoneal sac containing a portion of the small bowel extends into the rectovaginal space. Vaginal vault prolapse and enterocele represent challenging forms of pelvic disorders for surgeons. These procedures often involve lengthy surgical procedure times.
- Urinary incontinence can be characterized by the loss or diminution in the ability to maintain the urethral sphincter closed as the bladder fills with urine.
- Male or female stress urinary incontinence (SUI) occurs when the patient is physically stressed.
- Treatments using Botox are available for Overactive Bladder (OAB).
- OAB Overactive Bladder
- standard needles and syringes are used to inject Botox into the bladder wall through a catheter.
- Several injections need to be made over the desired treatment area like nodes on a grid pattern. Obviously, the use of injections, single or multiple, can be difficult, time consuming and potentially increase the occurrence of human error.
- the present invention describes therapeutic agent delivery systems and methods for treating pelvic conditions such as active bladder (OAB) syndrome, bladder infection, bladder cancer, incontinence, prostrate disease, uterine fibroids, and other conditions caused by tissue weaknesses, disease, or other abnormalities.
- the delivery system and methods unlike conventional injection methods and devices, uses an alternative way to deliver therapeutic agent into pelvic tissue, such as into the bladder wall or the endometrial tissue of the uterus.
- the system and methods can use one or more tissue penetrating members, such as darts or barbs, that are lodged into the target pelvic tissue and that release a therapeutic agent over a desired time period, such as over the course of weeks or months.
- the invention provides a system for delivering a therapeutic agent to a pelvic tissue that comprises a delivery device configured for insertion through a pelvic passageway in a patient.
- the device has a distal end comprising an expandable elastic portion having a tissue-contacting surface configured to come in contact with pelvic tissue.
- Tissue penetrating members project from the tissue-contacting surface of the expandable elastic portion, the tissue penetrating members configured for detachment from the expandable elastic portion after the members have penetrated the pelvic tissue.
- Tissue penetrating members include a therapeutic agent that is released following implantation of the members in the tissue to treat the condition.
- the invention also provide a method for delivering a therapeutic agent to a pelvic tissue in which the system comprising the expandable elastic portion is delivered to a target pelvic tissue in a patient, and then expanded so the tissue-contacting surface comes in contact with the target pelvic tissue and the tissue penetrating members enter the pelvic tissue. The tissue penetrating members are then allowed to become detached from the expandable elastic portion and reside in the target tissue. Therapeutic agent is then released from the tissue penetrating members to treat the condition.
- the invention provides another system for delivering a therapeutic agent to a pelvic tissue.
- the system includes a delivery device configured for insertion through the pelvic area passageway in a patient and delivery of tissue penetrating members to a pelvic tissue.
- the device comprises a lumen, a distal end, and an ejection member for forcing the tissue penetrating members out of the distal end.
- a series of tissue penetrating members are loaded in the lumen in a proximal to distal arrangement, with the tissue penetrating members configured for deployment from the distal end of the device and penetration into pelvic tissue.
- the tissue penetrating members include a therapeutic agent.
- the invention also provides a method for delivering a therapeutic agent to a pelvic tissue in which the distal end of the device is delivered to a target pelvic tissue, and a tissue penetrating member ejected from the distal end into pelvic tissue.
- the distal end of the delivery device is moved to a different tissue location, and the step of ejection is repeated.
- Therapeutic agent is allowed to be released from the tissue penetrating members in the tissue.
- FIG. 1 is an illustration of a delivery device having distal end balloon with drug-containing tissue penetrating members on its surface, partially inflated in a patient bladder.
- FIGS. 2 a - 2 c are illustrations of the transfer of drug-containing tissue penetrating members from a balloon surface to a target tissue.
- FIGS. 3 a - 3 c are illustrations of the transfer of drug-containing tissue penetrating members from a balloon surface to a target tissue.
- FIGS. 4-6 are illustrations of drug-containing tissue penetrating member on a balloon surface.
- FIG. 7 a - 7 c are illustrations of the transfer of drug-containing tissue penetrating members from a balloon surface to a target tissue.
- FIG. 8 is an illustration of a delivery device with drug-containing tissue penetrating members loaded in series in the device lumen.
- FIG. 9 is an illustration of a delivery device providing drug-containing tissue penetrating members to sites on the inner wall of a patient's bladder.
- FIGS. 1-9 various embodiments of system and devices for delivering a therapeutic agent to a pelvic tissue are shown, for treatment of a pelvic tissue disorder.
- the pelvic implants can release therapeutic agent to provide therapeutic benefits for the surrounding tissue.
- the delivery system and methods use one or more tissue penetrating members that are released from a portion of the delivery device, and become implanted into target pelvic tissue. Over time, a therapeutic agent is released and produces a desired effect in the tissue area the tissue penetrating members are implanted in.
- FIG. 1 shows a delivery system 10 that includes a catheter tube 11 shown within the urethra 18 of a patient.
- the distal end 12 of the catheter tube 11 is attached to a catheter balloon 14 , which is shown as partially inflated within the bladder 17 of a patient that is being treated.
- the catheter balloon 14 has a tissue-contacting surface 13 on which are attached tissue penetrating members 15 . All or a portion of the tissue-contacting surface 13 can be covered with tissue penetrating members 15 .
- the location of the tissue penetrating members 15 can be determined by the areas in the target tissue in need of treatment. Also, the dose of the therapeutic agent can be controlled by the density of tissue penetrating members 15 on the tissue-contacting surface 13 .
- the catheter tube 11 can be made from a flexible material, sufficient to be manipulated and bent during insertion into the urethra.
- exemplary flexible materials which can be made into catheter tubing include polyvinylchloride (PVC), polyurethane (PU), silicone, and polyester, which can provide adequate rigidity and flexibility for the insertion process.
- the surface of the catheter can also have a lubricant applied to the surface, such as silicone oil, or can have a thin lubricious coating, such as a hydrogel coating on the device surface, to facilitate insertion by reducing frictional forces on the surface.
- the catheter tube can have dimensions suitable for insertion and operation of the inflatable balloon in the bladder.
- the catheter can be adapted for either male or female use.
- Some urethral catheters are referred to as “Foley catheters,” and catheters of these types can be modified to provide the desired features in accordance with aspects of the invention.
- a urethral catheter tube is navigated through the urethra so urine can be drained from the bladder from the distal end of the catheter tube, which is located within the bladder.
- the catheter tube of delivery devices of the current invention can include a drainage lumen for urine, in addition to a separate lumen for providing an air or a liquid for inflation of the balloon (e.g., an inflation lumen).
- the balloon 14 can be attached to the distal end 12 of the catheter tube 11 and in fluid or gaseous communication with the inflation lumen.
- the proximal end (not shown) of catheter tube 11 has features for controlling movement of the catheter and balloon during insertion, and controlling inflation of the balloon.
- the balloon 14 can be formed from a suitable elastomeric material such as natural rubber, synthetic rubber, including styrene-butadiene copolymers, polyisoprene, isobutylene-isoprene copolymers (butyl rubber), including halogenated butyl rubber, butadiene-styrene-acrylonitrile copolymers, silicone and fluorosilicone elastomers, polyvinylchloride, polyester, or polyurethane, and polyamides. Combinations of more than one elastomeric material can be used to make the balloon. Multi-layered balloon constructions can also be used. Exemplary multi-layered balloon constructions are described in various references such as U.S. Pat. No.
- thermoplastic material can be expanded in association with a mold to provide a balloon that in its inflated configuration has the shape of the inside of a bladder.
- the catheter balloon can be constructed to have a cross-sectional thickness of the elastic material that is appropriate for the therapeutic agent delivery method and apparatus.
- Exemplary thicknesses of the elastic material range from about 5 ⁇ m to about 100 ⁇ m, and more specifically are in the range of about 5 ⁇ m to about 25 ⁇ m.
- the thickness refers to the elastic balloon material and does not take into consideration the length of the therapeutic agent-containing members that are attached to the tissue-contacting surface of the balloon.
- the cross-sectional thickness of the elastic material can vary based on factors such as the balloon's pressure ranking, expansion attributes, and pliability.
- the elastomeric material of the balloon has a thickness (T), a tissue-contacting surface 23 , an inner surface 24 .
- Each tissue penetrating member ( 25 a - 25 c ) has a length (L) from its distal end 28 to its proximal end 29 , and an average width (W) as calculated over the entire length of the member.
- proximal end 29 of the member is attached to the tissue-contacting surface 23 of the balloon, but in other arrangements the proximal end 29 can be located within the elastomeric material of the balloon, at the inner surface 24 of the balloon, or with the inner space of the balloon.
- the tissue penetrating members that include a therapeutic agent are initially attached to the material of the balloon during the delivery process, such as reflected in FIG. 2 a .
- the tissue penetrating members become lodged in the tissue by pushing the distal end 28 of the member into the tissue.
- the tissue surface 27 can become flush with the tissue-contacting surface 23 of the balloon during the implantation process.
- the tissue penetrating members can then enter the tissue so that the entire length L, or a portion of the length L, is within the tissue.
- the balloon is withdrawn from the tissue surface 27 , as shown in FIG. 2 c .
- the proximal ends ( 29 a - 29 c ) of the tissue penetrating members ( 25 a - 25 c ) become detached from the tissue-contacting surface 23 .
- the balloon is then removed from the treatment area and the tissue penetrating members release therapeutic agent into the tissue over a desired time period.
- the tissue penetrating members can have a shape that resembles a dart, a barb, a spear, a spike, a lance, or an arrow point.
- the member can include a conical, pyramidal, or rod shape.
- a distal end of a tissue penetrating member e.g., distal end 28 of member 25 a in FIG. 2 a
- the sharpening can be reflected by a beveled, a pointed, or tapered end.
- the member can have a diameter or cross sectional area at its distal end 28 that is less than the diameter or cross sectional area at its proximal end 29 .
- the member can also be described in terms of dimensional attributes such as height, width, cross sectional area, volume, etc.
- the member has a height in the range of about 50 ⁇ m to about 2000 ⁇ m, about 100 ⁇ m to about 1500 ⁇ m, about 200 ⁇ m to about 1000 ⁇ m, or about 250 ⁇ m to about 750 ⁇ m.
- An average diameter or cross sectional area for the member can also be determined. If the member has a pointed shape, the diameter or cross sectional area can change from the proximal to distal end, and the average diameter or cross sectional area can be determined knowing the shape and dimensions of the member. For example, in some embodiments, the member has an average diameter in the range of about 15 ⁇ m to about 1000 ⁇ m, about 25 ⁇ m to about 750 ⁇ m, about 50 ⁇ m to about 500 ⁇ m, or about 100 ⁇ m to about 250 ⁇ m.
- the member has an average cross-sectional area in the range of about 175 ⁇ m 2 to about 0.785 mm 2 , 490 ⁇ m 2 to about 0.440 mm 2 , about 1950 ⁇ m 2 to about 0.195 mm 2 , or about 7850 ⁇ m 2 to about 50,000 ⁇ m 2 .
- the volume of the member can also be described.
- the member has a volume in the range of about 3000 ⁇ m 3 to about 0.55 mm 3 , 0.01 mm 3 to about 0.45 mm 3 , or 0.05 mm 3 to about 0.45 mm 3 .
- the member can also have features that facilitate its implantation in the target tissue. Once the member penetrates into the tissue, such features can prevent the member from becoming dislodged, or moving in the opposite direction from which the member was introduced.
- the member can include one or more projections ( 135 a and 135 b ; e.g., tines or barbs) on the lateral or elongate surface of the tissue penetrating member which are directed outward and towards the proximal end of the member. The projections prevent backwards movement of the member once in the tissue.
- the invention contemplates various arrangements and constructions for associating the tissue penetrating members with the balloon material, and releasing the members after they have penetrated into tissue.
- tissue penetrating member that has a fracturable portion near the proximal end of the penetrating member.
- the fracturable portion can have a material or structural weakness that causes the tissue penetrating member to break near its proximal end so it can be released from the elastic substrate.
- the tissue penetrating member 30 has a fracturable portion 32 that is near the proximal end of the member.
- the fracturable portion can be formed by treating the tissue penetrating member in this area such as to weaken the material.
- the tissue penetrating member can be constructed from two different materials that are weaky bonded or adhered to each other.
- the tissue penetrating member is constructed of a first material in portion 34 towards the distal end 38 of the member, and of a second material in portion 35 towards the proximal end 39 of the member. First and second materials are weaky bonded or adhered to each other in the member, and the member is breakable at the point where these two materials meet. As illustrated in FIG.
- the tissue penetrating members become lodged in the tissue, and the surface projections 135 a and 135 b hinder their movement out of the tissue.
- the balloon is withdrawn from the tissue surface 37 , as shown in FIG. 3 c , the tissue penetrating members fracture at fracturable portion 32 and portion 34 remains lodged in the tissue, while portion 35 remains with the balloon surface.
- the balloon is then removed from the treatment area and the tissue penetrating members release therapeutic agent into the tissue over a desired time period.
- the tissue penetrating member has a fracturable portion 42 having a cross sectional area that is less than a cross sectional area in portion 44 distal to the fracturable portion 42 .
- the tissue penetrating members fracture at fracturable portion 42 and portion 44 remains lodged in the tissue, while portion 45 remains with the balloon surface. The balloon is then removed from the treatment area and the tissue penetrating members release therapeutic agent in to the tissue over a desired time period.
- the tissue penetrating member is attached to the elastic portion using an absorbable (degradable) material.
- the absorbable material is used to attach the tissue penetrating member during the delivery process, and then it undergoes degradation during the process to weaken or remove the absorbable material, which loosens the tissue penetrating member from the surface of the device to that it can be released into tissue.
- the proximal end 59 of the tissue penetrating member 50 is attached to the surface of the balloon using an absorbable material 52 , such as an absorbable polymer, that acts as a temporary adhesive.
- an absorbable material 52 such as an absorbable polymer
- the absorbable material partially or completely erodes so that the member is detached from the elastic surface. The erosion can result in weakening of the absorbable material 52 so that it fractures, similar to the mechanisms discussed with reference to FIG. 4 .
- a proximal portion 65 of the tissue penetrating member 60 is partially embedded in a layer of absorbable material 63 formed on the surface of the balloon 62 .
- the layer of absorbable material 63 absorbable material partially or completely erodes so that the proximal portion of the tissue penetrating member 60 is loosened and detaches from the elastic surface.
- the tissue penetrating member 70 comprises a proximal portion 72 that traverses material of balloon.
- the tissue penetrating member 70 has a distal portion 174 that is on the tissue-contacting surface 73 of the balloon.
- the proximal end 79 of the tissue penetrating member 70 is on the inner surface of the balloon 74 and is associated with an absorbable material 75 which allows the tissue penetrating member 70 to be fastened to the balloon.
- the portion 174 of the tissue penetrating member becomes lodged in the tissue, and the surface projections 175 a and 175 b hinder movement of the member out of the tissue.
- the inner surface of the balloon 74 can be treated to cause erosion of the absorbable material 75 .
- a liquid composition that is acidic can be delivered to the inner space in the balloon, and the low pH condition can enhance erosion of the polymeric material.
- proximal portion 72 of the tissue penetrating member is able to be withdrawn from the balloon and portion 174 remains lodged in the tissue.
- the balloon is then removed from the treatment area and the tissue penetrating members release therapeutic agent into the tissue over a desired time period.
- the absorbable material used to fasten the tissue penetrating member 70 can be one that is has sufficient adhesion strength, but that dissolves or erodes quickly after the tissue penetrating member has been lodged in the tissue.
- a non-crosslinked polysaccharide, or a rapidly eroding polymer such as a polyorthoester or a poly(lactide-co-caprolactone) polymer can be used to fasten the tissue penetrating member to elastic material of the balloon.
- the tissue penetrating member can be formed from one or a combination of biocompatible materials along with a therapeutic agent.
- Various types of absorbable polymeric materials can be used to modulate release of therapeutic agent from the tissue penetrating members.
- bioabsorbable,” “degradable,” and “biodegradable,” can also be used to describe a material that is absorbable, such as an absorbable polymer.
- Many absorbable polymers include hydrolytically unstable chemical groups such as ester groups in the polymeric backbone. The hydrolytic cleavage of these chemical groups leads to degradation of the polymer.
- Absorbable polymers, such as those described in Table 1, can be used in any of the embodiments of the invention.
- Polyhydroxyalkanoates e.g., poly-4-hydroxybutyrate (P4HB), poly(3- hydroxyvalerate, poly(hydroxybutyrate-co-hydroxyvalerate); polyesters (e.g., polylactic acid, poly(lactide-co-glycolide), polycaprolactone, poly(valerolactone), poly(glycolic acid), (poly(glycolide)), and poly(dioxanone); polyorthoesters; polyalkeneanhydrides (e.g., poly(sebacic acid); polyanhydrides, polyphosphazine. Hyaluronic acid, alginate, dextran, starch, amylopectin, cellulose, xanthan, pullulan, chitosan, pectin, inulin, and heparin.
- P4HB poly-4-hydroxybutyrate
- polyesters e.g., polylactic acid, poly(lactide-co-glycolide), polycaprol
- Polyhydroxyalkanoates include homopolymers such as poly-4-hydroxybutyrate (P4HB), poly(3-hydroxyvalerate), and hydroxyalkanoate copolymers such as poly(hydroxybutyrate-co-hydroxyvalerate) (Organ, S. J. (1994) Polymer, 35, 1:86-92) Blends of hydroxyalkanoate polymers with other absorbable polymers have also been prepared, such as poly( ⁇ -hydroxybutyrate) and poly( ⁇ -caprolactone) blends (Gassner, F., and Owen, A. J. (1994) Polymer, 35, 10:2233-2236).
- P4HB poly-4-hydroxybutyrate
- hydroxyalkanoate copolymers such as poly(hydroxybutyrate-co-hydroxyvalerate)
- Blends of hydroxyalkanoate polymers with other absorbable polymers have also been prepared, such as poly( ⁇ -hydroxybutyrate) and poly( ⁇ -caprolactone) blends (Gassner,
- Poly(glycolic acid) is a highly crystalline and has a melting point in the range of 225-230° C. While higher molecular weight forms are insoluble in common organic solvents such as acetone, dicholomethane, chloroform, and tetrahydrofuran, its lower molecular weight forms generally have better solubility in common organic solvents. Glycolide copolymers also can have better solubility in common organic solvents. For example, star block copolymers based on glycerol and glycolide show solubility in organic solvents such as DMF and DMSO (see, for example, Wolf, F. K., et al. (2010) Beilstein J. Org. Chem. 6, No. 67).
- Copolymers of lactic acid and glycolic acid have solubility in chloroform (U.S. Pat. No. 3,867,190). Copolymerization of lactic acid and glycolic acid reduces the degree of crystallinity and results in an increased rate of hydration and hydrolysis. Copolymers of lactic acid and glycolic acid can be manipulated into a desired form by techniques such as extrusion, injection and compression molding as well as particulate leaching and solvent casting.
- Lactic acid is a chiral molecule and L-lactide and D-lactide optically active forms can be polymerized to form poly-L-lactide (PLLA), poly-D-lactide (PDLA), and poly-D,L-lactide (PDLLA).
- PLLA has a crystallinity of about 37%, a glass transition temperature between 60-65° C., and a melting temperature between 173-178° C.
- PDLLA is amorphous and has a glass transition temperature of 55-60° C.
- PDS polydioxanone
- PDS polydioxanone
- a glass transition temperature in the range of ⁇ 10 to 0° C. and a degree of crystallinity of about 55%.
- the presence of an ether oxygen within the polydioxanone backbone of the polymer chain can provide materials with enhanced flexibility.
- Exemplary erodible polyorthoesters polyorthoesters can be formed by reacting an orthoester (or orthocarbonate) with a diol (see, for example, U.S. Pat. Nos. 4,079,038, and 4,138,344), or by reacting a reacting a polyol with a polyfunctional ketene acetal (see, for example, U.S. Pat. No. 4,304,767).
- the degradation rate of a homopolymer i.e., one formed from a particular monomer type is) slower than copolymer (formed from the particular monomer a different monomer).
- Various embodiments of the invention can use copolymers and homopolymers, which share a common monomer type, to form the tissue penetrating members.
- the tissue penetration members can be fabrication by various process, such as by molding.
- a composition including an absorbable polymer, a therapeutic agent, and a solvent can be disposed in a mold to cast a tissue penetration member with a desired shape.
- Solvent can be removed to harden the member.
- the tissue penetration member can then be removed from the mold and associated with the elastic substrate of the device. In some modes of fabrication, the tissue penetration member can be pulled out of the mold using the elastic substrate.
- Exemplary therapeutically-active compounds include steroid hormones, antimuscarinic agents, antiproliferative agents, angiogenesis inhibitors, anti-inflammatory agents, anti-cancer drugs, anti-fibrotic agents, anti-microbial agents, immunosuppressive agents, antibiotics, etc.
- Therapeutic agents having a steroid ring system are referred to as steroids, which can include naturally occurring compounds and synthetic analogues based on steroid ring structures.
- Steroids which can be used in the therapeutic agent-releasing implant include glucocorticoids, estrogens and androgens.
- Table 1 lists exemplary therapeutic agents that can be associated with and released from various embodiments of therapeutic agent-releasing implants as described herein.
- the therapeutic agent comprises a compound that affects nerve function.
- One class of compounds that affect nerve function are antimuscarinic compounds that affect the activity of the muscarinic acetylcholine receptor.
- Antimuscarinic agents include those such as oxybutynin, tolterodine, solifenacin, and hyoscyamine.
- Another class of therapeutic agents that affects nerve function is nerve toxins.
- An exemplary nerve toxin is such as Botulinum toxin.
- Antimuscarinic compounds and nerve toxins is such as Botulinum toxin can be releasable from the tissue penetrating members of the invention, and can be used to treat over active bladder syndrome.
- the therapeutic agent comprises a chemotherapeutic compound.
- Chemotherapeutic agents include those such as N,N′,N′-triethylenethiophosphoramide (ThioTEPA), adriamycin (doxorubicin, ADM), epirubicin (EPI), mitomycin C (MMC), valrubicin (AD32), pirarubicin (THP), gemcitabine, apaziquone (EOquinTM), and ViciniumTM (anti-Ep-CAM humanized scFv-exotoxin A fusion protein).
- Chemotherapeutic agents can be releasable from the tissue penetrating members of the invention, and can be used to treat various tumors and cancers, including those of the bladder, prostrate, cervical, and vaginal tissues.
- the therapeutic agent comprises an antiproliferative agent or angiogenesis inhibitor such as taxol, rapamycin, tacrolimus, ABT-578, everolimus, paclitaxel, taxane, 13-cis retinoic acid, and 5-fluorouracil.
- an antiproliferative agent or angiogenesis inhibitor such as taxol, rapamycin, tacrolimus, ABT-578, everolimus, paclitaxel, taxane, 13-cis retinoic acid, and 5-fluorouracil.
- Antiproliferative agents or angiogenesis inhibitors can be releasable from the tissue penetrating members of the invention, and can be used to treat abnormal pelvic tissue growth.
- the therapeutic agent comprises a steroid such as dexamethasone, cortisone, hydrocortisone, prednisone, prednisolone, triamcinolone methylprednisolone, beclomethasone, betamethasone, chloroprednisone, corticosterone, desoxycorticosterone, estradiol, fluorocortisone, androsterone, aldosterone, methyl testosterone, norethandrolone, estriol, estrone, hydroxyprogesterone.
- Steroids can be releasable from the tissue penetrating members of the invention, and can be used to treat tissue disorders of the female reproductive tract.
- the therapeutic agent comprises an antibiotic such as amoxicillin, ephalexin, cefadroxil, cefuroxime, loracarbef, cefixime, pivmecillinam, trimethoprim-sulfamethoxazole, trimethoprim, ofloxacin, ciprofloxacin, norfloxacin, levofloxacin, doxycycline, tetracycline, minocycline, gentamicin, tobramycin, amikacin, nitrofurantoin, or azithromycin.
- Antibiotics can be releasable from the tissue penetrating members of the invention, and can be used to treat infections of the genitourinary tract, including bladder, cervical, and vaginal infections.
- the tissue penetrating members are delivered to a target pelvic tissue from the distal end of a hollow conduit, such as a catheter tube, rather than from the surface of a balloon.
- the delivery device comprises a tube 81 , a series of tissue penetrating members ( 80 a - 80 d ) loaded in the catheter tube 81 , and an ejection member 86 for forcing the tissue penetrating members out of the distal end 85 .
- FIG. 8 shows that ejection member 86 comprises a spring, but other mechanisms or features can be used to force the tissue penetrating members out of the distal end, such as a rod, a compressed air mechanism, or a pneumatic mechanism.
- the tube 81 can also be made from a flexible material, sufficient to be manipulated and bent during insertion into a pelvic passageway, such as the urethra or vaginal tract.
- exemplary flexible materials which can be made into catheter tubing include polyvinylchloride (PVC), polyurethane (PU), silicone, and polyester, which can provide adequate rigidity and flexibility for the insertion process.
- PVC polyvinylchloride
- PU polyurethane
- silicone silicone
- polyester which can provide adequate rigidity and flexibility for the insertion process.
- the surface of the catheter can also have a lubricant or a lubricious coating applied to the surface.
- the tube can be larger for insertion into passageways such as the vagina and uterus.
- tissue penetrating members having various configurations, including shapes that resemble a dart, a barb, a spear, a spike, a lance, or an arrow point. Any tissue penetrating members configuration as shown in FIGS. 2-7 can be used for the embodiments as exemplified in FIGS. 8 and 9 .
- tissue penetrating members 80 a - 80 e have a length in the range of about 500 ⁇ m to about 1 cm, about 1 mm to about 1 cm or about 2 mm to about 8 mm.
- tissue penetrating members 80 a - 80 e have average diameter in the range of about 150 ⁇ m to about 5 mm, about 500 ⁇ m to about 5 mm, or about 750 to about 3 mm. Cross sectional areas and volumes of the tissue penetrating members can be determined accordingly.
- Tissue penetrating members useful for the embodiments as exemplified in FIGS. 8 and 9 can be prepared from any absorbable polymer and therapeutic agent as described herein.
- the ejection member 86 is actuated.
- the ejection member 86 can be is actuated from an actuating member (not shown), such as a trigger, on the proximal end of the device.
- an actuating member such as a trigger
- a spring and flexible shaft combination can be used to eject a single tissue penetrating member from the distal end, and advance the series of tissue penetrating members in a distal direction following ejection.
- the actuating member can cause reloading of the spring for each ejection event, and the flexible shaft can progressively be advanced to cause movement of the tissue penetrating members.
- the distal end 85 can also include a flange or stopper to provide resistance to movement of the tissue penetrating members so can be ejected with sufficient force and speed.
- FIG. 9 illustrates delivery shows a delivery device that is inserted into the bladder and that uses a flexible tube 91 to eject tissue penetrating members into the bladder wall 97 .
- the distal end 92 of the flexible tube 91 is inserted into the bladder and placed at a first tissue location 94 on the bladder wall.
- the device is actuated to eject a tissue penetrating member from the distal end and into the bladder wall at a first tissue location 94 .
- the distal end 92 of the flexible tube 91 is then moved to a second tissue location 95 on the bladder wall and the ejection step is repeated.
- the ejections can be performed a desired number of times at desired locations to provide a tailored tissue treatment.
- the tissue penetrating members release therapeutic agent in to the tissue over a desired time period.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
TABLE 1 |
Polyhydroxyalkanoates (e.g., poly-4-hydroxybutyrate (P4HB), poly(3- |
hydroxyvalerate, poly(hydroxybutyrate-co-hydroxyvalerate); polyesters |
(e.g., polylactic acid, poly(lactide-co-glycolide), polycaprolactone, |
poly(valerolactone), poly(glycolic acid), (poly(glycolide)), and |
poly(dioxanone); polyorthoesters; polyalkeneanhydrides (e.g., |
poly(sebacic acid); polyanhydrides, polyphosphazine. |
Hyaluronic acid, alginate, dextran, starch, amylopectin, cellulose, xanthan, |
pullulan, chitosan, pectin, inulin, and heparin. |
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/000,270 US9233238B2 (en) | 2011-02-23 | 2012-02-23 | Drug releasing pelvic treatment system and method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161445807P | 2011-02-23 | 2011-02-23 | |
US14/000,270 US9233238B2 (en) | 2011-02-23 | 2012-02-23 | Drug releasing pelvic treatment system and method |
PCT/US2012/026362 WO2012116209A1 (en) | 2011-02-23 | 2012-02-23 | Drug releasing pelvic treatment system and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/026362 A-371-Of-International WO2012116209A1 (en) | 2011-02-23 | 2012-02-23 | Drug releasing pelvic treatment system and method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/981,128 Continuation US10272235B2 (en) | 2011-02-23 | 2015-12-28 | Drug releasing pelvic treatment system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130331818A1 US20130331818A1 (en) | 2013-12-12 |
US9233238B2 true US9233238B2 (en) | 2016-01-12 |
Family
ID=46721235
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/000,270 Expired - Fee Related US9233238B2 (en) | 2011-02-23 | 2012-02-23 | Drug releasing pelvic treatment system and method |
US14/981,128 Expired - Fee Related US10272235B2 (en) | 2011-02-23 | 2015-12-28 | Drug releasing pelvic treatment system and method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/981,128 Expired - Fee Related US10272235B2 (en) | 2011-02-23 | 2015-12-28 | Drug releasing pelvic treatment system and method |
Country Status (5)
Country | Link |
---|---|
US (2) | US9233238B2 (en) |
EP (1) | EP2678068A4 (en) |
AU (1) | AU2012220564A1 (en) |
CA (1) | CA2827956C (en) |
WO (1) | WO2012116209A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160144161A1 (en) * | 2011-02-23 | 2016-05-26 | Astora Women's Health, Llc | Drug releasing pelvic treatment system and method |
US10010400B2 (en) | 2015-03-30 | 2018-07-03 | Taris Biomedical Llc | Devices and methods for local delivery of drug to upper urinary tract |
US20190151638A1 (en) * | 2016-04-07 | 2019-05-23 | Labnpeople Co., Ltd. | Microneedle using bioabsorbable metal |
US10973890B2 (en) | 2016-09-13 | 2021-04-13 | Allergan, Inc. | Non-protein clostridial toxin compositions |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11357955B2 (en) * | 2011-09-01 | 2022-06-14 | Boston Scientific Scimed, Inc. | Devices, systems, and related methods for delivery of fluid to tissue |
US10213581B2 (en) | 2014-01-24 | 2019-02-26 | Covidien Lp | Directional subintimal access for chemical agent delivery |
EP3439725A1 (en) * | 2016-04-07 | 2019-02-13 | Saxonia R + D GmbH&Co. KG | Improved urinary catheter |
US9987437B2 (en) * | 2016-06-16 | 2018-06-05 | Logan Medical Devices, Inc. | Rectal injection device and method of operation thereof |
KR102149574B1 (en) * | 2016-11-22 | 2020-08-28 | 아사히 인텍크 가부시키가이샤 | Balloon catheter |
FR3068253B1 (en) | 2017-06-28 | 2021-05-07 | Cairdac | LEADLESS CAPSULE TYPE AUTONOMOUS HEART IMPLANT, INCLUDING AN ENERGY RECOVERY DELIVERING PHYSIOLOGICAL INFORMATION OR PATIENT ACTIVITY |
AU2020374860A1 (en) * | 2019-10-28 | 2022-05-26 | Hollister Incorporated | Urinary catheters and methods for preventing bacterial infections |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU336892A1 (en) | CONSTANT-VELOCITY JOINT | |||
US4079038A (en) | 1976-03-05 | 1978-03-14 | Alza Corporation | Poly(carbonates) |
US4138344A (en) | 1975-01-28 | 1979-02-06 | Alza Corporation | Erodible agent releasing device comprising poly(orthoesters) and poly(orthocarbonates) |
US4304767A (en) | 1980-05-15 | 1981-12-08 | Sri International | Polymers of di- (and higher functionality) ketene acetals and polyols |
GB2094636A (en) | 1981-03-12 | 1982-09-22 | Spembly Ltd | A cryosurgical probe |
GB2151484A (en) | 1983-12-21 | 1985-07-24 | Stefano Mattioli | Semi-rigid penial prosthesis for the treatment of impotence in the erection |
US4637396A (en) | 1984-10-26 | 1987-01-20 | Cook, Incorporated | Balloon catheter |
US4651721A (en) | 1985-04-10 | 1987-03-24 | American Medical Systems, Inc. | Penile prosthesis system |
GB2226497A (en) | 1988-12-01 | 1990-07-04 | Spembly Medical Ltd | Cryosurgical probe |
GB2244922A (en) | 1990-06-01 | 1991-12-18 | Cryogenic Instr & Equipment Li | Cryogenic device |
EP0624347A1 (en) | 1993-05-10 | 1994-11-17 | Browning Healthcare Limited | Cryoprobe |
GB2283678A (en) | 1993-11-09 | 1995-05-17 | Spembly Medical Ltd | Cryosurgical probe |
EP0655225A1 (en) | 1993-10-26 | 1995-05-31 | Cordis Europa N.V. | Cryo-ablation catheter |
JPH11333005A (en) | 1998-05-28 | 1999-12-07 | Terumo Corp | Energy irradiation device |
US6197013B1 (en) * | 1996-11-06 | 2001-03-06 | Setagon, Inc. | Method and apparatus for drug and gene delivery |
WO2003096929A1 (en) | 2002-05-15 | 2003-11-27 | American Medical Systems, Inc. | Improved pelvic health implants and methods |
WO2004012626A1 (en) | 2002-08-01 | 2004-02-12 | Fin Med S.A.S. Di Grondelli & C. | Device for the surgical treatment of female prolapse |
US20040067235A1 (en) * | 2002-07-29 | 2004-04-08 | Rajiv Doshi | Methods for the use of neurotoxin in the treatment of urologic disorders |
US20040175408A1 (en) | 2003-03-07 | 2004-09-09 | Iksoo Chun | Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof |
JP2005312964A (en) | 2004-04-28 | 2005-11-10 | Medtronic Vascular Inc | Cardiac valve modification method and device |
US20060224237A1 (en) * | 2005-03-03 | 2006-10-05 | Icon Medical Corp. | Fragile structure protective coating |
DE202006016866U1 (en) | 2006-11-03 | 2007-02-15 | AMS Research Corporation, Minnetonka | Implantation system for treatment of incontinence, comprises mesh material loop with end connectors and matching surgical tool with curved needle used for implantation |
US20070123973A1 (en) * | 2001-10-26 | 2007-05-31 | Roth Noah M | Biodegradable device |
US20070135803A1 (en) | 2005-09-14 | 2007-06-14 | Amir Belson | Methods and apparatus for performing transluminal and other procedures |
US20070191811A1 (en) | 2006-02-10 | 2007-08-16 | Joseph Berglund | System and Method for Treating a Vascular Condition |
WO2007097994A2 (en) | 2006-02-16 | 2007-08-30 | Ams Research Corporation | Surgical articles and methods for treating pelvic conditions |
WO2007149555A2 (en) | 2006-06-22 | 2007-12-27 | Ams Research Corporation | Adjustable tension incontinence sling assemblies |
WO2009033026A1 (en) | 2007-09-06 | 2009-03-12 | Boston Scientific Scimed, Inc. | Methods and devices for local therapeutic agent delivery to heart valves |
US20100069837A1 (en) | 2008-09-16 | 2010-03-18 | Boston Scientific Scimed, Inc. | Balloon Assembly and Method for Therapeutic Agent Delivery |
US7837670B2 (en) | 2005-03-22 | 2010-11-23 | Boston Scientific Scimed, Inc. | Methods and devices for delivering therapeutic agents into the prostate gland |
US20110034860A1 (en) * | 2009-08-04 | 2011-02-10 | Cook Incorporated | Micro-needle array and method of use thereof |
US20110160699A1 (en) * | 2009-12-24 | 2011-06-30 | Incube Labs, Llc | Swallowable Drug Delivery Device and Methods of Drug Delivery |
US8109904B1 (en) * | 2007-06-25 | 2012-02-07 | Abbott Cardiovascular Systems Inc. | Drug delivery medical devices |
US20120041412A1 (en) * | 2010-01-29 | 2012-02-16 | Noah Roth | Biodegradable protrusions on inflatable device |
WO2012083155A2 (en) | 2010-12-16 | 2012-06-21 | Ams Research Corporation | Micro-needle bladder balloon |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0255123A3 (en) * | 1986-07-30 | 1988-04-20 | Sumitomo Pharmaceuticals Company, Limited | Solid preparation administering instrument |
US5281197A (en) * | 1992-07-27 | 1994-01-25 | Symbiosis Corporation | Endoscopic hemostatic agent delivery system |
US5542920A (en) * | 1994-09-12 | 1996-08-06 | Delab | Needle-less parenteral introduction device |
US6285897B1 (en) * | 1999-04-07 | 2001-09-04 | Endonetics, Inc. | Remote physiological monitoring system |
US6889833B2 (en) * | 2002-12-30 | 2005-05-10 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US6962574B1 (en) * | 2003-06-13 | 2005-11-08 | Biomet Manufacturing Corp. | Therapeutic agent delivery device |
US7741273B2 (en) * | 2006-04-13 | 2010-06-22 | Warsaw Orthopedic, Inc. | Drug depot implant designs |
US8160710B2 (en) * | 2006-07-10 | 2012-04-17 | Ams Research Corporation | Systems and methods for implanting tissue stimulation electrodes in the pelvic region |
WO2008112592A1 (en) * | 2007-03-09 | 2008-09-18 | Anthem Orthopaedics Llc | Implantable medicament delivery device and delivery tool and method for use therewith |
US8535260B2 (en) * | 2008-10-15 | 2013-09-17 | Dtherapeutics, Llc | Devices, systems, and methods for localized drug delivery |
US9555228B2 (en) * | 2008-10-15 | 2017-01-31 | Dtherapeutics, Llc | Systems, devices, and methods for localized drug delivery |
EP2349018B1 (en) * | 2008-10-27 | 2018-08-01 | Boston Scientific Scimed, Inc. | Surgical needle and anchor system with retractable features |
WO2010093834A2 (en) * | 2009-02-12 | 2010-08-19 | Incube Labs, Llc | Skin penetrating device and method for subcutaneous solid drug delivery |
AU2012220564A1 (en) * | 2011-02-23 | 2013-08-29 | Ams Research Corporation | Drug releasing pelvic treatment system and method |
US20150151077A1 (en) * | 2012-06-13 | 2015-06-04 | Douglas C. Harrington | Devices And Methods For Renal Denervation |
-
2012
- 2012-02-23 AU AU2012220564A patent/AU2012220564A1/en not_active Abandoned
- 2012-02-23 US US14/000,270 patent/US9233238B2/en not_active Expired - Fee Related
- 2012-02-23 CA CA2827956A patent/CA2827956C/en not_active Expired - Fee Related
- 2012-02-23 WO PCT/US2012/026362 patent/WO2012116209A1/en active Application Filing
- 2012-02-23 EP EP12749003.5A patent/EP2678068A4/en not_active Withdrawn
-
2015
- 2015-12-28 US US14/981,128 patent/US10272235B2/en not_active Expired - Fee Related
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU336892A1 (en) | CONSTANT-VELOCITY JOINT | |||
US4138344A (en) | 1975-01-28 | 1979-02-06 | Alza Corporation | Erodible agent releasing device comprising poly(orthoesters) and poly(orthocarbonates) |
US4079038A (en) | 1976-03-05 | 1978-03-14 | Alza Corporation | Poly(carbonates) |
US4304767A (en) | 1980-05-15 | 1981-12-08 | Sri International | Polymers of di- (and higher functionality) ketene acetals and polyols |
GB2094636A (en) | 1981-03-12 | 1982-09-22 | Spembly Ltd | A cryosurgical probe |
GB2151484A (en) | 1983-12-21 | 1985-07-24 | Stefano Mattioli | Semi-rigid penial prosthesis for the treatment of impotence in the erection |
US4637396A (en) | 1984-10-26 | 1987-01-20 | Cook, Incorporated | Balloon catheter |
US4651721A (en) | 1985-04-10 | 1987-03-24 | American Medical Systems, Inc. | Penile prosthesis system |
GB2226497A (en) | 1988-12-01 | 1990-07-04 | Spembly Medical Ltd | Cryosurgical probe |
GB2244922A (en) | 1990-06-01 | 1991-12-18 | Cryogenic Instr & Equipment Li | Cryogenic device |
EP0624347A1 (en) | 1993-05-10 | 1994-11-17 | Browning Healthcare Limited | Cryoprobe |
EP0655225A1 (en) | 1993-10-26 | 1995-05-31 | Cordis Europa N.V. | Cryo-ablation catheter |
GB2283678A (en) | 1993-11-09 | 1995-05-17 | Spembly Medical Ltd | Cryosurgical probe |
US6197013B1 (en) * | 1996-11-06 | 2001-03-06 | Setagon, Inc. | Method and apparatus for drug and gene delivery |
JPH11333005A (en) | 1998-05-28 | 1999-12-07 | Terumo Corp | Energy irradiation device |
US20070123973A1 (en) * | 2001-10-26 | 2007-05-31 | Roth Noah M | Biodegradable device |
WO2003096929A1 (en) | 2002-05-15 | 2003-11-27 | American Medical Systems, Inc. | Improved pelvic health implants and methods |
US20040067235A1 (en) * | 2002-07-29 | 2004-04-08 | Rajiv Doshi | Methods for the use of neurotoxin in the treatment of urologic disorders |
WO2004012626A1 (en) | 2002-08-01 | 2004-02-12 | Fin Med S.A.S. Di Grondelli & C. | Device for the surgical treatment of female prolapse |
US20040175408A1 (en) | 2003-03-07 | 2004-09-09 | Iksoo Chun | Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof |
JP2005312964A (en) | 2004-04-28 | 2005-11-10 | Medtronic Vascular Inc | Cardiac valve modification method and device |
US20060224237A1 (en) * | 2005-03-03 | 2006-10-05 | Icon Medical Corp. | Fragile structure protective coating |
US7837670B2 (en) | 2005-03-22 | 2010-11-23 | Boston Scientific Scimed, Inc. | Methods and devices for delivering therapeutic agents into the prostate gland |
US20070135803A1 (en) | 2005-09-14 | 2007-06-14 | Amir Belson | Methods and apparatus for performing transluminal and other procedures |
US20070191811A1 (en) | 2006-02-10 | 2007-08-16 | Joseph Berglund | System and Method for Treating a Vascular Condition |
WO2007097994A2 (en) | 2006-02-16 | 2007-08-30 | Ams Research Corporation | Surgical articles and methods for treating pelvic conditions |
WO2007149555A2 (en) | 2006-06-22 | 2007-12-27 | Ams Research Corporation | Adjustable tension incontinence sling assemblies |
DE202006016866U1 (en) | 2006-11-03 | 2007-02-15 | AMS Research Corporation, Minnetonka | Implantation system for treatment of incontinence, comprises mesh material loop with end connectors and matching surgical tool with curved needle used for implantation |
US8109904B1 (en) * | 2007-06-25 | 2012-02-07 | Abbott Cardiovascular Systems Inc. | Drug delivery medical devices |
WO2009033026A1 (en) | 2007-09-06 | 2009-03-12 | Boston Scientific Scimed, Inc. | Methods and devices for local therapeutic agent delivery to heart valves |
US20100069837A1 (en) | 2008-09-16 | 2010-03-18 | Boston Scientific Scimed, Inc. | Balloon Assembly and Method for Therapeutic Agent Delivery |
US20110034860A1 (en) * | 2009-08-04 | 2011-02-10 | Cook Incorporated | Micro-needle array and method of use thereof |
US20110160699A1 (en) * | 2009-12-24 | 2011-06-30 | Incube Labs, Llc | Swallowable Drug Delivery Device and Methods of Drug Delivery |
US20120041412A1 (en) * | 2010-01-29 | 2012-02-16 | Noah Roth | Biodegradable protrusions on inflatable device |
WO2012083155A2 (en) | 2010-12-16 | 2012-06-21 | Ams Research Corporation | Micro-needle bladder balloon |
Non-Patent Citations (16)
Title |
---|
Caldwell et al, "Stress Incontinence in Females: Report on 31 Cases Treated by Electrical Implant" J. Obstet, Gynaec. Brit. Cwlth., vol. 75, pp. 777-780, Jul. 1968. |
Cavouto, "BION Developers Pus-h New Versions and Applications" BION Developments, Neurotech Business Report, pp. 1-2 , Jul. 2005, http://www.neurotechreports.com-/pages/BION.html. |
ClinicalTrials.gov, I-STOP TOMS-Trans Obturator Male Sling, May 2008, http://clinicaltrials.gov/ct2/show/NCT00442078. |
Gassner, et al., "Physical properties of PHB-PCL" Polymer, vol. 35, No. 10, pp. 2233-2236, 1994. |
Igel, et al., "Comparison of Techniques for Vesicourethral Anastomosis: Simple Direct Versus Modified Vest Traction Sutures" Urology, Vo. XXXI, No. 6, pp. 474-477, Jun. 1988. |
Iglesia, et al. "The Use of Mesh in Gynecologic Surgery" Int Urogynecol J. 8: pp. 105-115, 1997. |
JS Krauth, et al. "La bandelette trans obturatrice dans le traitement de l'incontinence urinaire feminine" Tire-a-part ENDOMAG No. 47, pp. 13-15, Jun. 2004. |
Medical News Today New Article "Uroplasty Inc. and CL Medical Announce FDA Clearance of I-Stop(TM) TOMS Sling for Treatment of Male Stress Urinary Incontinence" pp. 1-2, Nov. 2006, Article URL: http://www.medicalnewstoday.com/articles/57663.php. |
Medical News Today New Article "Uroplasty Inc. and CL Medical Announce FDA Clearance of I-Stop™ TOMS Sling for Treatment of Male Stress Urinary Incontinence" pp. 1-2, Nov. 2006, Article URL: http://www.medicalnewstoday.com/articles/57663.php. |
O'Donnell, M.D., "Urinary Incontinence" Mosby-Year Book, Inc., International Standard Book No. 0-8151-6517-X, pp. 197-202, 1997. |
Organ, S.J., "Phase separation in blends of poly(hydroxybutrate) with poly(hydroxybutrate-co-hydroxyvaterate): variation with blend components" Polymer, vol. 35, No. 1, pp. 86-92, 1994. |
Pavelic et al., "Liposomal gel with chloramphenicol: characterization and in vitro release," Acta. Pharm. 54 (2004) 319-330. |
Rehabilitation Article "A Preliminary Clinical Study Using RF BION® Microstimulators Facilitate Upper Limb Function in Hemiplegia" ACNR, vol. 4, No. 2, pp. 26-28, May/Jun. 2004. |
Swain (Cover Story) Breakthrough products could put lesser-known firms on the map (MDDI archive, Apr. 2004), originally published MDDI Apr. 2004, http://www.devicelink.com/mddi/archive/04/04/006.html, Jul. 2005. |
Vermani et al., "The scope and potential of vaginal drug delivery," PSIT, vol. 3, No. 10, pp. 359-365 (Oct. 2000). |
Wolf, F.K., et al., "Poly(glycolide) multi-arm star polymers: Improved solubility via limited arm length" Beilstein J. Org. Chem. 6, No. 67, pp. 1-9, 2010. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160144161A1 (en) * | 2011-02-23 | 2016-05-26 | Astora Women's Health, Llc | Drug releasing pelvic treatment system and method |
US10272235B2 (en) * | 2011-02-23 | 2019-04-30 | Boston Scientific Scimed, Inc. | Drug releasing pelvic treatment system and method |
US10010400B2 (en) | 2015-03-30 | 2018-07-03 | Taris Biomedical Llc | Devices and methods for local delivery of drug to upper urinary tract |
US20190151638A1 (en) * | 2016-04-07 | 2019-05-23 | Labnpeople Co., Ltd. | Microneedle using bioabsorbable metal |
US10973890B2 (en) | 2016-09-13 | 2021-04-13 | Allergan, Inc. | Non-protein clostridial toxin compositions |
Also Published As
Publication number | Publication date |
---|---|
US10272235B2 (en) | 2019-04-30 |
US20160144161A1 (en) | 2016-05-26 |
CA2827956A1 (en) | 2012-08-30 |
EP2678068A4 (en) | 2014-10-01 |
CA2827956C (en) | 2019-05-07 |
EP2678068A1 (en) | 2014-01-01 |
US20130331818A1 (en) | 2013-12-12 |
WO2012116209A1 (en) | 2012-08-30 |
AU2012220564A1 (en) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10272235B2 (en) | Drug releasing pelvic treatment system and method | |
US20210378698A1 (en) | Device and methods for treating paranasal sinus conditions | |
AU2010248992B2 (en) | Expandable devices and methods therefor | |
EP1110561B1 (en) | Biodegradable stent | |
JP2010522023A (en) | Urological medical device for releasing beneficial therapeutics to the prostate | |
CA2501617A1 (en) | Expandable polymeric endoprosthesis with shape memory | |
WO2011094476A1 (en) | Biodegradable protrusions on inflatable device | |
US9526812B2 (en) | Biodegradable medical devices and method to control degradation of the biodegradable medical devices | |
WO2014117075A1 (en) | Trans-arterial drug delivery | |
CN212140660U (en) | Degradable lacrimal duct tube | |
AU2015201043A1 (en) | Expandable devices and methods therefor | |
WO2015112351A1 (en) | Directional subintimal access for chemical agent delivery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMS RESEARCH CORPORATION, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WATSCHKE, BRIAN P.;REEL/FRAME:031540/0711 Effective date: 20130716 Owner name: AMS RESEARCH CORPORATION, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BUYSMAN, JOHN JASON;REEL/FRAME:031540/0691 Effective date: 20131027 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:ENDO PHARMACEUTICALS SOLUTIONS, INC.;ENDO PHARMACEUTICALS, INC.;AMS RESEARCH CORPORATION;AND OTHERS;REEL/FRAME:032491/0440 Effective date: 20140228 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:ENDO PHARMACEUTICALS SOLUTIONS, INC.;ENDO PHARMACEUTICALS, INC.;AMS RESEARCH CORPORATION;AND OTHERS;REEL/FRAME:032491/0440 Effective date: 20140228 |
|
AS | Assignment |
Owner name: LASERSCOPE, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:036285/0146 Effective date: 20150803 Owner name: AMERICAN MEDICAL SYSTEMS, LLC, MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:036285/0146 Effective date: 20150803 Owner name: AMS RESEARCH, LLC, MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:036285/0146 Effective date: 20150803 |
|
AS | Assignment |
Owner name: AMS RESEARCH, LLC, MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:AMS RESEARCH CORPATION;REEL/FRAME:037300/0728 Effective date: 20141217 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: APHRODITE WOMEN'S HEALTH, LLC, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMS RESEARCH, LLC;REEL/FRAME:037551/0626 Effective date: 20150227 Owner name: ASTORA WOMEN'S HEALTH, LLC, MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:APHRODITE WOMEN'S HEALTH, LLC;REEL/FRAME:037551/0749 Effective date: 20150929 |
|
AS | Assignment |
Owner name: AMS RESEARCH, LLC, MINNESOTA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA NAME PREVIOUSLY RECORDED AT REEL: 037300 FRAME: 0728. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:AMS RESEARCH CORPORATION;REEL/FRAME:042308/0630 Effective date: 20141217 |
|
AS | Assignment |
Owner name: ENDO PHARMACEUTICALS SOLUTIONS, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001 Effective date: 20170427 Owner name: ASTORA WOMEN'S HEALTH HOLDINGS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001 Effective date: 20170427 Owner name: ENDO PHARMACEUTICALS, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001 Effective date: 20170427 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL TRUSTEE, DELAWARE Free format text: SECURITY INTEREST;ASSIGNOR:ASTORA WOMEN'S HEALTH, LLC;REEL/FRAME:042743/0278 Effective date: 20170427 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: SECURITY INTEREST;ASSIGNOR:ASTORA WOMEN'S HEALTH, LLC;REEL/FRAME:042743/0278 Effective date: 20170427 |
|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASTORA WOMEN'S HEALTH, LLC;ENDO HEALTH SOLUTIONS INC.;ASTORA WOMEN'S HEALTH HOLDINGS, LLC;REEL/FRAME:043778/0302 Effective date: 20161222 Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC CORPORATION;REEL/FRAME:043780/0316 Effective date: 20161222 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240112 |
|
AS | Assignment |
Owner name: VINTAGE PHARMACEUTICALS, LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: SLATE PHARMACEUTICALS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: QUARTZ SPECIALTY PHARMACEUTICALS, LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: PAR STERILE PRODUCTS, LLC (FORMERLY KNOWN AS JHP PHARMACEUTICALS, LLC), NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: PAR PHARMACEUTICAL, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: GENERICS INTERNATIONAL (US), INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: GENERICS BIDCO I, LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: ENDO PHARMACEUTICALS SOLUTIONS INC. (FORMERLY KNOWN AS INDEVUS PHARMACEUTICALS, INC.), PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: ENDO PHARMACEUTICALS INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: ENDO GENERIC HOLDINGS, INC. (FORMERLY KNOWN AS PAR PHARMACEUTICALS COMPANIES, INC.), PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: DAVA PHARMACEUTICALS, LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: DAVA INTERNATIONAL, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: BIOSPECIFICS TECHNOLOGIES LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: BIOSPECIFICS TECHNOLOGIES CORP., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: AUXILIUM US HOLDINGS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: AUXILIUM PHARMACEUTICALS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: ASTORA WOMEN'S HEALTH LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: ASTORA WOMEN'S HEALTH HOLDINGS, LLC, MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 Owner name: ACTIENT PHARMACEUTICALS LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:067240/0001 Effective date: 20240423 |