US9225991B2 - Adaptive color space transform coding - Google Patents

Adaptive color space transform coding Download PDF

Info

Publication number
US9225991B2
US9225991B2 US13/940,025 US201313940025A US9225991B2 US 9225991 B2 US9225991 B2 US 9225991B2 US 201313940025 A US201313940025 A US 201313940025A US 9225991 B2 US9225991 B2 US 9225991B2
Authority
US
United States
Prior art keywords
transform
color
image area
data
current image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/940,025
Other versions
US20140355689A1 (en
Inventor
Alexandros Tourapis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/905,889 external-priority patent/US9225988B2/en
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOURAPIS, ALEXANDROS
Priority to US13/940,025 priority Critical patent/US9225991B2/en
Application filed by Apple Inc filed Critical Apple Inc
Priority to JP2016516646A priority patent/JP6397901B2/en
Priority to KR1020157033898A priority patent/KR101760334B1/en
Priority to KR1020197005038A priority patent/KR102103815B1/en
Priority to EP18157340.3A priority patent/EP3352459A1/en
Priority to KR1020217039654A priority patent/KR102423809B1/en
Priority to KR1020247002493A priority patent/KR20240017093A/en
Priority to CN201910878487.6A priority patent/CN110460848B/en
Priority to EP14725842.0A priority patent/EP3005697A1/en
Priority to CN201910878499.9A priority patent/CN110460850B/en
Priority to CN201910878490.8A priority patent/CN110460849B/en
Priority to KR1020217007699A priority patent/KR102336571B1/en
Priority to KR1020177019807A priority patent/KR101952293B1/en
Priority to KR1020227024914A priority patent/KR102629602B1/en
Priority to CN201910878470.0A priority patent/CN110460847B/en
Priority to AU2014272154A priority patent/AU2014272154B2/en
Priority to PCT/US2014/032481 priority patent/WO2014193538A1/en
Priority to CN201480030487.6A priority patent/CN105308960B/en
Priority to KR1020207011145A priority patent/KR102230008B1/en
Priority to KR1020207011144A priority patent/KR102232022B1/en
Priority to TW106124602A priority patent/TWI634782B/en
Priority to TW112122318A priority patent/TWI849976B/en
Priority to TW103114429A priority patent/TWI547151B/en
Priority to TW105119182A priority patent/TWI601417B/en
Priority to TW111105943A priority patent/TWI807644B/en
Priority to TW107126378A priority patent/TWI717621B/en
Priority to TW110102519A priority patent/TWI758081B/en
Publication of US20140355689A1 publication Critical patent/US20140355689A1/en
Publication of US9225991B2 publication Critical patent/US9225991B2/en
Application granted granted Critical
Priority to HK16107153.0A priority patent/HK1219189A1/en
Priority to AU2017265177A priority patent/AU2017265177B2/en
Priority to JP2018027186A priority patent/JP6553220B2/en
Priority to JP2019124720A priority patent/JP6768122B2/en
Priority to AU2019253875A priority patent/AU2019253875B2/en
Priority to AU2020201212A priority patent/AU2020201212B2/en
Priority to AU2020201214A priority patent/AU2020201214B2/en
Priority to JP2020157592A priority patent/JP2021002860A/en
Priority to AU2021201660A priority patent/AU2021201660B2/en
Priority to JP2022151630A priority patent/JP7495457B2/en
Priority to JP2024084224A priority patent/JP2024109832A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/198Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including smoothing of a sequence of encoding parameters, e.g. by averaging, by choice of the maximum, minimum or median value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor

Definitions

  • Image data such as those contained in a video, may contain large amount of information relating to color, pixel location, and time. In order to handle such large amount of information, it may be necessary to compress or encode the image data, without losing too much information from the original video, while at the same time, without increasing the complexity of the data compression, which might decrease the speed of image data processing. Encoded image data may need to be decoded later to convert back or restore the original video information.
  • pixel color data may be first transformed to color data in an appropriate color-space coordinate system. Then, the transformed data is encoded.
  • the image data may have raw pixel color data in a Red-Green-Blue (RGB) color space coordinate system.
  • RGB Red-Green-Blue
  • the raw pixel color data in RGB color space may be transformed into color data in a YCbCr color space coordinate system, by separating the luminance component and the color component.
  • the color data in YCbCr color space coordinate system may be encoded. By doing so, redundant information that might exist between the original three colors may be compressed by removing the redundancy during the color space transform.
  • Additional redundancies in the image data may be removed during the encoding of the transformed image data, by performing spatial prediction and temporal prediction, followed by additional encoding of any remaining residual data to any extent that is desirable, as well as by entropy encoding of the data in an individual frame in a point in time and/or of the data in a duration of the video sequence.
  • Spatial prediction may predict image data in a single frame in time to eliminate redundant information between different pixels in the same frame.
  • Temporal prediction may predict image data in a duration of the video sequence to eliminate redundant information between different frames.
  • a residue image may be generated from the difference between the non-encoded image data and the predicted image data.
  • RGB 4:4:4 Some color space formats, such as RGB 4:4:4, may be less efficient to code natively since the different color planes may have not been effectively de-correlated. That is, redundant information may exist between different components that may not be removed during encoding, resulting in a reduced coding efficiency versus an alternative color space. On the other hand, it may be undesirable to encode this material in an alternative color space such as YUV 4:4:4 or YCoCg and YCoCg-R 4:4:4 in some applications, because of the color transformation that may have to be performed outside the coding loop, as well as possible losses that may be introduced through the color transformation.
  • FIG. 1 illustrates an encoding system according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a decoding system according to an embodiment of the present disclosure.
  • FIG. 3 illustrates an encoding method according to an embodiment of the present disclosure.
  • FIG. 4 illustrates a decoding method according to an embodiment of the present disclosure.
  • a system 100 may include an analyzer 130 , a selectable residue transformer 160 , and an encoder 170 .
  • the analyzer 130 may analyze a current image area in an input video 110 to select a transform.
  • the selectable residue transformer 160 may be controlled by the analyzer 130 , to perform the selectable transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image.
  • the encoder 170 may encode the transformed residue image to generate output data 190 .
  • the analyzer 130 may control the encoder 170 to encode information to identify the selectable transform and to indicate that the selectable transform for the current image area is different from a transform of a previous image area of the input video.
  • the system 100 may include frame buffers 120 to store information of input video 110 , for example, image data previously processed.
  • Such data in frame buffers 120 may be used by inter prediction 150 , controlled by the analyzer 130 , to perform temporal predictions, i.e. generating predicted image data for the current image area based upon the data of a previous frame.
  • Such data in frame buffers 120 may be used by intra prediction 152 , controlled by the analyzer 130 , to perform spatial predictions, i.e. generating predicted image data for the current image area based upon the data of another portion of the current frame.
  • the analyzer 130 may perform its analysis based upon the data stored in the frame buffers 120 . Predicted image area for the current image area generated by the inter prediction 150 and/or the intra prediction 152 may be combined with (or subtracted from) the current image area of the input video 110 by an integrator 140 , to generate the residue image.
  • the current image area may be one of a frame, a slice, and a coding tree unit.
  • the selectable transform may include a color-space transform.
  • the encoder 170 may include an entropy encoder.
  • the encoded information identifying the selectable transform may specify coefficients of a selectable inverse transform.
  • the encoded information identifying the selectable transform may be contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area.
  • the encoder 170 may include a transformer 172 and/or a quantizer 174 , which may be controlled by the analyzer 130 to perform quantization.
  • the analyzer 130 may select and change the selectable transform for the selectable residue transformer 160 and alter parameters accordingly, for example for inter prediction 150 , intra prediction 152 , and encoder 170 , to optimize for data encoding, data decoding, encoded data size, error rate, and/or system resources required for encoding or decoding.
  • HEVC High Efficiency Video Coding
  • the new standard may support the encoding of YUV 4:2:0 8 or 10 bit material using well defined profiles, for example, the Main, Main 10, and Main Still Picture profiles.
  • professional applications such as cinema applications, capture, video editing, archiving, gaming, and consumer applications, especially for screen content compression and sharing, to develop formats to support higher (more than 10 bits) sample precision (bit-depth) as well as different color sampling formats and color spaces, including YUV or RGB 4:4:4.
  • Encoding principles of higher color sampling formats/spaces may be similar to those of formats with less sampling precision, i.e. 4:2:0 YUV, to appropriately handle the difference in resolution for the chroma components.
  • One of the color components may be perceived as equivalent to the luma component in the 4:2:0 YUV encoding, whereas the remaining color components may be handled similarly as the chroma components, while accounting for the higher resolution. That is, prediction tools such as intra prediction and motion compensation, need to account for the increment in resolution, and the transform and quantization processes, also need to handle additional residual data for the color components.
  • other processes such as entropy coding, deblocking and the sample adaptive offset (SAO) among others, may need to be extended to process the increase in video data.
  • all color components may be encoded separately as separate monochrome images, with each color component taking the role of the luma information during the encoding or decoding processes.
  • an additional color space transformation may be performed on the residual data that may result in better de-correlation (less redundancy) between all color components.
  • the selectable color space transformation may be applied on dequantized (inverse quantized) and inverse-transformed residual data using an adaptively derived color-space transform matrix, such as:
  • the color transform matrix may be derived using previously restored image data, such as image data on the left or above of the current transform unit or image data of the transform unit in the previous frames.
  • the derivation may involve normalizing the reference samples in each color plane by subtracting their mean and by computing and normalizing a covariance matrix across all color planes. This may achieve some “localized” coding performance benefits, without adding any new signaling overhead in the HEVC specification. However, this may add complexity in both encoder and decoder for the derivation of the transformation parameters.
  • the color transforms are only applied on residual data. Additional color transforms may be selectable and signaled by the encoder, and the decoder may select and perform the corresponding inverse color transform based upon the signaling decoded from the encoded data, according to the present invention.
  • one or more color transforms may be implicitly or explicitly signaled at different levels within a codec such as HEVC.
  • an encoder may implicitly signal known color transforms, such as transforms in the limited or full range YUV Rec.709, Rec.2020, or Rec.601, as well as YCoCg, from the RGB color space.
  • An encoder may explicitly signal color transforms, by signaling or specifying all inverse color transform coefficients with a predefined precision, for example, by listing the transform coefficients or their relationships in portions of the encoded data.
  • Color transforms including the types, the parameters, and the coefficients, may be signaled or specified within the Sequence Parameter Set (SPS) NALU, the Picture Parameter Sets (PPS), and/or a Slice header. Signaling within a Coding Tree Unit (CTU) may also be possible, although that may cost a bit more in terms of bitrate, which may not be desirable.
  • SPS Sequence Parameter Set
  • PPS Picture Parameter Sets
  • CTU Coding Tree Unit
  • transforms may be predicted within the hierarchy of these elements. That is, a transform in the PPS may be predicted from transforms defined in the SPS, and transforms in the slice header may be predicted from transforms in the PPS and/or the SPS. New syntax elements and units may be defined and used to allow this prediction of transforms between different levels of the video sequence hierarchy, to include the prediction or non-prediction of the transform from specified transforms or higher level transforms, as well as for the prediction or non-prediction of the precision of the transform coefficients and the coefficients themselves.
  • Derivation of an explicitly defined color transform may be based on data available, such as sample data from the entire sequence, picture, slice, or CTU.
  • An encoder may choose or select to use data that correspond to current pixel samples if available, or use data from past frames or units that have already been encoded.
  • a principal component analysis method e.g. a covariance method, iterative method, non-linear iterative partial least squares, etc., may be used to derive the transform coefficients.
  • a system may dictate that only a single transform shall be used for the entire sequence, thus not permitting any change of the color transform within any subcomponents of the sequence, i.e. within a picture, a slice, CTU, or a Transform Unit (TU), through signaling or semantics (i.e. forced by the codec or profile/level).
  • TU Transform Unit
  • a similar restriction may be performed at a lower level, i.e. within a picture, slice, or CTU.
  • a system may also be possible for a system to allow switching of color transforms within a sequence, picture, slice, or even CTU.
  • Switching of color transforms for every picture and slice may be done by signaling new color transform parameters for each new data block that override the higher level or previous block transform parameters. Additional transform parameters may be signaled at a lower layer, effectively allowing switching of the color transform for an entire CTU, Coding Unit (CU), or even TU.
  • CU Coding Unit
  • Such signaling may take up a significant number of bits in the resulting encoded data stream, thus increasing the data stream size.
  • the color transform may be derived based on a variety of predefined or signaled conditions in the bitstream.
  • a particular color transform may be pre-assigned to a specific transform block size, coding unit size, or prediction mode (e.g. intra vs inter). For example, assuming that transform units of luma and chroma data are aligned for a particular video sequence, if the size of the luma transform that is to be used is 16 ⁇ 16, then Color transform A is used, if 8 ⁇ 8 luma transform is to be used, color transform B is used, and for 32 ⁇ 32 or 4 ⁇ 4 transforms no color transform is applied. If the transform units of luma and chroma data are not aligned, then alternative but similar ways of pre-defining conditional derivation of color transforms may be used to account for the misalignment of transform units.
  • a system may buffer or cache a number of pre-defined color transforms along with associated processing algorithms, in encoding or decoding, such that the system may store a codebook that it can look up the pre-defined color transforms, for example via a lookup table (LUT).
  • the system may also compute or predict color transforms and store them in the buffer for later lookup.
  • prediction units (PUs) and TUs may be defined within a CU with no strict dependency between the two. Thus, prediction units (PUs) and TUs may not be directly related in terms of size. In other codec standards, if TUs are defined as strictly within PUs, then PU information, such as prediction list and reference indices, may be used to derive the color transform.
  • the encoder may signal in the encoded data stream whether to use a previously defined/signaled color transformed, or whether the color transform should be derived separately for the current unit based on neighborhood information. This allows the system to control the complexity of the decoder and to avoid cases where there is insufficient information to derive the color transform from its neighbors. This may be especially true around object or color boundaries or noisy data, where neighborhood data may be uncorrelated.
  • the adaptively computed color transform may be computed and updated at less frequent intervals, e.g. every CTU row or even for every CTU, to reduce decoder complexity.
  • ComputedTransform(n) is the transform that is estimated purely based on local pixel group information.
  • the two weights, w 0 and w 1 may be predefined or signaled in the system providing further flexibility on how to control the computation of the color transform. That is, increasing the value of w 0 relative to w 1 , increases the dependence of resulting color transform Transform(n) on a neighboring color transform Transform(n ⁇ 1).
  • An encoding system may determine all of the transforms needed to encode a video sequence, by for example, analyzing the image data in the video sequence and perform cost-benefit evaluation to optimize the encoding, the decoding, quality of data, and/or size of encoded data. For example, if the encoding system has sufficient computational resources, then it may perform a “brute force” analysis, by performing multiple possible color transforms on all individual frames and transform units, and then select one color transform for each transform unit that results in the least rate distortion, if rate distortion is to be optimized.
  • a “brute force” analysis would require a lot of computational resources, and would be slow, and thus it may not be useful in an application where encoding needs to be done in near “real time”, for example, in “live” video streaming.
  • the usage of different color transforms per block may impact other portions of the encoding and decoding process.
  • the entropy coding e.g. based on the context adaptive binary arithmetic coding (CABAC)
  • CABAC context adaptive binary arithmetic coding
  • the statistics for the entropy coding process may be accumulated accordingly, and deblocking may utilize the quantization parameters (QP) used for each color component when filtering block edges.
  • adaptive color transform changes may be easier to account for during deblocking.
  • the signaled QP values may be used while ignoring the color space used, or the QP values may be approximated in the native color domain given the QP values used for coding the transformed residual.
  • a simple way is to apply the same color transform that is applied on the residual data to also the quantizer values, or define and signal an additional transform that would help translate the used quantizer values for the transformed residuals to native color space quantizer values.
  • the system may not need to translate or adjust quantization values for the adaptive color transforms.
  • a system 200 may include a decoder 230 , a selectable residue inverse transformer 220 , and an integrator 240 .
  • the decoder 230 may receive and decode input data 210 .
  • the selectable residue inverse transformer 220 may be controlled by the decoder 230 , to perform a selectable inverse transform on the decoded input data, to generate an inverse transformed residue image.
  • the integrator 240 may combine the inverse transformed residue image with a predicted image for a current image area to generate a restored current image area of an output video 290 .
  • the decoder 230 may select the selectable inverse transform based upon encoded information in the input data 210 , the encoded information identifies the selectable inverse transform and indicates that the selectable inverse transform for the current image area is different from a transform of a previous image area of the output video 290 .
  • the system 200 may include frame buffers 280 to store information of output video 290 , for example, image data previously processed.
  • Such data in frame buffers 280 may be used by inter prediction 250 , controlled by the decoder 230 , to perform temporal predictions, i.e. generating predicted image data for the current image area based upon the data of a previous frame.
  • Intra prediction 260 may be controlled by the decoder 230 to perform spatial predictions, i.e. generating predicted image data for the current image area based upon the data of another portion of the current frame.
  • Predicted image area for the current image area generated by the inter prediction 250 and/or the intra prediction 260 may be combined with (or added with) the inverse transformed residue image, from selectable residue inverse transformer 220 , by the integrator 240 , to generate the restored current image area of the output video 290 .
  • the system 200 may include an adjuster 270 , which performs adjustments of restored current image area for the output video 290 .
  • the adjuster 270 may include deblocking 272 and sample adaptive offset (SAO) 274 .
  • the adjuster 270 may output to the output video 290 and/or the frame buffers 280 .
  • the current image area may be one of a frame, a slice, and a coding tree unit.
  • the selectable inverse transform may include a color-space transform.
  • the decoder 230 may include an entropy decoder.
  • the encoded information identifying the selectable inverse transform may specify coefficients of a selectable inverse transform.
  • the encoded information identifying the selectable inverse transform may be contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area.
  • the decoder 230 may include an inverse transformer 232 and/or an inverse quantizer 234 , which may perform quantization.
  • the output video 290 may be connected to a display device (not shown) and displayed.
  • the decoder 230 may select and change the selectable inverse transform for the selectable residue inverse transformer 220 and alter parameters accordingly, for example for inter prediction 250 , intra prediction 260 , and adjuster 270 , based upon encoded information in the input data received identifying the selectable inverse transform.
  • FIG. 3 illustrates a method 300 according to an embodiment.
  • the method 300 may include block 310 , analyzing, by an analyzer, a current image area in an input video to select a transform.
  • the analyzer may control the encoder to encode information to identify the selectable transform and to indicate that the selectable transform for the current image area is different from a transform of a previous image area of the input video.
  • the analyzer may analyze the input video and select an overall sequence color transform for the entire video sequence, and analyze and select residue color transforms for individual frames, slices, pixel blocks, CTUs, etc.
  • the analyzer may continually analyze the input video, and perform selecting of the color transform in-situ for each frame as the input video is received and encoding is processed. Or the analyzer may analyze the entire input video sequence completely before selecting the color transforms and beginning the encoding.
  • FIG. 4 illustrates a method 400 according to an embodiment.
  • the method 400 may include block 410 , receiving and decoding, by a decoder, input data.
  • the decoder may select the selectable inverse transform based upon encoded information in the input data, the encoded information identifies the selectable inverse transform and indicates that the selectable inverse transform for the current image area is different from a transform of a previous image area of the input video.
  • the selectable residue transformer 160 in FIG. 1 may perform a color transform where one color component of the result may be based upon only one color component of the input.
  • the selectable residue transformer 160 may perform the following color transforms:
  • a right shift operation i.e. coded Rb may be derived by (B ⁇ G+1)>>1).
  • a clipping operation i.e. min(max_range, max(min_range, B ⁇ G)
  • min_range and max_range are the minimum and maximum values allowed in a transform and may be pre-designated in protocol, signaled by
  • the transforms above may be advantageous, because they are “causal” and corresponding to the sequence of how color components in image data may be decoded, for example, commonly starting from Green (or Luma with YCbCr or YCgCo/YCgCo-R color spaces), then B (or Cb), followed by R (or Cr).
  • the first color component may be dependent upon only one color component of the input data, and may be independent from the other (not yet coded) color components of the input data. However, after the first color component is encoded, it may be used as a factor to compute the prediction of the other color components.
  • Corresponding decoding system may implement inverse color transforms corresponding to the above color transforms.
  • the selectable residue transformer 160 in FIG. 1 may implement separate or split processing paths for each color components, where the input data may be split into individual color components, and the resulting transformed color components may be later merged by the encoder 170 .
  • the selectable residue transformer 160 in FIG. 1 may be implemented using “closed” loop optimization of the color transforms. That is, the selectable residue transformer 160 may receive feedback data to use in the color transforms.
  • the selectable residue transformer 160 may perform color transforms using the original samples as input data. For example, in a GRbRr transform, the original GBR color space data samples may be used to perform the color transform, with each new set of resulting transformed data computed independently using new sets of original GBR color space data samples.
  • the Green component data may be color transformed and encoded first, followed by the other colors.
  • Rb* represents the reconstructed Rb residue data
  • Rr ′ ( R ⁇ G *)
  • R represents the red component data
  • Rr′ represents the residue data for Rr component
  • Rr* IQT ( QT ( Rr ′)
  • Rr* represents the reconstructed Rr residue data
  • the encoded data components Rb′, Rb*, Rr′, and Rr* are generated based upon reconstructed green residue data. This may help a corresponding decoding system to achieve a better performance. Since the corresponding decoding system may only have reconstructed color component data (such as G*) for the inverse color transform and not the original color data samples, the encoding system using reconstructed color component data would better match the decoding system, reducing any potential color component leakage caused in the quantization process.
  • reconstructed color component data such as G*
  • While the computer-readable medium may be described as a single medium, the term “computer-readable medium” includes a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions.
  • the term “computer-readable medium” shall also include any medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a computer system to perform any one or more of the embodiments disclosed herein.
  • the computer-readable medium may comprise a non-transitory computer-readable medium or media and/or comprise a transitory computer-readable medium or media.
  • the computer-readable medium can include a solid-state memory such as a memory card or other package that houses one or more non-volatile read-only memories.
  • the computer-readable medium can be a random access memory or other volatile re-writable memory.
  • the computer-readable medium can include a magneto-optical or optical medium, such as a disk or tapes or other storage device to capture carrier wave signals such as a signal communicated over a transmission medium. Accordingly, the disclosure is considered to include any computer-readable medium or other equivalents and successor media, in which data or instructions may be stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)

Abstract

An encoder system may include an analyzer that analyzes a current image area in an input video to select a transform. A selectable residue transformer, controlled by the analyzer, may perform the selectable transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image. An encoder may encode the transformed residue image to generate output data. The analyzer controls the encoder to encode information to identify the selectable transform and to indicate that the selectable transform for the current image area is different from a transform of a previous image area of the input video. A decoder system may include components appropriate for decoding the output data from the encoder system.

Description

PRIORITY CLAIM
The present application is a Continuation-in-Part of U.S. patent application Ser. No. 13/905,889, filed on May 30, 2013, the entirety of which is incorporated by reference herein.
BACKGROUND
Image data, such as those contained in a video, may contain large amount of information relating to color, pixel location, and time. In order to handle such large amount of information, it may be necessary to compress or encode the image data, without losing too much information from the original video, while at the same time, without increasing the complexity of the data compression, which might decrease the speed of image data processing. Encoded image data may need to be decoded later to convert back or restore the original video information.
To encode an image, pixel color data may be first transformed to color data in an appropriate color-space coordinate system. Then, the transformed data is encoded. For example, the image data may have raw pixel color data in a Red-Green-Blue (RGB) color space coordinate system. To encode the image data, the raw pixel color data in RGB color space may be transformed into color data in a YCbCr color space coordinate system, by separating the luminance component and the color component. Then, the color data in YCbCr color space coordinate system may be encoded. By doing so, redundant information that might exist between the original three colors may be compressed by removing the redundancy during the color space transform.
Additional redundancies in the image data may be removed during the encoding of the transformed image data, by performing spatial prediction and temporal prediction, followed by additional encoding of any remaining residual data to any extent that is desirable, as well as by entropy encoding of the data in an individual frame in a point in time and/or of the data in a duration of the video sequence. Spatial prediction may predict image data in a single frame in time to eliminate redundant information between different pixels in the same frame. Temporal prediction may predict image data in a duration of the video sequence to eliminate redundant information between different frames. A residue image may be generated from the difference between the non-encoded image data and the predicted image data.
Some color space formats, such as RGB 4:4:4, may be less efficient to code natively since the different color planes may have not been effectively de-correlated. That is, redundant information may exist between different components that may not be removed during encoding, resulting in a reduced coding efficiency versus an alternative color space. On the other hand, it may be undesirable to encode this material in an alternative color space such as YUV 4:4:4 or YCoCg and YCoCg-R 4:4:4 in some applications, because of the color transformation that may have to be performed outside the coding loop, as well as possible losses that may be introduced through the color transformation.
Thus, there is a need for an improved way of transforming and encoding image data efficiently.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an encoding system according to an embodiment of the present disclosure.
FIG. 2 illustrates a decoding system according to an embodiment of the present disclosure.
FIG. 3 illustrates an encoding method according to an embodiment of the present disclosure.
FIG. 4 illustrates a decoding method according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
According to an embodiment as illustrated in FIG. 1, a system 100 may include an analyzer 130, a selectable residue transformer 160, and an encoder 170.
The analyzer 130 may analyze a current image area in an input video 110 to select a transform. The selectable residue transformer 160 may be controlled by the analyzer 130, to perform the selectable transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image. The encoder 170 may encode the transformed residue image to generate output data 190. The analyzer 130 may control the encoder 170 to encode information to identify the selectable transform and to indicate that the selectable transform for the current image area is different from a transform of a previous image area of the input video.
Optionally, the system 100 may include frame buffers 120 to store information of input video 110, for example, image data previously processed. Such data in frame buffers 120 may be used by inter prediction 150, controlled by the analyzer 130, to perform temporal predictions, i.e. generating predicted image data for the current image area based upon the data of a previous frame. Or such data in frame buffers 120 may be used by intra prediction 152, controlled by the analyzer 130, to perform spatial predictions, i.e. generating predicted image data for the current image area based upon the data of another portion of the current frame. Optionally, the analyzer 130 may perform its analysis based upon the data stored in the frame buffers 120. Predicted image area for the current image area generated by the inter prediction 150 and/or the intra prediction 152 may be combined with (or subtracted from) the current image area of the input video 110 by an integrator 140, to generate the residue image.
According to an embodiment, the current image area may be one of a frame, a slice, and a coding tree unit. The selectable transform may include a color-space transform. The encoder 170 may include an entropy encoder. The encoded information identifying the selectable transform may specify coefficients of a selectable inverse transform. The encoded information identifying the selectable transform may be contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area. The encoder 170 may include a transformer 172 and/or a quantizer 174, which may be controlled by the analyzer 130 to perform quantization.
The analyzer 130 may select and change the selectable transform for the selectable residue transformer 160 and alter parameters accordingly, for example for inter prediction 150, intra prediction 152, and encoder 170, to optimize for data encoding, data decoding, encoded data size, error rate, and/or system resources required for encoding or decoding.
The next generation High Efficiency Video Coding (HEVC) standard introduced several new video coding tools in an effort to improve video coding efficiency versus previous video coding standards and technologies such as MPEG-2, MPEG-4 part2, MPEG-4 AVC/H.264, VC1, and VP8 among others.
The new standard may support the encoding of YUV 4:2:0 8 or 10 bit material using well defined profiles, for example, the Main, Main 10, and Main Still Picture profiles. There is considerable interest in professional applications, such as cinema applications, capture, video editing, archiving, gaming, and consumer applications, especially for screen content compression and sharing, to develop formats to support higher (more than 10 bits) sample precision (bit-depth) as well as different color sampling formats and color spaces, including YUV or RGB 4:4:4.
Encoding principles of higher color sampling formats/spaces may be similar to those of formats with less sampling precision, i.e. 4:2:0 YUV, to appropriately handle the difference in resolution for the chroma components. One of the color components may be perceived as equivalent to the luma component in the 4:2:0 YUV encoding, whereas the remaining color components may be handled similarly as the chroma components, while accounting for the higher resolution. That is, prediction tools such as intra prediction and motion compensation, need to account for the increment in resolution, and the transform and quantization processes, also need to handle additional residual data for the color components. Similarly, other processes such as entropy coding, deblocking and the sample adaptive offset (SAO) among others, may need to be extended to process the increase in video data. Alternatively, all color components may be encoded separately as separate monochrome images, with each color component taking the role of the luma information during the encoding or decoding processes.
To improve coding performance, an additional color space transformation may be performed on the residual data that may result in better de-correlation (less redundancy) between all color components. The selectable color space transformation may be applied on dequantized (inverse quantized) and inverse-transformed residual data using an adaptively derived color-space transform matrix, such as:
[ a b c d e f g h i ] t [ P Q R ] = [ G B R ]
The color transform matrix may be derived using previously restored image data, such as image data on the left or above of the current transform unit or image data of the transform unit in the previous frames. The derivation may involve normalizing the reference samples in each color plane by subtracting their mean and by computing and normalizing a covariance matrix across all color planes. This may achieve some “localized” coding performance benefits, without adding any new signaling overhead in the HEVC specification. However, this may add complexity in both encoder and decoder for the derivation of the transformation parameters.
To simplify the adaptive color transform in video encoding and decoding, the color transforms are only applied on residual data. Additional color transforms may be selectable and signaled by the encoder, and the decoder may select and perform the corresponding inverse color transform based upon the signaling decoded from the encoded data, according to the present invention.
In particular, one or more color transforms may be implicitly or explicitly signaled at different levels within a codec such as HEVC. For example, an encoder may implicitly signal known color transforms, such as transforms in the limited or full range YUV Rec.709, Rec.2020, or Rec.601, as well as YCoCg, from the RGB color space. An encoder may explicitly signal color transforms, by signaling or specifying all inverse color transform coefficients with a predefined precision, for example, by listing the transform coefficients or their relationships in portions of the encoded data. Color transforms, including the types, the parameters, and the coefficients, may be signaled or specified within the Sequence Parameter Set (SPS) NALU, the Picture Parameter Sets (PPS), and/or a Slice header. Signaling within a Coding Tree Unit (CTU) may also be possible, although that may cost a bit more in terms of bitrate, which may not be desirable.
If such transform information is specified for different levels of the video sequence, i.e. sequence, frame, and pixel block of a CTU, then the transforms may be predicted within the hierarchy of these elements. That is, a transform in the PPS may be predicted from transforms defined in the SPS, and transforms in the slice header may be predicted from transforms in the PPS and/or the SPS. New syntax elements and units may be defined and used to allow this prediction of transforms between different levels of the video sequence hierarchy, to include the prediction or non-prediction of the transform from specified transforms or higher level transforms, as well as for the prediction or non-prediction of the precision of the transform coefficients and the coefficients themselves. Derivation of an explicitly defined color transform may be based on data available, such as sample data from the entire sequence, picture, slice, or CTU. An encoder may choose or select to use data that correspond to current pixel samples if available, or use data from past frames or units that have already been encoded. A principal component analysis method, e.g. a covariance method, iterative method, non-linear iterative partial least squares, etc., may be used to derive the transform coefficients.
A system may dictate that only a single transform shall be used for the entire sequence, thus not permitting any change of the color transform within any subcomponents of the sequence, i.e. within a picture, a slice, CTU, or a Transform Unit (TU), through signaling or semantics (i.e. forced by the codec or profile/level). A similar restriction may be performed at a lower level, i.e. within a picture, slice, or CTU.
However, it may also be possible for a system to allow switching of color transforms within a sequence, picture, slice, or even CTU. Switching of color transforms for every picture and slice may be done by signaling new color transform parameters for each new data block that override the higher level or previous block transform parameters. Additional transform parameters may be signaled at a lower layer, effectively allowing switching of the color transform for an entire CTU, Coding Unit (CU), or even TU. However such signaling may take up a significant number of bits in the resulting encoded data stream, thus increasing the data stream size.
Alternatively, the color transform may be derived based on a variety of predefined or signaled conditions in the bitstream. In particular, a particular color transform may be pre-assigned to a specific transform block size, coding unit size, or prediction mode (e.g. intra vs inter). For example, assuming that transform units of luma and chroma data are aligned for a particular video sequence, if the size of the luma transform that is to be used is 16×16, then Color transform A is used, if 8×8 luma transform is to be used, color transform B is used, and for 32×32 or 4×4 transforms no color transform is applied. If the transform units of luma and chroma data are not aligned, then alternative but similar ways of pre-defining conditional derivation of color transforms may be used to account for the misalignment of transform units.
A system may buffer or cache a number of pre-defined color transforms along with associated processing algorithms, in encoding or decoding, such that the system may store a codebook that it can look up the pre-defined color transforms, for example via a lookup table (LUT). The system may also compute or predict color transforms and store them in the buffer for later lookup.
In some codec standards, prediction units (PUs) and TUs may be defined within a CU with no strict dependency between the two. Thus, prediction units (PUs) and TUs may not be directly related in terms of size. In other codec standards, if TUs are defined as strictly within PUs, then PU information, such as prediction list and reference indices, may be used to derive the color transform.
For systems where complexity is not a concern, then a combination of the above methods may be used. That is, for every CTU, CU, or transform block, the encoder may signal in the encoded data stream whether to use a previously defined/signaled color transformed, or whether the color transform should be derived separately for the current unit based on neighborhood information. This allows the system to control the complexity of the decoder and to avoid cases where there is insufficient information to derive the color transform from its neighbors. This may be especially true around object or color boundaries or noisy data, where neighborhood data may be uncorrelated. The adaptively computed color transform may be computed and updated at less frequent intervals, e.g. every CTU row or even for every CTU, to reduce decoder complexity. Stability of the color transform may be increased by slowly adapting the color transform using previously generated values. That is, the computation of the current color transform at unit (e.g. Transform Unit) n, may be performed as:
Transform(n)=w 0*Transform(n−1)+w 1*ComputedTransform(n)
Where the ComputedTransform(n) is the transform that is estimated purely based on local pixel group information. The two weights, w0 and w1, may be predefined or signaled in the system providing further flexibility on how to control the computation of the color transform. That is, increasing the value of w0 relative to w1, increases the dependence of resulting color transform Transform(n) on a neighboring color transform Transform(n−1).
An encoding system may determine all of the transforms needed to encode a video sequence, by for example, analyzing the image data in the video sequence and perform cost-benefit evaluation to optimize the encoding, the decoding, quality of data, and/or size of encoded data. For example, if the encoding system has sufficient computational resources, then it may perform a “brute force” analysis, by performing multiple possible color transforms on all individual frames and transform units, and then select one color transform for each transform unit that results in the least rate distortion, if rate distortion is to be optimized. However, such a “brute force” analysis would require a lot of computational resources, and would be slow, and thus it may not be useful in an application where encoding needs to be done in near “real time”, for example, in “live” video streaming.
The usage of different color transforms per block may impact other portions of the encoding and decoding process. In particular, the entropy coding, e.g. based on the context adaptive binary arithmetic coding (CABAC), assumes that coefficients in neighboring blocks are in the same color domain, the statistics for the entropy coding process may be accumulated accordingly, and deblocking may utilize the quantization parameters (QP) used for each color component when filtering block edges.
However, this may not be the case in a system that uses block level adaptive color transforms which may impact coding performance. In the case of entropy coding, the impact may be trivial and thus the difference in color space may be ignored. Limiting the process in considering neighboring data that are in the same color space may penalize performance in terms of complexity and implementation, because more contexts may need to be handled and compensated for each new color transform that may have been used. Thus, the system may not need to alter the encoding process for the adaptive color transforms.
On the other hand, adaptive color transform changes may be easier to account for during deblocking. In particular, when deriving the appropriate thresholds for each color component for deblocking, the signaled QP values may be used while ignoring the color space used, or the QP values may be approximated in the native color domain given the QP values used for coding the transformed residual. For example, a simple way is to apply the same color transform that is applied on the residual data to also the quantizer values, or define and signal an additional transform that would help translate the used quantizer values for the transformed residuals to native color space quantizer values. For simplicity, the system may not need to translate or adjust quantization values for the adaptive color transforms.
According to an embodiment as illustrated in FIG. 2, a system 200 may include a decoder 230, a selectable residue inverse transformer 220, and an integrator 240.
The decoder 230 may receive and decode input data 210. The selectable residue inverse transformer 220 may be controlled by the decoder 230, to perform a selectable inverse transform on the decoded input data, to generate an inverse transformed residue image. The integrator 240 may combine the inverse transformed residue image with a predicted image for a current image area to generate a restored current image area of an output video 290. The decoder 230 may select the selectable inverse transform based upon encoded information in the input data 210, the encoded information identifies the selectable inverse transform and indicates that the selectable inverse transform for the current image area is different from a transform of a previous image area of the output video 290.
Optionally, the system 200 may include frame buffers 280 to store information of output video 290, for example, image data previously processed. Such data in frame buffers 280 may be used by inter prediction 250, controlled by the decoder 230, to perform temporal predictions, i.e. generating predicted image data for the current image area based upon the data of a previous frame. Intra prediction 260 may be controlled by the decoder 230 to perform spatial predictions, i.e. generating predicted image data for the current image area based upon the data of another portion of the current frame. Predicted image area for the current image area generated by the inter prediction 250 and/or the intra prediction 260 may be combined with (or added with) the inverse transformed residue image, from selectable residue inverse transformer 220, by the integrator 240, to generate the restored current image area of the output video 290. The system 200 may include an adjuster 270, which performs adjustments of restored current image area for the output video 290. The adjuster 270 may include deblocking 272 and sample adaptive offset (SAO) 274. The adjuster 270 may output to the output video 290 and/or the frame buffers 280.
According to an embodiment, the current image area may be one of a frame, a slice, and a coding tree unit. The selectable inverse transform may include a color-space transform. The decoder 230 may include an entropy decoder. The encoded information identifying the selectable inverse transform may specify coefficients of a selectable inverse transform. The encoded information identifying the selectable inverse transform may be contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area. The decoder 230 may include an inverse transformer 232 and/or an inverse quantizer 234, which may perform quantization. The output video 290 may be connected to a display device (not shown) and displayed.
The decoder 230 may select and change the selectable inverse transform for the selectable residue inverse transformer 220 and alter parameters accordingly, for example for inter prediction 250, intra prediction 260, and adjuster 270, based upon encoded information in the input data received identifying the selectable inverse transform.
FIG. 3 illustrates a method 300 according to an embodiment.
The method 300 may include block 310, analyzing, by an analyzer, a current image area in an input video to select a transform.
At block 320, performing, by a selectable residue transformer controlled by the analyzer, the selectable transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image.
At block 330, encoding, by an encoder, the transformed residue image to generate output data.
According to an embodiment, the analyzer may control the encoder to encode information to identify the selectable transform and to indicate that the selectable transform for the current image area is different from a transform of a previous image area of the input video.
According to an embodiment, the analyzer may analyze the input video and select an overall sequence color transform for the entire video sequence, and analyze and select residue color transforms for individual frames, slices, pixel blocks, CTUs, etc. The analyzer may continually analyze the input video, and perform selecting of the color transform in-situ for each frame as the input video is received and encoding is processed. Or the analyzer may analyze the entire input video sequence completely before selecting the color transforms and beginning the encoding.
FIG. 4 illustrates a method 400 according to an embodiment.
The method 400 may include block 410, receiving and decoding, by a decoder, input data.
At block 420, performing, by a selectable residue inverse transformer controlled by the decoder, a selectable inverse transform on the decoded input data, to generate an inverse transformed residue image.
At block 430, combining, by an integrator, the inverse transformed residue image with a predicted image for a current image area to generate a restored current image area of an output video.
According to an embodiment, the decoder may select the selectable inverse transform based upon encoded information in the input data, the encoded information identifies the selectable inverse transform and indicates that the selectable inverse transform for the current image area is different from a transform of a previous image area of the input video.
According to an embodiment, the selectable residue transformer 160 in FIG. 1 may perform a color transform where one color component of the result may be based upon only one color component of the input. For example, the selectable residue transformer 160 may perform the following color transforms:
a ) [ G ] [ 1 0 0 ] [ G ] [ Rb ] = [ - 1 1 0 ] [ B ] [ Rr ] [ - 1 0 1 ] [ R ] b ) [ G ] [ 1 0 0 ] [ G ] [ Rb ] = [ - 1 1 0 ] [ B ] [ Rrb ] [ 0 - 1 1 ] [ R ] c ) [ G ] [ 1 0 0 ] [ G ] [ R ] = [ 0 1 0 ] [ B ] [ Rrb ] [ 0 - 1 1 ] [ R ]
If the input data each has N bits, the color transforms may be combined with simple quantization to N bits including sign. Subtraction in computation above may be done in two ways. First, a right shift operation (i.e. coded Rb may be derived by (B−G+1)>>1). Second, a clipping operation [i.e. min(max_range, max(min_range, B−G)), where min_range and max_range are the minimum and maximum values allowed in a transform and may be pre-designated in protocol, signaled by the encoding system, or computed dynamically (for example, max_range=(1<<(N−1))−1, and min_range=−max_range−1)].
The transforms above may be advantageous, because they are “causal” and corresponding to the sequence of how color components in image data may be decoded, for example, commonly starting from Green (or Luma with YCbCr or YCgCo/YCgCo-R color spaces), then B (or Cb), followed by R (or Cr). The first color component may be dependent upon only one color component of the input data, and may be independent from the other (not yet coded) color components of the input data. However, after the first color component is encoded, it may be used as a factor to compute the prediction of the other color components. Corresponding decoding system may implement inverse color transforms corresponding to the above color transforms. This may allow the implementation of encoding and decoding systems that operate on such color planes serially, to allow color components to be processed as they are sent or received in sequence, using relatively simple computations shown above without adding extra delay of waiting for all color components to be queued and/or processed. The selectable residue transformer 160 in FIG. 1 may implement separate or split processing paths for each color components, where the input data may be split into individual color components, and the resulting transformed color components may be later merged by the encoder 170.
According to an embodiment, the selectable residue transformer 160 in FIG. 1 may be implemented using “closed” loop optimization of the color transforms. That is, the selectable residue transformer 160 may receive feedback data to use in the color transforms.
The selectable residue transformer 160 may perform color transforms using the original samples as input data. For example, in a GRbRr transform, the original GBR color space data samples may be used to perform the color transform, with each new set of resulting transformed data computed independently using new sets of original GBR color space data samples.
Given the serial nature of the color transforms shown in examples above, the Green component data may be color transformed and encoded first, followed by the other colors. the selectable residue transformer 160 in FIG. 1 may use a reconstructed Green component data as input for the color transform of the other color components, by for example using the following equations:
G*=IQT(QT(G′),
where QT is quantizing functions, and IQT is the corresponding inverse quantizing functions, G′ represents the green residue data, and G* represents the reconstructed green residue data,
Rb′=(B−G*),
where B represents the blue component data, and Rb′ represents the residue data for Rb component,
Rb*=IQT(QT(Rb′),
where Rb* represents the reconstructed Rb residue data,
Rr′=(R−G*),
where R represents the red component data, and Rr′ represents the residue data for Rr component,
Rr*=IQT(QT(Rr′),
where Rr* represents the reconstructed Rr residue data.
With the above color transform, the encoded data components Rb′, Rb*, Rr′, and Rr* are generated based upon reconstructed green residue data. This may help a corresponding decoding system to achieve a better performance. Since the corresponding decoding system may only have reconstructed color component data (such as G*) for the inverse color transform and not the original color data samples, the encoding system using reconstructed color component data would better match the decoding system, reducing any potential color component leakage caused in the quantization process.
It is appreciated that the disclosure is not limited to the described embodiments, and that any number of scenarios and embodiments in which conflicting appointments exist may be resolved.
Although the disclosure has been described with reference to several exemplary embodiments, it is understood that the words that have been used are words of description and illustration, rather than words of limitation. Changes may be made within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the disclosure in its aspects. Although the disclosure has been described with reference to particular means, materials and embodiments, the disclosure is not intended to be limited to the particulars disclosed; rather the disclosure extends to all functionally equivalent structures, methods, and uses such as are within the scope of the appended claims.
While the computer-readable medium may be described as a single medium, the term “computer-readable medium” includes a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. The term “computer-readable medium” shall also include any medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a computer system to perform any one or more of the embodiments disclosed herein.
The computer-readable medium may comprise a non-transitory computer-readable medium or media and/or comprise a transitory computer-readable medium or media. In a particular non-limiting, exemplary embodiment, the computer-readable medium can include a solid-state memory such as a memory card or other package that houses one or more non-volatile read-only memories. Further, the computer-readable medium can be a random access memory or other volatile re-writable memory. Additionally, the computer-readable medium can include a magneto-optical or optical medium, such as a disk or tapes or other storage device to capture carrier wave signals such as a signal communicated over a transmission medium. Accordingly, the disclosure is considered to include any computer-readable medium or other equivalents and successor media, in which data or instructions may be stored.
Although the present application describes specific embodiments which may be implemented as code segments in computer-readable media, it is to be understood that dedicated hardware implementations, such as application specific integrated circuits, programmable logic arrays and other hardware devices, can be constructed to implement one or more of the embodiments described herein. Applications that may include the various embodiments set forth herein may broadly include a variety of electronic and computer systems. Accordingly, the present application may encompass software, firmware, and hardware implementations, or combinations thereof.
The present specification describes components and functions that may be implemented in particular embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same or similar functions are considered equivalents thereof.
The illustrations of the embodiments described herein are intended to provide a general understanding of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
One or more embodiments of the disclosure may be referred to herein, individually and/or collectively, by the term “disclosure” merely for convenience and without intending to voluntarily limit the scope of this application to any particular disclosure or inventive concept. Moreover, although specific embodiments have been illustrated and described herein, it should be appreciated that any subsequent arrangement designed to achieve the same or similar purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all subsequent adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the description.
In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.
The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims (24)

What is claimed:
1. An encoding system for compressing and maintaining image data comprising:
one or more processors; and
memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for:
analyzing a current image area in an input video to select a transform between color space formats;
performing the selected transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image; and
encoding the transformed residue image to generate output data,
wherein encoded information of the output data includes color transform parameters to identify the selected transform and to indicate that the selected transform for the current image area is different from a transform of a previous image area of the input video.
2. The system of claim 1, wherein the current image area is one of a frame, a slice, and a coding tree unit.
3. The system of claim 1, wherein the other color components of the transformed residue image are generated based upon a reconstructed residue image of the one color component of the transformed residue image.
4. The system of claim 1, wherein the encoded information identifying the selected transform specifies coefficients of a selectable inverse transform.
5. The system of claim 1, wherein the encoded information identifying the selected transform is contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area.
6. The system of claim 1, wherein
one color component of the transformed residue image is generated based upon only one color component of the residue image, and
other color components of the transformed residue image are generated based upon more than one color components of the residue image.
7. A system comprising:
one or more processors; and
memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for:
receiving and decoding input data;
performing a selected inverse transform on the decoded input data, to generate an inverse transformed residue image; and
combining the inverse transformed residue image with a predicted image for a current image area to generate a restored current image area of an output video,
wherein selection of the selected inverse transform is based upon encoded information in the input data, the encoded information including color transform parameters that identify the selected inverse transform and indicate that the selected inverse transform for the current image area is different from a transform of a previous image area of the output video.
8. The system of claim 7, wherein the current image area is one of a frame, a slice, and a coding tree unit.
9. The system of claim 7, wherein decoding is performed by an entropy decoder.
10. The system of claim 7, wherein the encoded information identifying the selected inverse transform specifies coefficients of a selectable inverse transform.
11. The system of claim 7, wherein the encoded information identifying the selected transform is contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area.
12. The system of claim 7, wherein
one color component of the inverse transformed residue image is generated based upon only one color component of the decoded input data, and
other color components of the inverse transformed residue image are generated based upon more than one color components of the decoded input data.
13. A method for compressing and maintaining image data comprising:
analyzing a current image area in an input video to select a transform between color space formats;
performing the selected transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image; and
encoding the transformed residue image to generate output data,
wherein encoded information of the output data includes color transform parameters to identify the selected transform and to indicate that the selected transform for the current image area is different from a transform of a previous image area of the input video.
14. The method of claim 13, wherein the current image area is one of a frame, a slice, and a coding tree unit.
15. The method of claim 13, wherein the other color components of the transformed residue image are generated based upon a reconstructed residue image of the one color component of the transformed residue image.
16. The method of claim 13, wherein the encoded information identifying the selected transform specifies coefficients of a selectable inverse transform.
17. The method of claim 13, wherein the encoded information identifying the selected transform is contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area.
18. The method of claim 13, wherein
one color component of the transformed residue image is generated based upon only one color component of the residue image, and
other color components of the transformed residue image are generated based upon more than one color components of the residue image.
19. A method comprising:
receiving and decoding input data;
performing a selected inverse transform on the decoded input data, to generate an inverse transformed residue image; and
combining the inverse transformed residue image with a predicted image for a current image area to generate a restored current image area of an output video,
wherein selection of the selected inverse transform is based upon encoded information in the input data, the encoded information including color transform parameters to identify the selected inverse transform and indicate that the selected inverse transform for the current image area is different from a transform of a previous image area of the output video.
20. The method of claim 19, wherein the current image area is one of a frame, a slice, and a coding tree unit.
21. The method of claim 19, wherein the decoding is performed by an entropy decoder.
22. The method of claim 19, wherein the encoded information identifying the selected inverse transform specifies coefficients of a selectable inverse transform.
23. The method of claim 19, wherein the encoded information identifying the selected transform is contained in one of a sequence parameter set, a picture parameter set, and a slice header, preceding encoded residue image data of the current image area.
24. The method of claim 19, wherein
one color component of the inverse transformed residue image is generated based upon only one color component of the decoded input data, and
other color components of the inverse transformed residue image are generated based upon more than one color components of the decoded input data.
US13/940,025 2013-05-30 2013-07-11 Adaptive color space transform coding Active US9225991B2 (en)

Priority Applications (38)

Application Number Priority Date Filing Date Title
US13/940,025 US9225991B2 (en) 2013-05-30 2013-07-11 Adaptive color space transform coding
KR1020207011144A KR102232022B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
CN201910878487.6A CN110460848B (en) 2013-05-30 2014-04-01 Method, medium, and system for decoding video data
CN201910878490.8A CN110460849B (en) 2013-05-30 2014-04-01 System for video encoding
KR1020197005038A KR102103815B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
EP18157340.3A EP3352459A1 (en) 2013-05-30 2014-04-01 Adaptive color space transform decoding
KR1020217039654A KR102423809B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
KR1020247002493A KR20240017093A (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
JP2016516646A JP6397901B2 (en) 2013-05-30 2014-04-01 Adaptive color space conversion coding
EP14725842.0A EP3005697A1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
CN201910878499.9A CN110460850B (en) 2013-05-30 2014-04-01 Method for video coding
KR1020157033898A KR101760334B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
KR1020217007699A KR102336571B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
KR1020177019807A KR101952293B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
KR1020227024914A KR102629602B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
CN201910878470.0A CN110460847B (en) 2013-05-30 2014-04-01 Apparatus for encoding and computer readable medium
AU2014272154A AU2014272154B2 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
PCT/US2014/032481 WO2014193538A1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
CN201480030487.6A CN105308960B (en) 2013-05-30 2014-04-01 For the method for decoding video data, medium and system
KR1020207011145A KR102230008B1 (en) 2013-05-30 2014-04-01 Adaptive color space transform coding
TW106124602A TWI634782B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
TW110102519A TWI758081B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
TW112122318A TWI849976B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
TW103114429A TWI547151B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
TW105119182A TWI601417B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
TW111105943A TWI807644B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
TW107126378A TWI717621B (en) 2013-05-30 2014-04-21 Adaptive color space transform coding
HK16107153.0A HK1219189A1 (en) 2013-05-30 2016-06-21 Adaptive color space transform coding
AU2017265177A AU2017265177B2 (en) 2013-05-30 2017-11-27 Adaptive color space transform coding
JP2018027186A JP6553220B2 (en) 2013-05-30 2018-02-19 Adaptive color space transformation coding
JP2019124720A JP6768122B2 (en) 2013-05-30 2019-07-03 Coding of adaptive color space transformations
AU2019253875A AU2019253875B2 (en) 2013-05-30 2019-10-24 Adaptive color space transform coding
AU2020201212A AU2020201212B2 (en) 2013-05-30 2020-02-20 Adaptive color space transform coding
AU2020201214A AU2020201214B2 (en) 2013-05-30 2020-02-20 Adaptive color space transform coding
JP2020157592A JP2021002860A (en) 2013-05-30 2020-09-18 Coding of adaptive color space conversion
AU2021201660A AU2021201660B2 (en) 2013-05-30 2021-03-16 Adaptive color space transform coding
JP2022151630A JP7495457B2 (en) 2013-05-30 2022-09-22 Coding of adaptive color space transformations.
JP2024084224A JP2024109832A (en) 2013-05-30 2024-05-23 Coding of adaptive color space transformations.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/905,889 US9225988B2 (en) 2013-05-30 2013-05-30 Adaptive color space transform coding
US13/940,025 US9225991B2 (en) 2013-05-30 2013-07-11 Adaptive color space transform coding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/905,889 Continuation-In-Part US9225988B2 (en) 2013-05-30 2013-05-30 Adaptive color space transform coding

Publications (2)

Publication Number Publication Date
US20140355689A1 US20140355689A1 (en) 2014-12-04
US9225991B2 true US9225991B2 (en) 2015-12-29

Family

ID=50771602

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/940,025 Active US9225991B2 (en) 2013-05-30 2013-07-11 Adaptive color space transform coding

Country Status (9)

Country Link
US (1) US9225991B2 (en)
EP (2) EP3352459A1 (en)
JP (6) JP6397901B2 (en)
KR (9) KR102336571B1 (en)
CN (5) CN110460847B (en)
AU (6) AU2014272154B2 (en)
HK (1) HK1219189A1 (en)
TW (7) TWI717621B (en)
WO (1) WO2014193538A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160261865A1 (en) * 2014-03-27 2016-09-08 Microsoft Technology Licensing, Llc Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
US10171833B2 (en) 2014-03-04 2019-01-01 Microsoft Technology Licensing, Llc Adaptive switching of color spaces, color sampling rates and/or bit depths
US10182241B2 (en) 2014-03-04 2019-01-15 Microsoft Technology Licensing, Llc Encoding strategies for adaptive switching of color spaces, color sampling rates and/or bit depths
US10687069B2 (en) 2014-10-08 2020-06-16 Microsoft Technology Licensing, Llc Adjustments to encoding and decoding when switching color spaces
US10999603B2 (en) * 2016-09-15 2021-05-04 Interdigital Vc Holdings, Inc. Method and apparatus for video coding with adaptive clipping

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225991B2 (en) * 2013-05-30 2015-12-29 Apple Inc. Adaptive color space transform coding
US9225988B2 (en) 2013-05-30 2015-12-29 Apple Inc. Adaptive color space transform coding
US20140376611A1 (en) * 2013-06-21 2014-12-25 Qualcomm Incorporated Adaptive color transforms for video coding
TWI676389B (en) * 2013-07-15 2019-11-01 美商內數位Vc專利控股股份有限公司 Method for encoding and method for decoding a colour transform and corresponding devices
US10178413B2 (en) 2013-09-12 2019-01-08 Warner Bros. Entertainment Inc. Method and apparatus for color difference transform
GB2533111B (en) * 2014-12-09 2018-08-29 Gurulogic Microsystems Oy Encoder, decoder and method for images, video and audio
GB2533109B (en) * 2014-12-09 2018-11-28 Gurulogic Microsystems Oy Encoder, decoder and method for data
US10158836B2 (en) * 2015-01-30 2018-12-18 Qualcomm Incorporated Clipping for cross-component prediction and adaptive color transform for video coding
US10390020B2 (en) 2015-06-08 2019-08-20 Industrial Technology Research Institute Video encoding methods and systems using adaptive color transform
WO2020024093A1 (en) * 2018-07-30 2020-02-06 Intel Corporation Method and apparatus for keeping statistical inference accuracy with 8-bit winograd convolution
WO2020228835A1 (en) * 2019-05-16 2020-11-19 Beijing Bytedance Network Technology Co., Ltd. Adaptive color-format conversion in video coding
KR102627821B1 (en) 2019-06-04 2024-01-23 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Construction of motion candidate list using neighboring block information
CN114175636B (en) * 2019-07-14 2024-01-12 北京字节跳动网络技术有限公司 Indication of adaptive loop filtering in adaptive parameter sets
KR20220058534A (en) 2019-09-14 2022-05-09 바이트댄스 아이엔씨 Quantization parameters for chroma deblocking filtering
WO2021057996A1 (en) 2019-09-28 2021-04-01 Beijing Bytedance Network Technology Co., Ltd. Geometric partitioning mode in video coding
CN114651442A (en) 2019-10-09 2022-06-21 字节跳动有限公司 Cross-component adaptive loop filtering in video coding and decoding
EP4029264A4 (en) 2019-10-14 2022-11-23 ByteDance Inc. Joint coding of chroma residual and filtering in video processing
EP4055827A4 (en) 2019-12-09 2023-01-18 ByteDance Inc. Using quantization groups in video coding
WO2021138293A1 (en) * 2019-12-31 2021-07-08 Bytedance Inc. Adaptive color transform in video coding
US11606577B2 (en) 2020-06-09 2023-03-14 Alibaba Group Holding Limited Method for processing adaptive color transform and low-frequency non-separable transform in video coding
CN118075461A (en) 2020-06-12 2024-05-24 北京达佳互联信息技术有限公司 Video decoding method, device and medium
CN112449200B (en) * 2020-11-12 2023-01-31 北京环境特性研究所 Image compression method and device based on wavelet transformation
WO2024081013A1 (en) * 2022-10-13 2024-04-18 Google Llc Color decorrelation in video and image compression
CN117579839B (en) * 2024-01-15 2024-03-22 电子科技大学 Image compression method based on rate-distortion optimized color space conversion matrix

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176832A2 (en) 2000-07-26 2002-01-30 Lockheed Martin Corporation Lossy JPEG compression/reconstruction using principal components transformation
EP1538844A2 (en) 2003-11-26 2005-06-08 Samsung Electronics Co., Ltd. Color image residue transformation and encoding method
US20060235915A1 (en) * 2005-02-25 2006-10-19 Sony Corporation Method and apparatus for converting data, method and apparatus for inverse converting data, and recording medium
US7333544B2 (en) 2003-07-16 2008-02-19 Samsung Electronics Co., Ltd. Lossless image encoding/decoding method and apparatus using inter-color plane prediction
EP1977602A1 (en) 2006-01-13 2008-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Picture coding using adaptive colour space transformation
US20090052858A1 (en) 2006-11-29 2009-02-26 Sony Corporation Recording apparatus, recording method, image pickup apparatus, reproducing apparatus and video system
US20100128786A1 (en) 2007-04-23 2010-05-27 Yong Ying Gao Method and apparatus for encoding video data, method and apparatus for decoding encoded video data and encoded video signal
US8165392B2 (en) 2005-09-20 2012-04-24 Mitsubishi Electric Corporation Image decoder and image decoding method for decoding color image signal, and image decoding method for performing decoding processing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054137A (en) * 1999-08-09 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Color image coder, its method, color image decoder and its method
US20040125130A1 (en) * 2001-02-26 2004-07-01 Andrea Flamini Techniques for embedding custom user interface controls inside internet content
JP2003134352A (en) * 2001-10-26 2003-05-09 Konica Corp Image processing method and apparatus, and program therefor
CN1190755C (en) * 2002-11-08 2005-02-23 北京工业大学 Colour-picture damage-free compression method based on perceptron
US7469069B2 (en) * 2003-05-16 2008-12-23 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding image using image residue prediction
CN101616330B (en) * 2003-07-16 2012-07-04 三星电子株式会社 Video encoding/decoding apparatus and method for color image
KR100723408B1 (en) * 2004-07-22 2007-05-30 삼성전자주식회사 Method and apparatus to transform/inverse transform and quantize/dequantize color image, and method and apparatus to encode/decode color image using it
US7792370B2 (en) * 2005-03-18 2010-09-07 Sharp Laboratories Of America, Inc. Residual color transform for 4:2:0 RGB format
KR101246915B1 (en) * 2005-04-18 2013-03-25 삼성전자주식회사 Method and apparatus for encoding or decoding moving picture
JP4700445B2 (en) * 2005-09-01 2011-06-15 オリンパス株式会社 Image processing apparatus and image processing program
JP5101522B2 (en) * 2006-01-13 2012-12-19 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Image coding using adaptive color space transformation.
KR101330630B1 (en) * 2006-03-13 2013-11-22 삼성전자주식회사 Method and apparatus for encoding moving picture, method and apparatus for decoding moving picture, applying adaptively an optimal prediction mode
EP2127395B1 (en) * 2007-01-10 2016-08-17 Thomson Licensing Video encoding method and video decoding method for enabling bit depth scalability
CN102223525B (en) * 2010-04-13 2014-02-19 富士通株式会社 Video decoding method and system
ES2868087T3 (en) * 2011-10-31 2021-10-21 Samsung Electronics Co Ltd Procedure and apparatus for determining a context model for transformation coefficient level entropy coding
JP6030989B2 (en) * 2013-04-05 2016-11-24 日本電信電話株式会社 Image encoding method, image decoding method, image encoding device, image decoding device, program thereof, and recording medium recording the program
US9225991B2 (en) * 2013-05-30 2015-12-29 Apple Inc. Adaptive color space transform coding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176832A2 (en) 2000-07-26 2002-01-30 Lockheed Martin Corporation Lossy JPEG compression/reconstruction using principal components transformation
US7333544B2 (en) 2003-07-16 2008-02-19 Samsung Electronics Co., Ltd. Lossless image encoding/decoding method and apparatus using inter-color plane prediction
EP1538844A2 (en) 2003-11-26 2005-06-08 Samsung Electronics Co., Ltd. Color image residue transformation and encoding method
US8036478B2 (en) * 2003-11-26 2011-10-11 Samsung Electronics Co., Ltd. Color image residue transformation and/or inverse transformation method and apparatus, and color image encoding and/or decoding method and apparatus using the same
US20060235915A1 (en) * 2005-02-25 2006-10-19 Sony Corporation Method and apparatus for converting data, method and apparatus for inverse converting data, and recording medium
US8165392B2 (en) 2005-09-20 2012-04-24 Mitsubishi Electric Corporation Image decoder and image decoding method for decoding color image signal, and image decoding method for performing decoding processing
EP1977602A1 (en) 2006-01-13 2008-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Picture coding using adaptive colour space transformation
US20090052858A1 (en) 2006-11-29 2009-02-26 Sony Corporation Recording apparatus, recording method, image pickup apparatus, reproducing apparatus and video system
US20100128786A1 (en) 2007-04-23 2010-05-27 Yong Ying Gao Method and apparatus for encoding video data, method and apparatus for decoding encoded video data and encoded video signal

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Chen et al., "High Efficiency Video Coding (HEVC) Scalable Extensions Draft 5", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/ WG 11, 16th Meeting: San Jose, US, Jan. 9-17, 2014, 125 pages (JCTVC-O1008-v4).
Flynn et al., "High Efficiency Video Coding (HEVC) Range Extensions text specification: Draft 2 (for PDAM)", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/ WG 11, 12th Meeting: Geneva, CH, Jan. 14-23, 2013, 313 pages (JCTVC-O1005-v3).
Flynn et al., "High Efficiency Video Coding (HEVC) Range Extensions text specification: Draft 5", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/ WG 11, 15th Meeting: Geneva, CH, Oct. 23-Nov. 1, 2013, 346 pages (JCTVC-O1005-v4).
Flynn et al., Input Document of JCTVC-L0371, "AHG7: In-loop color-space transformation of residual signals for range extensions", "John Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11", 12th Meeting: Geneva, CH, Jan. 14-23, 2013, 313 pages.
International Search Report and Written Opinion, mailed Jul. 10, 2014, from corresponding International Application No. PCT/US2014/032481, filed Apr. 1, 2014.
K. Kawamura et al., "AHG7: Adaptive colour-space transform of residual signals", JCTVC-K0193 Presentation, KDDI Corp. (KDDI R&D Labs. Inc.), Oct. 10-19, 2012, 13 pages.
K. Kawamura et al., "AHG7: In-loop color-space transformation of residual signals for range extensions", JCTVC-L0371 Presentation, KDDI Corp. (KDDI R&D Labs. Inc.), Jan. 14-23, 2013, 9 pages.
K. Kawamura et al., Input Document to JCTVC-K0193, "AHG7: Adaptive colour-space transformation of residual signals", "Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11", KDDI Corp. (KDDI R&D Labs. Inc.), 11th Meeting: Shanghai, CN, Oct. 10-19, 2012, 5 pages.
K. Kawamura et al., Output Document of JCTVC-L1005, "High Efficiency Video Coding (HEVC) Range Extensions text specification: Draft 2 (for PDAM)", "Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11", KDDI Corp. (KDDI R&D Labs. Inc.), 12th Meeting: Geneva, CH, Jan. 14-23, 2013, 4 pages.
Khairat et al., "AHG5 and AHG8: Extended Cross-Component Decorrelation for Animated Screen Content", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/ WG 11, 16th Meeting: San Jose, US, Jan. 9-17, 2014, 2 pages (JCTVC-P0097).
Kim et al., "Color Format Extension", 8th JVT Meeting; May 23-27, 2003; Geneva, Switzerland (Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16), No. JVT-H018, May 27, 2003.
Kim et al., "Inter-plane Prediction for RGB Coding", Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG; PExt Ad Hoc Group Meeting, Trondheim, Norway (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q6), No. NT-1023, Jul. 22, 2003, pp. 1-10.
Kobayashi et al.,"Lossless Compression for RGB Color Still Images", Proceedings of International Conference on Image Processing, Kobe, Japan, Oct. 24-28, 1999, IEEE, Piscataway, NJ, USA, vol. 4, Oct. 24, 1999, pp. 73-77.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10171833B2 (en) 2014-03-04 2019-01-01 Microsoft Technology Licensing, Llc Adaptive switching of color spaces, color sampling rates and/or bit depths
US10182241B2 (en) 2014-03-04 2019-01-15 Microsoft Technology Licensing, Llc Encoding strategies for adaptive switching of color spaces, color sampling rates and/or bit depths
US20160261865A1 (en) * 2014-03-27 2016-09-08 Microsoft Technology Licensing, Llc Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
AU2014388185B2 (en) * 2014-03-27 2018-08-02 Microsoft Technology Licensing, Llc Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
US10116937B2 (en) * 2014-03-27 2018-10-30 Microsoft Technology Licensing, Llc Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
US20200169732A1 (en) * 2014-03-27 2020-05-28 Microsoft Technology Licensing, Llc Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
US10939110B2 (en) * 2014-03-27 2021-03-02 Microsoft Technology Licensing, Llc Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
US10687069B2 (en) 2014-10-08 2020-06-16 Microsoft Technology Licensing, Llc Adjustments to encoding and decoding when switching color spaces
US10999603B2 (en) * 2016-09-15 2021-05-04 Interdigital Vc Holdings, Inc. Method and apparatus for video coding with adaptive clipping

Also Published As

Publication number Publication date
JP6553220B2 (en) 2019-07-31
KR102232022B1 (en) 2021-03-26
TW201840191A (en) 2018-11-01
CN110460850A (en) 2019-11-15
KR20210152005A (en) 2021-12-14
KR20220104309A (en) 2022-07-26
CN110460848A (en) 2019-11-15
KR101760334B1 (en) 2017-07-21
AU2019253875A1 (en) 2019-11-14
AU2021201660A1 (en) 2021-04-08
TWI634782B (en) 2018-09-01
KR20160003174A (en) 2016-01-08
CN110460850B (en) 2022-03-01
TWI849976B (en) 2024-07-21
JP6397901B2 (en) 2018-09-26
KR20240017093A (en) 2024-02-06
TW201445982A (en) 2014-12-01
KR20190020193A (en) 2019-02-27
TWI601417B (en) 2017-10-01
KR102629602B1 (en) 2024-01-29
KR20200043529A (en) 2020-04-27
AU2017265177B2 (en) 2019-11-21
KR102423809B1 (en) 2022-07-21
CN110460849B (en) 2022-03-01
JP6768122B2 (en) 2020-10-14
JP2022188128A (en) 2022-12-20
KR101952293B1 (en) 2019-02-26
TW201811054A (en) 2018-03-16
CN110460847B (en) 2022-03-01
AU2020201214B2 (en) 2020-12-24
KR20170086138A (en) 2017-07-25
CN105308960A (en) 2016-02-03
HK1219189A1 (en) 2017-03-24
CN110460847A (en) 2019-11-15
JP2018110440A (en) 2018-07-12
EP3005697A1 (en) 2016-04-13
JP2021002860A (en) 2021-01-07
KR102230008B1 (en) 2021-03-19
TW202118301A (en) 2021-05-01
TWI547151B (en) 2016-08-21
AU2021201660B2 (en) 2022-03-24
TWI807644B (en) 2023-07-01
CN105308960B (en) 2019-09-20
JP2024109832A (en) 2024-08-14
AU2014272154A1 (en) 2015-12-17
KR20210031793A (en) 2021-03-22
AU2019253875B2 (en) 2020-12-17
WO2014193538A1 (en) 2014-12-04
CN110460849A (en) 2019-11-15
JP2016523460A (en) 2016-08-08
TWI717621B (en) 2021-02-01
JP7495457B2 (en) 2024-06-04
TW202224438A (en) 2022-06-16
AU2014272154B2 (en) 2017-08-31
KR20200043528A (en) 2020-04-27
TW201637453A (en) 2016-10-16
AU2020201212B2 (en) 2020-12-03
AU2020201214A1 (en) 2020-03-05
AU2017265177A1 (en) 2017-12-14
TWI758081B (en) 2022-03-11
US20140355689A1 (en) 2014-12-04
TW202341743A (en) 2023-10-16
KR102103815B1 (en) 2020-04-24
EP3352459A1 (en) 2018-07-25
AU2020201212A1 (en) 2020-03-12
JP2019198107A (en) 2019-11-14
CN110460848B (en) 2022-02-18
KR102336571B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
AU2020201214B2 (en) Adaptive color space transform coding
US11758135B2 (en) Adaptive color space transform coding

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TOURAPIS, ALEXANDROS;REEL/FRAME:030781/0895

Effective date: 20130711

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8