US8920565B2 - Metalorganic chemical vapor deposition reactor - Google Patents

Metalorganic chemical vapor deposition reactor Download PDF

Info

Publication number
US8920565B2
US8920565B2 US12/270,867 US27086708A US8920565B2 US 8920565 B2 US8920565 B2 US 8920565B2 US 27086708 A US27086708 A US 27086708A US 8920565 B2 US8920565 B2 US 8920565B2
Authority
US
United States
Prior art keywords
point
duct
downstream
substrates
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/270,867
Other versions
US20090126635A1 (en
Inventor
Masaki Ueno
Eiryo Takasuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Assigned to SUMITOMO ELECTRIC INDUSTRIES, LTD. reassignment SUMITOMO ELECTRIC INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKASUKA, EIRYO, UENO, MASAKI
Publication of US20090126635A1 publication Critical patent/US20090126635A1/en
Application granted granted Critical
Publication of US8920565B2 publication Critical patent/US8920565B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45585Compression of gas before it reaches the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor

Definitions

  • the present invention relates to metalorganic chemical vapor deposition reactors, and more specifically, to metalorganic chemical vapor deposition reactors for producing nitride semiconductor films.
  • Metalorganic chemical vapor deposition is a method of vaporizing, for example, a Group-III organometallic compound, and, on the surface of a substrate, thermally decomposing the vaporized Group-III compound and reacting the decomposition products with a Group-V gas to deposit a film on the substrate. Because film thickness and composition can be controlled with MOCVD, and because the technique excels in terms of productivity, it is widely employed as a film-growth technology in the manufacture of semiconductor devices.
  • MOCVD reactors employed in MOCVD are provided with a chamber, with a susceptor disposed in the chamber, and with a channel for feeding reaction gases to the surface of substrates.
  • film deposition is carried out by placing substrates on the susceptor to heat them to an appropriate temperature, and by flowing organometallic gases through the channel to the surface of the substrates.
  • uniformizing deposited films in thickness demands from the MOCVD reactors that the reaction gas flow uniformly along the substrate surfaces.
  • various channel forms have been proposed.
  • Patent Document 1 discloses a vapor-phase growth system having a conduit for introducing a reaction gas to space over a substrate.
  • the conduit has: a sample-loading room internally housing a susceptor; a constricted part whose cross-sectional form is flattened, extending along the widthwise direction of the substrate, and being short in height-wise direction of the substrate, for ejecting reaction gas over the substrate from along the substrate sideways; and guide parts positioned over the substrate, in the constricted part at intervals approximately equal to the height-wise width, or at intervals that narrow heading toward the downstream end of the reaction gas, the guide parts covering the substrates evenly from above and guiding the reaction gas along the substrate surface.
  • the susceptor is anchored in the sample-loading room, and carries the substrate at the downstream end of the reaction-gas flow.
  • Patent Document 2 discloses a compound semiconductor vapor-phase growth system having a flow channel for introducing a reaction gas onto a substrate.
  • the flow channel is tapered such that the height-wise width narrows from the upstream end of the flow channel gradually toward the downstream end of the flow channel.
  • a susceptor is anchored under where the flow channel is tapered.
  • Patent Document 3 discloses a vapor-phase growth system provided with a rotating susceptor for carrying a substrate, and with a linear line for introducing a reaction gas to the substrate.
  • the liner line monotonically diminishes in height over the reaction gas conduit.
  • an object of the present invention is to make available MOCVD reactors with which, while films to be deposited are uniformized in thickness, efficiency of depositing the films can be improved.
  • a separate object of the present invention is to make available MOCVD reactors with which, while films to be deposited are improved in planarity, they can be uniformized in thickness.
  • AN MOCVD reactor of the present invention is a metalorganic chemical vapor deposition reactor for depositing films onto substrates, employing a reaction gas, and provided with a heating member and a duct.
  • the heating member has a carrying surface for heating, and for carrying, the substrates.
  • the duct is for introducing the reaction gas to the substrates.
  • the heating member is rotatable with the carrying surface facing toward the duct interior.
  • the duct has a first channel and a second channel, and the first and second channels join together on the side upstream from the upstream end of the carrying surface.
  • the duct height along the direction of the reaction gas flow monotonically diminishes downstream from a first point to a second point, stays constant from the second point to a third point, and monotonically diminishes downstream from the third point.
  • the first point lies on the side upstream from the upstream end of a location on the carrying surface in which the substrates are carried, and the third point lies on the heating member.
  • film-deposition rate on the side downstream from the third point can be fastened. Fastening the film-deposition rate enables bringing relationship between carrying-surface position along the reaction gas flow direction and film-deposition rate close to linear proportion. As a result, rotating the heating member makes it possible to uniformize in thickness the films deposited onto the substrates. Furthermore, no necessity to equalize reaction gas conditions for reaction respectively on the upstream and downstream ends of the heating member with each other leads to upsizing of the heating member, enabling enhancing film-deposition efficiency.
  • the duct monotonically decreases in height upstream of the upstream edge of the locus on the carrying surface of where the substrates are carried, which promotes mixing of gas passing through the first channel and gas passing through the second channel on the upstream edge of the substrate placement locus.
  • the deposition rate at the upstream end of the carrying surface increases, and consequently linearity of the growth rate in the reaction-gas flow direction is enhanced. Therefore, while the deposited films are improved in planarity, they can be uniformized in thickness.
  • the second point preferably lies upstream of the upstream edge of the substrate placement locus. Therefore, at least from the upstream edge of the substrate placement locus to the third point, the duct height is held constant, which enables making the reaction gas flow on the substrates closer to a laminar flow.
  • the second point preferably lies upstream of the upstream edge of the carrying surface. Therefore, at least from the upstream edge of the carrying surface to the third point in the heating member, the duct height is held constant, which enables making the reaction gas flow closer to a laminar flow before the reaction gas reaches the carrying surface.
  • the first point preferably lies downstream from where the first and second channels merge. Therefore, after the gas that has passed through the first channel and the gas that has passes through the second channel join together, the mixing of the gas that has passed through the first channel and the gas that has passed through the second channel can be promoted.
  • the duct height monotonically diminishes downstream from the third point to a fourth point.
  • the fourth point lies on the downstream end of the substrate placement locus, or downstream from the downstream edge of the substrates. Therefore, relationship between substrate placement location along the direction of the reaction gas flow and film-deposition rate can be made linear.
  • the duct preferably has a first sloping portion formed between the first and second points, and a second sloping portion formed downstream from the third point.
  • the fist and second sloping portions slope with respect to the reaction gas flow direction. Therefore, the duct height decreases at a constant rate, which enables keeping disturbance of the reaction gas flow under control.
  • the films to be deposited are uniformed in thickness, efficiency of depositing the films can be enhanced. Furthermore, while the films to be deposited are improved in planarity, the films can be uniformed in thickness.
  • FIG. 1 is a sectional view illustrating the configuration of an MOCVD reactor in Embodiment 1 of the present invention.
  • FIG. 2 is an overhead, fragmentary view of the FIG. 1 susceptor and its vicinity.
  • FIG. 3 is a chart diagramming duct height in relation to points along the direction of reaction gas flow, in Embodiment 1 of the present invention.
  • FIG. 4 is a chart diagramming a variant example of duct height in relation to points along the direction of reaction gas flow, in Embodiment 1 of the present invention.
  • FIG. 5 is a sectional view illustrating the configuration of an MOCVD reactor in Comparative Examples 1 and 2.
  • FIG. 6 is a graph plotting the relationship between the distance from Point A 2 along the direction of reaction gas flow, and InGaN growth rate, in an implementation in which the MOCVD reactor of Comparative Example 1 was employed to deposit an InGaN film without the susceptor being rotated.
  • FIG. 7 is a graph plotting the relationship between distance from the center of the susceptor, and InGaN growth rate, in an implementation in which the MOCVD reactor of Comparative Example 1 was employed to deposit an InGaN film while the susceptor was rotated.
  • FIG. 8 is a graph plotting the relationship between distance from the center of the susceptor and InGaN growth rate, in implementations in which the MOCVD reactors of Comparative Examples 1 through 3 were each employed to deposit an InGaN film.
  • FIG. 9A is a photomicrograph of the surface of an InGaN layer in an implementation having the NH 3 flow rate be 20 slm in Comparative Example 2.
  • FIG. 9B is a photomicrograph of the surface of an InGaN layer in an implementation having the NH 3 flow rate be 30 slm in Comparative Example 2.
  • FIG. 10A is a graph plotting In-component distribution and film-thickness distribution in an implementation having the NH 3 flow rate be 20 slm in Comparative Example 2.
  • FIG. 10B is a graph plotting In-component distribution and film-thickness distribution in an implementation having the NH 3 flow rate be 30 slm in Comparative Example 2.
  • FIG. 11A is a graph plotting how InGaN growth rate varies depending on distance from the susceptor center.
  • FIG. 11B is a graph plotting how In fraction varies depending on distance from the susceptor center.
  • FIG. 12 is a sectional view illustrating the configuration of an MOCVD reactor in Embodiment 2 of the present invention.
  • FIG. 13 is a chart diagramming duct height in relation to points along the direction of reaction gas flow, in Embodiment 2 of the present invention.
  • FIG. 1 is a cross-sectional view illustrating the configuration of an MOCVD reactor in Embodiment 1 of the present invention.
  • FIG. 2 is an overhead, fragmentary view from FIG. 1 of the susceptor and its vicinity.
  • an MOCVD reactor 1 of the present embodiment is furnished with: a chamber 3 ; a susceptor 5 as a heating member; a heater 9 ; and a duct 11 .
  • the susceptor 5 , heater 9 , and duct 11 are disposed inside the chamber 3 .
  • the duct 11 stretches widthwise in the middle of FIG. 1 , and a carrying surface (in FIG. 1 , the top side) of the susceptor 5 fronts on the interior of the duct 11 .
  • the susceptor 5 is discoid in form, and is disposed over the heater 9 , which likewise is discoid in form.
  • a rotating shaft 13 is mounted, which makes the susceptor 5 rotatable with the carrying surface fronting on the duct 11 interior.
  • a plurality of indentations 7 that are of circular form viewed overhead are formed in the carrying surface of the susceptor 5 .
  • Each of substrates 20 are placed in respective indentations 7 , where the substrates 20 are heated.
  • seven indentations 7 are formed in the carrying surface of the susceptor 5 , and circular substrates 20 are each placed respectively in these indentations 7 .
  • the duct 11 extends horizontally with respect to the carrying surface of the susceptor 5 , and has the cross-sectional form of a rectangle when viewed along a plane perpendicular to the direction of reaction gas flow (the direction from the left to the right in FIG. 1 ). Furthermore, the duct 11 is a lateral trilaminar flow system, and has three channels 11 a to 11 c on at its upstream end (on the left in FIG. 1 ). Channels 11 b (first channel) and 11 c (second channel) merge at Point A 1 , while Channel 11 a , and Channels 11 b and 11 c merge at Point A 2 .
  • Points A 1 and A 2 are located upstream of Point A 3 , which is the upstream edge, seen in the direction in which the reaction gas G flows (the direction heading from the left side to the right side in FIG. 1 ), of the carrying surface of the susceptor 5 .
  • Channels 11 a to 11 c have respective heights t 1 to t 3 .
  • the height t 4 of the duct 11 from Point A 2 to Point P 1 (Point P 1 will be described later) preferably satisfies the relationship of t 4 ⁇ t 1 +t 2 +t 3 .
  • a plurality of substrates 20 are placed on the carrying surface of the susceptor 5 , and the susceptor 5 is heated by the heater 9 and is rotated. Subsequently, Gases G 1 to G 3 constituting reaction gases are introduced respectively through the channels 11 a to 11 c . The reaction gases flow to the right in FIG. 1 .
  • Gas G 1 a purge gas such as hydrogen (H 2 ) gas or nitrogen (N 2 ) gas
  • Gas G 2 a mixture of a Group-III element-containing organometallic gas such as trimethyl gallium (TMG), trimethyl indium (TMI), or trimethylaluminum (TMA), and a carrier gas such as H 2 gas or N 2 gas
  • Gas G 3 a mixture of a Group-V element-containing gas such as ammonia (NH 3 ) gas, and a carrier gas such as H 2 gas or N 2 gas.
  • FIG. 3 is a chart diagramming duct height in relation to given points along the direction of reaction gas flow, in Embodiment 1 of the present invention.
  • the upstream edge of the locations on the carrying face of the susceptor 5 where substrates 20 are carried is designated as Point A 4
  • the downstream edge of the locations on the carrying face of the susceptor 5 where the substrates 20 are carried is designated as Point A 5
  • the height of the duct 11 going in the reaction gas G flow direction, as attendant on the confluence of Channels 11 b and 11 c makes a discontinuous increase at Point A 1
  • the confluence of Channel 11 a and Channels 11 b and 11 c makes a discontinuous increase at Point A 2
  • the duct then has a constant height of t 4 from Point A 2 to Point P 1 (first point).
  • the duct monotonically diminishes (linearly diminishes) heading from Point P 1 downstream to Point P 2 (second point); this section is sloping portion S 1 .
  • the duct has a constant height of t 5 from Point P 2 to Point P 3 (third point) with Points A 3 and A 4 intervening.
  • the duct then monotonically diminishes (linearly diminishes) heading from Point P 3 downstream to Point P 4 ; this section is sloping portion S 2 .
  • the duct has a constant height of t 6 in a region including Point A 5 , on the end downstream of Point P 4 .
  • Point P 1 is equivalent to Point A 1 , or else lies downstream of Point A 1 . Furthermore, Points P 1 and P 2 lie upstream of Point A 3 . Point P 3 lines on the susceptor 5 (in other words, between Point A 3 and the downstream edge of the carrying surface of the susceptor 5 ). Point P 4 lies upstream of Point A 5 .
  • Points P 1 to P 4 in the present embodiment are illustrative; in an MOCVD reactor of the present invention, it should at least be the case that Point P 1 lies upstream of Point A 4 , and that Point P 3 lies on the susceptor 5 .
  • Point P 2 may lie downstream of Point A 3 but upstream of Point A 4 , or that Points P 1 and P 2 may both lie downstream of Point A 3 but upstream of Point A 4 .
  • a step 16 may be formed in the upper portion 15 a of the duct 11 to have height of the duct 11 decrease discontinuously from height t 4 to height t 5 .
  • Point P 1 and Point P 2 are in the same location.
  • Further options include forming the sloping portions S 1 and S 2 in the lower portion 15 b rather than in the upper portion 15 a of the duct 11 , or forming the step 16 in the lower portion 15 b rather than in the upper portion 15 a of the duct 11 .
  • FIG. 5 is a sectional view illustrating the configuration of an MOCVD reactor in Comparative Examples 1 and 2.
  • the inventors in the present application prepared an MOCVD reactor (Comparative Example 1) having a duct W 1 as indicated by the dotted-dashed (phantom) lines.
  • a sloping portion S 101 is formed in an upper part of the duct W 1 .
  • the height of the duct W 1 along the direction of the flow of the reaction gas G monotonically diminishes (linearly diminishes) heading downstream from Point P 101 to Point P 102 , and then stays constant at a height of t 6 in the region downstream of Point P 102 .
  • the MOCVD configuration is the same as the configuration of the MOCVD reactor illustrated in FIG. 1 .
  • This MOCVD reactor was employed to deposit an InGaN layer, being a semiconductor nitride layer, onto the surface of substrates, without rotating the susceptor 5 . Then the relationship between InGaN-growth rate and the distance from Point A 2 along the direction of the reaction gas G flow and was investigated. The results are set forth in FIG. 6 . It should be understood that the results in FIG. 6 are results taken along the centerline (line C in FIG. 2 ) in the susceptor widthwise direction and that the ranges indicated by the arrows in FIG. 6 are locations on the carrying surface of the susceptor 5 where the substrates 20 are set.
  • results in an implementation in which a single 2-inch substrate 20 was set on, in a reactor in which the size of the duct W 1 and susceptor 5 had been similarly scaled down to allow carrying a single 2-inch substrate are additionally presented in the graph.
  • the InGaN growth rate in the susceptor carrying seven substrates the InGaN growth rate jumps from 0 at a point approximately 40 mm from Point A 2 (that is, the susceptor starting point), exhibits a maximum at a point approximately 85 mm from the upstream edge, and decreases moderately thereafter. Meanwhile, the InGaN growth rate in the implementation in which a single substrate was set on increases almost monotonically.
  • an MOCVD reactor (Comparative Example 2) having a duct W 2 as illustrated in FIG. 5 , in order to improve the InGaN growth rate in FIG. 6 on the downstream end of the susceptor to bring the relationship between deposition rate and carrying-surface position along the direction of reaction gas flow close to linear.
  • a sloping portion S 102 similar to that in the MOCVD reactor 1 illustrated in FIG. 1 is formed.
  • Point P 4 which is the point where the monotonic decrease in duct height ends, preferably lies on same position as Point A 5 , or downstream of Point A 5 .
  • the relationship between the reaction-gas reaction rate and the substrate placement location along the direction of reaction gas flow can thereby be made linear. This will be explained below.
  • the present inventors studied influence of Point P 4 on deposition rate. Specifically, the MOCVD reactors, in FIG. 5 , in which Point P 4 was brought to the side upstream from Point A 4 (Comparative Example 2), and in which Point P 4 was brought to the same position as Point A 4 (Comparative Example 3) were prepared. In addition, for comparison, the MOCVD reactor of Comparative Example 1 was prepared. Next, each of the MOCVD reactors of Comparative Examples 1 through 3 was employed to deposit an InGaN layer onto the surface of each of six substrates 20 carried on the susceptor 5 , without rotating the susceptor 5 . And then, relationship between interval from the center of the susceptor 5 and InGaN growth rate was checked. The results are set forth in FIG. 8 .
  • results in FIG. 8 are the results along the central line (line C in FIG. 2 ) in the susceptor widthwise direction, and the ranges represented with the arrows in FIG. 8 are the location on the carrying surface of the susceptor in which substrates are placed.
  • the inventors of the present invention varied flow rate of NH 3 gas contained in the gas G 3 to deposit an InGaN layer onto the surfaces of substrates. Specifically, a GaN layer was deposited by 30 nm in thickness onto sapphire substrates heated to 475° C., and then the temperature of the substrates was raised to 1,150° C. to further deposit the GaN layer by 1.5 ⁇ m in thickness. After that, the substrate temperature was dropped to 785° C.
  • InGaN layer After the InGaN layer was formed, morphologies on the surface of the InGaN layer were evaluated under an atomic force microscope (AFM). Furthermore, in the InGaN layer, In fraction distribution and InGaN layer thickness distribution were measured by X-ray diffraction.
  • AFM atomic force microscope
  • FIG. 9A is a photomicrograph of the surface of an InGaN layer in the implementation in which in Comparative Example 2, the NH 3 flow rate was brought to 20 slm
  • FIG. 9B is a photomicrograph of the surface of an InGaN layer in the implementation in which in Comparative example 2, the NH 3 flow rate was brought to 30 slm
  • FIG. 10A is a graph showing In fraction distribution and film thickness distribution in the implementation in which in Comparative Example 2, the NH 3 flow rate was brought to 20 slm
  • FIG. 10B is a graph showing In fraction distribution and film thickness distribution in the implementation in which in Comparative Example 2, the NH 3 flow rate was brought to 30 slm.
  • bright regions represent the (step) regions in which height of the surface is high
  • dark regions represent the (recess) regions in which height of the surface is low.
  • the results in FIG. 10 demonstrate distribution in one substrate.
  • the layer thicknesses and In fractions in the substrates are made relatively uniform, while in the InGaN layer in the implementation in which the NH 3 flow rate was brought to 30 slm, the layer thicknesses and In fractions in the substrates are worsened. Presumably, this is because increasing the NH 3 flow rate prevents the III element-containing organometallic gas from diffusing in the NH 3 gas.
  • the inventors of the present invention prepared an MOCVD reactor, illustrated in FIG. 1 , in which the heights t 4 , t 5 and t 6 were brought respectively to 12 mm, to 10 mm, and to 8 mm, and defined the reactor as a Present Invention Example 1.
  • the inventors also prepared an MOCVD reactor, illustrated in FIG. 1 , in which the heights t 4 , t 5 , and t 6 were brought respectively to 12 mm, to 9 mm, and to 7 mm, and defined the reactor as Present Invention Example 2.
  • the inventors prepared an MOCVD reactor having a duct W 2 , illustrated in FIG.
  • FIG. 11 is a graph showing InGaN deposition rate distribution in the susceptor
  • FIG. 11B is a graph showing In fraction distribution in susceptor.
  • the horizontal axis of the graph in FIG. 11 is represented with an interval from the center of the susceptor along the central line (line C in FIG. 2 ) in the susceptor widthwise direction. Positive numbers mean the downstream side, and minus numbers mean upstream side.
  • InGaN layer thickness distribution in Comparative Example 4 has a width of ⁇ 9.0%, while InGaN layer thickness distribution in Present Invention Example 1 has a width of +0.1%, and InGaN layer thickness distribution in Present Invention Example 2 has a width of ⁇ 0.6%. From these results, it is apparent that monotonically decreasing path height downstream from a point on the side upstream from the upstream end of the location in which substrates are carried enables uniformizing deposited films in thickness. Furthermore, the In fraction distribution in Comparative Example 4 has a width of ⁇ 4.0%, while In fraction distribution in Present Invention Example 1 has a width of ⁇ 3.4%, and In fraction distribution in Present Invention Example 2 has a width of ⁇ 5.5%. From these facts it is evident that even if the duct height is monotonically diminished downstream from a point on the side upstream from the upstream end of the location in which substrates are carried, there is only slight influence on the In fraction distribution.
  • Point P 2 lies on the side upstream from Point A 3 , height of the duct 11 is held constant at least from Point A 3 to Point P 3 , and thus flow of the reaction gas G can be brought close to laminar flow before the reaction gas G reaches the carrying surface.
  • Point P 1 lies on the side downstream from Point A 1 , mixing of the gas G 2 and the gas G 3 can be prompted after the gases G 2 and G 3 join together.
  • FIG. 12 is a cross-sectional view of a configuration of an MOCVD reactor in Embodiment 2 of the present invention.
  • FIG. 13 is a diagram representing relationship between points along the direction of reaction gas flow and path height, in Embodiment 2 of the present invention.
  • an MOCVD reactor 1 a in the present embodiment differs in form of a duct 11 from the MOCVD reactor illustrated in FIG. 1 .
  • a sloping portion S 1 is formed between Point P 0 on the side upstream from Point A 1 and Point P 2 . Therefore, height of the duct 11 along the direction of the flow of a reaction gas G monotonically (linearly) decreases downstream from Point A 2 to Point P 2 .
  • Point P 1 and point A 2 are the same position. Furthermore, Point P 2 lies on the side downstream from Point A 4 , and Point P 4 lies on the side downstream from Point A 5 . The point P 2 may lie at the same position as Point A 4 .
  • the MOVCD reactor of the present embodiment provides the same advantages as the MOCVD reactor in Embodiment 1.
  • Point P 4 lies at the same position as Point A 5 , or on the side downstream from Point A 5 , relationship between the location in which the substrates 20 are carried, along the direction in which the reaction gas G flows and the reaction rate of the reaction gas G, can be brought to linear proportion.
  • the MOCVD reactor of the present invention is applicable to deposition of layers apart from InGaN layer.
  • the number of channels is not limited to three, so any number of two or more may be adopted.
  • the present invention is especially suited to metalorganic chemical vapor deposition reactors for producing nitride semiconductor layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Affords MOCVD reactors with which, while deposited films are uniformized in thickness, film deposition efficiency can be improved. An MOCVD reactor (1) is furnished with a susceptor (5) and a duct (11). The susceptor (5) has a carrying surface for heating and carrying substrates (20). The duct (11) is for conducting reaction gas (G) to the substrates (20). The susceptor (5) is rotatable with the carrying surface fronting on the duct (11) interior. The duct (11) has channels (11 b) and (11 c), which merge on the duct end upstream of Point A4. The height of the duct (11) running along the reaction gas (G) flow direction monotonically diminishes heading toward the duct downstream end from Point P1 to Point P2, stays constant from Point P2 to Point P3, and monotonically diminishes heading downstream from Point P3. Point P1 lies upstream of Point A4, while Point P3 lies on the susceptor (5).

Description

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to metalorganic chemical vapor deposition reactors, and more specifically, to metalorganic chemical vapor deposition reactors for producing nitride semiconductor films.
2. Description of the Related Art
Metalorganic chemical vapor deposition (MOCVD), one technique representative of vapor-phase deposition, is a method of vaporizing, for example, a Group-III organometallic compound, and, on the surface of a substrate, thermally decomposing the vaporized Group-III compound and reacting the decomposition products with a Group-V gas to deposit a film on the substrate. Because film thickness and composition can be controlled with MOCVD, and because the technique excels in terms of productivity, it is widely employed as a film-growth technology in the manufacture of semiconductor devices.
MOCVD reactors employed in MOCVD are provided with a chamber, with a susceptor disposed in the chamber, and with a channel for feeding reaction gases to the surface of substrates. In the MOCVD reactors, film deposition is carried out by placing substrates on the susceptor to heat them to an appropriate temperature, and by flowing organometallic gases through the channel to the surface of the substrates. In the film deposition, uniformizing deposited films in thickness demands from the MOCVD reactors that the reaction gas flow uniformly along the substrate surfaces. In order to flow the reaction gases uniformly along the substrate surfaces in MOCVD reactors, various channel forms have been proposed.
As a conventional MOCVD reactor, for example, Japanese Unexamined Pat. App. Pub. No. H02-291113 (Patent Document 1) discloses a vapor-phase growth system having a conduit for introducing a reaction gas to space over a substrate. The conduit has: a sample-loading room internally housing a susceptor; a constricted part whose cross-sectional form is flattened, extending along the widthwise direction of the substrate, and being short in height-wise direction of the substrate, for ejecting reaction gas over the substrate from along the substrate sideways; and guide parts positioned over the substrate, in the constricted part at intervals approximately equal to the height-wise width, or at intervals that narrow heading toward the downstream end of the reaction gas, the guide parts covering the substrates evenly from above and guiding the reaction gas along the substrate surface. The susceptor is anchored in the sample-loading room, and carries the substrate at the downstream end of the reaction-gas flow.
Furthermore, for example, Japanese Unexamined Pat. App. Pub. No. H06-216030 (Patent Document 2) discloses a compound semiconductor vapor-phase growth system having a flow channel for introducing a reaction gas onto a substrate. The flow channel is tapered such that the height-wise width narrows from the upstream end of the flow channel gradually toward the downstream end of the flow channel. A susceptor is anchored under where the flow channel is tapered.
Moreover, Japanese Unexamined Pat. App. Pub. No. H2-291114 (Patent Document 3) and Japanese Unexamined Pat. App. Pub. No. H2-291113 (Patent Document 1) disclose a vapor-phase growth system provided with a rotating susceptor for carrying a substrate, and with a linear line for introducing a reaction gas to the substrate. The liner line monotonically diminishes in height over the reaction gas conduit.
Improving film-deposition efficiency is being demanded from MOCVD reactors. Scaling up the susceptor makes it possible to heat many substrates at once, and to grow films onto substrates of large diametric span, leading to the improvement of film-deposition efficiency. Scaling up the susceptor, however, enlarges the distance between the upstream and downstream ends of the susceptor, leading to a significant difference between reaction gas conditions (for example, concentration and temperature of the reaction gas) on the upstream and downstream ends of the susceptor. As a result, the thickness of the deposited films proves to be non-uniform. For this reason, to date, improving film-deposition efficiency while the films to be deposited are uniformized in thickness has not been realized.
BRIEF SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to make available MOCVD reactors with which, while films to be deposited are uniformized in thickness, efficiency of depositing the films can be improved.
A separate object of the present invention is to make available MOCVD reactors with which, while films to be deposited are improved in planarity, they can be uniformized in thickness.
AN MOCVD reactor of the present invention is a metalorganic chemical vapor deposition reactor for depositing films onto substrates, employing a reaction gas, and provided with a heating member and a duct. The heating member has a carrying surface for heating, and for carrying, the substrates. The duct is for introducing the reaction gas to the substrates. The heating member is rotatable with the carrying surface facing toward the duct interior. The duct has a first channel and a second channel, and the first and second channels join together on the side upstream from the upstream end of the carrying surface. The duct height along the direction of the reaction gas flow monotonically diminishes downstream from a first point to a second point, stays constant from the second point to a third point, and monotonically diminishes downstream from the third point. The first point lies on the side upstream from the upstream end of a location on the carrying surface in which the substrates are carried, and the third point lies on the heating member.
With the MOCVD reactor of the present invention, film-deposition rate on the side downstream from the third point can be fastened. Fastening the film-deposition rate enables bringing relationship between carrying-surface position along the reaction gas flow direction and film-deposition rate close to linear proportion. As a result, rotating the heating member makes it possible to uniformize in thickness the films deposited onto the substrates. Furthermore, no necessity to equalize reaction gas conditions for reaction respectively on the upstream and downstream ends of the heating member with each other leads to upsizing of the heating member, enabling enhancing film-deposition efficiency.
Furthermore, the duct monotonically decreases in height upstream of the upstream edge of the locus on the carrying surface of where the substrates are carried, which promotes mixing of gas passing through the first channel and gas passing through the second channel on the upstream edge of the substrate placement locus. As a result, the deposition rate at the upstream end of the carrying surface increases, and consequently linearity of the growth rate in the reaction-gas flow direction is enhanced. Therefore, while the deposited films are improved in planarity, they can be uniformized in thickness.
In the MOCVD reactor of the present invention, the second point preferably lies upstream of the upstream edge of the substrate placement locus. Therefore, at least from the upstream edge of the substrate placement locus to the third point, the duct height is held constant, which enables making the reaction gas flow on the substrates closer to a laminar flow.
In the MOCVD reactor of the present invention, the second point preferably lies upstream of the upstream edge of the carrying surface. Therefore, at least from the upstream edge of the carrying surface to the third point in the heating member, the duct height is held constant, which enables making the reaction gas flow closer to a laminar flow before the reaction gas reaches the carrying surface.
In the MOCVD reactor of the present invention, the first point preferably lies downstream from where the first and second channels merge. Therefore, after the gas that has passed through the first channel and the gas that has passes through the second channel join together, the mixing of the gas that has passed through the first channel and the gas that has passed through the second channel can be promoted.
In the MOCVD reactor of the present invention, it is preferable that the duct height monotonically diminishes downstream from the third point to a fourth point. The fourth point lies on the downstream end of the substrate placement locus, or downstream from the downstream edge of the substrates. Therefore, relationship between substrate placement location along the direction of the reaction gas flow and film-deposition rate can be made linear.
In the MOCVD reactor of the present invention, the duct preferably has a first sloping portion formed between the first and second points, and a second sloping portion formed downstream from the third point. The fist and second sloping portions slope with respect to the reaction gas flow direction. Therefore, the duct height decreases at a constant rate, which enables keeping disturbance of the reaction gas flow under control.
According to the MOCVD reactor of the present invention, while films to be deposited are uniformed in thickness, efficiency of depositing the films can be enhanced. Furthermore, while the films to be deposited are improved in planarity, the films can be uniformed in thickness.
From the following detailed description in conjunction with the accompanying drawings, the foregoing and other objects, features, aspects and advantages of the present invention will become readily apparent to those skilled in the art.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 is a sectional view illustrating the configuration of an MOCVD reactor in Embodiment 1 of the present invention.
FIG. 2 is an overhead, fragmentary view of the FIG. 1 susceptor and its vicinity.
FIG. 3 is a chart diagramming duct height in relation to points along the direction of reaction gas flow, in Embodiment 1 of the present invention.
FIG. 4 is a chart diagramming a variant example of duct height in relation to points along the direction of reaction gas flow, in Embodiment 1 of the present invention.
FIG. 5 is a sectional view illustrating the configuration of an MOCVD reactor in Comparative Examples 1 and 2.
FIG. 6 is a graph plotting the relationship between the distance from Point A2 along the direction of reaction gas flow, and InGaN growth rate, in an implementation in which the MOCVD reactor of Comparative Example 1 was employed to deposit an InGaN film without the susceptor being rotated.
FIG. 7 is a graph plotting the relationship between distance from the center of the susceptor, and InGaN growth rate, in an implementation in which the MOCVD reactor of Comparative Example 1 was employed to deposit an InGaN film while the susceptor was rotated.
FIG. 8 is a graph plotting the relationship between distance from the center of the susceptor and InGaN growth rate, in implementations in which the MOCVD reactors of Comparative Examples 1 through 3 were each employed to deposit an InGaN film.
FIG. 9A is a photomicrograph of the surface of an InGaN layer in an implementation having the NH3 flow rate be 20 slm in Comparative Example 2. FIG. 9B is a photomicrograph of the surface of an InGaN layer in an implementation having the NH3 flow rate be 30 slm in Comparative Example 2.
FIG. 10A is a graph plotting In-component distribution and film-thickness distribution in an implementation having the NH3 flow rate be 20 slm in Comparative Example 2. FIG. 10B is a graph plotting In-component distribution and film-thickness distribution in an implementation having the NH3 flow rate be 30 slm in Comparative Example 2.
FIG. 11A is a graph plotting how InGaN growth rate varies depending on distance from the susceptor center. FIG. 11B is a graph plotting how In fraction varies depending on distance from the susceptor center.
FIG. 12 is a sectional view illustrating the configuration of an MOCVD reactor in Embodiment 2 of the present invention.
FIG. 13 is a chart diagramming duct height in relation to points along the direction of reaction gas flow, in Embodiment 2 of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, referring to the figures, embodiments of the present invention will be described.
Embodiment 1
FIG. 1 is a cross-sectional view illustrating the configuration of an MOCVD reactor in Embodiment 1 of the present invention. FIG. 2 is an overhead, fragmentary view from FIG. 1 of the susceptor and its vicinity. Referring to FIGS. 1 and 2, an MOCVD reactor 1 of the present embodiment is furnished with: a chamber 3; a susceptor 5 as a heating member; a heater 9; and a duct 11. The susceptor 5, heater 9, and duct 11 are disposed inside the chamber 3. The duct 11 stretches widthwise in the middle of FIG. 1, and a carrying surface (in FIG. 1, the top side) of the susceptor 5 fronts on the interior of the duct 11.
The susceptor 5 is discoid in form, and is disposed over the heater 9, which likewise is discoid in form. To the underside of the susceptor 5, a rotating shaft 13 is mounted, which makes the susceptor 5 rotatable with the carrying surface fronting on the duct 11 interior. A plurality of indentations 7 that are of circular form viewed overhead are formed in the carrying surface of the susceptor 5. Each of substrates 20 are placed in respective indentations 7, where the substrates 20 are heated. With reference to FIG. 2 in particular, seven indentations 7 are formed in the carrying surface of the susceptor 5, and circular substrates 20 are each placed respectively in these indentations 7.
The duct 11 extends horizontally with respect to the carrying surface of the susceptor 5, and has the cross-sectional form of a rectangle when viewed along a plane perpendicular to the direction of reaction gas flow (the direction from the left to the right in FIG. 1). Furthermore, the duct 11 is a lateral trilaminar flow system, and has three channels 11 a to 11 c on at its upstream end (on the left in FIG. 1). Channels 11 b (first channel) and 11 c (second channel) merge at Point A1, while Channel 11 a, and Channels 11 b and 11 c merge at Point A2. Points A1 and A2 are located upstream of Point A3, which is the upstream edge, seen in the direction in which the reaction gas G flows (the direction heading from the left side to the right side in FIG. 1), of the carrying surface of the susceptor 5. Channels 11 a to 11 c have respective heights t1 to t3. Furthermore, the height t4 of the duct 11 from Point A2 to Point P1 (Point P1 will be described later) preferably satisfies the relationship of t4≧t1+t2+t3.
In the MOCVD reactor 1, a plurality of substrates 20 are placed on the carrying surface of the susceptor 5, and the susceptor 5 is heated by the heater 9 and is rotated. Subsequently, Gases G1 to G3 constituting reaction gases are introduced respectively through the channels 11 a to 11 c. The reaction gases flow to the right in FIG. 1. In an instance, for example, in which III-V nitride semiconductor films are deposited, the following gases could be utilized: as Gas G1, a purge gas such as hydrogen (H2) gas or nitrogen (N2) gas; as Gas G2, a mixture of a Group-III element-containing organometallic gas such as trimethyl gallium (TMG), trimethyl indium (TMI), or trimethylaluminum (TMA), and a carrier gas such as H2 gas or N2 gas; and as Gas G3, a mixture of a Group-V element-containing gas such as ammonia (NH3) gas, and a carrier gas such as H2 gas or N2 gas. When Gases G1 to G3 are each introduced respectively into Channels 11 a to 11 c, mixing of Gases G2 and G3 begins at Point A1, and their mixing together with Gas G1 begins at Point A2, to constitute the reaction gas G. Then, the reaction gas G is introduced over the susceptor 5, spreading parallel to its carrying surface, and is heated by the susceptor 5. By being heated, the organometallic gas contained in the reaction gas G decomposes into an intermediate reactant, which reacts with an intermediate reactant into which ammonia likewise has decomposed by being heated, to form a nitride semiconductor. As a result, a nitride semiconductor layer is deposited onto the surface of the substrates 20.
In the MOCVD reactor 1, sloping portions S1 and S2 are formed in an upper portion 15 a of the duct 11, with the sloping portions S1 and S2 declining in the direction of the reaction gas flow. The duct 11 varies in height along the direction of reaction gas flow. FIG. 3 is a chart diagramming duct height in relation to given points along the direction of reaction gas flow, in Embodiment 1 of the present invention.
With reference to FIGS. 1 and 3, the upstream edge of the locations on the carrying face of the susceptor 5 where substrates 20 are carried is designated as Point A4, and the downstream edge of the locations on the carrying face of the susceptor 5 where the substrates 20 are carried is designated as Point A5. The height of the duct 11, going in the reaction gas G flow direction, as attendant on the confluence of Channels 11 b and 11 c makes a discontinuous increase at Point A1, and as attendant on the confluence of Channel 11 a and Channels 11 b and 11 c makes a discontinuous increase at Point A2. The duct then has a constant height of t4 from Point A2 to Point P1 (first point). Continuing from there, the duct monotonically diminishes (linearly diminishes) heading from Point P1 downstream to Point P2 (second point); this section is sloping portion S1. Next, the duct has a constant height of t5 from Point P2 to Point P3 (third point) with Points A3 and A4 intervening. The duct then monotonically diminishes (linearly diminishes) heading from Point P3 downstream to Point P4; this section is sloping portion S2. Thereafter, the duct has a constant height of t6 in a region including Point A5, on the end downstream of Point P4.
In the MOCVD reactor 1, Point P1 is equivalent to Point A1, or else lies downstream of Point A1. Furthermore, Points P1 and P2 lie upstream of Point A3. Point P3 lines on the susceptor 5 (in other words, between Point A3 and the downstream edge of the carrying surface of the susceptor 5). Point P4 lies upstream of Point A5.
It should be understood that the locations of Points P1 to P4 in the present embodiment are illustrative; in an MOCVD reactor of the present invention, it should at least be the case that Point P1 lies upstream of Point A4, and that Point P3 lies on the susceptor 5. This means that Point P2 may lie downstream of Point A3 but upstream of Point A4, or that Points P1 and P2 may both lie downstream of Point A3 but upstream of Point A4.
Furthermore, although in the present embodiment the sloping portion S1 is formed in the upper portion 15 a of the duct 11 to monotonically diminish the height of the duct 11 from Point P1 to Point P2, in another implementation of the present invention, as illustrated in FIG. 4 for example, a step 16 may be formed in the upper portion 15 a of the duct 11 to have height of the duct 11 decrease discontinuously from height t4 to height t5. In this instance, Point P1 and Point P2 are in the same location. Further options include forming the sloping portions S1 and S2 in the lower portion 15 b rather than in the upper portion 15 a of the duct 11, or forming the step 16 in the lower portion 15 b rather than in the upper portion 15 a of the duct 11.
Next, the performance of the MOCVD reactor in the present embodiment will be described. FIG. 5 is a sectional view illustrating the configuration of an MOCVD reactor in Comparative Examples 1 and 2. With reference to FIG. 5, initially the inventors in the present application prepared an MOCVD reactor (Comparative Example 1) having a duct W1 as indicated by the dotted-dashed (phantom) lines. In an upper part of the duct W1, a sloping portion S101 is formed. The height of the duct W1, along the direction of the flow of the reaction gas G monotonically diminishes (linearly diminishes) heading downstream from Point P101 to Point P102, and then stays constant at a height of t6 in the region downstream of Point P102. Herein, apart from that difference, the MOCVD configuration is the same as the configuration of the MOCVD reactor illustrated in FIG. 1.
This MOCVD reactor was employed to deposit an InGaN layer, being a semiconductor nitride layer, onto the surface of substrates, without rotating the susceptor 5. Then the relationship between InGaN-growth rate and the distance from Point A2 along the direction of the reaction gas G flow and was investigated. The results are set forth in FIG. 6. It should be understood that the results in FIG. 6 are results taken along the centerline (line C in FIG. 2) in the susceptor widthwise direction and that the ranges indicated by the arrows in FIG. 6 are locations on the carrying surface of the susceptor 5 where the substrates 20 are set. Also, for comparison, results in an implementation in which a single 2-inch substrate 20 was set on, in a reactor in which the size of the duct W1 and susceptor 5 had been similarly scaled down to allow carrying a single 2-inch substrate, are additionally presented in the graph.
Referring to FIG. 6, in the susceptor carrying seven substrates the InGaN growth rate jumps from 0 at a point approximately 40 mm from Point A2 (that is, the susceptor starting point), exhibits a maximum at a point approximately 85 mm from the upstream edge, and decreases moderately thereafter. Meanwhile, the InGaN growth rate in the implementation in which a single substrate was set on increases almost monotonically.
In the FIG. 6 results, that the InGaN growth rate makes a great leap from 0 at the susceptor starting point would be due to the reaction gas having to be heated on the susceptor in order for the reaction between the Group-III and Group-V precursors to begin. And that a maximum value is exhibited is because a boundary layer develops as the source-material dispersion progresses over the course of the lower flow, and therefore the concentration gradient after once increasing moderates. Furthermore, from the results in FIG. 6 it is evident that in the situation in which the susceptor is not rotated, attendant on the scaling-up of the susceptor, the reaction conditions differ significantly between the upstream end and the downstream end of the reaction gas flow.
Next, with the MOCVD reactor of Comparative Example 1, the inventors in the present application deposited an InGaN layer onto the surface of substrates while rotating the susceptor. However, the number of the substrates set on the susceptor was put at six, with the substrates each being placed so that their centers would be in a position separated by 53 mm from the center of the susceptor. The relationship between the InGaN growth rate and the distance from the susceptor center was then investigated. Also, for comparison, results in an implementation in which a single 2-inch substrate was set on, in a reactor of a size allowing a single 2-inch substrate to be carried, are additionally presented. The results are set forth in FIG. 7. Further, spreads in the InGaN growth-rate distribution across the substrates are set forth in Table I.
TABLE I
With 6 substrates set on With 1 substrate set on
InGaN growth-rate ±4.3% ±1.8%
distribution spread
As will be understood from FIG. 7 and Table I, rotating the susceptor averages the InGaN growth-rate distribution, changing it for the better. Yet the InGaN growth-rate distribution in the implementation in which six substrates were carried has a width of ±4.3%, versus a width of ±1.8% for the InGaN growth-rate distribution in the implementation in which a single substrate was carried. From this difference it is evident that attendant on scaling up of the susceptor, even also in implementations in which the susceptor is rotated, the thickness of the deposited films is not uniform. It is also evident that in either case—in the implementation in which a single substrate was carried, as well as the implementation in which six substrates were carried—the InGaN growth rate distribution decreased at the susceptor outer-diametric side.
Herein, in situations in which the susceptor is rotated to deposit films onto substrates, making it so that the relationship between the deposition rate and the carrying-surface location running in the reaction-gas flow direction is linear (a proportional relationship) makes it possible to deposit uniform films along the substrates. That is, in situations in which the susceptor is rotated, it is not necessary to make the growth rate on the susceptor upstream end consistent with that on the downstream end.
With this understanding the inventors in the present application next prepared an MOCVD reactor (Comparative Example 2) having a duct W2 as illustrated in FIG. 5, in order to improve the InGaN growth rate in FIG. 6 on the downstream end of the susceptor to bring the relationship between deposition rate and carrying-surface position along the direction of reaction gas flow close to linear. In the duct W2, a sloping portion S102 similar to that in the MOCVD reactor 1 illustrated in FIG. 1 is formed. That is, the height of the duct W2 along the direction of the flow of the reaction gas G monotonically diminishes (linearly diminishes) heading downstream from Point P3 on the susceptor 5 to Point P4, and then stays constant at a height of t6 in the region downstream of Point P4. In Comparative Example 2, the point where the InGaN growth rate in FIG. 6 becomes maximum (the 125 mm position) was made Point P3. Subsequently, using the respective MOCVD reactors of Comparative Examples 1 and 2, the susceptor 5 was rotated and meanwhile an InGaN layer was deposited onto the surface of each of the six substrates 20 placed on the susceptor 5. The spread in the InGaN growth-rate distribution across the substrates 20 were investigated. The results are set forth in Table II.
TABLE II
Comp. Ex. 1 Comp. Ex. 2
InGaN growth-rate ±4.3% ±0.4%
distribution spread
Referring to Table II, whereas the InGaN growth-rate distribution in Comparative Example 1 is ±4.3%, in Comparative Example 2 the InGaN growth-rate distribution is ±0.4%, meaning that the distribution spread decreases. From these facts it is evident that monotonically diminishing the duct height heading downstream from a given point on the susceptor makes it possible to uniformize the thickness of the deposited films even where the susceptor is scaled up to produce films on a plurality of substrates simultaneously.
Herein, referring to FIG. 5, in the MOCVD reactor, Point P4, which is the point where the monotonic decrease in duct height ends, preferably lies on same position as Point A5, or downstream of Point A5. The relationship between the reaction-gas reaction rate and the substrate placement location along the direction of reaction gas flow can thereby be made linear. This will be explained below.
The present inventors studied influence of Point P4 on deposition rate. Specifically, the MOCVD reactors, in FIG. 5, in which Point P4 was brought to the side upstream from Point A4 (Comparative Example 2), and in which Point P4 was brought to the same position as Point A4 (Comparative Example 3) were prepared. In addition, for comparison, the MOCVD reactor of Comparative Example 1 was prepared. Next, each of the MOCVD reactors of Comparative Examples 1 through 3 was employed to deposit an InGaN layer onto the surface of each of six substrates 20 carried on the susceptor 5, without rotating the susceptor 5. And then, relationship between interval from the center of the susceptor 5 and InGaN growth rate was checked. The results are set forth in FIG. 8. It should be understood that the results in FIG. 8 are the results along the central line (line C in FIG. 2) in the susceptor widthwise direction, and the ranges represented with the arrows in FIG. 8 are the location on the carrying surface of the susceptor in which substrates are placed.
Referring to FIG. 8, in Comparative Examples 2 and 3, InGaN growth rate almost linearly increases with shifting from the upstream end of, to the downstream end of, the susceptor. In Comparative Example 2, however, linear form is broken at Point P4, while in Comparative Example 3, linear form is maintained to the downstream end (point A5) of the location in which substrates are placed. From these results, it is apparent that if Point P4 lies at the same position as Point A5, or on the side downstream from Point A5, the relationship between substrate placement location along the direction of reaction gas flow and reaction rate of reaction gas can be brought to linear proportion.
Subsequently, in the MOCVD reactor in Comparative Example 2, the inventors of the present invention varied flow rate of NH3 gas contained in the gas G3 to deposit an InGaN layer onto the surfaces of substrates. Specifically, a GaN layer was deposited by 30 nm in thickness onto sapphire substrates heated to 475° C., and then the temperature of the substrates was raised to 1,150° C. to further deposit the GaN layer by 1.5 μm in thickness. After that, the substrate temperature was dropped to 785° C. to deposit an InGaN layer by 50 nm in thickness under the following conditions—pressure: 100 kPa, NH3 flow rate: 20 slm (standard liters per minute) or 30 slm, N2 flow rate: 49.5 slm, TMG flow rate: 35 μmol/min to 56 μmol/min, TMI flow rate: 28 μmol/min to 45 μmol/min, ratio of Group-V gas to Group-III gas: approximately 13,000. In the depositions of the GaN and InGaN layers, the substrates were placed with their orientation flats (OF) being directed toward the outer periphery of the susceptor. After the InGaN layer was formed, morphologies on the surface of the InGaN layer were evaluated under an atomic force microscope (AFM). Furthermore, in the InGaN layer, In fraction distribution and InGaN layer thickness distribution were measured by X-ray diffraction.
FIG. 9A is a photomicrograph of the surface of an InGaN layer in the implementation in which in Comparative Example 2, the NH3 flow rate was brought to 20 slm, and FIG. 9B is a photomicrograph of the surface of an InGaN layer in the implementation in which in Comparative example 2, the NH3 flow rate was brought to 30 slm. Furthermore, FIG. 10A is a graph showing In fraction distribution and film thickness distribution in the implementation in which in Comparative Example 2, the NH3 flow rate was brought to 20 slm, and FIG. 10B is a graph showing In fraction distribution and film thickness distribution in the implementation in which in Comparative Example 2, the NH3 flow rate was brought to 30 slm. It should be understood that in FIG. 9, bright regions represent the (step) regions in which height of the surface is high, and dark regions represent the (recess) regions in which height of the surface is low. Moreover, the results in FIG. 10 demonstrate distribution in one substrate.
Referring to FIG. 9, a lot of defects in the form of a step are present on the surface of the InGaN layer in the implementation in which the NH3 flow rate was brought to 20 slm. On the other hand, in the implementation in which the NH3 flow rate was brought to 30 slm, atomic steps are clearly observed on the surface of the InGaN layer, and only few defects are present. From the results, it is apparent that increasing NH3 flow rate improves condition of InGaN layer surface.
The reason is believed to be as follows. Because NH3 is relatively stable, the percentage in which NH3 is changed into intermediate reactants (NH2 ions or NH ions) is low, even if the NH3 is heated. Therefore, raising NH3 flow rate increases the amount of intermediate reactants, leading to an increase in reaction amount between intermediate reactants of III element-containing organometallic gas and intermediate reactant of NH3. As a result, condition of InGaN layer surface is improved.
On the other hand, referring to FIG. 10, in the InGaN layer in the implementation in which the NH3 flow rate was brought to 20 sml, the layer thicknesses and In fractions in the substrates are made relatively uniform, while in the InGaN layer in the implementation in which the NH3 flow rate was brought to 30 slm, the layer thicknesses and In fractions in the substrates are worsened. Presumably, this is because increasing the NH3 flow rate prevents the III element-containing organometallic gas from diffusing in the NH3 gas.
Next, the inventors of the present invention prepared an MOCVD reactor, illustrated in FIG. 1, in which the heights t4, t5 and t6 were brought respectively to 12 mm, to 10 mm, and to 8 mm, and defined the reactor as a Present Invention Example 1. The inventors also prepared an MOCVD reactor, illustrated in FIG. 1, in which the heights t4, t5, and t6 were brought respectively to 12 mm, to 9 mm, and to 7 mm, and defined the reactor as Present Invention Example 2. In addition, the inventors prepared an MOCVD reactor having a duct W2, illustrated in FIG. 5, in which the heights t4 and t6 were brought respectively to 12 mm and to 8 mm, and defined the reactor as Comparative Example 4. Subsequently, with the NH3 flow rate being brought to 30 slm, each of the MOCVD reactors of the Present Invention Examples 1 and 2, and of Comparative Example 4 was employed to deposit an InGaN layer onto the surfaces of substrates without rotating the susceptor 5. And then, relationships between interval from the center of the susceptor 5, and InGaN growth rate and In fraction were checked. The results are set forth in FIG. 11. FIG. 11A is a graph showing InGaN deposition rate distribution in the susceptor, and FIG. 11B is a graph showing In fraction distribution in susceptor. It should be understood that the horizontal axis of the graph in FIG. 11 is represented with an interval from the center of the susceptor along the central line (line C in FIG. 2) in the susceptor widthwise direction. Positive numbers mean the downstream side, and minus numbers mean upstream side.
Referring to FIG. 11, in Comparative Example 4, InGaN growth rate and In fraction gradient lower in the range from −100 mm to 0 mm, present in the upstream part in the reaction gas flow direction. Such a deposition-rate distribution and In fraction distribution prevent uniform deposition-rate and In fraction distributions from being obtained in the situation in which susceptor is rotated. On the contrary, in Present Invention Examples 1 and 2, InGaN growth rate and In fraction gradient heighten in the range in the upstream part in the reaction gas flow direction, relative to those in Comparative Example 4. As a result, the InGaN growth rate and In fraction become closer to linear proportion. Presumably, this is because in Present Invention Examples 1 and 2, the monotonic decrease of path height, downstream from a point on the side upstream from the upstream end of the location in which substrates are carried makes the III element-containing organometallic gas likely to diffuse into the NH3 gas.
Next, with the NH3 flow rate being brought to 30 slm, employing the MOCVD reactors of Present Invention Examples 1 and 2, and of Comparative Example 4, the susceptor 5 was rotated, and meanwhile an InGaN layer was deposited onto the surface of each of the six substrates 20 carried on the susceptor 5. Subsequently, in the substrates 20, InGaN layer thickness distribution width and In fraction distribution width were checked. The results are set forth in FIG. 3.
TABLE III
Pres. Invent. Pres. Invent.
Ex. 1 Ex. 2 Comp. Ex. 4
InGaN layer film-thickness ±0.1% ±0.6% ±9.0%
distribution spread
In-fraction distribution spread ±3.4% ±5.5% ±4.0%
Referring to Table III, InGaN layer thickness distribution in Comparative Example 4 has a width of ±9.0%, while InGaN layer thickness distribution in Present Invention Example 1 has a width of +0.1%, and InGaN layer thickness distribution in Present Invention Example 2 has a width of ±0.6%. From these results, it is apparent that monotonically decreasing path height downstream from a point on the side upstream from the upstream end of the location in which substrates are carried enables uniformizing deposited films in thickness. Furthermore, the In fraction distribution in Comparative Example 4 has a width of ±4.0%, while In fraction distribution in Present Invention Example 1 has a width of ±3.4%, and In fraction distribution in Present Invention Example 2 has a width of ±5.5%. From these facts it is evident that even if the duct height is monotonically diminished downstream from a point on the side upstream from the upstream end of the location in which substrates are carried, there is only slight influence on the In fraction distribution.
According to the above results, in accordance with an MOCVD reactor 1 of the present embodiment, because the height of the duct 11 monotonically diminishes in the course upstream of Point A4, mixing of Gas G2 passing through Channel 11 b and Gas G3 passing through Channel 11 c is promoted at Point A4. As a result, the growth rate in the course upstream of Point P3 can be increased. This makes it possible to bring the relationship between the growth rate and the carrying-surface position along the direction in which the reaction gas G flows close to linear. As a consequence, by rotating the susceptor 5 the thickness of InGaN films deposited onto the substrates 20 can be uniformized. Furthermore, inasmuch as it is not necessary to make the reaction-gas reaction conditions on the upstream end of the susceptor 5 consistent with those on the downstream end, the heating member can be scaled up to improve the film-deposition efficiency.
Moreover, because Point P2 lies on the side upstream from Point A4, height of the duct 11 is held constant from Point A4 to Point P3, and thus flow of the reaction gas G over the substrates 20 can be brought close to laminar flow.
Furthermore, because Point P2 lies on the side upstream from Point A3, height of the duct 11 is held constant at least from Point A3 to Point P3, and thus flow of the reaction gas G can be brought close to laminar flow before the reaction gas G reaches the carrying surface.
Additionally, because Point P1 lies on the side downstream from Point A1, mixing of the gas G2 and the gas G3 can be prompted after the gases G2 and G3 join together.
Embodiment 2
FIG. 12 is a cross-sectional view of a configuration of an MOCVD reactor in Embodiment 2 of the present invention. FIG. 13 is a diagram representing relationship between points along the direction of reaction gas flow and path height, in Embodiment 2 of the present invention. Referring to FIGS. 12 and 13, an MOCVD reactor 1 a in the present embodiment differs in form of a duct 11 from the MOCVD reactor illustrated in FIG. 1. Specifically, a sloping portion S1 is formed between Point P0 on the side upstream from Point A1 and Point P2. Therefore, height of the duct 11 along the direction of the flow of a reaction gas G monotonically (linearly) decreases downstream from Point A2 to Point P2. In such a form of the duct 11, Point P1 and point A2 are the same position. Furthermore, Point P2 lies on the side downstream from Point A4, and Point P4 lies on the side downstream from Point A5. The point P2 may lie at the same position as Point A4.
It should be understood that other configurations are the same as in the MOCVD reactor, illustrated in FIG. 1, of Embodiment 1, and the identical parts have been labeled with the same reference mark, and reduplicating description will be omitted.
The MOVCD reactor of the present embodiment provides the same advantages as the MOCVD reactor in Embodiment 1.
In addition, because Point P4 lies at the same position as Point A5, or on the side downstream from Point A5, relationship between the location in which the substrates 20 are carried, along the direction in which the reaction gas G flows and the reaction rate of the reaction gas G, can be brought to linear proportion.
It should be understood that the configuration of the MOCVD reactor in the present embodiment and the configuration of the MOCVD reactor illustrated in FIG. 1 may be combined as appropriate.
Furthermore, although in Embodiments 1 and 2, examples in which InGaN layers are deposited has been given, the MOCVD reactor of the present invention is applicable to deposition of layers apart from InGaN layer. The number of channels is not limited to three, so any number of two or more may be adopted.
The embodiments disclosed in the foregoing should in all respects be considered to be illustrative and not limiting. The scope of the present invention is set forth not by the foregoing embodiments but by the scope of the patent claims, and is intended to include meanings equivalent to the scope of the patent claims and all revisions and modifications within the scope.
The present invention is especially suited to metalorganic chemical vapor deposition reactors for producing nitride semiconductor layers.

Claims (9)

What is claimed is:
1. A metalorganic chemical vapor deposition reactor for depositing a film onto substrates, employing a reaction gas, the metalorganic chemical vapor deposition reactor comprising:
a rotatable heating member having a carrying surface for carrying a plurality of the substrates and heating the substrates, the carrying-surface areas where the heating member carries substrates defining a substrate-carrying locus whose perimeter lies on the carrying-surface areas' outer edges; and
a duct for conducting the reaction gas to the substrates; wherein
the carrying surface of said heating member fronts on the interior of said duct;
said duct has a first channel and a second channel, and the first channel and the second channel merge in an end of said duct upstream of the upstream edge of the carrying surface;
the height of said duct along the direction of the reaction gas flow monotonically diminishes heading downstream from a first point to a second point, stays constant from the second point to a third point, from the third point immediately diminishes and monotonically continues to diminish heading downstream from the third point, and becomes constant from a fourth point; and
the first point lies upstream of the upstream edge of the perimeter of the substrate-carrying locus on the heating-member carrying surface, the third point lies on a line normal to and passing through said heating member and within the perimeter of the substrate-carrying locus, and the fourth point lies at the downstream edge of the perimeter of the substrate-carrying locus, or downstream of said downstream edge; whereby
flow of the reaction gas over the substrates is close to a laminar flow.
2. A metalorganic chemical vapor deposition reactor as set forth in claim 1, wherein the second point lies upstream of the upstream edge of the locus of where the substrates are carried.
3. A metalorganic chemical vapor deposition reactor as set forth in claim 2, wherein the second point lies upstream of the upstream edge of the carrying surface itself.
4. A metalorganic chemical vapor deposition reactor as set forth in claim 3, wherein the first point lies downstream of the location where the first channel and the second channel merge.
5. A metalorganic chemical vapor deposition reactor as set forth in claim 3, wherein said duct has a first sloping portion formed between the first point and the second point, and a second sloping portion formed heading downstream from the third point, and the first and second sloping portions decline in the direction of the reaction gas flow.
6. A metalorganic chemical vapor deposition reactor as set forth in claim 2, wherein the first point lies downstream of the location where the first channel and the second channel merge.
7. A metalorganic chemical vapor deposition reactor as set forth in claim 2, wherein said duct has a first sloping portion formed between the first point and the second point, and a second sloping portion formed heading downstream from the third point, and the first and second sloping portions decline in the direction of the reaction gas flow.
8. A metalorganic chemical vapor deposition reactor as set forth in claim 1, wherein the first point lies downstream of the location where the first channel and the second channel merge.
9. A metalorganic chemical vapor deposition reactor as set forth in claim 1, wherein said duct has a first sloping portion formed between the first point and the second point, and a second sloping portion formed heading downstream from the third point, and the first and second sloping portions decline in the direction of the reaction gas flow.
US12/270,867 2007-11-21 2008-11-14 Metalorganic chemical vapor deposition reactor Active 2032-02-17 US8920565B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007301882A JP4466723B2 (en) 2007-11-21 2007-11-21 Metalorganic vapor phase epitaxy system
JP2007-301882 2007-11-21

Publications (2)

Publication Number Publication Date
US20090126635A1 US20090126635A1 (en) 2009-05-21
US8920565B2 true US8920565B2 (en) 2014-12-30

Family

ID=40490996

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/270,867 Active 2032-02-17 US8920565B2 (en) 2007-11-21 2008-11-14 Metalorganic chemical vapor deposition reactor

Country Status (6)

Country Link
US (1) US8920565B2 (en)
EP (1) EP2062996A3 (en)
JP (1) JP4466723B2 (en)
KR (1) KR101026446B1 (en)
CN (1) CN101440479B (en)
TW (1) TWI378526B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209028A1 (en) * 2013-01-29 2014-07-31 Tokyo Electron Limited Film deposition apparatus
US11032945B2 (en) * 2019-07-12 2021-06-08 Applied Materials, Inc. Heat shield assembly for an epitaxy chamber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138896A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Epitaxial film and light-emitting element
CN102242352A (en) * 2010-05-14 2011-11-16 佛山市奇明光电有限公司 Organometallic chemical vapor deposition machine
CN102242353A (en) * 2010-05-14 2011-11-16 佛山市奇明光电有限公司 Metal-organic chemical vapor deposition machine
JP7432465B2 (en) 2020-07-31 2024-02-16 大陽日酸株式会社 Vapor phase growth equipment
KR102564228B1 (en) * 2021-04-29 2023-08-09 주식회사 테스 Metal organic chemical vapor deposition apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750620A (en) * 1970-03-11 1973-08-07 Philips Corp Vapor deposition reactor
US3816166A (en) 1970-03-11 1974-06-11 Philips Corp Vapor depositing method
JPH02291113A (en) 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH02291114A (en) 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
US4991540A (en) * 1987-06-30 1991-02-12 Aixtron Gmbh Quartz-glass reactor for MOCVD systems
EP0559326A1 (en) 1992-03-06 1993-09-08 Pioneer Electronic Corporation Compound semiconductor vapor phase epitaxial device
US6214116B1 (en) * 1998-01-17 2001-04-10 Hanvac Corporation Horizontal reactor for compound semiconductor growth
JP2002261021A (en) 2001-02-28 2002-09-13 Japan Pionics Co Ltd Apparatus and method for vapor-phase growth
JP2004063555A (en) 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Semiconductor fabricating apparatus and its fabricating process
US6709703B2 (en) * 2000-12-12 2004-03-23 Ngk Insulators, Ltd. Method for fabricating a III-V nitride film and an apparatus for fabricating the same
JP2005272987A (en) 2004-03-26 2005-10-06 Takachiho Shoji Kk Cvd reactor
JP2006287256A (en) 2006-06-16 2006-10-19 Sony Corp Chemical vapor deposition equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750620A (en) * 1970-03-11 1973-08-07 Philips Corp Vapor deposition reactor
US3816166A (en) 1970-03-11 1974-06-11 Philips Corp Vapor depositing method
US4991540A (en) * 1987-06-30 1991-02-12 Aixtron Gmbh Quartz-glass reactor for MOCVD systems
JPH02291113A (en) 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH02291114A (en) 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH06216030A (en) 1992-03-06 1994-08-05 Pioneer Electron Corp Vapor growth device for compound semiconductor
EP0559326A1 (en) 1992-03-06 1993-09-08 Pioneer Electronic Corporation Compound semiconductor vapor phase epitaxial device
US6214116B1 (en) * 1998-01-17 2001-04-10 Hanvac Corporation Horizontal reactor for compound semiconductor growth
US6709703B2 (en) * 2000-12-12 2004-03-23 Ngk Insulators, Ltd. Method for fabricating a III-V nitride film and an apparatus for fabricating the same
JP2002261021A (en) 2001-02-28 2002-09-13 Japan Pionics Co Ltd Apparatus and method for vapor-phase growth
JP2004063555A (en) 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Semiconductor fabricating apparatus and its fabricating process
JP2005272987A (en) 2004-03-26 2005-10-06 Takachiho Shoji Kk Cvd reactor
JP2006287256A (en) 2006-06-16 2006-10-19 Sony Corp Chemical vapor deposition equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Aaron Krowne. "monotonic" (version 2). PlanetMath.org. Freely available at http://planetmath.org/Monotonic.html. Last accessed Aug. 25, 2012. *
English Machine Translation of JP2006287256A. Performed and printed on Feb. 19, 2014 from http://www4.ipdl.inpit.go.jp/Tokujitu/PAJdetail.ipdl?N0000=60&N0120=01&N2001=2&N3001=2002-359203. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209028A1 (en) * 2013-01-29 2014-07-31 Tokyo Electron Limited Film deposition apparatus
US11032945B2 (en) * 2019-07-12 2021-06-08 Applied Materials, Inc. Heat shield assembly for an epitaxy chamber

Also Published As

Publication number Publication date
CN101440479B (en) 2012-01-18
KR20090052798A (en) 2009-05-26
TWI378526B (en) 2012-12-01
JP2009130043A (en) 2009-06-11
CN101440479A (en) 2009-05-27
EP2062996A3 (en) 2010-08-11
JP4466723B2 (en) 2010-05-26
TW200931571A (en) 2009-07-16
EP2062996A2 (en) 2009-05-27
US20090126635A1 (en) 2009-05-21
KR101026446B1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US8920565B2 (en) Metalorganic chemical vapor deposition reactor
EP1882757B1 (en) Metal organic chemical vapor deposition equipment
US10604847B2 (en) Gas distribution system, reactor including the system, and methods of using the same
US10364509B2 (en) Alkyl push flow for vertical flow rotating disk reactors
EP1220305B1 (en) CVD process
EP1271607A2 (en) Chemical vapor deposition apparatus and method
US20220356600A1 (en) Epitaxial device and gas intake structure for epitaxial device
JP5110074B2 (en) Crystal manufacturing method and light emitting device manufacturing method
US20130295283A1 (en) Chemical vapor deposition apparatus with multiple inlets for controlling film thickness and uniformity
JP4835666B2 (en) Vapor growth method
US20200002842A1 (en) Method of feeding gases into a reactor to grow epitaxial structures based on group iii nitride metals and a device for carrying out said method
JP3880096B2 (en) Vapor growth method
US20120322168A1 (en) Chemical vapor deposition apparatus
US20220403547A1 (en) Manufacturing apparatus for group-iii compound semiconductor crystal
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
JP2011108870A (en) Method of manufacturing epitaxial substrate and epitaxial substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UENO, MASAKI;TAKASUKA, EIRYO;REEL/FRAME:021832/0166

Effective date: 20080828

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8