US8907116B2 - Process for removing an alkanol impurity from a dialkyl carbonate stream - Google Patents
Process for removing an alkanol impurity from a dialkyl carbonate stream Download PDFInfo
- Publication number
- US8907116B2 US8907116B2 US13/390,124 US201013390124A US8907116B2 US 8907116 B2 US8907116 B2 US 8907116B2 US 201013390124 A US201013390124 A US 201013390124A US 8907116 B2 US8907116 B2 US 8907116B2
- Authority
- US
- United States
- Prior art keywords
- carbonate
- alkanol
- dialkyl carbonate
- impurity
- aryl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000012535 impurity Substances 0.000 title claims abstract description 116
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000008569 process Effects 0.000 title claims abstract description 64
- 239000003054 catalyst Substances 0.000 claims abstract description 92
- 125000003118 aryl group Chemical group 0.000 claims abstract description 83
- 150000002148 esters Chemical class 0.000 claims abstract description 76
- 238000006243 chemical reaction Methods 0.000 claims abstract description 46
- 230000000694 effects Effects 0.000 claims abstract description 13
- -1 alkylene carbonate Chemical compound 0.000 claims description 74
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical group C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 claims description 57
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 55
- 238000005809 transesterification reaction Methods 0.000 claims description 47
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 39
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 claims description 38
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 26
- 239000010936 titanium Substances 0.000 claims description 22
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- 229910052719 titanium Inorganic materials 0.000 claims description 18
- 229960000969 phenyl salicylate Drugs 0.000 claims description 15
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical group CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 claims description 10
- 229940093475 2-ethoxyethanol Drugs 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 125000005910 alkyl carbonate group Chemical group 0.000 claims description 2
- 238000004821 distillation Methods 0.000 description 26
- 239000000047 product Substances 0.000 description 13
- OOBQBIQWXHFEJF-UHFFFAOYSA-N 2-ethoxyethyl phenyl carbonate Chemical compound CCOCCOC(=O)OC1=CC=CC=C1 OOBQBIQWXHFEJF-UHFFFAOYSA-N 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- BQDKFFICLVYWIA-UHFFFAOYSA-M 2-ethoxyethyl carbonate Chemical compound CCOCCOC([O-])=O BQDKFFICLVYWIA-UHFFFAOYSA-M 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 6
- HMKAWWDIYVMUAB-UHFFFAOYSA-N 2-ethoxyethyl 2-hydroxybenzoate Chemical compound CCOCCOC(=O)C1=CC=CC=C1O HMKAWWDIYVMUAB-UHFFFAOYSA-N 0.000 description 5
- UIVHLJQMLWRKJZ-UHFFFAOYSA-N 2-ethoxyethyl ethyl carbonate Chemical compound CCOCCOC(=O)OCC UIVHLJQMLWRKJZ-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000066 reactive distillation Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 239000002638 heterogeneous catalyst Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000005587 carbonate group Chemical group 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- YCNSGSUGQPDYTK-UHFFFAOYSA-N ethyl phenyl carbonate Chemical compound CCOC(=O)OC1=CC=CC=C1 YCNSGSUGQPDYTK-UHFFFAOYSA-N 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- IXNCIJOVUPPCOF-UHFFFAOYSA-N 2-ethylhexan-1-ol;titanium Chemical group [Ti].CCCCC(CC)CO.CCCCC(CC)CO.CCCCC(CC)CO.CCCCC(CC)CO IXNCIJOVUPPCOF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000004703 alkoxides Chemical group 0.000 description 2
- BLWNPYNZLCQESL-UHFFFAOYSA-N bis(2-ethoxyethyl) carbonate Chemical compound CCOCCOC(=O)OCCOCC BLWNPYNZLCQESL-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 230000008570 general process Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- JQOAZIZLIIOXEW-UHFFFAOYSA-N zinc;chromium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Cr+3].[Cr+3].[Zn+2] JQOAZIZLIIOXEW-UHFFFAOYSA-N 0.000 description 2
- JQECMMHAJOANQR-UHFFFAOYSA-N (2-ethylphenyl) phenyl carbonate Chemical compound CCC1=CC=CC=C1OC(=O)OC1=CC=CC=C1 JQECMMHAJOANQR-UHFFFAOYSA-N 0.000 description 1
- KQWWPFLBEQBEFN-UHFFFAOYSA-N (4-ethylphenyl) phenyl carbonate Chemical compound C1=CC(CC)=CC=C1OC(=O)OC1=CC=CC=C1 KQWWPFLBEQBEFN-UHFFFAOYSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- DIUJNXCPDGGFQD-UHFFFAOYSA-N 2-ethoxyethoxybenzene Chemical compound CCOCCOC1=CC=CC=C1 DIUJNXCPDGGFQD-UHFFFAOYSA-N 0.000 description 1
- QMAQEQRTSYVDJF-UHFFFAOYSA-N 2-hydroxy-3-phenylbenzoic acid;phenyl 2-hydroxybenzoate Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1O.OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 QMAQEQRTSYVDJF-UHFFFAOYSA-N 0.000 description 1
- OKVPOZINERDBCV-UHFFFAOYSA-N CCOCCOC(=O)C1=C(O)C=CC=C1.CCOCCOC(=O)C1=C(O)C=CC=C1.CCOCCOC(=O)C1=C(O)C=CC=C1.CCOCCOC(=O)C1=C(OC(=O)C2=C(O)C=CC=C2)C=CC=C1.O=C(OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=CC=CC=C1)C1=C(O)C=CC=C1 Chemical compound CCOCCOC(=O)C1=C(O)C=CC=C1.CCOCCOC(=O)C1=C(O)C=CC=C1.CCOCCOC(=O)C1=C(O)C=CC=C1.CCOCCOC(=O)C1=C(OC(=O)C2=C(O)C=CC=C2)C=CC=C1.O=C(OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=CC=CC=C1)C1=C(O)C=CC=C1 OKVPOZINERDBCV-UHFFFAOYSA-N 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical group CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- JAKDVGBWHYMBMT-UHFFFAOYSA-N O=C(OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=CC=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=CC=CC=C1)OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1 Chemical compound O=C(OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=CC=CC=C1)C1=C(O)C=CC=C1.O=C(OC1=CC=CC=C1)OC1=C(C(=O)OC2=CC=CC=C2)C=CC=C1 JAKDVGBWHYMBMT-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical group CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- UOQTVEMFXWKBBS-UHFFFAOYSA-N ethyl 2-hydroxyethyl carbonate Chemical compound CCOC(=O)OCCO UOQTVEMFXWKBBS-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GVPONLWGQFZYSV-CYNONHLPSA-N pantothenoylaminoethenethiol Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)N\C=C\S GVPONLWGQFZYSV-CYNONHLPSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/03—Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C68/00—Preparation of esters of carbonic or haloformic acids
- C07C68/06—Preparation of esters of carbonic or haloformic acids from organic carbonates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C68/00—Preparation of esters of carbonic or haloformic acids
- C07C68/08—Purification; Separation; Stabilisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/84—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
- C07C69/86—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with esterified hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/96—Esters of carbonic or haloformic acids
Definitions
- the present invention relates to a process for removing an alkanol impurity from a stream containing a dialkyl carbonate and the alkanol impurity.
- Dialkyl carbonates can be produced by reaction of alkylene carbonate with alkanol. Where alkylene carbonate (such as ethylene carbonate) is reacted with alkanol (such as ethanol), the products are dialkyl carbonate (such as diethyl carbonate) and alkanediol (such as monoethylene glycol).
- alkanol such as ethanol
- dialkyl carbonate such as diethyl carbonate
- alkanediol such as monoethylene glycol
- An example of an alkanol impurity that may be contained in a dialkyl carbonate stream is an ether alkanol, for example an alkoxy alkanol.
- JP2003300917 and JP2002371037 relate to processes wherein dimethyl carbonate and monoethylene glycol are made from ethylene carbonate and methanol and wherein 2-methoxyethanol is formed as a by-product. In the inventions of JP2003300917 and JP2002371037, said 2-methoxyethanol is removed by specific distillation techniques.
- a side-reaction of ethanol with ethylene oxide formed by back-reaction of ethylene carbonate into ethylene oxide and carbon dioxide, into 2-ethoxyethanol (ethyl oxitol) may take place.
- ethyl oxitol may be formed by a side-reaction of ethanol with ethylene carbonate in such a way that carbon dioxide is released and ethyl oxitol is produced.
- a side-reaction between ethanol and monoethylene glycol may take place producing ethyl oxitol and water.
- ethyl oxitol may be formed via decarboxylation of hydroxyethyl ethyl carbonate.
- the product stream from a reactor where ethanol and ethylene carbonate are reacted into diethyl carbonate and monoethylene glycol may comprise unconverted ethanol, unconverted ethylene carbonate, diethyl carbonate, monoethylene glycol and the above-mentioned ethyl oxitol impurity.
- the presence of said alkoxy alkanol impurity may be detrimental in any subsequent production process.
- Said alkoxy alkanol impurity may for example end up in the dialkyl carbonate that is used as a starting material for the synthesis of diphenyl carbonate from said dialkyl carbonate and phenol.
- dialkyl carbonate is diethyl carbonate and the alkoxy alkanol impurity is ethyl oxitol
- said ethyl oxitol may react with the phenol starting material and/or with the diphenyl carbonate product.
- Alkoxy alkanols (such as ethyl oxitol) are neither good leaving groups. Therefore, in case phenyl 2-ethoxyethyl carbonate is present in a diphenyl carbonate feed to be reacted with BPA, phenol will be released easily from said phenyl 2-ethoxyethyl carbonate but not ethyl oxitol which will consequently stop the polymerization process at one end of the chain. Consequently, phenyl 2-ethoxyethyl carbonate has to be removed from diphenyl carbonate before the latter is contacted with BPA.
- the product stream also containing unconverted ethanol and ethylene carbonate and ethyl oxitol side-product may be separated by means of distillation.
- the boiling points for the various components in said product stream are mentioned in the table below.
- the distillation as referred to above may result in a top stream containing diethyl carbonate and unconverted ethanol and a bottom stream containing monoethylene glycol and unconverted ethylene carbonate. Most likely, all of the ethyl oxitol ends up in the top stream. However, depending on the specific conditions under which distillation is carried out, part of the ethyl oxitol may end up in the bottom stream. Subsequently, said top stream may be further separated by means of distillation into a top stream containing unconverted ethanol which can be recycled to the reactor where diethyl carbonate and monoethylene glycol are produced, and a bottom stream containing diethyl carbonate and the ethyl oxitol impurity.
- the alkanol impurity has to be removed therefrom as that might interfere said subsequent process and/or any further processes.
- ethyl oxitol and diethyl carbonate could be separated by means of a further distillation step.
- such separation is very cumbersome requiring many distillation steps and stages. Therefore, there is a need to find a simple method of removing an alkanol impurity from a dialkyl carbonate stream containing such alkanol impurity.
- the present invention relates to a process for removing an alkanol impurity from a stream containing a dialkyl carbonate and the alkanol impurity, comprising contacting the stream with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester.
- the alkanol impurity should be removed from the dialkyl carbonate stream before the dialkyl carbonate is used as a starting material in any subsequent process, for example before the dialkyl carbonate is reacted with phenol in the synthesis of diphenyl carbonate.
- the aryl group containing ester contains one or more ester moieties of formula —(C ⁇ O)O—.
- a specific example of such ester moiety is a carbonate moiety of formula —O(C ⁇ O)O—.
- the aryl group containing ester contains one or more aryl groups.
- the aryl group or at least one of the aryl groups may be attached directly to the non-carbonyl oxygen atom of an ester moiety of formula —(C ⁇ O)O— through one of the carbon atoms which constitute the aromatic ring of the aryl group.
- R 4 or R 5 is an aryl group, the other group being an alkyl group, or both R 4 and R 5 are aryl groups.
- both R 4 and R 5 are aryl groups.
- the aryl group is a phenyl group.
- the aryl group may be unsubstituted or substituted by an alkyl group, a heteroatom containing group such as a hydroxyl group, or a carbonyl group such as the carbonyl group from another ester moiety.
- Suitable aryl group containing carbonates for reaction with the alkanol impurity in the present process are ethyl phenyl carbonate (EPC) and diphenyl carbonate (DPC).
- EPC ethyl phenyl carbonate
- DPC diphenyl carbonate
- the aryl group containing ester is DPC.
- R′′ is an aryl group
- R′ may be an alkyl group or an aryl group.
- both R′ and R′′ are aryl groups.
- the aryl group may be unsubstituted or substituted by an alkyl group, a heteroatom containing group such as a hydroxyl group, or a carbonyl group such as the carbonyl group from another ester moiety.
- R′′ is a phenyl group.
- R′ is a phenyl group substituted by a hydroxyl group at a position ortho with respect to the carbonyl group of the ester moiety.
- Phenyl salicylate can be formed by internal rearrangement of DPC in a side-reaction during the production of DPC from a dialkyl carbonate and phenol and/or during purification of crude DPC.
- Aryl group containing esters which are phenyl salicylate derivatives are also suitable for reaction with the alkanol impurity in the present process.
- Such phenyl salicylate derivatives are shown in the reaction scheme below:
- the phenyl salicylate derivatives shown in the above reaction scheme contain 2, 3 or more ester moieties of formulas —(C ⁇ O)O— and/or —O(C ⁇ O)O— and 1, 2 or more phenyl bridges between different ester moieties. These derivatives may have originated, directly or indirectly, from reaction of phenyl salicylate with itself, said phenyl salicylate being both an alcohol and an ester, or from reaction of phenyl salicylate with DPC, which reactions are shown in the above reaction scheme.
- Suitable phenyl salicylate derivatives are those wherein the hydroxyl group of phenyl salicylate is replaced by an alkoxide group —OR wherein R is an alkyl group, for example a methyl or an ethyl group.
- the dialkyl carbonate in the stream from which the alkanol impurity has to be removed in accordance with the present invention may be a di(C 1 -C 5 )alkyl carbonate, wherein the alkyl groups (straight, branched and/or cyclic) may be the same or different, such as methyl, ethyl and propyl.
- the dialkyl carbonate is diethyl carbonate.
- the alkanol impurity which has to be removed from the stream containing the dialkyl carbonate and said impurity in accordance with the present invention may be an ether alkanol, more specifically an alkoxy alkanol, most specifically 2-ethoxyethanol, as described above.
- the amount of the alkanol impurity in the stream containing the dialkyl carbonate and said impurity may be comprised in the range of from 0.1 to 10 wt. %, specifically 0.3 to 8 wt. %, more specifically 0.5 to 6 wt. % and most specifically 0.5 to 5 wt. %.
- the reaction of the alkanol impurity with the aryl group containing ester in the presence of a catalyst in accordance with the present invention results in transesterification of the aryl group containing ester. Therefore, the catalyst that needs to be used in the process of the present invention should be a transesterification catalyst.
- the stream containing a dialkyl carbonate and the alkanol impurity does not contain a catalyst. More in particular, said stream does not contain a transesterification catalyst before the present invention is carried out.
- the transesterification catalyst to be added in the present invention may be one of many suitable homogeneous and heterogeneous transesterification catalysts known from prior art.
- suitable homogeneous transesterification catalysts have been described in U.S. Pat. No. 5,359,118 and include hydrides, oxides, hydroxides, alkanolates, amides, or salts of alkali metals, i.e., lithium, sodium, potassium, rubidium and cesium.
- Preferred homogeneous transesterification catalysts are hydroxides or alkanolates of potassium or sodium.
- Other suitable homogeneous transesterification catalysts are alkali metal salts, such as acetates, propionates, butyrates, or carbonates.
- Suitable catalysts are described in U.S. Pat. No. 5,359,118 and the references mentioned therein, such as EP274953A, U.S. Pat. No. 3,803,201, EP1082A, and EP180387A.
- Suitable heterogeneous catalysts include ion exchange resins that contain functional groups. Suitable functional groups include tertiary amine groups and quaternary ammonium groups, and also sulphonic acid and carboxylic acid groups. Further suitable catalysts include alkali metal and alkaline earth metal silicates. Suitable catalysts have been disclosed in U.S. Pat. No. 4,062,884 and U.S. Pat. No. 4,691,041.
- the heterogeneous catalyst may be selected from ion exchange resins comprising a polystyrene matrix and tertiary amine functional groups.
- the heterogeneous transesterification catalyst to be used in the present invention may be a catalyst comprising an element from Group 4 (such as titanium; for example TiO 2 catalyst), Group 5 (such as vanadium), Group 6 (such as chromium or molybdenum) or Group 12 (such as zinc) of the Periodic Table of the Elements, or tin or lead, or a combination of such elements, such as a combination of zinc with chromium (for example zinc chromite). Said elements may be present in the catalyst as an oxide, such as zinc oxide.
- the transesterification catalyst to be used in the present invention may be a heterogeneous catalyst comprising zinc.
- the transesterification catalyst to be added in the present invention may be one of many suitable homogeneous and heterogeneous transesterification catalysts that are known to catalyze the formation of diphenyl carbonate from a dialkyl carbonate and phenol. More specifically, the transesterification catalyst is a titanium containing catalyst. Preferably, the titanium in said titanium containing catalyst has an oxidation state of IV. Further, said titanium may be bonded to one or more, preferably four, alkoxide groups, such as ethoxide groups, and/or aryloxide groups, such as phenoxide groups.
- An example of a suitable homogeneous transesterification catalyst is titanium(IV) 2-ethylhexyloxide (Ti(OC 8 H 17 ) 4 ).
- the above-mentioned titanium containing catalyst may be a dimer or polymer containing 2 or more titanium atoms, wherein titanium atoms may be bonded to each other via a carbonate bridge of formula —O(C ⁇ O)O— or via an oxygen bridge of formula —O—. Still further, said titanium containing catalyst may additionally contain one or more silicon atoms wherein the titanium and silicon atoms are bonded to each other via an oxygen bridge of formula —O—.
- the transesterification catalyst to be added in the present invention such as the above-mentioned titanium containing catalyst, is present in a stream containing the aryl group containing ester that is to be reacted with the alkanol impurity in the present process.
- said transesterification catalyst and said aryl group containing ester do not have be added separately for reaction with the alkanol impurity in the present process.
- such stream containing both said transesterification catalyst, such as the above-mentioned titanium containing catalyst, and said aryl group containing ester, comprising for example DPC may originate from a process for producing diphenyl carbonate from a dialkyl carbonate and phenol and/or purifying crude DPC, and may additionally contain heavy by-products. Even though part of such a stream can be recycled so that catalyst can be reused and DPC can be recovered, part of said stream has to be bled from the production process and disposed to prevent build-up of said heavy by-products.
- the stream containing the dialkyl carbonate and the alkanol impurity may advantageously be contacted with a stream (for example a bleed stream) originating from a process for producing diphenyl carbonate from a dialkyl carbonate and phenol and/or purifying crude diphenyl carbonate, the latter stream containing a catalyst, preferably a titanium containing transesterification catalyst such as those titanium containing catalysts as described above, and an aryl group containing ester, comprising preferably diphenyl carbonate and optionally one or more derivatives of diphenyl carbonate, comprising preferably phenyl salicylate and optionally one or more derivatives of phenyl salicylate, such as the phenyl salicylate derivatives as described above.
- a catalyst preferably a titanium containing transesterification catalyst such as those titanium containing catalysts as described above
- an aryl group containing ester comprising preferably diphenyl carbonate and optionally one or more derivatives of diphenyl carbonate
- both said aryl group containing ester and said catalyst are effectively used to remove the alkanol impurity from the dialkyl carbonate, which is further explained below, rather than for example just being bled and disposed of. This leads to an improved efficiency of the overall, integrated process.
- transesterification conditions are known in the art and suitably include a temperature from 40 to 200° C., and a pressure from 50 to 5000 kPa (0.5 to 50 bar).
- the dialkyl carbonate is of formula R 1 OC(O)OR 2 wherein R 1 and R 2 may the same or a different alkyl
- the aryl group containing ester is a carbonate of formula R 4 O(CO)OR 5 wherein R 4 or R 5 is an aryl group, the other group being an alkyl group, or both R 4 and R 5 are aryl groups
- the alkanol impurity is an alkanol of formula R 3 OH wherein R 3 may be an alkoxyalkyl group
- Said PhOC(O)OEtOEt is a mixed carbonate, namely phenyl 2-ethoxyethyl carbonate.
- EtOEtOC(O)OEtOEt is di(2-ethoxyethyl)carbonate.
- said alkanol impurity preferentially reacts with diphenyl carbonate rather than with diethyl carbonate.
- alkanol impurity preferentially reacts with phenyl salicylate rather than with diethyl carbonate. This results in the same advantages as discussed above in connection with the preferential reaction with diphenyl carbonate.
- the aryl group containing ester of formula (I) is a by-product in the production of diphenyl carbonate from a dialkyl carbonate and phenol, which by-product may thus be advantageously used in the present process to effectively remove another by-product, namely said alkanol impurity which may be formed in the production of a dialkyl carbonate from an alkylene carbonate and an alkanol.
- said aryl group containing ester of formula (I) advantageously does not have to be disposed of.
- the stream containing the dialkyl carbonate and the alkanol impurity is a stream containing a dialkyl carbonate that has been produced from reacting an alkanol with an alkylene carbonate
- the stream usually contains unconverted alkanol reactant in addition to the alkanol impurity.
- the stream containing the dialkyl carbonate and the alkanol impurity is a stream containing dialkyl carbonate, unconverted alkanol and an alkanol impurity
- contacting of said stream with an aryl group containing ester and a transesterification catalyst to effect reaction of the alkanol impurity with the aryl group containing ester in accordance with the present invention may be performed before, during or after the step wherein dialkyl carbonate is separated from unconverted alkanol.
- Separation of the dialkyl carbonate from unconverted alkanol may be effected by means of distillation. Such distillation results in a top stream containing the unconverted alkanol (such as ethanol) and a bottom stream containing the dialkyl carbonate (such as diethyl carbonate), in a case where the unconverted alkanol has been reacted in a preceding step with an alkylene carbonate to produce the dialkyl carbonate and an alkanediol.
- the unconverted alkanol such as ethanol
- dialkyl carbonate such as diethyl carbonate
- the aryl group containing ester and the catalyst may be added to the distillation column itself or to a reactor of which the inlet and outlet are connected to said distillation column.
- the catalyst may be added together with the aryl group containing ester in one stream that contains both the catalyst and the aryl group containing ester, as described above.
- said contacting with an aryl group containing ester and transesterification catalyst is performed after said distillation step wherein the dialkyl carbonate is separated from unconverted alkanol.
- the bottom stream that originates from said (first) distillation step and which contains dialkyl carbonate but no longer unconverted alkanol may be sent to a separate reactor or (directly) to a 2nd distillation column. In case it is sent to a separate reactor, the outlet stream of said reactor may be sent to a 2nd distillation column
- purified dialkyl carbonate no longer containing the alkanol impurity is separated as a top stream.
- the aryl group containing ester and transesterification catalyst are added to the 2nd distillation column (or to said separate reactor, where applicable) either separately or in combination.
- the catalyst is added together with the aryl group containing ester in one stream that contains both the catalyst and the aryl group containing ester, as described above.
- the bottom stream from said 2nd distillation column contains the catalyst and compounds having a higher boiling point than the dialkyl carbonate, as further illustrated below, and can be disposed of or further purified to recover any valuable component, such as catalyst and/or phenol. This is further explained below.
- the present invention advantageously results in the removal of an alkanol impurity in dialkyl carbonate streams, which alkanol impurity might have interfered in any subsequent process using said dialkyl carbonate if it would not have been removed. It is recognised that by practising the present invention other impurities may be formed instead.
- the present process may further comprise the step of removing the impurities resulting from the reaction of the alkanol impurity with the aryl group containing ester, from the stream containing the dialkyl carbonate.
- pure diethyl carbonate may easily be obtained by means of distillation in view of the boiling point differences between diethyl carbonate and the other compounds. This is indicated in the table below.
- the present invention also relates to a process for the preparation of a dialkyl carbonate and an alkanediol comprising:
- step (d) separating unconverted alkanol from the top stream containing unconverted alkanol, dialkyl carbonate and the alkanol impurity obtained in step (b) to obtain a bottom stream containing dialkyl carbonate and the alkanol impurity,
- step (e) contacting the bottom stream containing dialkyl carbonate and the alkanol impurity obtained in step (d) with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester.
- the present invention further also relates to a process for the preparation of a dialkyl carbonate and an alkanediol comprising:
- step (d) contacting the top stream containing unconverted alkanol, dialkyl carbonate and the alkanol impurity obtained in step (b) with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester, and separating unconverted alkanol to obtain a bottom stream containing dialkyl carbonate.
- transesterification catalyst and other transesterification conditions are equally applicable to steps (a) of said two processes for the preparation of a dialkyl carbonate and an alkanediol.
- the present invention also relates to a process for the preparation of a dialkyl carbonate and an alkanediol comprising:
- step (i) reacting an alkylene carbonate and an alkanol in the presence of a transesterification catalyst in a distillation column, preferably a reactive distillation column, to obtain a top stream containing unconverted alkanol, dialkyl carbonate and an alkanol impurity and a bottom stream containing alkanediol and any unconverted alkylene carbonate; (ii) recovering the alkanediol; and (iii) separating unconverted alkanol from the top stream containing unconverted alkanol, dialkyl carbonate and the alkanol impurity obtained in step (i) to obtain a bottom stream containing dialkyl carbonate and the alkanol impurity, which process further comprises (iv) contacting the bottom stream containing dialkyl carbonate and the alkanol impurity obtained in step (iii) with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl
- the present invention further also relates to a process for the preparation of a dialkyl carbonate and an alkanediol comprising:
- step (i) reacting an alkylene carbonate and an alkanol in the presence of a transesterification catalyst in a distillation column, preferably a reactive distillation column, to obtain a top stream containing unconverted alkanol, dialkyl carbonate and an alkanol impurity and a bottom stream containing alkanediol and any unconverted alkylene carbonate; (ii) recovering the alkanediol; and (iii) contacting the top stream containing unconverted alkanol, dialkyl carbonate and the alkanol impurity obtained in step (i) with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester, and separating unconverted alkanol to obtain a bottom stream containing dialkyl carbonate.
- a transesterification catalyst in a distillation column, preferably a reactive distillation column
- transesterification catalyst and other transesterification conditions are equally applicable to steps (i) of said two processes for the preparation of a dialkyl carbonate and an alkanediol.
- the present invention relates to a process for making a diaryl carbonate, comprising contacting a stream containing a dialkyl carbonate and an alkanol impurity with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester in accordance with any one of the above-described processes, and then contacting, in the presence of a transesterification catalyst, an aryl alcohol with the stream containing the dialkyl carbonate.
- said diaryl carbonate is diphenyl carbonate and said aryl alcohol is phenol.
- transesterification catalyst and other transesterification conditions are equally applicable to said process for making a diaryl carbonate.
- Transesterification experiments were performed by contacting diethyl carbonate (DEC) and 2-ethoxyethanol (ethyl oxitol) with either only catalyst (Reference Example) or with both catalyst and diphenyl carbonate (DPC; Examples 1 and 2) or phenyl salicylate (Example 3).
- the catalyst used was a commercially available heterogeneous catalyst comprising zinc, namely ZN-0312 T 1 ⁇ 8 (HT) catalyst supplied by BASF, which is a mixture of zinc oxide (about 65 wt. %) and zinc chromite (Zn.Cr 2 O 3 ; about 35 wt. %).
- the reactions were performed in a 100 ml batch autoclave reactor equipped with a magnetic stirrer. To remove air and moisture, the filled reactor was purged three times with a stream of dry nitrogen before starting each of the experiments.
- Examples 4 and 5 were carried out in a similar way as Examples 1 and 2, with the proviso that the catalysts used were different.
- the catalysts used in Examples 4 and 5 were a heterogeneous titanium oxide (TiO 2 anatase) catalyst and a homogeneous titanium(IV) 2-ethylhexyloxide (Ti(OC 8 H 17 ) 4 ) catalyst, respectively.
- Example 6 The experiment of Example 6 was carried out in a similar way as Examples 1 and 2, with the proviso that a heavy carbonate fraction was used.
- Said heavy carbonate fraction was mainly comprised of DPC.
- the heavy carbonate fraction contained 0.4 mmole of titanium (Ti). The specific form of the titanium species as contained in the heavy carbonate fraction is unknown.
- the titanium species as contained in said heavy carbonate fraction originated from the catalyst used in the preceding preparation of DPC from DEC and phenol.
- Said preparation involved reacting phenol and DEC in a first reactive distillation column in the presence of a titanium containing transesterification catalyst and separating by withdrawing a bottom stream containing DPC product (and its isomers), intermediate product ethyl phenyl carbonate, heavy impurities, a portion of unreacted phenol, a portion of unreacted DEC and traces of ethanol.
- said bottom fraction was concentrated by removing phenol, DEC, ethanol and other light contaminants over the top of the column, and further reaction into DPC took place in said second column.
- the DPC containing bottom fraction from said second reactive distillation column was subjected to further distillation, wherein the main portion of the DPC was overheaded via the top stream from said column and the bottom stream therefrom contained the remaining DPC and isomers of DPC (such as phenyl salicylate) as well as heavy impurities (including 2-EPPC and 4-EPPC as mentioned above) and titanium species as mentioned above.
- the heavy carbonate fraction that was used in Example 6 was taken from the latter bottom stream.
- DEC also reacted with ethyl oxitol. This is not problematic as generally the amount of contaminants is only relatively small so that not much DEC would be lost.
- the amount of the ethyl oxitol contaminant was set at a value in the range of from 2.9 to 4.4 wt. %.
- the reaction of said ethyl oxitol with DEC results in a product (i.e. ethyl 2-ethoxyethyl carbonate (EEC)), that can also be easily separated from DEC by means of distillation. Thus this also results in the removal of the ethyl oxitol from DEC.
- EEC ethyl 2-ethoxyethyl carbonate
- Examples 1-4 it appears from the table that despite the presence of a relatively large amount of DEC, no or only a relatively small amount of EEC was formed by reaction of DEC with ethyl oxitol, so that no or not much DEC was lost.
- ethyl oxitol reaction product was phenyl 2-ethoxyethyl carbonate (Examples 1, 2 and 4) or 2-ethoxyethyl salicylate (Example 3).
- the results for the Reference Example show that EEC is indeed formed in the absence of DPC and phenyl salicylate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
| Component | Boiling point (° C.) | ||
| ethanol | 78.4 | ||
| diethyl carbonate | 126-128 | ||
| ethyl oxitol | 135 | ||
| monoethylene glycol | 197.3 | ||
| ethylene carbonate | 260.4 | ||
R1OC(O)OR2+R3OH→R3OC(O)OR2+R1OH (1)
R3OC(O)OR2+R3OH→R3OC(O)OR3+R2OH (2)
2R3OC(O)OR2→R3OC(O)OR3+R2OC(O)OR2 (3)
R4OC(O)OR5+R3OH→R3OC(O)OR5+R4OH (4)
R3OC(O)OR5+R3OH→R3OC(O)OR3+R5OH (5)
2R3OC(O)OR5→R3OC(O)OR3+R5OC(O)OR5 (6)
EtOC(O)OEt+EtOEtOH→EtOC(O)OEtOEt+EtOH (1)
EtOC(O)OEtOEt+EtOEtOH→EtOEtOC(O)OEtOEt+EtOH (2)
2EtOC(O)OEtOEt→EtOEtOC(O)OEtOEt+EtOC(O)OEt (3)
PhOC(O)OPh+EtOEtOH→PhOC(O)OEtOEt+PhOH (4)
PhOC(O)OEtOEt+EtOEtOH→EtOEtOC(O)OEtOEt+PhOH (5)
2PhOC(O)OEtOEt→EtOEtOC(O)OEtOEt+PhOC(O)OPh (6)
Said EtOC(O)OEtOEt (OxEC) is a mixed carbonate, namely ethyl 2-ethoxyethyl carbonate. Said PhOC(O)OEtOEt (OxPC) is a mixed carbonate, namely phenyl 2-ethoxyethyl carbonate. EtOEtOC(O)OEtOEt (DOxC) is di(2-ethoxyethyl)carbonate.
| Component | Boiling point (° C.) | ||
| diethyl carbonate | 126-128 | ||
| phenol | 182 | ||
| ethyl 2-ethoxyethyl carbonate | 190.2 (*) | ||
| di(2-ethoxyethyl) carbonate | 245.5 (*) | ||
| phenyl 2-ethoxyethyl carbonate | 281.2 (**) | ||
| diphenyl carbonate | 301 | ||
| (*) Calculated using ACD/Labs Software V9.04 from Solaris ( ©1994-2008 ACD/Labs) | |||
| (**) Estimated using Emami, Valid, Elliot and Marrero, Gani group contribution methods (mean value). | |||
(ii) recovering the alkanediol; and
(iii) separating unconverted alkanol from the top stream containing unconverted alkanol, dialkyl carbonate and the alkanol impurity obtained in step (i) to obtain a bottom stream containing dialkyl carbonate and the alkanol impurity,
which process further comprises
(iv) contacting the bottom stream containing dialkyl carbonate and the alkanol impurity obtained in step (iii) with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester.
(ii) recovering the alkanediol; and
(iii) contacting the top stream containing unconverted alkanol, dialkyl carbonate and the alkanol impurity obtained in step (i) with an aryl group containing ester and a catalyst to effect reaction of the alkanol impurity with the aryl group containing ester, and separating unconverted alkanol to obtain a bottom stream containing dialkyl carbonate.
| Examples | Ref. | 1 | 2 | 3 | 4 | 5 | 6 |
| Start conditions | |||||||
| Diethyl carbonate (wt. %) | 88.2 | 42.7 | 58.7 | 31.6 | 60.1 | 66.7 | 66.1 |
| Diphenyl carbonate (wt. %) | 0 | 44.2 | 27.7 | 0 | 27.2 | 29.2 | 0 |
| Phenyl salicylate (wt. %) | 0 | 0 | 0 | 55.5 | 0 | 0 | 0 |
| Heavy carbonate fraction (wt. %) | 0 | 0 | 0 | 0 | 0 | 0 | 31.0 |
| Ethyl oxitol (wt. %) | 3.6 | 4.4 | 3.9 | 3.8 | 3.7 | 3.9 | 2.9 |
| Catalyst (wt. %) | 8.2 | 8.7 | 9.7 | 9.1 | 9.0 | 0.1 | (1) |
| Molar ratio —(C═O)OEt to —(C═O)OPh | n.a. | 1.8 | 3.8 | 2.1 | 4.0 | 4.1 | >3.9 |
| Reaction conditions | |||||||
| Temperature (° C.) | 120 | 120 | 120 | 120 | 180 | 180 | 180 |
| Duration (hours) | 6 | 18 | 5.33 | 5.33 | 5 | 4.83 | 4 |
| Results | |||||||
| Ethyl 2-ethoxyethyl carbonate (EEC) | yes | no | no | yesa | yesb | yes | yes |
| formed? | |||||||
| Phenyl 2-ethoxyethyl carbonate formed? | n.a. | yes | yes | n.a. | yes | yes | yes |
| 2-Ethoxyethyl salicylate formed? | n.a. | n.a. | n.a. | yes | n.a. | n.a. | n.d. |
| Conversion of ethyl oxitol (%) | n.d. | 100 | 81 | n.d. | 100 | 100 | 100 |
| (1) = 0.4 mmole Ti in heavy carbonate fraction; n.a. = not applicable; n.d. = not determined | |||||||
| aEEC/(EEC + 2-ethoxyethyl salicylate), based on GC-MS area count = 0.01 (1%) | |||||||
| bEEC/(EEC + phenyl 2-ethoxyethyl carbonate), based on GC-MS area count = 0.06 (6%) | |||||||
Claims (17)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP09167737 | 2009-08-12 | ||
| EP09167737 | 2009-08-12 | ||
| EP09167737.7 | 2009-08-12 | ||
| PCT/EP2010/061587 WO2011018448A1 (en) | 2009-08-12 | 2010-08-10 | Process for removing an alkanol impurity from a dialkyl carbonate stream |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20120226065A1 US20120226065A1 (en) | 2012-09-06 |
| US8907116B2 true US8907116B2 (en) | 2014-12-09 |
Family
ID=41327710
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/390,124 Active 2030-11-29 US8907116B2 (en) | 2009-08-12 | 2010-08-10 | Process for removing an alkanol impurity from a dialkyl carbonate stream |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US8907116B2 (en) |
| EP (1) | EP2464620B1 (en) |
| JP (1) | JP5596147B2 (en) |
| CN (1) | CN102471223B (en) |
| ES (1) | ES2437130T3 (en) |
| SG (1) | SG178263A1 (en) |
| TW (1) | TWI511953B (en) |
| WO (1) | WO2011018448A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2711353B1 (en) | 2012-09-20 | 2018-10-31 | SABIC Global Technologies B.V. | Process for the continuous manufacture of aryl alkyl carbonate and diaryl carbonate using vapor recompression |
| JP7477512B2 (en) * | 2018-12-18 | 2024-05-01 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Process for preparing dialkyl carbonates and alkanediols |
Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3642858A (en) | 1969-02-12 | 1972-02-15 | Dow Chemical Co | Carbonate synthesis from alkylene carbonates |
| US3803201A (en) | 1971-02-22 | 1974-04-09 | Dow Chemical Co | Synthesis of dimethyl carbonate |
| US4062884A (en) | 1975-04-09 | 1977-12-13 | Anic, S.P.A. | Process for the preparation of dialkylcarbonates |
| EP0001082A1 (en) | 1977-09-07 | 1979-03-21 | Bayer Ag | Process for the preparation of dialkyl carbonates |
| US4508927A (en) | 1983-08-02 | 1985-04-02 | The Halcon Sd Group, Inc. | Preparation of glycols from ethylene oxide |
| EP0180387A2 (en) | 1984-10-25 | 1986-05-07 | Scientific Design Company Inc. | Process for preparing alkylene oxides from alkylene carbonates and alkylene carbonates from alkylene oxides |
| US4691041A (en) | 1986-01-03 | 1987-09-01 | Texaco Inc. | Process for production of ethylene glycol and dimethyl carbonate |
| EP0274953A1 (en) | 1986-12-23 | 1988-07-20 | Societe Francaise D'organo-Synthese | Process for the preparation of organic carbonates by transesterification |
| US5292917A (en) | 1991-02-26 | 1994-03-08 | Ube Industries, Ltd. | Process for purifying dimethyl carbonate |
| US5359118A (en) | 1992-05-15 | 1994-10-25 | Bayer Aktiengesellschaft | Process for the continuous preparation of dialkyl carbonates |
| EP0658536A1 (en) | 1993-12-15 | 1995-06-21 | Bayer Ag | Process for the separation of methanol from a mixture of dimethyl carbonate and methanol |
| US5508442A (en) | 1993-06-07 | 1996-04-16 | Bayer Aktiengesellschaft | Reactor and continuous process to be carried out therewith for the preparation of ethylene glycol carbonate and propylene glycol carbonate |
| JP2002371037A (en) | 2001-06-12 | 2002-12-26 | Mitsubishi Chemicals Corp | Method for producing high-purity dimethyl carbonate |
| JP2003300917A (en) | 2002-04-11 | 2003-10-21 | Mitsubishi Chemicals Corp | Process for producing dimethyl carbonate and ethylene glycol |
| WO2004113264A2 (en) * | 2003-06-19 | 2004-12-29 | General Electric Company | Method and apparatus for waste stream recovery |
| JP2006069997A (en) | 2004-09-06 | 2006-03-16 | Nippon Polyurethane Ind Co Ltd | Method for producing high-purity dialkyl carbonate |
| CN1809624A (en) | 2003-06-18 | 2006-07-26 | 催化蒸馏技术公司 | Improved hydrodesulfurization process using selected naphtha streams |
| EP1760059A1 (en) | 2004-06-17 | 2007-03-07 | Asahi Kasei Chemicals Corporation | Process for producing dialkyl carbonate and diol |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003238487A (en) * | 2002-02-20 | 2003-08-27 | Mitsubishi Chemicals Corp | Method for producing carbonate ester |
| US7622601B2 (en) * | 2004-10-14 | 2009-11-24 | Asahi Kasei Chemicals Corporation | Process for production of high-purity diaryl carbonate |
| JP4224514B2 (en) * | 2004-10-22 | 2009-02-18 | 旭化成ケミカルズ株式会社 | Industrial production method of high purity diaryl carbonate |
| TWI378087B (en) * | 2006-02-22 | 2012-12-01 | Shell Int Research | Process for the preparation of an alkanediol and a dialkyl carbonate |
| KR101666784B1 (en) * | 2008-10-20 | 2016-10-17 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | Process for removing an alkanol impurity from an organic carbonate stream |
-
2010
- 2010-08-10 EP EP10739648.3A patent/EP2464620B1/en active Active
- 2010-08-10 US US13/390,124 patent/US8907116B2/en active Active
- 2010-08-10 ES ES10739648.3T patent/ES2437130T3/en active Active
- 2010-08-10 CN CN201080035736.2A patent/CN102471223B/en active Active
- 2010-08-10 SG SG2012007951A patent/SG178263A1/en unknown
- 2010-08-10 TW TW099126672A patent/TWI511953B/en active
- 2010-08-10 JP JP2012524216A patent/JP5596147B2/en active Active
- 2010-08-10 WO PCT/EP2010/061587 patent/WO2011018448A1/en active Application Filing
Patent Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3642858A (en) | 1969-02-12 | 1972-02-15 | Dow Chemical Co | Carbonate synthesis from alkylene carbonates |
| US3803201A (en) | 1971-02-22 | 1974-04-09 | Dow Chemical Co | Synthesis of dimethyl carbonate |
| US4062884A (en) | 1975-04-09 | 1977-12-13 | Anic, S.P.A. | Process for the preparation of dialkylcarbonates |
| EP0001082A1 (en) | 1977-09-07 | 1979-03-21 | Bayer Ag | Process for the preparation of dialkyl carbonates |
| US4508927A (en) | 1983-08-02 | 1985-04-02 | The Halcon Sd Group, Inc. | Preparation of glycols from ethylene oxide |
| EP0180387A2 (en) | 1984-10-25 | 1986-05-07 | Scientific Design Company Inc. | Process for preparing alkylene oxides from alkylene carbonates and alkylene carbonates from alkylene oxides |
| US4691041A (en) | 1986-01-03 | 1987-09-01 | Texaco Inc. | Process for production of ethylene glycol and dimethyl carbonate |
| EP0274953A1 (en) | 1986-12-23 | 1988-07-20 | Societe Francaise D'organo-Synthese | Process for the preparation of organic carbonates by transesterification |
| US5292917A (en) | 1991-02-26 | 1994-03-08 | Ube Industries, Ltd. | Process for purifying dimethyl carbonate |
| US5359118A (en) | 1992-05-15 | 1994-10-25 | Bayer Aktiengesellschaft | Process for the continuous preparation of dialkyl carbonates |
| US5508442A (en) | 1993-06-07 | 1996-04-16 | Bayer Aktiengesellschaft | Reactor and continuous process to be carried out therewith for the preparation of ethylene glycol carbonate and propylene glycol carbonate |
| EP0658536A1 (en) | 1993-12-15 | 1995-06-21 | Bayer Ag | Process for the separation of methanol from a mixture of dimethyl carbonate and methanol |
| JP2002371037A (en) | 2001-06-12 | 2002-12-26 | Mitsubishi Chemicals Corp | Method for producing high-purity dimethyl carbonate |
| JP2003300917A (en) | 2002-04-11 | 2003-10-21 | Mitsubishi Chemicals Corp | Process for producing dimethyl carbonate and ethylene glycol |
| CN1809624A (en) | 2003-06-18 | 2006-07-26 | 催化蒸馏技术公司 | Improved hydrodesulfurization process using selected naphtha streams |
| WO2004113264A2 (en) * | 2003-06-19 | 2004-12-29 | General Electric Company | Method and apparatus for waste stream recovery |
| US20050010063A1 (en) | 2003-06-19 | 2005-01-13 | General Electric Company | Method and apparatus for waste stream recovery |
| US20060194978A1 (en) | 2003-06-19 | 2006-08-31 | General Electric Company | Method and apparatus for waste stream recovery |
| EP1760059A1 (en) | 2004-06-17 | 2007-03-07 | Asahi Kasei Chemicals Corporation | Process for producing dialkyl carbonate and diol |
| JP2006069997A (en) | 2004-09-06 | 2006-03-16 | Nippon Polyurethane Ind Co Ltd | Method for producing high-purity dialkyl carbonate |
Non-Patent Citations (4)
| Title |
|---|
| Chinese Office Action issued Sep. 30, 2013 by State Intellectual Property Office for Ref. No. TS2392 CHNP, Chinese Patent Application No. 201080035736.2. |
| Knifton, J. F. et al., Ethylene Glycol-Dimethyl Carbonate Cogeneration, Journal of Molecular Catalysis, vol. 67 (1991) pp. 389-399. |
| Machine translation of JP 2003-300917, obtained from , Accessed Feb. 23, 2014. * |
| Machine translation of JP 2003-300917, obtained from <http://worldwide.espacenet.com/>, Accessed Feb. 23, 2014. * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011018448A1 (en) | 2011-02-17 |
| JP5596147B2 (en) | 2014-09-24 |
| TWI511953B (en) | 2015-12-11 |
| CN102471223A (en) | 2012-05-23 |
| TW201113252A (en) | 2011-04-16 |
| EP2464620B1 (en) | 2013-10-02 |
| EP2464620A1 (en) | 2012-06-20 |
| US20120226065A1 (en) | 2012-09-06 |
| ES2437130T3 (en) | 2014-01-09 |
| CN102471223B (en) | 2015-03-25 |
| SG178263A1 (en) | 2012-03-29 |
| JP2013501748A (en) | 2013-01-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7732630B2 (en) | Process for the preparation of an alkanediol and a dialkyl carbonate | |
| US8975432B2 (en) | Process for preparing alkanediol and dialkyl carbonate | |
| TWI412515B (en) | Process for the preparation of an alkanediol and a dialkyl carbonate | |
| EP1994018B1 (en) | Process for the production of alkylene carbonate and use of alkylene carbonate thus produced in the manufacture of an alkane diol and a dialkyl carbonate | |
| US9096514B2 (en) | Process for removing an alkanol impurity from an organic carbonate stream | |
| US8907116B2 (en) | Process for removing an alkanol impurity from a dialkyl carbonate stream | |
| WO2010063694A1 (en) | Process for removing an alkanol impurity from an organic carbonate stream | |
| EP3831805A1 (en) | Process for the preparation of a dialkyl carbonate and an alkanediol | |
| WO2021110627A1 (en) | Process for removing an ether alkanol impurity from an organic carbonate stream |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLAIS, CYRILLE PAUL;VAPORCIYAN, GARO GARBIS;SIGNING DATES FROM 20120306 TO 20120419;REEL/FRAME:028155/0768 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: SHELL USA, INC., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:059694/0819 Effective date: 20220301 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |

