Connect public, paid and private patent data with Google Patents Public Datasets

Depth map confidence filtering

Download PDF

Info

Publication number
US8885890B2
US8885890B2 US12776066 US77606610A US8885890B2 US 8885890 B2 US8885890 B2 US 8885890B2 US 12776066 US12776066 US 12776066 US 77606610 A US77606610 A US 77606610A US 8885890 B2 US8885890 B2 US 8885890B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
matrix
pixel
depth
confidence
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12776066
Other versions
US20110274366A1 (en )
Inventor
John Tardif
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/002Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Abstract

An apparatus and method for filtering depth information received from a capture device. Depth information is filtered by using confidence information provided with the depth information based an adaptively created, optimal spatial filter on a per pixel basis. Input data including depth information is received on a scene. The depth information comprises a plurality of pixels, each pixel including a depth value and a confidence value. A confidence weight normalized filter for each pixel in the depth information is generated. The weight normalized filter is combined with the input data to provide filtered data to an application.

Description

BACKGROUND

Various types of image based data acquisition devices use depth information for different applications. Time-of-flight range sensors with on-chip continuous-wave correlation of radio frequency-modulated signals are increasingly popular. They simultaneously deliver depth maps and intensity images with noise and systematic errors that are unique for this particular kind of data. Depth information of a scene is provided by a capture device along with a confidence indication quantifying the reliability that the depth information is accurate.

Various types of image processing techniques have been used to remove noise from two dimensional images. Noise can be generated from any of a number of errors in acquisition and can affect confidence information.

SUMMARY

Technology is disclosed for filtering depth information received from a capture device. Depth information is filtered by using confidence information provided with the depth information based an adaptively created, optimal spatial filter on a per pixel basis. In one embodiment, a method for filtering depth information including a confidence measure is provided. Input data including depth information is received on a scene. The depth information comprises a plurality of pixels, each pixel including a depth value and a confidence value. A confidence weight normalized filter for each pixel in the depth information is generated. The weight normalized filter is combined with the input data to provide filtered data to an application.

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a capture device and a processing device suitable for implementing the present technology.

FIG. 2 depicts an exemplary multimedia console-processing device.

FIG. 3 depicts a second embodiment of a processing device.

FIG. 4 is an exemplary depth image captured by a capture device.

FIG. 5 illustrates an example embodiment of a portion of the depth image being sampled

FIGS. 6 and 7 show a scatter plot of a typical scene's depth noise versus uncertainty.

FIG. 8 illustrates a method in accordance with the present technology for dynamically filtering a depth image.

FIG. 9 illustrates a method for calculating a confidence weight normalized filter for each pixel in an image at 930.

FIG. 10 illustrates a method for configuring a filter.

FIG. 11 illustrates a data store illustrating the distance values from an input pixel.

FIGS. 12A through 12D illustrate the creation of a spatial weighting matrix using the input pixel confidence value and the distance to a kernel pixel.

FIG. 13A illustrates a method in accordance with step 1040 described above for generating a confidence weighting matrix based upon individual kernel confidence

FIG. 13B. illustrates confidence matrix for a given set of input pixels.

FIG. 14 illustrates a combined matrix.

FIG. 15 illustrates a process for normalizing the combined weighting matrix.

FIG. 16 illustrates a process for preparing an object correlation matrix.

DETAILED DESCRIPTION

Technology is disclosed for filtering depth information received from a capture device. Depth information is filtered by using confidence information provided with the depth information based on an adaptively created, optimal spatial filter on a per pixel basis. More weighting in the filter coefficients is used for input samples that are closer to the spatial position of the output. More weighting is applied for input depth samples that have higher confidence than for input depth samples with lower confidence. Scaling of the coefficients ensures that overall gain and localized gain is preserved.

The technology is advantageously utilized in a target recognition, analysis, and tracking system such as that disclosed in U.S. patent application Ser. No. 12/475,094 entitled “Environment And/Or Target Segmentation”, filed May 29, 2009 and hereby fully incorporated herein by reference; U.S. patent application Ser. No. 12/603,437, “Pose Tracking Pipeline,” filed on Oct. 21, 2009. (hereinafter referred to as the '437 application), and hereby fully incorporated herein by reference; U.S. patent application Ser. No. 12/475,308, “Device for Identifying and Tracking Multiple Humans Over Time,” filed on May 29, 2009, and hereby fully incorporated herein by reference; “Motion Detection Using Depth Images,” filed on Dec. 18, 2009, and hereby fully incorporated herein by reference; U.S. patent application Ser. No. 12/575,388, “Human Tracking System,” filed on Oct. 7, 2009, and hereby fully incorporated herein by reference.

The capture device may be coupled to a computing environment such as that illustrated in FIGS. 1-4. The computing environment 12 may be a computer, a gaming system or console, or the like. According to an example embodiment, the computing environment 12 may include hardware components and/or software components such that the computing environment 12 may be used to execute applications such as gaming applications, non-gaming applications, or the like. In one embodiment, the computing environment 12 may include a processor such as a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions including, for example, instructions for receiving a depth image.

According to one embodiment, the target recognition, analysis, and tracking system 10 may be connected to an audiovisual device (not shown) such as a television, a monitor, a high-definition television (HDTV), or the like that may provide game or application visuals and/or audio to a user. For example, the computing environment 12 may include a video adapter such as a graphics card and/or an audio adapter such as a sound card that may provide audiovisual signals associated with the game application, non-game application, or the like.

Other applications for the instant technology exist and use in a target recognition, analysis and tracking system is merely one exemplary use.

FIG. 1 illustrates an example embodiment of a capture device 20 that may be used in conjunction with a computing environment 12. According to an example embodiment, the capture device 20 may be configured to capture video with depth information including a depth image that may include depth values via any suitable technique including, for example, time-of-flight, structured light, stereo image, or the like. According to one embodiment, the capture device 20 may organize the depth information into “Z layers,” or layers that may be perpendicular to a Z axis extending from the depth camera along its line of sight.

As shown in FIG. 1 the capture device 20 may include an image camera component 22. According to an example embodiment, the image camera component 22 may be a depth camera that may capture the depth image of a scene. The depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel in the 2-D pixel area may represent a depth value such as a length or distance in, for example, centimeters, millimeters, or the like of an object in the captured scene from the camera.

As shown in FIG. 1, according to an example embodiment, the image camera component 22 may include an IR light component 24, a three-dimensional (3-D) camera 26, and an RGB camera 28 that may be used to capture the depth image of a scene. For example, in time-of-flight analysis, the IR light component 24 of the capture device 20 may emit an infrared light onto the scene and may then use sensors (not shown) to detect the backscattered light from the surface of one or more targets and objects in the scene using, for example, the 3-D camera 26 and/or the RGB camera 28. In some embodiments, pulsed infrared light may be used such that the time between an outgoing light pulse and a corresponding incoming light pulse may be measured and used to determine a physical distance from the capture device 20 to a particular location on the targets or objects in the scene. Additionally, in other example embodiments, the phase of the outgoing light wave may be compared to the phase of the incoming light wave to determine a phase shift. The phase shift may then be used to determine a physical distance from the capture device to a particular location on the targets or objects.

According to another example embodiment, time-of-flight analysis may be used to indirectly determine a physical distance from the capture device 20 to a particular location on the targets or objects by analyzing the intensity of the reflected beam of light over time via various techniques including, for example, shuttered light pulse imaging.

In another example embodiment, the capture device 20 may use a structured light to capture depth information. In such an analysis, patterned light (i.e., light displayed as a known pattern such as grid pattern or a stripe pattern) may be projected onto the scene via, for example, the IR light component 24. Upon striking the surface of one or more targets or objects in the scene, the pattern may become deformed in response. Such a deformation of the pattern may be captured by, for example, the 3-D camera 26 and/or the RGB camera 28 and may then be analyzed to determine a physical distance from the capture device to a particular location on the targets or objects.

According to another embodiment, the capture device 20 may include two or more physically separated cameras that may view a scene from different angles to obtain visual stereo data that may be resolved to generate depth information.

The capture device 20 may further include a microphone 30. The microphone 30 may include a transducer or sensor that may receive and convert sound into an electrical signal. According to one embodiment, the microphone 30 may be used to reduce feedback between the capture device 20 and the computing environment 12 in the target recognition, analysis, and tracking system 10. Additionally, the microphone 30 may be used to receive audio signals that may also be provided by the user to control applications such as game applications, non-game applications, or the like that may be executed by the computing environment 12.

In an example embodiment, the capture device 20 may further include a processor 32 that may be in operative communication with the image camera component 22. The processor 32 may include a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions including, for example, instructions for receiving a depth image; generating depth map based on the depth image; providing confidence information based on the depth image, or any other suitable instruction, which will be described in more detail below.

The capture device 20 may further include a memory component 34 that may store the instructions that may be executed by the processor 32, images or frames of images captured by the 3-D camera or RGB camera, or any other suitable information, images, or the like. According to an example embodiment, the memory component 34 may include random access memory (RAM), read only memory (ROM), cache, Flash memory, a hard disk, or any other suitable storage component. As shown in FIG. 1, in one embodiment, the memory component 34 may be a separate component in communication with the image capture component 22 and the processor 32. According to another embodiment, the memory component 34 may be integrated into the processor 32 and/or the image capture component 22.

As shown in FIG. 1, the capture device 20 may be in communication with the computing environment 12 via a communication link 36. The communication link 36 may be a wired connection including, for example, a USB connection, a Firewire connection, an Ethernet cable connection, or the like and/or a wireless connection such as a wireless 802.11b, g, a, or n connection. According to one embodiment, the computing environment 12 may provide a clock to the capture device 20 that may be used to determine when to capture, for example, a scene via the communication link 36.

Additionally, the capture device 20 may provide the depth information and images captured by, for example, the 3-D camera 26 and/or the RGB camera 28, to the computing environment 12 via the communication link 36.

Also shown in FIG. 1 is a filtering element 60 comprising line buffers 74, 76, confidence weighting matrix generator 82, spatial weighting matrix generator 80 an normalization engine 84. Also shown are multipliers 81 and 86. Filtering element 60 and components included thereon may be comprised of dedicated hardware components, be integrated on one or more of the peripheral components illustrated in FIGS. 2 and 3, or be implemented by code for instructing a processor such as CPU 101 or processing unit 259 in FIGS. 2 and 3 respectively to perform the tasks described below in FIGS. 9-16.

Enabling the line buffers 74, 76, confidence weighting matrix generator 82, spatial weighting matrix generator 80, normalization engine 84, an object correlation matrix generator 85 and correlation matrix multiplier 85 a, and multipliers 81 and 86 are implemented as hardware components generators as hardware adders, multipliers and memory increases the speed of the generators and allows filtering with minimal added latency.

Depth information acquired from capture device 20 may be provided via link 36 to the computing environment. Filtering in accordance with the technology is performed on each input pixel of a scene of information. An image may be thought of as a set of pixels showing a version of the scene. Depth information may be provided from the capture device in a raster scan fashion or using a global shutter exposure. Raster scanning generally occurs on an image from left to right while progressing from top to bottom in an image sensor.

Buffers 74 and 76 allow for the capture of a sufficient amount of information (depending on the filter matrix configuration discussed below with respect to FIG. 10) to allow the filtering technology to act on the input stream. As information is provided to the filtering element 60, buffers 74, 76 acquire sufficient information for confidence weighting matrix generator 82, spatial weighting matrix generator 80, object correlation matrix generator 85, normalization engine 84 and multipliers 81, 85 a and 86 to provide filtering operations.

In general, for each input pixel, a filter matrix is defined based on a filter resolution matrix based on a number of pixels adjacent to the input pixel. For every input pixel, the confidence weighting matrix generator 82 generates a confidence filter matrix based on the confidence values of the pixels in the matrix surrounding the input pixel. The spatial weighting matrix generator 80 builds a spatial weighting matrix based on the confidence value of the input pixel and the distance of a pixel in the matrix to a surrounding pixel. Multiplier 81 combines the values of the confidence weighting matrix generator 82 and the spatial weighting matrix generator 80 to provide a combined matrix. An object correlation matrix generator 85 generates a correlation weighting matrix to remove components of the filter matrix where kernel pixels are on different depth planes and are found by the technology. The object correlation matrix removes undefined pixels outside the image boundary and pixels from different objects during the filtering process. The output of multiplier 81 is combined with the object correlation matrix using multiplier 85 a. The normalization engine 84 creates a normalized combined matrix which is then combined with the input values by multiplier 86 to provide a filtered depth output to one or more applications 226.

FIG. 2 illustrates an example embodiment of a computing environment that may be used to interpret one or more gestures in a target recognition, analysis, and tracking system and/or animate an avatar or on-screen character displayed by the target recognition, analysis, and tracking system. The computing environment such as the computing environment 12 described above with respect to FIG. 1 may be a multimedia console 100, such as a gaming console. As shown in FIG. 2, the multimedia console 100 has a central processing unit (CPU) 101 having a level 1 cache 102, a level 2 cache 104, and a flash ROM (Read Only Memory) 106. The level 1 cache 102 and a level 2 cache 104 temporarily store data and hence reduce the number of memory access cycles, thereby improving processing speed and throughput. The CPU 101 may be provided having more than one core, and thus, additional level 1 and level 2 caches 102 and 104. The flash ROM 106 may store executable code that is loaded during an initial phase of a boot process when the multimedia console 100 is powered ON.

A graphics processing unit (GPU) 108 and a video encoder/video codec (coder/decoder) 114 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 108 to the video encoder/video codec 114 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 140 for transmission to a television or other display. A memory controller 110 is connected to the GPU 108 to facilitate processor access to various types of memory 112, such as, but not limited to, a RAM (Random Access Memory).

The multimedia console 100 includes an I/O controller 120, a system management controller 122, an audio processing unit 123, a network interface controller 124, a first USB host controller 126, a second USB controller 128 and a front panel I/O subassembly 130 that are preferably implemented on a module 118. The USB controllers 126 and 128 serve as hosts for peripheral controllers 142(1)-142(2), a wireless adapter 148, and an external memory device 146 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 124 and/or wireless adapter 148 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.

System memory 143 is provided to store application data that is loaded during the boot process. A media drive 144 is provided and may comprise a DVD/CD drive, hard drive, or other removable media drive, etc. The media drive 144 may be internal or external to the multimedia console 100. Application data may be accessed via the media drive 144 for execution, playback, etc. by the multimedia console 100. The media drive 144 is connected to the I/O controller 120 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).

The system management controller 122 provides a variety of service functions related to assuring availability of the multimedia console 100. The audio processing unit 123 and an audio codec 132 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 123 and the audio codec 132 via a communication link. The audio processing pipeline outputs data to the A/V port 140 for reproduction by an external audio player or device having audio capabilities.

The front panel I/O subassembly 130 supports the functionality of the power button 150 and the eject button 152, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 100. A system power supply module 136 provides power to the components of the multimedia console 100. A fan 138 cools the circuitry within the multimedia console 100.

The CPU 101, GPU 108, memory controller 110, and various other components within the multimedia console 100 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.

When the multimedia console 100 is powered ON, application data may be loaded from the system memory 143 into memory 112 and/or caches 102, 104 and executed on the CPU 101. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 100. In operation, applications and/or other media contained within the media drive 144 may be launched or played from the media drive 144 to provide additional functionalities to the multimedia console 100.

The multimedia console 100 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 100 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 124 or the wireless adapter 148, the multimedia console 100 may further be operated as a participant in a larger network community.

When the multimedia console 100 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16 MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 kbs), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.

In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.

With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., popups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.

After the multimedia console 100 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 101 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.

When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.

Input devices (e.g., controllers 142(1) and 142(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches. The cameras 26, 28 and capture device 20 may define additional input devices for the console 100.

FIG. 3 illustrates another example embodiment of a computing environment 220 that may be the computing environment 12 shown in FIG. 1. The computing system environment 220 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the presently disclosed subject matter. Neither should the computing environment 220 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 220. In some embodiments the various depicted computing elements may include circuitry configured to instantiate specific aspects of the present disclosure. For example, the term circuitry used in the disclosure can include specialized hardware components configured to perform function(s) by firmware or switches. In other examples embodiments the term circuitry can include a general purpose processing unit, memory, etc., configured by software instructions that embody logic operable to perform function(s). In example embodiments where circuitry includes a combination of hardware and software, an implementer may write source code embodying logic and the source code can be compiled into machine readable code that can be processed by the general purpose processing unit. Since one skilled in the art can appreciate that the state of the art has evolved to a point where there is little difference between hardware, software, or a combination of hardware/software, the selection of hardware versus software to effectuate specific functions is a design choice left to an implementer. More specifically, one of skill in the art can appreciate that a software process can be transformed into an equivalent hardware structure, and a hardware structure can itself be transformed into an equivalent software process. Thus, the selection of a hardware implementation versus a software implementation is one of design choice and left to the implementer.

In FIG. 3, the computing environment 220 comprises a computer 241, which typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 241 and includes both volatile and nonvolatile media, removable and non-removable media. The system memory 222 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 223 and random access memory (RAM) 260. A basic input/output system 224 (BIOS), containing the basic routines that help to transfer information between elements within computer 241, such as during start-up, is typically stored in ROM 223. RAM 260 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 259. By way of example, and not limitation, FIG. 3 illustrates operating system 225, application programs 226, other program modules 227, and program data 228.

The computer 241 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 3 illustrates a hard disk drive 238 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 239 that reads from or writes to a removable, nonvolatile magnetic disk 254, and an optical disk drive 240 that reads from or writes to a removable, nonvolatile optical disk 253 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 238 is typically connected to the system bus 221 through an non-removable memory interface such as interface 234, and magnetic disk drive 239 and optical disk drive 240 are typically connected to the system bus 221 by a removable memory interface, such as interface 235.

The drives and their associated computer storage media discussed above and illustrated in FIG. 3, provide storage of computer readable instructions, data structures, program modules and other data for the computer 241. In FIG. 3, for example, hard disk drive 238 is illustrated as storing operating system 258, application programs 257, other program modules 256, and program data 255. Note that these components can either be the same as or different from operating system 225, application programs 226, other program modules 227, and program data 228. Operating system 258, application programs 257, other program modules 256, and program data 255 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 241 through input devices such as a keyboard 251 and pointing device 252, commonly referred to as a mouse, trackball or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 259 through a user input interface 236 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). The cameras 26, 28 and capture device 20 may define additional input devices for the console 100. A monitor 242 or other type of display device is also connected to the system bus 221 via an interface, such as a video interface 232. In addition to the monitor, computers may also include other peripheral output devices such as speakers 244 and printer 243, which may be connected through a output peripheral interface 233.

The computer 241 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 246. The remote computer 246 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 241, although only a memory storage device 247 has been illustrated in FIG. 3. The logical connections depicted in FIG. 2 include a local area network (LAN) 245 and a wide area network (WAN) 249, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 241 is connected to the LAN 245 through a network interface or adapter 237. When used in a WAN networking environment, the computer 241 typically includes a modem 250 or other means for establishing communications over the WAN 249, such as the Internet. The modem 250, which may be internal or external, may be connected to the system bus 221 via the user input interface 236, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 241, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 3 illustrates remote application programs 248 as residing on memory device 247. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.

FIG. 4 illustrates an example embodiment of a depth image 400 that may be received by the computing environment 12. According to an example embodiment, the depth image 400 may be an image or frame of a scene captured by, for example, the 3-D camera 26 and/or the RGB camera 28 of the capture device 20 described above with respect to FIG. 1. As shown in FIG. 4, the depth image 400 may include a human target 402 a corresponding to, for example, a user and one or more non-human targets 404 such as a wall, a table, a monitor, or the like in the captured scene. The depth image 400 may include a plurality of observed pixels where each observed pixel has an observed depth value associated therewith. For example, the depth image 400 may include a two-dimensional (2-D) pixel area of the captured scene where each pixel at particular X-value and Y-value in the 2-D pixel area may have a depth value such as a length or absolute distance in, for example, centimeters, millimeters, or the like of a target or object in the captured scene from the capture device.

In one embodiment, the depth image 400 may be colorized such that different colors of the pixels of the depth image correspond to and/or visually depict different distances of the human target 402 a and non-human targets 404 from the capture device. For example, the pixels associated with a target closest to the capture device may be colored with shades of red and/or orange in the depth image whereas the pixels associated with a target further away may be colored with shades of green and/or blue in the depth image.

For example, as described above, the depth image may include a 2-D pixel area of the captured scene where each pixel may have an X-value, a Y-value, and a depth value (or Z-value) associated therewith. In one embodiment, the depth image may be downsampled by reducing the pixels in the 2-D pixel area into a grid of one or more pixels. For example, the depth image may be divided into portions or blocks of pixels such as 4×4 blocks of pixels, 5×5 blocks of pixels, 8×8 block of pixels, a 10×10 block of pixels, or the like.

FIG. 5 illustrates an example embodiment of a portion of the depth image being sampled. For example, as shown in FIG. 5, a portion 430 of the depth image 400 described above with respect to FIG. 4 may include a plurality of pixels 450 where each pixel may have an X-value, a Y-value, and a depth value (or Z-value) associated therewith. According to one embodiment, as described above, a depth image such as the depth image 400 may be divided into a portion or a block 430 of the pixels such as 5×5 block of the pixels. An application such as a target recognition, analysis, and tracking system may process the image, using pixels therein to represent a position associated with the pixels in real-world space.

Each of the plurality of pixels may include a position relative to the image and relative to the 5×5 block. The relative position of pixels in an image may be referred to as pixel separation. In the present description, an input pixel 475 may be provided at the center of a block of pixels representing a spatial kernel, and pixels in the kernel may have a relative x and y coordinate positions within the kernel as shown in FIG. 5, at (−2,2) to (2,2) and (−2, −2) to (2, −2), with the coordinates being relative positions from the input pixel.

Prior to providing the depth information to an application from the capture device 20, the depth information z-values may be filtered as discussed below.

FIGS. 6 and 7 show a scatter plot of a typical scene's depth noise versus uncertainty. FIG. 7 is an enlarged area of portion 700 near the bend in the curve of the data in FIG. 6. Many depth acquisition technologies provide depth and confidence data. In cameras using time of flight (TOF) technology, a light source is project onto a scene, the light reflects off objects in the scene, and that reflected light is gathered by an image sensor. Though TOF principles vary, there is a general correlation between the strength of the reflected light gathered and the noise in the resultant generated depth sample. More light gathered equates with less noise for the depth sample, as illustrated in FIGS. 6 and 7. It should be noted that while the confidence correlates with the noise of the depth samples, it is usually not a linear relationship.

FIG. 8 illustrates a method in accordance with the present technology for dynamically filtering a depth image. The method illustrated in FIG. 8 may be performed by a computing environment 12 and, in one embodiment, the components illustrated in FIG. 1. Alternatively, a single processor in a computing environment may perform the method illustrated in FIG. 8 following instructions provided to program the processor to perform the method.

In 810, depth information from a capture device, such as capture device 20, is acquired by the computing environment 12. At 820, included with the depth information is confidence information. Confidence information is a measure of the reliability that the depth information is accurate. As noted above, the depth and confidence information may be provided by the capture device via link 36 and directed to buffers 74 and 76, respectively. Depth information may comprise a z-axis distance value for a particular pixel in a captured scene, while confidence information may be a numerical indication of the reliability of the depth information provided on a known scale. In one embodiment, for example, the confidence information may comprise an 8 bit numerical value (e.g. 0-255). In 830, a confidence weight normalized filter is calculated for each pixel in an image acquired at 810 and 820. A method for performing step 830 is illustrated below with respect to FIGS. 10 through 16. In 840, the confidence weight normalized filter information and input data acquired at 810 are convolved to provide a filtered value for each pixel in the image. The filtered input data is then provided to an application at 850.

FIG. 9 illustrates a method for calculating a confidence weight normalized filter for each pixel in an image at 930. In one embodiment, the method of FIG. 9 is performed by components 80, 82, 84, 85, and 86 in FIG. 1. Initially, at 1010, the filter is configured. To configure the filter, a spatial filter of kernels is selected. For example, spatial filter may be a 3×3 matrix or a 5×5 matrix of pixels, with the input pixel being the center pixel in the matrix, as illustrated in FIG. 5 at 475. As illustrated above, at FIG. 5, an input pixel 475 will be surrounded by 24 kernel pixels. Any size matrix may be utilized but for purposes of the foregoing description, a 5×5 spatial filter will be described. As discussed below, an algorithm constrained to work with a 5×5 spatial filter kernel gathers samples from the 24 pixels surrounding a central input pixel, providing 25 depth values and 25 confidence values in all.

At 1015, a sample image is acquired. Typically, images are sampled as frames of information, in a raster scan fashion. Hence, as described below, steps 1020 through 1055 are performed on a moving window on a pixel-by-pixel basis. At 1020, the steps 1025-1055 are performed for each input pixel in a sample image. At 1025 depth and confidence value of the input pixel are acquired. At 1030, the depth and confidence value of those pixels defined in the spatial kernel are acquired. At 1035, a spatial weighting matrix is generated using the input pixel confidence value and the distance to each kernel pixel. A method for performing the spatial weighting matrix as illustrated below with respect to FIGS. 12A and 12B. Generally, the spatial weighting matrix assigns a weighting to the input filter based on the contributions of kernel pixels, taking into account the pixel separation of the kernel pixels from the input pixel. Where a higher confidence is received for the input pixel (generally meaning a lower noise value for the pixel), then a narrower spatial filter is generated, thereby preserving spatial resolution. In addition, objects tend to have correlated depth and immediately adjacent pixels tend to be closer in value than pixels that are farther away. A higher confidence input pixel is assigned a higher weight in whatever spatial filtering methodology is utilized. Assignment of a filtered weight may occur using any number of filtering functions. In one example, a Gaussian function is utilized wherein the weight attributed to the pixel is:
e(−(distance*σ)^2
where sigma is assigned based on the confidence of the input sample. A value for sigma may be derived by reference to a lookup table providing for a narrower or wider filter based on the input pixel confidence value. Examples of a spatial weighting matrix are shown in FIGS. 12C and 12D.

In this manner, the filter may be adaptive—that is, the choice made for the filtering function and the weight assigned based on the input pixel can vary according to a choice made by a filter designer, or in accordance with the particular needs of the application for which the data is destined.

At 1040, a confidence weighting matrix based on the individual kernel confidence is generated. In 1040, the confidence of each source sample in the matrix kernel is utilized to generate a confidence weighting matrix. A method for creating a confidence weighting matrix is illustrated below in FIG. 13A. The confidence weighting matrix created at 1040 factors in the confidence one has that the pixels adjacent the input pixels have good distance data. An example of a confidence matrix is shown in FIG. 13B.

At 1043, an object correlation matrix is generated. Exemplary methods for creating an object correlation matrix are shown in FIG. 16. The object correlation matrix is used to avoid including pixels outside the image boundary (since they may be undefined) and pixels from different objects (since the distances are likely to not be correlated to each other) during the filtering process. In one alternative embodiment, object correlation is ignored and the object correlation matrix could be filled with values of 1 for each kernel tap. For an object correlation matrix where, for example, pixels at (−1,−1), (−2,−2), (−2,−1), etc are outside the boundary of the source image (i.e. undefined), the object correlation matrix can address this by zeroing out entries for pixel positions that fall outside the boundaries of the image. The confidence weighting matrix, the object correlation matrix and the spatial weighting matrix are combined at 1045. At 1045, each of the corresponding coefficients of confidence weighting matrix and the spatial weighting matrix are multiplied to provide a combined weighting matrix that is of the same order as the filter kernel size. An example of a combined matrix is shown in FIG. 14.

At step 1050, in order to preserve gain, each coefficient of the matrix is then divided by the sum of all coefficients to normalize the sample. At 1052, each pixel in the normalized combined matrix is multiplied by the input value of the pixel at that location in the kernel, and at 1054 the resulting products are summed to provide a filtered value for a given input pixel (0,0). At 1055, the filtered pixel value for the input pixel (0,0) is output to an application as noted at step 850 (FIG. 8), and at 1060 the method repeats for each pixel (shifting to the next pixel in an image (e.g. pixel (0,1) as indicated at 440 in FIG. 5), and at 1065 for each image in a sample.

FIG. 10 illustrates a method performed at step 1010 for configuring a filter. At 1110, the matrix size of the filter is selected. As noted above, the matrix size can be a 3×3 filter, 5×5 filter, 7×7 filter, and so on. At 1120, the distance from an input or central sample pixel and adjacent pixels is calculated. These distances are stored in a data store at 1130. An exemplary data store illustrating the distance values is shown in FIG. 11. In FIG. 11 table 1150 illustrates the exemplary distances to a center pixel 0,0. Using the Pythagorean theorem, the distance from each central pixel to an adjacent pixel is simply the square root of the x distance squared plus the square root of the y distance squared. Using table 1150, the closer a pixel is to a target, the more contribution a pixel will have to the target pixel 0,0. The matrix 1150 is used to assign weights based on the distance from a kernel pixel to the input pixel. As noted above, table 1150 may be stored in an input table, and given that many values are duplicative (only five unique values exist in table 1150) the table requires minimal space to store. It should be recognized that the distances stored in table 1150 are relative, rather than actual, values.

FIGS. 12A through 12D illustrate the creation of a spatial weighting matrix (at step 1035) using the input pixel confidence value and the distance to a kernel pixel noted above. In one embodiment, the creation of a spatial filter may be performed by the spatial weighting matrix generator 80. In one embodiment, at 1210, the confidence value for an input pixel (0,0) is acquired. At step 1215, lookup between the confidence value and a predefined weight for a given range of confidence values may be performed against a data store which has been pre-populated with weight assignments for confidence value ranges based on a given filtering function. Alternatively, based on the distance and confidence values, a selected function may be calculated to create coefficients to populate a spatial weighting matrix for pixel (0,0) At 1220, a filter is generated based on the weights assigned by the table factoring in the relative distance. In one embodiment, the relative distance may be factored in by dividing a weighting value by the distance value given in table 1150.

In the depth and confidence acquisition steps, noted above, samples may be acquired which are below a particular depth or confidence threshold. For samples indexed outside of the image, at an edge, or below the confidence threshold, depth and confidence values of zeros can be assigned. In this embodiment, a depth of zero is undefined (invalid). Assigning a value of zero to such values reserves a value to ignore pixels that are not contributing to a particular sample. Alternatively, one could assign a confidence of value of 0 to such pixels to invalidate their contribution to the filtered pixel output.

In some cases, an input pixel may be at an edge of a particular image. In other cases, edge pixels may defined as the boundary between objects at different depths (which may be considered as foreground objects and background objects). Such uncorrelated pixels may be treated, as discussed below, using the object correlation matrix.

FIG. 12B illustrates a method for creating a spatial weighting matrix using input pixel confidence value and distance to a kernel pixel. Initially, at 1240, the confidence value for a given input pixel is acquired. At 1245 for each pixel in the matrix, a series of steps 1247 is performed to create an assigned weight to farther distance pixels which is generally inverse of the strength of the input confidence. Initially, at 1255, a determination is made as to whether or not the confidence value is over a particular threshold. If not, a zero value may be assigned at 1260. If at 1265 a strong confidence value of the input pixel is found, then a strong weighting for a given filtering technique is assigned at 1270. If a weak confidence is found at 1275, then a weak filtering weight is assigned at 1275. If a balanced confidence is found at 780, then a balanced weight is assigned. It should be understood that any number of thresholds and corresponding weights may be assigned, resulting in additional steps and additional thresholds in addition to steps 1250, 1260 and 1270. As noted above, one method to generate a spatial weighting matrix is to assign a weight value within a particular filtering function used. It should be further recognized that steps 1255 through 1280 may be performed by reference to a lookup table having confidence ranges that correspond to filter weight assignments.

Once the value weight is determined, the distance of a particular pixel in the matrix is incorporated at 1285 and the coefficient generated at 1290 to populate the spatial matrix. Two examples of a narrow spatial matrix in a wide spatial matrix, respectively, are illustrated in FIGS. 12C and 12D. As illustrated in FIG. 12C at 1296, the Input pixels 0,0 has a weight factor of 0.7 while edge pixels −2,2 have a weight of 0.05. In the wider spatial matrix at 1297, these values change to 0.5 and 0.15, respectively. Examination of the respective values in FIGS. 12C and 12D illustrate that the weights attributed to pixels other than the input sample 0,0 are greater in the matrix 1296 versus that of 1275. Each of the coefficients in each of the matrices is utilized in successive steps to generate the ultimate filtered weighted matrix.

FIG. 13A illustrates a method in accordance with step 1040 described above for generating a confidence weighting matrix based upon individual kernel confidence. In one embodiment, the confidence weighting matrix is created by the confidence weighting matrix generator 82. At step 1325, for each pixel in a kernel matrix, the confidence value of the individual pixel is retrieved at 1340. If the value is not over a base threshold at 1345, then the confidence value is set to zero at 1330. If the confidence weight is over an initial threshold at 1345, then a series of steps 1347 is performed to define a confidence weight in the matrix which is generally proportional to the confidence value of the kernel pixel. If a strong confidence is found at 1330, then a high weight is assigned at 1335. If a weak confidence is found at 1340, then a low weight is assigned at 1345. Otherwise, a middle weight may be assigned at 1350. It should be noted that the thresholds defining strong, weak and middle confidences are arbitrarily shown in FIG. 13A, and any number of different thresholds may be utilized. Steps defined by bounding box 1347 may be performed by reference to a predefined set of values and particular weights assigned to the confidence value in a lookup table which is performed by the hardware FIG. 1.

A confidence matrix for a given set of input pixels is illustrated in FIG. 13B. In one embodiment, the confidence values may be 8-bit numbers ranging from zero to 255, and the confidence matrix 1390 illustrated in FIG. 13B illustrates a series of values attributed to different pixels in the array.

FIG. 14 illustrates a combined matrix which is provided by step 1045 and retrieved by multiplying the confidence matrix, such as confidence matrix 1390 by the spatial weighting matrix (such as matrices 1295 or 1297). As shown therein, a coefficient for each pixel in the kernel results. Multiplier 85 may create the combined matrix.

FIG. 15 illustrates a process for normalizing the combined weighting matrix. In one embodiment, the weight matrix normalizer 84 may created a normalized matrix. At step 1510, the sum of all coefficients in the matrix is calculated by adding all the coefficients illustrated in FIG. 14 together. At 1515, for each coefficient in the combined matrix, the matrix value is divided by the sum of all coefficients in the matrix at 1520. The result is a normalized sample as discussed above with respect to step 1050.

As noted above at 840, the normalized filter is combined with the input data by collator 86. At 86, each kernel in the normalized matrix is multiplied with a corresponding kernel input value, and the resulting products summed to provide a filtered value for the input pixel, as described above.

FIG. 16 illustrates a process for generating an object correlation matrix where some of the source (kernel) pixels are outside the boundary of the image. For each pixel in a kernel (1605), at step 1610, a determination is made as to whether or not a particular pixel is outside the image boundary. If outside, then at 1620, the object correlation matrix value for that pixel is assigned to zero.

If not, then at step 1625, a determination is made as to whether or not a particular pixel is in the same depth plane as the center pixel in the kernel. Known foreground/background pixels can be determined by a variety of ways, such as by looking for pixel gradients (slew rates) above a specified threshold. If pixel from a depth plane that is different than the center pixel is found, then at 1660, then the object correlation matrix value for that position is assigned zero, otherwise it is assigned a 1 at 1665. The method repeats at 1635 until the last pixel in the kernel. At step 1670, the method may return to step 1045 in FIG. 9 to continue processing the pixel.

Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (18)

I claim:
1. A method for filtering depth information the depth information including a confidence measure; comprising:
receiving input data including depth information on a scene, the depth information comprising a plurality of pixels, each pixel including a depth value and a confidence value;
generating a spatial weighting matrix based on the confidence value of the input pixel, generating a confidence weight normalized filter for each pixel in the depth information, the confidence weight normalized filter based on the spatial weighting matrix including a filtering weight derived from pixel confidence values relative to a distance of pixels surrounding each said pixel and a confidence weighting matrix;
combining the confidence weight normalized filter and the input data; and
outputting filtered data to an application.
2. The method of claim 1 wherein generating a confidence weight normalized filter includes:
selecting an input pixel in the depth information;
generating the spatial weighting matrix assigning a first filter weight based on contributions of a kernel of pixels surrounding the input pixel, taking into account the distance of the kernel pixels from the input pixel;
generating the confidence weighting matrix based on the confidence value of each pixel in the kernel;
multiplying the confidence weighting matrix and the spatial weighting matrix to provide a combined matrix;
normalizing the combined matrix; and
multiplying the combined matrix with the input data; and summing the combined matrix products to derive a final filtered value.
3. The method of claim 1 further including generating an object correlation matrix and multiplying the combined matrix by the object correlation matrix.
4. The method of claim 1 wherein the step of generating the spatial weighting matrix includes calculating a distance from the input pixel to every pixel in the spatial matrix and combining the distance with the confidence value of the input pixel.
5. The method of claim 4 wherein the step of generating the spatial matrix includes assigning a greater weight to the input pixel depth value than weights assigned to kernel pixel depth values when the input pixel confidence value is higher than a specified threshold.
6. The method of claim 4 wherein the step of generating the spatial matrix includes assigning a greater weight to kernel pixel depth values than a weight assigned to the input pixel depth values when the input pixel confidence value is lower than a specified threshold.
7. A method for filtering depth information the depth information including a confidence measure; comprising:
receiving depth information on a scene, the depth information including a depth value and a confidence value;
selecting an input pixel in the information;
generating a spatial weighting matrix assigning a first filter weight based on confidence value contributions from a kernel of pixels surrounding the input pixel, the confidence value contribution relative to a distance of each kernel pixel from the input pixel;
generating a confidence weighting matrix based on the confidence value of each pixel kernel;
generating an object correlation matrix based on the relative depth between an input pixel and pixels in the kernel;
combining the confidence weighting matrix, object correlation matrix, and the spatial weighting matrix to provide a combined matrix;
normalizing the combined matrix; and
multiplying the combined matrix with the input data and summing the products to derive a final filtered value.
8. The method of claim 7 wherein the step of generating the object correlation matrix includes determining whether a kernel pixel is undefined or on a different depth plane than the input pixel, and if so, assigning a value of zero to the kernel pixel, otherwise assigning a value of one to the kernel pixel.
9. The method of claim 7 wherein the step of generating the spatial weighting matrix includes generating the spatial weighting matrix based on a confidence value of the input pixel.
10. The method of claim 9 wherein the step of generating the spatial matrix includes calculating a distance from the input pixel to every pixel in the kernel of pixels and combining the distance with the confidence value of the input pixel.
11. The method of claim 10 wherein the step of generating the confidence weighting matrix includes assigning a weighting value based on the confidence value of each pixel in the kernel.
12. The method of claim 9 wherein the step of generating the spatial matrix includes assigning a greater weight to the input pixel depth value than weights assigned to kernel pixel depth values when the input pixel confidence value is higher than a specified threshold.
13. The method of claim 12 wherein the step of generating the spatial matrix includes assigning a greater weight to kernel pixel depth values than a weight assigned to the input pixel depth values when the input pixel confidence value is lower than a specified threshold.
14. An apparatus, comprising:
a depth information input;
a spatial weighting matrix generator;
a depth confidence weighting matrix generator;
a first multiplier coupled to the spatial weighting matrix generator and the depth confidence weighting matrix generator and outputting a combined matrix;
a combined matrix normalizer coupled to the first multiplier, wherein the first multiplier provides the combined matrix by summing coefficients of each of the input pixel and kernel pixels in the confidence weighting matrix and the spatial weighting matrix; and
a second multiplier coupled to the depth information input and the combined matrix normalizer, the multiplier providing a filtered depth information output.
15. The apparatus of claim 14 wherein the spatial weighting matrix generator includes an output comprising a first filter weight generated based on a kernel of pixels surrounding an input pixel, taking into account the distance of each kernel pixels from the input pixel.
16. The apparatus of claim 15 wherein the depth confidence weighting matrix generator outputs a confidence weighting matrix based on the confidence value of each pixel kernel.
17. The apparatus of claim 14 wherein the second multiplier combines depth information from the input with a normalized combined matrix.
18. The apparatus of claim 17 wherein spatial weighting matrix generator outputs a spatial weighting matrix based on a confidence value of the input pixel.
US12776066 2010-05-07 2010-05-07 Depth map confidence filtering Active 2033-03-23 US8885890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12776066 US8885890B2 (en) 2010-05-07 2010-05-07 Depth map confidence filtering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12776066 US8885890B2 (en) 2010-05-07 2010-05-07 Depth map confidence filtering
CN 201110127704 CN102184531B (en) 2010-05-07 2011-05-06 Deep map confidence filtering

Publications (2)

Publication Number Publication Date
US20110274366A1 true US20110274366A1 (en) 2011-11-10
US8885890B2 true US8885890B2 (en) 2014-11-11

Family

ID=44570701

Family Applications (1)

Application Number Title Priority Date Filing Date
US12776066 Active 2033-03-23 US8885890B2 (en) 2010-05-07 2010-05-07 Depth map confidence filtering

Country Status (2)

Country Link
US (1) US8885890B2 (en)
CN (1) CN102184531B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156404A1 (en) * 2012-05-17 2015-06-04 Canon Kabushiki Kaisha Image processing apparatus, image processing method, image processing program, and image pickup apparatus acquiring a focusing distance from a plurality of images--
US20160085312A1 (en) * 2014-09-24 2016-03-24 Ncku Research And Development Foundation Gesture recognition system
US20160261250A1 (en) * 2015-02-27 2016-09-08 Microchip Technology Germany Gmbh Digital Filter With Confidence Input

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN102037717B (en) 2008-05-20 2013-11-06 派力肯成像公司 Capturing and processing of images using monolithic camera array with hetergeneous imagers
KR101526866B1 (en) * 2009-01-21 2015-06-10 삼성전자주식회사 Method of filtering depth noise using depth information and apparatus for enabling the method
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
WO2012155119A1 (en) 2011-05-11 2012-11-15 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
WO2013043761A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Determining depth from multiple views of a scene that include aliasing using hypothesized fusion
CN107230236A (en) 2011-09-28 2017-10-03 Fotonation开曼有限公司 A system and method for encoding and decoding light field image file
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US8462155B1 (en) * 2012-05-01 2013-06-11 Google Inc. Merging three-dimensional models based on confidence scores
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
CN104508681A (en) 2012-06-28 2015-04-08 派力肯影像公司 Systems and methods for detecting defective camera arrays, optic arrays, and sensors
US8896594B2 (en) * 2012-06-30 2014-11-25 Microsoft Corporation Depth sensing with depth-adaptive illumination
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
CN104662589B (en) 2012-08-21 2017-08-04 派力肯影像公司 Disparity detection and correction for use in an image captured by the camera array system and method
WO2014032020A3 (en) 2012-08-23 2014-05-08 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9811880B2 (en) * 2012-11-09 2017-11-07 The Boeing Company Backfilling points in a point cloud
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
RU2012154657A (en) * 2012-12-17 2014-06-27 ЭлЭсАй Корпорейшн Methods and apparatus for combining with the depth image generated using different methods of forming images with depth
US9241142B2 (en) * 2013-01-24 2016-01-19 Analog Devices Global Descriptor-based stream processor for image processing and method associated therewith
CN103974055B (en) * 2013-02-06 2016-06-08 城市图像科技有限公司 Photo 3d generation system and method
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
WO2014138697A1 (en) 2013-03-08 2014-09-12 Pelican Imaging Corporation Systems and methods for high dynamic range imaging using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
WO2014165244A1 (en) * 2013-03-13 2014-10-09 Pelican Imaging Corporation Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
WO2014159779A1 (en) 2013-03-14 2014-10-02 Pelican Imaging Corporation Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
WO2014153098A1 (en) 2013-03-14 2014-09-25 Pelican Imaging Corporation Photmetric normalization in array cameras
JP2016524125A (en) 2013-03-15 2016-08-12 ペリカン イメージング コーポレイション System and method for three-dimensional imaging using the camera array
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9786062B2 (en) * 2013-05-06 2017-10-10 Disney Enterprises, Inc. Scene reconstruction from high spatio-angular resolution light fields
US9729860B2 (en) 2013-05-24 2017-08-08 Microsoft Technology Licensing, Llc Indirect reflection suppression in depth imaging
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
WO2016095081A1 (en) * 2014-12-15 2016-06-23 Qualcomm Incorporated Line-of-sight searching using raster scan information
US20160350930A1 (en) * 2015-05-28 2016-12-01 Adobe Systems Incorporated Joint Depth Estimation and Semantic Segmentation from a Single Image
US9852495B2 (en) * 2015-12-22 2017-12-26 Intel Corporation Morphological and geometric edge filters for edge enhancement in depth images
US9792671B2 (en) 2015-12-22 2017-10-17 Intel Corporation Code filters for coded light depth acquisition in depth images

Citations (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181343B2 (en)
US4627620A (en) 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US4630910A (en) 1984-02-16 1986-12-23 Robotic Vision Systems, Inc. Method of measuring in three-dimensions at high speed
US4645458A (en) 1985-04-15 1987-02-24 Harald Phillip Athletic evaluation and training apparatus
US4695953A (en) 1983-08-25 1987-09-22 Blair Preston E TV animation interactively controlled by the viewer
US4702475A (en) 1985-08-16 1987-10-27 Innovating Training Products, Inc. Sports technique and reaction training system
US4711543A (en) 1986-04-14 1987-12-08 Blair Preston E TV animation interactively controlled by the viewer
US4751642A (en) 1986-08-29 1988-06-14 Silva John M Interactive sports simulation system with physiological sensing and psychological conditioning
US4796997A (en) 1986-05-27 1989-01-10 Synthetic Vision Systems, Inc. Method and system for high-speed, 3-D imaging of an object at a vision station
US4809065A (en) 1986-12-01 1989-02-28 Kabushiki Kaisha Toshiba Interactive system and related method for displaying data to produce a three-dimensional image of an object
US4817950A (en) 1987-05-08 1989-04-04 Goo Paul E Video game control unit and attitude sensor
US4843568A (en) 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US4893183A (en) 1988-08-11 1990-01-09 Carnegie-Mellon University Robotic vision system
US4901362A (en) 1988-08-08 1990-02-13 Raytheon Company Method of recognizing patterns
US4925189A (en) 1989-01-13 1990-05-15 Braeunig Thomas F Body-mounted video game exercise device
US5101444A (en) 1990-05-18 1992-03-31 Panacea, Inc. Method and apparatus for high speed object location
US5148154A (en) 1990-12-04 1992-09-15 Sony Corporation Of America Multi-dimensional user interface
US5184295A (en) 1986-05-30 1993-02-02 Mann Ralph V System and method for teaching physical skills
WO1993010708A1 (en) 1991-12-03 1993-06-10 French Sportech Corporation Interactive video testing and training system
US5229754A (en) 1990-02-13 1993-07-20 Yazaki Corporation Automotive reflection type display apparatus
US5229756A (en) 1989-02-07 1993-07-20 Yamaha Corporation Image control apparatus
US5239464A (en) 1988-08-04 1993-08-24 Blair Preston E Interactive video system providing repeated switching of multiple tracks of actions sequences
US5239463A (en) 1988-08-04 1993-08-24 Blair Preston E Method and apparatus for player interaction with animated characters and objects
EP0583061A2 (en) 1992-07-10 1994-02-16 The Walt Disney Company Method and apparatus for providing enhanced graphics in a virtual world
US5288078A (en) 1988-10-14 1994-02-22 David G. Capper Control interface apparatus
US5295491A (en) 1991-09-26 1994-03-22 Sam Technology, Inc. Non-invasive human neurocognitive performance capability testing method and system
US5320538A (en) 1992-09-23 1994-06-14 Hughes Training, Inc. Interactive aircraft training system and method
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
US5385519A (en) 1994-04-19 1995-01-31 Hsu; Chi-Hsueh Running machine
US5405152A (en) 1993-06-08 1995-04-11 The Walt Disney Company Method and apparatus for an interactive video game with physical feedback
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5423554A (en) 1993-09-24 1995-06-13 Metamedia Ventures, Inc. Virtual reality game method and apparatus
US5454043A (en) 1993-07-30 1995-09-26 Mitsubishi Electric Research Laboratories, Inc. Dynamic and static hand gesture recognition through low-level image analysis
US5469740A (en) 1989-07-14 1995-11-28 Impulse Technology, Inc. Interactive video testing and training system
JPH0844490A (en) 1994-07-28 1996-02-16 Matsushita Electric Ind Co Ltd Interface device
US5495576A (en) 1993-01-11 1996-02-27 Ritchey; Kurtis J. Panoramic image based virtual reality/telepresence audio-visual system and method
US5516105A (en) 1994-10-06 1996-05-14 Exergame, Inc. Acceleration activated joystick
US5524637A (en) 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US5534917A (en) 1991-05-09 1996-07-09 Very Vivid, Inc. Video image based control system
US5563988A (en) 1994-08-01 1996-10-08 Massachusetts Institute Of Technology Method and system for facilitating wireless, full-body, real-time user interaction with a digitally represented visual environment
US5577981A (en) 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
US5580249A (en) 1994-02-14 1996-12-03 Sarcos Group Apparatus for simulating mobility of a human
US5594469A (en) 1995-02-21 1997-01-14 Mitsubishi Electric Information Technology Center America Inc. Hand gesture machine control system
US5597309A (en) 1994-03-28 1997-01-28 Riess; Thomas Method and apparatus for treatment of gait problems associated with parkinson's disease
US5616078A (en) 1993-12-28 1997-04-01 Konami Co., Ltd. Motion-controlled video entertainment system
US5617312A (en) 1993-11-19 1997-04-01 Hitachi, Ltd. Computer system that enters control information by means of video camera
WO1997017598A1 (en) 1995-11-06 1997-05-15 Impulse Technology, Inc. System for continuous monitoring of physical activity during unrestricted movement
US5638300A (en) 1994-12-05 1997-06-10 Johnson; Lee E. Golf swing analysis system
US5641288A (en) 1996-01-11 1997-06-24 Zaenglein, Jr.; William G. Shooting simulating process and training device using a virtual reality display screen
US5682196A (en) 1995-06-22 1997-10-28 Actv, Inc. Three-dimensional (3D) video presentation system providing interactive 3D presentation with personalized audio responses for multiple viewers
US5682229A (en) 1995-04-14 1997-10-28 Schwartz Electro-Optics, Inc. Laser range camera
US5690582A (en) 1993-02-02 1997-11-25 Tectrix Fitness Equipment, Inc. Interactive exercise apparatus
US5703367A (en) 1994-12-09 1997-12-30 Matsushita Electric Industrial Co., Ltd. Human occupancy detection method and system for implementing the same
US5704837A (en) 1993-03-26 1998-01-06 Namco Ltd. Video game steering system causing translation, rotation and curvilinear motion on the object
US5715834A (en) 1992-11-20 1998-02-10 Scuola Superiore Di Studi Universitari & Di Perfezionamento S. Anna Device for monitoring the configuration of a distal physiological unit for use, in particular, as an advanced interface for machine and computers
US5875108A (en) 1991-12-23 1999-02-23 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
US5877803A (en) 1997-04-07 1999-03-02 Tritech Mircoelectronics International, Ltd. 3-D image detector
US5913727A (en) 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US5933125A (en) 1995-11-27 1999-08-03 Cae Electronics, Ltd. Method and apparatus for reducing instability in the display of a virtual environment
US5980256A (en) 1993-10-29 1999-11-09 Carmein; David E. E. Virtual reality system with enhanced sensory apparatus
US5989157A (en) 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
WO1999044698A3 (en) 1998-03-03 1999-11-25 Arena Inc System and method for tracking and assessing movement skills in multidimensional space
US5995649A (en) 1996-09-20 1999-11-30 Nec Corporation Dual-input image processor for recognizing, isolating, and displaying specific objects from the input images
US6005548A (en) 1996-08-14 1999-12-21 Latypov; Nurakhmed Nurislamovich Method for tracking and displaying user's spatial position and orientation, a method for representing virtual reality for a user, and systems of embodiment of such methods
US6009210A (en) 1997-03-05 1999-12-28 Digital Equipment Corporation Hands-free interface to a virtual reality environment using head tracking
US6054991A (en) 1991-12-02 2000-04-25 Texas Instruments Incorporated Method of modeling player position and movement in a virtual reality system
US6066075A (en) 1995-07-26 2000-05-23 Poulton; Craig K. Direct feedback controller for user interaction
US6072494A (en) 1997-10-15 2000-06-06 Electric Planet, Inc. Method and apparatus for real-time gesture recognition
US6073489A (en) 1995-11-06 2000-06-13 French; Barry J. Testing and training system for assessing the ability of a player to complete a task
US6077201A (en) 1998-06-12 2000-06-20 Cheng; Chau-Yang Exercise bicycle
US6100896A (en) 1997-03-24 2000-08-08 Mitsubishi Electric Information Technology Center America, Inc. System for designing graphical multi-participant environments
US6101289A (en) 1997-10-15 2000-08-08 Electric Planet, Inc. Method and apparatus for unencumbered capture of an object
US6128003A (en) 1996-12-20 2000-10-03 Hitachi, Ltd. Hand gesture recognition system and method
US6130677A (en) 1997-10-15 2000-10-10 Electric Planet, Inc. Interactive computer vision system
US6141463A (en) 1997-10-10 2000-10-31 Electric Planet Interactive Method and system for estimating jointed-figure configurations
US6147678A (en) 1998-12-09 2000-11-14 Lucent Technologies Inc. Video hand image-three-dimensional computer interface with multiple degrees of freedom
US6152856A (en) 1996-05-08 2000-11-28 Real Vision Corporation Real time simulation using position sensing
US6159100A (en) 1998-04-23 2000-12-12 Smith; Michael D. Virtual reality game
US6173066B1 (en) 1996-05-21 2001-01-09 Cybernet Systems Corporation Pose determination and tracking by matching 3D objects to a 2D sensor
US6181343B1 (en) 1997-12-23 2001-01-30 Philips Electronics North America Corp. System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6215890B1 (en) 1997-09-26 2001-04-10 Matsushita Electric Industrial Co., Ltd. Hand gesture recognizing device
US6215898B1 (en) 1997-04-15 2001-04-10 Interval Research Corporation Data processing system and method
US6226396B1 (en) 1997-07-31 2001-05-01 Nec Corporation Object extraction method and system
US6229913B1 (en) 1995-06-07 2001-05-08 The Trustees Of Columbia University In The City Of New York Apparatus and methods for determining the three-dimensional shape of an object using active illumination and relative blurring in two-images due to defocus
US6256400B1 (en) 1998-09-28 2001-07-03 Matsushita Electric Industrial Co., Ltd. Method and device for segmenting hand gestures
US6283860B1 (en) 1995-11-07 2001-09-04 Philips Electronics North America Corp. Method, system, and program for gesture based option selection
US6289112B1 (en) 1997-08-22 2001-09-11 International Business Machines Corporation System and method for determining block direction in fingerprint images
US6299308B1 (en) 1999-04-02 2001-10-09 Cybernet Systems Corporation Low-cost non-imaging eye tracker system for computer control
US6308565B1 (en) 1995-11-06 2001-10-30 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
US6316934B1 (en) 1998-09-17 2001-11-13 Netmor Ltd. System for three dimensional positioning and tracking
US6363160B1 (en) 1999-01-22 2002-03-26 Intel Corporation Interface using pattern recognition and tracking
US6384819B1 (en) 1997-10-15 2002-05-07 Electric Planet, Inc. System and method for generating an animatable character
US6411744B1 (en) 1997-10-15 2002-06-25 Electric Planet, Inc. Method and apparatus for performing a clean background subtraction
US6430997B1 (en) 1995-11-06 2002-08-13 Trazer Technologies, Inc. System and method for tracking and assessing movement skills in multidimensional space
US6476834B1 (en) 1999-05-28 2002-11-05 International Business Machines Corporation Dynamic creation of selectable items on surfaces
US6496598B1 (en) 1997-09-02 2002-12-17 Dynamic Digital Depth Research Pty. Ltd. Image processing method and apparatus
US6503195B1 (en) 1999-05-24 2003-01-07 University Of North Carolina At Chapel Hill Methods and systems for real-time structured light depth extraction and endoscope using real-time structured light depth extraction
US6539931B2 (en) 2001-04-16 2003-04-01 Koninklijke Philips Electronics N.V. Ball throwing assistant
US6570555B1 (en) 1998-12-30 2003-05-27 Fuji Xerox Co., Ltd. Method and apparatus for embodied conversational characters with multimodal input/output in an interface device
US6633294B1 (en) 2000-03-09 2003-10-14 Seth Rosenthal Method and apparatus for using captured high density motion for animation
US6640202B1 (en) 2000-05-25 2003-10-28 International Business Machines Corporation Elastic sensor mesh system for 3-dimensional measurement, mapping and kinematics applications
US6661918B1 (en) 1998-12-04 2003-12-09 Interval Research Corporation Background estimation and segmentation based on range and color
US6681031B2 (en) 1998-08-10 2004-01-20 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
US6731799B1 (en) 2000-06-01 2004-05-04 University Of Washington Object segmentation with background extraction and moving boundary techniques
US6738066B1 (en) 1999-07-30 2004-05-18 Electric Plant, Inc. System, method and article of manufacture for detecting collisions between video images generated by a camera and an object depicted on a display
US6788809B1 (en) 2000-06-30 2004-09-07 Intel Corporation System and method for gesture recognition in three dimensions using stereo imaging and color vision
US6801637B2 (en) 1999-08-10 2004-10-05 Cybernet Systems Corporation Optical body tracker
US20050013502A1 (en) * 2003-06-28 2005-01-20 Samsung Electronics Co., Ltd. Method of improving image quality
US6873723B1 (en) 1999-06-30 2005-03-29 Intel Corporation Segmenting three-dimensional video images using stereo
US6937742B2 (en) 2001-09-28 2005-08-30 Bellsouth Intellectual Property Corporation Gesture activated home appliance
US6950534B2 (en) 1998-08-10 2005-09-27 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US7003134B1 (en) 1999-03-08 2006-02-21 Vulcan Patents Llc Three dimensional object pose estimation which employs dense depth information
US7036094B1 (en) 1998-08-10 2006-04-25 Cybernet Systems Corporation Behavior recognition system
US7039676B1 (en) 2000-10-31 2006-05-02 International Business Machines Corporation Using video image analysis to automatically transmit gestures over a network in a chat or instant messaging session
US7042440B2 (en) 1997-08-22 2006-05-09 Pryor Timothy R Man machine interfaces and applications
US7050606B2 (en) 1999-08-10 2006-05-23 Cybernet Systems Corporation Tracking and gesture recognition system particularly suited to vehicular control applications
US7058204B2 (en) 2000-10-03 2006-06-06 Gesturetek, Inc. Multiple camera control system
US7060957B2 (en) 2000-04-28 2006-06-13 Csem Centre Suisse D'electronique Et Microtechinique Sa Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves
US20060197937A1 (en) 2005-02-08 2006-09-07 Canesta, Inc. Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
US7113918B1 (en) 1999-08-01 2006-09-26 Electric Planet, Inc. Method for video enabled electronic commerce
US20060221250A1 (en) 2004-01-28 2006-10-05 Canesta, Inc. Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
US7121946B2 (en) 1998-08-10 2006-10-17 Cybernet Systems Corporation Real-time head tracking system for computer games and other applications
US20070018977A1 (en) 2005-07-25 2007-01-25 Wolfgang Niem Method and apparatus for generating a depth map
US7170492B2 (en) 2002-05-28 2007-01-30 Reactrix Systems, Inc. Interactive video display system
US7202898B1 (en) 1998-12-16 2007-04-10 3Dv Systems Ltd. Self gating photosurface
US7222078B2 (en) 1992-08-06 2007-05-22 Ferrara Ethereal Llc Methods and systems for gathering information from units of a commodity across a network
US7227526B2 (en) 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US7259747B2 (en) 2001-06-05 2007-08-21 Reactrix Systems, Inc. Interactive video display system
US7308112B2 (en) 2004-05-14 2007-12-11 Honda Motor Co., Ltd. Sign based human-machine interaction
US7317836B2 (en) 2005-03-17 2008-01-08 Honda Motor Co., Ltd. Pose estimation based on critical point analysis
US20080021912A1 (en) 2006-07-24 2008-01-24 The Mitre Corporation Tools and methods for semi-automatic schema matching
US20080026838A1 (en) 2005-08-22 2008-01-31 Dunstan James E Multi-player non-role-playing virtual world games: method for two-way interaction between participants and multi-player virtual world games
US20080027591A1 (en) 2006-07-14 2008-01-31 Scott Lenser Method and system for controlling a remote vehicle
US7348963B2 (en) 2002-05-28 2008-03-25 Reactrix Systems, Inc. Interactive video display system
US7367887B2 (en) 2000-02-18 2008-05-06 Namco Bandai Games Inc. Game apparatus, storage medium, and computer program that adjust level of game difficulty
US7379566B2 (en) 2005-01-07 2008-05-27 Gesturetek, Inc. Optical flow based tilt sensor
US7379563B2 (en) 2004-04-15 2008-05-27 Gesturetek, Inc. Tracking bimanual movements
US7389591B2 (en) 2005-05-17 2008-06-24 Gesturetek, Inc. Orientation-sensitive signal output
US20080170800A1 (en) * 2007-01-16 2008-07-17 Ruth Bergman One-pass filtering and infrared-visible light decorrelation to reduce noise and distortions
US7412077B2 (en) 2006-12-29 2008-08-12 Motorola, Inc. Apparatus and methods for head pose estimation and head gesture detection
US7426312B2 (en) * 2005-07-05 2008-09-16 Xerox Corporation Contrast enhancement of images
US7430312B2 (en) 2005-01-07 2008-09-30 Gesturetek, Inc. Creating 3D images of objects by illuminating with infrared patterns
US7436496B2 (en) 2003-02-03 2008-10-14 National University Corporation Shizuoka University Distance image sensor
US7450736B2 (en) 2005-10-28 2008-11-11 Honda Motor Co., Ltd. Monocular tracking of 3D human motion with a coordinated mixture of factor analyzers
US7452275B2 (en) 2001-06-29 2008-11-18 Konami Digital Entertainment Co., Ltd. Game device, game controlling method and program
US7489812B2 (en) 2002-06-07 2009-02-10 Dynamic Digital Depth Research Pty Ltd. Conversion and encoding techniques
US7536032B2 (en) 2003-10-24 2009-05-19 Reactrix Systems, Inc. Method and system for processing captured image information in an interactive video display system
US7560701B2 (en) 2005-08-12 2009-07-14 Mesa Imaging Ag Highly sensitive, fast pixel for use in an image sensor
US7574020B2 (en) 2005-01-07 2009-08-11 Gesturetek, Inc. Detecting and tracking objects in images
US7576727B2 (en) 2002-12-13 2009-08-18 Matthew Bell Interactive directed light/sound system
US7590262B2 (en) 2003-05-29 2009-09-15 Honda Motor Co., Ltd. Visual tracking using depth data
US7593552B2 (en) 2003-03-31 2009-09-22 Honda Motor Co., Ltd. Gesture recognition apparatus, gesture recognition method, and gesture recognition program
US7598942B2 (en) 2005-02-08 2009-10-06 Oblong Industries, Inc. System and method for gesture based control system
US7607509B2 (en) 2002-04-19 2009-10-27 Iee International Electronics & Engineering S.A. Safety device for a vehicle
US7620202B2 (en) 2003-06-12 2009-11-17 Honda Motor Co., Ltd. Target orientation estimation using depth sensing
EP2128693A1 (en) 2008-05-28 2009-12-02 ETH Zurich Spatially Adaptive Photographic Flash Unit
US7683954B2 (en) 2006-09-29 2010-03-23 Brainvision Inc. Solid-state image sensor
US7684592B2 (en) 1998-08-10 2010-03-23 Cybernet Systems Corporation Realtime object tracking system
US7702130B2 (en) 2004-12-20 2010-04-20 Electronics And Telecommunications Research Institute User interface apparatus using hand gesture recognition and method thereof
US7701439B2 (en) 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method
US7704135B2 (en) 2004-08-23 2010-04-27 Harrison Jr Shelton E Integrated game system, method, and device
US7710391B2 (en) 2002-05-28 2010-05-04 Matthew Bell Processing an image utilizing a spatially varying pattern
US7729530B2 (en) 2007-03-03 2010-06-01 Sergey Antonov Method and apparatus for 3-D data input to a personal computer with a multimedia oriented operating system
CN101254344B (en) 2008-04-18 2010-06-16 李刚 Game device of field orientation corresponding with display screen dot array in proportion and method
US7852262B2 (en) 2007-08-16 2010-12-14 Cybernet Systems Corporation Wireless mobile indoor/outdoor tracking system
US8035612B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Self-contained interactive video display system
US8072470B2 (en) 2003-05-29 2011-12-06 Sony Computer Entertainment Inc. System and method for providing a real-time three-dimensional interactive environment
US8139142B2 (en) * 2006-06-01 2012-03-20 Microsoft Corporation Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
US8189943B2 (en) * 2009-03-17 2012-05-29 Mitsubishi Electric Research Laboratories, Inc. Method for up-sampling depth images
US8260076B1 (en) * 2009-03-31 2012-09-04 Hewlett-Packard Development Company, L.P. Constant time filtering
US8391627B1 (en) * 2004-01-28 2013-03-05 Adobe Systems Incorporated Using forward and backward kernels to filter images

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60234187D1 (en) * 2001-07-23 2009-12-10 Koninkl Philips Electronics Nv Device and method for the stereoscopic image processing
US8326025B2 (en) * 2006-09-04 2012-12-04 Koninklijke Philips Electronics N.V. Method for determining a depth map from images, device for determining a depth map
CN101605270B (en) * 2009-07-16 2011-02-16 清华大学 Method and device for generating depth map

Patent Citations (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181343B2 (en)
US4695953A (en) 1983-08-25 1987-09-22 Blair Preston E TV animation interactively controlled by the viewer
US4630910A (en) 1984-02-16 1986-12-23 Robotic Vision Systems, Inc. Method of measuring in three-dimensions at high speed
US4627620A (en) 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US4645458A (en) 1985-04-15 1987-02-24 Harald Phillip Athletic evaluation and training apparatus
US4702475A (en) 1985-08-16 1987-10-27 Innovating Training Products, Inc. Sports technique and reaction training system
US4843568A (en) 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US4711543A (en) 1986-04-14 1987-12-08 Blair Preston E TV animation interactively controlled by the viewer
US4796997A (en) 1986-05-27 1989-01-10 Synthetic Vision Systems, Inc. Method and system for high-speed, 3-D imaging of an object at a vision station
US5184295A (en) 1986-05-30 1993-02-02 Mann Ralph V System and method for teaching physical skills
US4751642A (en) 1986-08-29 1988-06-14 Silva John M Interactive sports simulation system with physiological sensing and psychological conditioning
US4809065A (en) 1986-12-01 1989-02-28 Kabushiki Kaisha Toshiba Interactive system and related method for displaying data to produce a three-dimensional image of an object
US4817950A (en) 1987-05-08 1989-04-04 Goo Paul E Video game control unit and attitude sensor
US5239463A (en) 1988-08-04 1993-08-24 Blair Preston E Method and apparatus for player interaction with animated characters and objects
US5239464A (en) 1988-08-04 1993-08-24 Blair Preston E Interactive video system providing repeated switching of multiple tracks of actions sequences
US4901362A (en) 1988-08-08 1990-02-13 Raytheon Company Method of recognizing patterns
US4893183A (en) 1988-08-11 1990-01-09 Carnegie-Mellon University Robotic vision system
US5288078A (en) 1988-10-14 1994-02-22 David G. Capper Control interface apparatus
US4925189A (en) 1989-01-13 1990-05-15 Braeunig Thomas F Body-mounted video game exercise device
US5229756A (en) 1989-02-07 1993-07-20 Yamaha Corporation Image control apparatus
US5469740A (en) 1989-07-14 1995-11-28 Impulse Technology, Inc. Interactive video testing and training system
US5229754A (en) 1990-02-13 1993-07-20 Yazaki Corporation Automotive reflection type display apparatus
US5101444A (en) 1990-05-18 1992-03-31 Panacea, Inc. Method and apparatus for high speed object location
US5148154A (en) 1990-12-04 1992-09-15 Sony Corporation Of America Multi-dimensional user interface
US5534917A (en) 1991-05-09 1996-07-09 Very Vivid, Inc. Video image based control system
US5295491A (en) 1991-09-26 1994-03-22 Sam Technology, Inc. Non-invasive human neurocognitive performance capability testing method and system
US6054991A (en) 1991-12-02 2000-04-25 Texas Instruments Incorporated Method of modeling player position and movement in a virtual reality system
WO1993010708A1 (en) 1991-12-03 1993-06-10 French Sportech Corporation Interactive video testing and training system
US5875108A (en) 1991-12-23 1999-02-23 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
EP0583061A2 (en) 1992-07-10 1994-02-16 The Walt Disney Company Method and apparatus for providing enhanced graphics in a virtual world
US7222078B2 (en) 1992-08-06 2007-05-22 Ferrara Ethereal Llc Methods and systems for gathering information from units of a commodity across a network
US5320538A (en) 1992-09-23 1994-06-14 Hughes Training, Inc. Interactive aircraft training system and method
US5715834A (en) 1992-11-20 1998-02-10 Scuola Superiore Di Studi Universitari & Di Perfezionamento S. Anna Device for monitoring the configuration of a distal physiological unit for use, in particular, as an advanced interface for machine and computers
US5495576A (en) 1993-01-11 1996-02-27 Ritchey; Kurtis J. Panoramic image based virtual reality/telepresence audio-visual system and method
US5690582A (en) 1993-02-02 1997-11-25 Tectrix Fitness Equipment, Inc. Interactive exercise apparatus
US5704837A (en) 1993-03-26 1998-01-06 Namco Ltd. Video game steering system causing translation, rotation and curvilinear motion on the object
US5405152A (en) 1993-06-08 1995-04-11 The Walt Disney Company Method and apparatus for an interactive video game with physical feedback
US5454043A (en) 1993-07-30 1995-09-26 Mitsubishi Electric Research Laboratories, Inc. Dynamic and static hand gesture recognition through low-level image analysis
US5423554A (en) 1993-09-24 1995-06-13 Metamedia Ventures, Inc. Virtual reality game method and apparatus
US5980256A (en) 1993-10-29 1999-11-09 Carmein; David E. E. Virtual reality system with enhanced sensory apparatus
US5617312A (en) 1993-11-19 1997-04-01 Hitachi, Ltd. Computer system that enters control information by means of video camera
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
US5616078A (en) 1993-12-28 1997-04-01 Konami Co., Ltd. Motion-controlled video entertainment system
US5577981A (en) 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
US5580249A (en) 1994-02-14 1996-12-03 Sarcos Group Apparatus for simulating mobility of a human
US5597309A (en) 1994-03-28 1997-01-28 Riess; Thomas Method and apparatus for treatment of gait problems associated with parkinson's disease
US5385519A (en) 1994-04-19 1995-01-31 Hsu; Chi-Hsueh Running machine
US5524637A (en) 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
JPH0844490A (en) 1994-07-28 1996-02-16 Matsushita Electric Ind Co Ltd Interface device
US5563988A (en) 1994-08-01 1996-10-08 Massachusetts Institute Of Technology Method and system for facilitating wireless, full-body, real-time user interaction with a digitally represented visual environment
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
US5516105A (en) 1994-10-06 1996-05-14 Exergame, Inc. Acceleration activated joystick
US5638300A (en) 1994-12-05 1997-06-10 Johnson; Lee E. Golf swing analysis system
US5703367A (en) 1994-12-09 1997-12-30 Matsushita Electric Industrial Co., Ltd. Human occupancy detection method and system for implementing the same
US5594469A (en) 1995-02-21 1997-01-14 Mitsubishi Electric Information Technology Center America Inc. Hand gesture machine control system
US5682229A (en) 1995-04-14 1997-10-28 Schwartz Electro-Optics, Inc. Laser range camera
US5913727A (en) 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US6229913B1 (en) 1995-06-07 2001-05-08 The Trustees Of Columbia University In The City Of New York Apparatus and methods for determining the three-dimensional shape of an object using active illumination and relative blurring in two-images due to defocus
US5682196A (en) 1995-06-22 1997-10-28 Actv, Inc. Three-dimensional (3D) video presentation system providing interactive 3D presentation with personalized audio responses for multiple viewers
US6066075A (en) 1995-07-26 2000-05-23 Poulton; Craig K. Direct feedback controller for user interaction
US6430997B1 (en) 1995-11-06 2002-08-13 Trazer Technologies, Inc. System and method for tracking and assessing movement skills in multidimensional space
US6765726B2 (en) 1995-11-06 2004-07-20 Impluse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
US6098458A (en) 1995-11-06 2000-08-08 Impulse Technology, Ltd. Testing and training system for assessing movement and agility skills without a confining field
US6876496B2 (en) 1995-11-06 2005-04-05 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
WO1997017598A1 (en) 1995-11-06 1997-05-15 Impulse Technology, Inc. System for continuous monitoring of physical activity during unrestricted movement
US6308565B1 (en) 1995-11-06 2001-10-30 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
US7359121B2 (en) 1995-11-06 2008-04-15 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
US7038855B2 (en) 1995-11-06 2006-05-02 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
US6073489A (en) 1995-11-06 2000-06-13 French; Barry J. Testing and training system for assessing the ability of a player to complete a task
US6283860B1 (en) 1995-11-07 2001-09-04 Philips Electronics North America Corp. Method, system, and program for gesture based option selection
US5933125A (en) 1995-11-27 1999-08-03 Cae Electronics, Ltd. Method and apparatus for reducing instability in the display of a virtual environment
US5641288A (en) 1996-01-11 1997-06-24 Zaenglein, Jr.; William G. Shooting simulating process and training device using a virtual reality display screen
US6152856A (en) 1996-05-08 2000-11-28 Real Vision Corporation Real time simulation using position sensing
US6173066B1 (en) 1996-05-21 2001-01-09 Cybernet Systems Corporation Pose determination and tracking by matching 3D objects to a 2D sensor
US5989157A (en) 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
US6005548A (en) 1996-08-14 1999-12-21 Latypov; Nurakhmed Nurislamovich Method for tracking and displaying user's spatial position and orientation, a method for representing virtual reality for a user, and systems of embodiment of such methods
US5995649A (en) 1996-09-20 1999-11-30 Nec Corporation Dual-input image processor for recognizing, isolating, and displaying specific objects from the input images
US6128003A (en) 1996-12-20 2000-10-03 Hitachi, Ltd. Hand gesture recognition system and method
US6009210A (en) 1997-03-05 1999-12-28 Digital Equipment Corporation Hands-free interface to a virtual reality environment using head tracking
US6100896A (en) 1997-03-24 2000-08-08 Mitsubishi Electric Information Technology Center America, Inc. System for designing graphical multi-participant environments
US5877803A (en) 1997-04-07 1999-03-02 Tritech Mircoelectronics International, Ltd. 3-D image detector
US6215898B1 (en) 1997-04-15 2001-04-10 Interval Research Corporation Data processing system and method
US6226396B1 (en) 1997-07-31 2001-05-01 Nec Corporation Object extraction method and system
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6289112B1 (en) 1997-08-22 2001-09-11 International Business Machines Corporation System and method for determining block direction in fingerprint images
US7042440B2 (en) 1997-08-22 2006-05-09 Pryor Timothy R Man machine interfaces and applications
US6496598B1 (en) 1997-09-02 2002-12-17 Dynamic Digital Depth Research Pty. Ltd. Image processing method and apparatus
US6215890B1 (en) 1997-09-26 2001-04-10 Matsushita Electric Industrial Co., Ltd. Hand gesture recognizing device
US6141463A (en) 1997-10-10 2000-10-31 Electric Planet Interactive Method and system for estimating jointed-figure configurations
US6130677A (en) 1997-10-15 2000-10-10 Electric Planet, Inc. Interactive computer vision system
USRE42256E1 (en) 1997-10-15 2011-03-29 Elet Systems L.L.C. Method and apparatus for performing a clean background subtraction
US7184048B2 (en) 1997-10-15 2007-02-27 Electric Planet, Inc. System and method for generating an animatable character
US6256033B1 (en) 1997-10-15 2001-07-03 Electric Planet Method and apparatus for real-time gesture recognition
US6384819B1 (en) 1997-10-15 2002-05-07 Electric Planet, Inc. System and method for generating an animatable character
US6411744B1 (en) 1997-10-15 2002-06-25 Electric Planet, Inc. Method and apparatus for performing a clean background subtraction
US6101289A (en) 1997-10-15 2000-08-08 Electric Planet, Inc. Method and apparatus for unencumbered capture of an object
US7746345B2 (en) 1997-10-15 2010-06-29 Hunter Kevin L System and method for generating an animatable character
US6072494A (en) 1997-10-15 2000-06-06 Electric Planet, Inc. Method and apparatus for real-time gesture recognition
US6181343B1 (en) 1997-12-23 2001-01-30 Philips Electronics North America Corp. System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
WO1999044698A3 (en) 1998-03-03 1999-11-25 Arena Inc System and method for tracking and assessing movement skills in multidimensional space
US6159100A (en) 1998-04-23 2000-12-12 Smith; Michael D. Virtual reality game
US6077201A (en) 1998-06-12 2000-06-20 Cheng; Chau-Yang Exercise bicycle
US6950534B2 (en) 1998-08-10 2005-09-27 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US7121946B2 (en) 1998-08-10 2006-10-17 Cybernet Systems Corporation Real-time head tracking system for computer games and other applications
US7460690B2 (en) 1998-08-10 2008-12-02 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US7036094B1 (en) 1998-08-10 2006-04-25 Cybernet Systems Corporation Behavior recognition system
US7668340B2 (en) 1998-08-10 2010-02-23 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US7684592B2 (en) 1998-08-10 2010-03-23 Cybernet Systems Corporation Realtime object tracking system
US6681031B2 (en) 1998-08-10 2004-01-20 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US6316934B1 (en) 1998-09-17 2001-11-13 Netmor Ltd. System for three dimensional positioning and tracking
US6256400B1 (en) 1998-09-28 2001-07-03 Matsushita Electric Industrial Co., Ltd. Method and device for segmenting hand gestures
US6661918B1 (en) 1998-12-04 2003-12-09 Interval Research Corporation Background estimation and segmentation based on range and color
US6147678A (en) 1998-12-09 2000-11-14 Lucent Technologies Inc. Video hand image-three-dimensional computer interface with multiple degrees of freedom
US7202898B1 (en) 1998-12-16 2007-04-10 3Dv Systems Ltd. Self gating photosurface
US6570555B1 (en) 1998-12-30 2003-05-27 Fuji Xerox Co., Ltd. Method and apparatus for embodied conversational characters with multimodal input/output in an interface device
US6363160B1 (en) 1999-01-22 2002-03-26 Intel Corporation Interface using pattern recognition and tracking
US7003134B1 (en) 1999-03-08 2006-02-21 Vulcan Patents Llc Three dimensional object pose estimation which employs dense depth information
US6299308B1 (en) 1999-04-02 2001-10-09 Cybernet Systems Corporation Low-cost non-imaging eye tracker system for computer control
US6503195B1 (en) 1999-05-24 2003-01-07 University Of North Carolina At Chapel Hill Methods and systems for real-time structured light depth extraction and endoscope using real-time structured light depth extraction
US6476834B1 (en) 1999-05-28 2002-11-05 International Business Machines Corporation Dynamic creation of selectable items on surfaces
US6873723B1 (en) 1999-06-30 2005-03-29 Intel Corporation Segmenting three-dimensional video images using stereo
US6738066B1 (en) 1999-07-30 2004-05-18 Electric Plant, Inc. System, method and article of manufacture for detecting collisions between video images generated by a camera and an object depicted on a display
US7113918B1 (en) 1999-08-01 2006-09-26 Electric Planet, Inc. Method for video enabled electronic commerce
US7760182B2 (en) 1999-08-01 2010-07-20 Subutai Ahmad Method for video enabled electronic commerce
US7050606B2 (en) 1999-08-10 2006-05-23 Cybernet Systems Corporation Tracking and gesture recognition system particularly suited to vehicular control applications
US6801637B2 (en) 1999-08-10 2004-10-05 Cybernet Systems Corporation Optical body tracker
US7367887B2 (en) 2000-02-18 2008-05-06 Namco Bandai Games Inc. Game apparatus, storage medium, and computer program that adjust level of game difficulty
US6633294B1 (en) 2000-03-09 2003-10-14 Seth Rosenthal Method and apparatus for using captured high density motion for animation
US7060957B2 (en) 2000-04-28 2006-06-13 Csem Centre Suisse D'electronique Et Microtechinique Sa Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves
US6640202B1 (en) 2000-05-25 2003-10-28 International Business Machines Corporation Elastic sensor mesh system for 3-dimensional measurement, mapping and kinematics applications
US6731799B1 (en) 2000-06-01 2004-05-04 University Of Washington Object segmentation with background extraction and moving boundary techniques
US6788809B1 (en) 2000-06-30 2004-09-07 Intel Corporation System and method for gesture recognition in three dimensions using stereo imaging and color vision
US7898522B2 (en) 2000-07-24 2011-03-01 Gesturetek, Inc. Video-based image control system
US7227526B2 (en) 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US7421093B2 (en) 2000-10-03 2008-09-02 Gesturetek, Inc. Multiple camera control system
US7555142B2 (en) 2000-10-03 2009-06-30 Gesturetek, Inc. Multiple camera control system
US7058204B2 (en) 2000-10-03 2006-06-06 Gesturetek, Inc. Multiple camera control system
US7039676B1 (en) 2000-10-31 2006-05-02 International Business Machines Corporation Using video image analysis to automatically transmit gestures over a network in a chat or instant messaging session
US6539931B2 (en) 2001-04-16 2003-04-01 Koninklijke Philips Electronics N.V. Ball throwing assistant
US7834846B1 (en) 2001-06-05 2010-11-16 Matthew Bell Interactive video display system
US7259747B2 (en) 2001-06-05 2007-08-21 Reactrix Systems, Inc. Interactive video display system
US7452275B2 (en) 2001-06-29 2008-11-18 Konami Digital Entertainment Co., Ltd. Game device, game controlling method and program
US6937742B2 (en) 2001-09-28 2005-08-30 Bellsouth Intellectual Property Corporation Gesture activated home appliance
US7680298B2 (en) 2001-09-28 2010-03-16 At&T Intellectual Property I, L. P. Methods, systems, and products for gesture-activated appliances
US7607509B2 (en) 2002-04-19 2009-10-27 Iee International Electronics & Engineering S.A. Safety device for a vehicle
US7710391B2 (en) 2002-05-28 2010-05-04 Matthew Bell Processing an image utilizing a spatially varying pattern
US8035614B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Interactive video window
US8035624B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Computer vision based touch screen
US8035612B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Self-contained interactive video display system
US7170492B2 (en) 2002-05-28 2007-01-30 Reactrix Systems, Inc. Interactive video display system
US7348963B2 (en) 2002-05-28 2008-03-25 Reactrix Systems, Inc. Interactive video display system
US7489812B2 (en) 2002-06-07 2009-02-10 Dynamic Digital Depth Research Pty Ltd. Conversion and encoding techniques
US7576727B2 (en) 2002-12-13 2009-08-18 Matthew Bell Interactive directed light/sound system
US7436496B2 (en) 2003-02-03 2008-10-14 National University Corporation Shizuoka University Distance image sensor
US7593552B2 (en) 2003-03-31 2009-09-22 Honda Motor Co., Ltd. Gesture recognition apparatus, gesture recognition method, and gesture recognition program
US7590262B2 (en) 2003-05-29 2009-09-15 Honda Motor Co., Ltd. Visual tracking using depth data
US8072470B2 (en) 2003-05-29 2011-12-06 Sony Computer Entertainment Inc. System and method for providing a real-time three-dimensional interactive environment
US7620202B2 (en) 2003-06-12 2009-11-17 Honda Motor Co., Ltd. Target orientation estimation using depth sensing
US20050013502A1 (en) * 2003-06-28 2005-01-20 Samsung Electronics Co., Ltd. Method of improving image quality
US7536032B2 (en) 2003-10-24 2009-05-19 Reactrix Systems, Inc. Method and system for processing captured image information in an interactive video display system
US7809167B2 (en) 2003-10-24 2010-10-05 Matthew Bell Method and system for processing captured image information in an interactive video display system
US8391627B1 (en) * 2004-01-28 2013-03-05 Adobe Systems Incorporated Using forward and backward kernels to filter images
US20060221250A1 (en) 2004-01-28 2006-10-05 Canesta, Inc. Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
US7379563B2 (en) 2004-04-15 2008-05-27 Gesturetek, Inc. Tracking bimanual movements
US7308112B2 (en) 2004-05-14 2007-12-11 Honda Motor Co., Ltd. Sign based human-machine interaction
US7704135B2 (en) 2004-08-23 2010-04-27 Harrison Jr Shelton E Integrated game system, method, and device
US7702130B2 (en) 2004-12-20 2010-04-20 Electronics And Telecommunications Research Institute User interface apparatus using hand gesture recognition and method thereof
US7570805B2 (en) 2005-01-07 2009-08-04 Gesturetek, Inc. Creating 3D images of objects by illuminating with infrared patterns
US7574020B2 (en) 2005-01-07 2009-08-11 Gesturetek, Inc. Detecting and tracking objects in images
US7430312B2 (en) 2005-01-07 2008-09-30 Gesturetek, Inc. Creating 3D images of objects by illuminating with infrared patterns
US7379566B2 (en) 2005-01-07 2008-05-27 Gesturetek, Inc. Optical flow based tilt sensor
US7598942B2 (en) 2005-02-08 2009-10-06 Oblong Industries, Inc. System and method for gesture based control system
US20060197937A1 (en) 2005-02-08 2006-09-07 Canesta, Inc. Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
US7317836B2 (en) 2005-03-17 2008-01-08 Honda Motor Co., Ltd. Pose estimation based on critical point analysis
US7389591B2 (en) 2005-05-17 2008-06-24 Gesturetek, Inc. Orientation-sensitive signal output
US7426312B2 (en) * 2005-07-05 2008-09-16 Xerox Corporation Contrast enhancement of images
US20070018977A1 (en) 2005-07-25 2007-01-25 Wolfgang Niem Method and apparatus for generating a depth map
US7560701B2 (en) 2005-08-12 2009-07-14 Mesa Imaging Ag Highly sensitive, fast pixel for use in an image sensor
US20080026838A1 (en) 2005-08-22 2008-01-31 Dunstan James E Multi-player non-role-playing virtual world games: method for two-way interaction between participants and multi-player virtual world games
US7450736B2 (en) 2005-10-28 2008-11-11 Honda Motor Co., Ltd. Monocular tracking of 3D human motion with a coordinated mixture of factor analyzers
US8139142B2 (en) * 2006-06-01 2012-03-20 Microsoft Corporation Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
US7701439B2 (en) 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method
US20080027591A1 (en) 2006-07-14 2008-01-31 Scott Lenser Method and system for controlling a remote vehicle
US20080021912A1 (en) 2006-07-24 2008-01-24 The Mitre Corporation Tools and methods for semi-automatic schema matching
US7683954B2 (en) 2006-09-29 2010-03-23 Brainvision Inc. Solid-state image sensor
US7412077B2 (en) 2006-12-29 2008-08-12 Motorola, Inc. Apparatus and methods for head pose estimation and head gesture detection
US20080170800A1 (en) * 2007-01-16 2008-07-17 Ruth Bergman One-pass filtering and infrared-visible light decorrelation to reduce noise and distortions
US7729530B2 (en) 2007-03-03 2010-06-01 Sergey Antonov Method and apparatus for 3-D data input to a personal computer with a multimedia oriented operating system
US7852262B2 (en) 2007-08-16 2010-12-14 Cybernet Systems Corporation Wireless mobile indoor/outdoor tracking system
CN101254344B (en) 2008-04-18 2010-06-16 李刚 Game device of field orientation corresponding with display screen dot array in proportion and method
EP2128693A1 (en) 2008-05-28 2009-12-02 ETH Zurich Spatially Adaptive Photographic Flash Unit
US8189943B2 (en) * 2009-03-17 2012-05-29 Mitsubishi Electric Research Laboratories, Inc. Method for up-sampling depth images
US8260076B1 (en) * 2009-03-31 2012-09-04 Hewlett-Packard Development Company, L.P. Constant time filtering

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Simulation and Training", 1994, Division Incorporated.
"Virtual High Anxiety", Tech Update, Aug. 1995, pp. 22.
Aggarwal et al., "Human Motion Analysis: A Review", IEEE Nonrigid and Articulated Motion Workshop, 1997, University of Texas at Austin, Austin, TX.
Amendment dated Apr. 9, 2013, in Chinese Appl. No. 201110127704.01 filed May 6, 2011.
Azarbayejani et al., "Visually Controlled Graphics", Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence.
Breen et al., "Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality", Technical Report ECRC-95-02, 1995, European Computer-Industry Research Center GmbH, Munich, Germany.
Brogan et al., "Dynamically Simulated Characters in Virtual Environments", Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications.
Chan, "A Noise-Aware Filter for Real-Time Depth Upsampling", Author manuscript, published in Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications-M2SFA2, Oct. 2008, 12 pages, Marseille, France.
Chan, "A Noise-Aware Filter for Real-Time Depth Upsampling", Author manuscript, published in Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications—M2SFA2, Oct. 2008, 12 pages, Marseille, France.
English Machine-translation of Japanese Publication No. JP08-044490 published on Feb. 16, 1996.
Fisher et al., "Virtual Environment Display System", ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC.
Freeman et al., "Television Control by Hand Gestures", Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA.
Gokturk, "A Time-Of-Flight Depth Sensor-System Description, Issues and Solutions", Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'04) vol. 3, Jun. 2004, p. 35, IEEE Computer Society Washington, DC, USA.
Gokturk, "A Time-Of-Flight Depth Sensor—System Description, Issues and Solutions", Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'04) vol. 3, Jun. 2004, p. 35, IEEE Computer Society Washington, DC, USA.
Granieri et al., "Simulating Humans in VR", The British Computer Society, Oct. 1994, Academic Press.
Hasegawa et al., "Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator", Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY.
He, "Generation of Human Body Models", Apr. 2005, University of Auckland, New Zealand.
Hongo et al., "Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras", Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France.
Isard et al., "Condensation-Conditional Density Propagation for Visual Tracking", 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands.
Isard et al., "Condensation—Conditional Density Propagation for Visual Tracking", 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands.
Kanade et al., "A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, pp. 196-202,The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
Kohler, "Special Topics of Gesture Recognition Applied in Intelligent Home Environments", In Proceedings of the Gesture Workshop, 1998, pp. 285-296, Germany.
Kohler, "Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments", 1997, Germany.
Kohler, "Vision Based Remote Control in Intelligent Home Environments", University of Erlangen-Nuremberg/Germany, 1996, pp. 147-154, Germany.
Livingston, "Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality", 1998, University of North Carolina at Chapel Hill, North Carolina, USA.
Meers, "Head-Pose Tracking with a Time-of-Flight Camera", Originally Published in Proceedings of the Australasian Conference on Robotics & Automation, Dec. 2008.
Miyagawa et al., "CCD-Based Range Finding Sensor", Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices.
Pavlovic et al., "Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review", Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence.
Qian et al., "A Gesture-Driven Multimodal Interactive Dance System", Jun. 2004, pp. 1579-1582, IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan.
Rosenhahn et al., "Automatic Human Model Generation", 2005, pp. 41-48, University of Auckland (CITR), New Zealand.
Schuon, "High-Quality Scanning Using Time-Of-Flight Depth Superresolution", Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference, Jun. 2008, pp. 1-7, Anchorage, AK, USA.
Shao et al., "An Open System Architecture for a Multimedia and Multimodal User Interface", Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan.
Sheridan et al., "Virtual Reality Check", Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7.
Stevens, "Flights into Virtual Reality Treating Real World Disorders", The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages.
Toyama, Kentaro, et al., "Probabilistic Tracking in a Metric Space," Eighth International Conference on Computer Vision, Vancouver, Canada, vol. 2, Jul. 2001, 8 pages.
Wren et al., "Pfinder: Real-Time Tracking of the Human Body", MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Caimbridge, MA.
Zhao, "Dressed Human Modeling, Detection, and Parts Localization", 2001, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156404A1 (en) * 2012-05-17 2015-06-04 Canon Kabushiki Kaisha Image processing apparatus, image processing method, image processing program, and image pickup apparatus acquiring a focusing distance from a plurality of images--
US9621786B2 (en) * 2012-05-17 2017-04-11 Canon Kabushiki Kaisha Image processing apparatus, image processing method, image processing program, and image pickup apparatus acquiring a focusing distance from a plurality of images
US20160085312A1 (en) * 2014-09-24 2016-03-24 Ncku Research And Development Foundation Gesture recognition system
US20160261250A1 (en) * 2015-02-27 2016-09-08 Microchip Technology Germany Gmbh Digital Filter With Confidence Input

Also Published As

Publication number Publication date Type
CN102184531B (en) 2013-11-27 grant
US20110274366A1 (en) 2011-11-10 application
CN102184531A (en) 2011-09-14 application

Similar Documents

Publication Publication Date Title
US7961174B1 (en) Tracking groups of users in motion capture system
US20100302247A1 (en) Target digitization, extraction, and tracking
US20110267269A1 (en) Heterogeneous image sensor synchronization
US20110262002A1 (en) Hand-location post-process refinement in a tracking system
US20120093320A1 (en) System and method for high-precision 3-dimensional audio for augmented reality
US20100045869A1 (en) Entertainment Device, System, and Method
US20110310226A1 (en) Use of wavefront coding to create a depth image
US20110310125A1 (en) Compartmentalizing focus area within field of view
US7961910B2 (en) Systems and methods for tracking a model
US20120242795A1 (en) Digital 3d camera using periodic illumination
US20110311144A1 (en) Rgb/depth camera for improving speech recognition
US20100306710A1 (en) Living cursor control mechanics
US20120110456A1 (en) Integrated voice command modal user interface
US8401225B2 (en) Moving object segmentation using depth images
US20110300929A1 (en) Synthesis of information from multiple audiovisual sources
US20110295693A1 (en) Generating Tailored Content Based On Scene Image Detection
US20130182077A1 (en) Enhanced contrast for object detection and characterization by optical imaging
US20120056982A1 (en) Depth camera based on structured light and stereo vision
US20110080475A1 (en) Methods And Systems For Determining And Tracking Extremities Of A Target
US8296151B2 (en) Compound gesture-speech commands
US20110080336A1 (en) Human Tracking System
US20140307920A1 (en) Systems and methods for tracking occluded objects in three-dimensional space
US20130113956A1 (en) Face detection and tracking
US20110234481A1 (en) Enhancing presentations using depth sensing cameras
US20120239174A1 (en) Predicting Joint Positions

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TARDIF, JOHN;REEL/FRAME:024500/0578

Effective date: 20100505

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034544/0001

Effective date: 20141014