US8834786B2 - Carbide pellets for wear resistant applications - Google Patents
Carbide pellets for wear resistant applications Download PDFInfo
- Publication number
- US8834786B2 US8834786B2 US12/827,860 US82786010A US8834786B2 US 8834786 B2 US8834786 B2 US 8834786B2 US 82786010 A US82786010 A US 82786010A US 8834786 B2 US8834786 B2 US 8834786B2
- Authority
- US
- United States
- Prior art keywords
- carbide
- pellets
- metallic binder
- weight percent
- granules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/10—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1068—Making hard metals based on borides, carbides, nitrides, oxides or silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/067—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/15—Millimeter size particles, i.e. above 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to wear resistant compositions, and more particularly to carbide pellets containing relatively small amounts of metallic binder for use in various applications such as hard facing materials and bulk composite materials.
- Carbide pellets may generally be used for wear resistant applications, such as composite materials for forming bits, for example drill bits for earth-boring drills, or as hard facing compositions, for example, hard facing compositions for rock bits or as a plasma tungsten arc coating compositions.
- wear resistant applications such as composite materials for forming bits, for example drill bits for earth-boring drills, or as hard facing compositions, for example, hard facing compositions for rock bits or as a plasma tungsten arc coating compositions.
- the carbide pellets are generally cemented or sintered tungsten carbide pellets.
- U.S. Pat. No. 4,944,774 to Keshavan et al. discloses cemented tungsten carbide used in hard facing materials.
- the cemented tungsten carbide comprises small particles of tungsten carbide bonded together with cobalt in amounts ranging from 6 to 8 weight percent.
- the cemented tungsten carbide is made by mixing tungsten carbide, organic wax, and cobalt powders; pressing the mixed powders to form a green compact; and sintering the composite at temperatures near the melting point of cobalt.
- the resulting dense cemented carbide can then be comminuted to form particles of cemented tungsten carbide for use in hard facing applications.
- Other hard facing compositions are disclosed in U.S. Pat. Nos. 3,800,891; RE37,127; 6,248,149; 6,659,206; and 6,782,958.
- Pan and tube granulation processes have conventionally been used to make carbide pellets containing relatively large amounts of metallic binder, e.g., 6 weight percent cobalt.
- tungsten carbide powder and cobalt powder are milled with wax in an organic solution for several hours, then the milled powder is dried in a vacuum dryer.
- the powder is fed continuously to the top of a rotating disk pelletizer to form green pellets.
- the disk pelletizer typically rotates at approximately 15 revolutions per minute at an angle of 50° to 75° relative to the horizontal plane. Agglomeration occurs by particle coalescence as the pelletizer rotates. The larger agglomerates rotate to the outer pan rim and are readily discharged from the pan.
- the milled and dried powder is fed into a tube or drum pelletizer at one end to form green pellets.
- the drum pelletizer rotates at approximately 15 revolutions per minute to cause agglomeration by particle coalescence.
- the agglomerates are continuously discharged at the other end of the tube.
- the agglomerated green pellets may be sized. Undersized pellets may be recycled, and oversized pellets may be crushed and recycled, by feeding the pellets back to the granulator with the powders. The properly sized green pellets are then sintered, and may be broken into individual pellets if necessary.
- pan and tube granulation processes have effectively been used to make carbide pellets with relatively large amounts of metallic binder, attempts to make carbide pellets containing less than 3 weight percent cobalt by such processes have been unsuccessful.
- the present invention provides an improved process for forming carbide pellets having a metallic binder, such as cobalt, in an amount less than 3 weight percent.
- An aspect of the present invention is to provide a method for forming carbide pellets comprising pressing a mixture comprising hard carbide powder particles and less than 3 weight percent metallic binder powder particles to form a green compact, comminuting the formed green compact to form faceted granules comprising the carbide and metallic binder powder particles, shaping the faceted granules to form substantially spherical shaped green pellets comprising the carbide and the metallic binder powder particles, and sintering the substantially spherical shaped green pellets to form dense substantially spherical sintered pellets containing less than 3 weight percent of the metallic binder.
- Another aspect of the present invention is to provide a hard facing rod for applying a wear resistant layer to a workpiece comprising a casing, and a plurality of carbide pellets comprising hard metal carbide and less than 3 weight percent of a metallic binder.
- a further aspect of the present invention is to provide a wear resistant hard facing composition
- a wear resistant hard facing composition comprising sintered carbide pellets comprising hard metal carbide particles and less than 3 weight percent metallic binder.
- FIG. 1 is a flow chart of a manufacturing process for forming carbide pellets in accordance with an embodiment of the present invention.
- FIG. 2 is a partially schematic longitudinal sectional view of sintered carbide pellets produced in accordance with the present invention inside a metal tube for use as a hard facing rod.
- FIG. 3 is a photomicrograph of loose granules formed in a comminuting step of FIG. 1 .
- FIG. 4 is a photomicrograph of spherical green pellets formed in a shaping step of FIG. 1 .
- FIG. 5 is a photomicrograph of spherical sintered pellets formed in a sintering step of FIG. 1 .
- FIG. 6 is a photomicrograph showing the microstructure of a carbide pellet comprising 2 weight percent cobalt made in accordance with an embodiment of the present invention.
- FIG. 7 is a photomicrograph of a section of a hard facing composition deposited on a substrate containing sintered carbide pellets made in accordance with an embodiment of the present invention.
- the present invention provides a method of making carbide pellets with relatively small amounts of metallic binder.
- the sintered carbide pellets may be produced according to the process illustrated in FIG. 1 wherein carbide particles and metallic binder particles in an amount less than 3 percent of the total weight of the carbide and metallic binder powders are mixed together with organic wax, e.g., paraffin wax, pressed to form a green compact, comminuted or crushed to form granules, tumbled to form spherical green pellets, and sintered to form dense spherical sintered carbide pellets.
- the carbide powder and the metallic binder powder may be milled with wax in an organic solution for several hours, e.g., about 4 to 6 hours, and then vacuum dried.
- the milled powders are fed to a press where they are pressed to form a green compact or billet.
- a press Any suitable type of press may be used, such as a uniaxial press applying a pressure of from about 2,000 to about 10,000 psi.
- the formed green compact or billet is comminuted, e.g., crushed, to form loose, faceted granules comprising the carbide and metallic binder particles.
- the green compact may be fed to a Stokes granulator to form the granules.
- a Stokes granulator is a machine that forces the material through a screen to produce granules.
- the granules have faceted shapes with sharp edges and may typically range in size from about ASTM 200 mesh (74 microns) to about ASTM 10 mesh (1,885 microns), for example, from about ASTM 40 mesh (381 microns) to about ASTM 16 mesh (1,130 microns).
- a sample of faceted granules produced by the comminuting step of FIG. 1 is shown in the photomicrograph of FIG. 3 , as discussed more fully in the example below.
- the faceted granules are then shaped to remove the sharp edges and to form rounded or substantially spherical green pellets containing the carbide and metallic binder.
- the shaping step may include subjecting the granules to a tumbling process, e.g., in a mill drum, followed by a screening process to obtain uniform pellet size.
- the rounded green pellets may typically range in size from about ASTM 40 mesh (381 microns) to about ASTM 16 mesh (1,130 microns), for example, about ASTM 20 mesh (860 microns).
- a sample of rounded and substantially spherical pellets produced by the shaping step of FIG. 1 is shown in the photomicrograph of FIG. 4 , as discussed more fully in the example below.
- the green pellets are then sintered rather than being sent directly to a press to form parts.
- the final step involves sintering the green pellets to form dense rounded or substantially spherical sintered carbide pellets, wherein each pellet contains less than 3 weight percent metallic binder based on the weight of the sintered pellet.
- the sintering temperature may typically range from about 1,380° C. to about 1,480° C., for example, about 1,450° C.
- vacuum sintering at a temperature of about 1,900° C. may be used, followed by hot isostatic pressing in an inert atmosphere such as Ar, e.g., at 1,500 psi and 1,900° C., or at 30,000 psi and 1,500° C.
- the rounded sintered pellets may typically range in size from about ASTM 40 mesh (381 microns) to about ASTM-10 mesh (1,885 microns), for example, about ASTM 20 mesh (860 microns).
- ASTM 40 mesh 381 microns
- ASTM-10 mesh 1,885 microns
- ASTM 20 mesh 860 microns
- a sample of rounded sintered pellets produced by the sintering step of FIG. 1 is shown in the photomicrograph of FIG. 5 , as discussed more fully in the example below.
- the metallic binder may be present in amounts ranging from zero or 0.01 to about 2.9 weight percent based on the total weight of the mixture.
- the metallic binder may comprise from about 0.5 to about 2.5 weight percent based on the total weight of the mixture.
- the metallic binder is present in an amount of about 2 weight percent.
- the amount of carbide added in the mixture typically ranges from about 97.1 to about 99.99 or 100 weight percent based on the total amount of the mixture.
- the carbide may comprise from about 97.5 to about 99.5 weight percent based on the total weight of the mixture. In one embodiment, the carbide is present in amount of about 98 weight percent.
- the sintered carbide pellets produced in accordance with the method of the present invention comprise hard carbide particles and metallic binder in similar amounts as described above. Due to the relatively low amount of metallic binder in the sintered carbide pellets, their hardness is increased over sintered carbide pellets having higher amounts of metallic binder for a given grain size of the hard carbide particles.
- the carbide may be selected from tungsten carbide (WC), di-tungsten carbide (W 2 C), titanium carbide (TiC), tantalum carbide (TaC), chromium carbide (Cr 3 C 2 ) and vanadium carbide (VC). Borides such as titanium diboride (TiB 2 ) may optionally be added to the carbide(s) or used alone.
- the carbide may comprise WC with up to 10 weight percent W 2 C.
- Cr 3 C 2 in an amount up to 2 weight percent and/or VC in an amount up to 0.5 weight percent may be added to WC.
- Other optional elements may be added, such as Ni, Ti, Ta and Nb in amounts up to 0.5 weight percent.
- the carbide may be provided in the form of powder having an average particle size of from about 0.5 to about 10 microns, typically from about 2 to about 4 microns.
- the metallic binder may be selected from cobalt, iron, nickel, steel and mixtures thereof.
- the metallic binder may be provided in the form of powder having an average particle size of from about 0.5 to about 100 microns, typically from about 35 to about 45 microns.
- the carbide pellets of the invention may be used in any of the several wear resistant applications which involve surface modification. These include hard facing, plasma tungsten arc and high velocity oxy fuel coating applications.
- the carbide pellets may be applied as hard facing materials and cutting surfaces to workpieces including tools, such as hand and power shovels, cutting tools, hammers, agricultural tools, drill bits and the like.
- the carbide pellets may also be used in matrix powders for fixed cutter oil and gas bits.
- the carbide pellets provide improved mechanical properties, including improved wear resistance compared to currently available carbide pellets containing greater amounts of metallic binder, for example cobalt, while maintaining the required strength and toughness required for longer life of the tools to which the hard facing materials are applied.
- the sintered carbide pellets of the invention may be used in a hard facing rod 10 in which the pellets are contained in a hard facing tube 12 schematically shown in FIG. 2 with the diameter and length of the rod 10 not drawn to scale.
- the hard facing rod 10 comprises a mild steel sheet or iron casing tube 12 which contains carbide pellets 14 made in accordance with the present invention.
- carbide pellets 14 may optionally be included in the tube 12 , such as deoxidizers, fluxes and resin binders.
- the inner diameter ID of the tube 12 may range from about 0.11 inch to about 0.22 inch and the outer diameter OD of tube 12 may range from about 0.13 inch to about 0.28 inch.
- the tube wall thickness may be from about 0.016 inch to about 0.06 inch.
- the length L of rod 10 may range from about 10 to about 30 inches.
- the hard facing may be applied to various substrates by melting an end of the rod on the surface of the substrate which is to be coated.
- the steel tube or rod melts as it is welded to the surface and provides the matrix for the carbide particles.
- the thickness of the hard facing layer on surface of substrate may range from about 0.0625 to about 0.5 inch.
- the sintered carbide pellets of the invention may be used to form a composite material for use not only as a hard facing on the body and/or cutting elements, but also to form portions or all of the body and cutting elements, and as bulk composite materials.
- the sintered carbide pellets of the invention may also be used in matrix powders for fixed cutter oil and gas bits, plasma tungsten arc (PTA) powders, and high velocity oxy fuel (HVOF) powders.
- Sintered carbide pellets comprising tungsten carbide particles and 2 weight percent cobalt metallic binder were made.
- Tungsten carbide powder having an average particle size of about 5 microns was mixed in an amount of 98 weight percent with 2 weight percent cobalt powder having an average particle size of about 1 micron.
- Paraffin was mixed with the powder in an amount of 2 weight percent of the powder mixture in a ball mill for about 12 hours.
- the mixture was pressed in a uniaxial press at a pressure of 3 tons per square inch to form a green compact.
- the green compact was comminuted by forcing the green compact through a Stokes granulator screen which crushed the green compact to form faceted granules having an average particle size of about 1,130 microns.
- FIG. 3 is a photomicrograph of the faceted granules of the sample showing the sharp edges of the granules.
- FIG. 4 is a photomicrograph of the shaped generally spherical green pellets having an average particle size of about 1,295 microns.
- the green granulated spherical pellets were loaded in loose form into a ceramic boat and into a sinter hip furnace at about 1,450° C. with a ramp up, hold, and cool down procedure as follows: ramp from room temperature to 400° C. at a ramp rate of 0.5 to 3 degrees per minute; hold for 1 hour at 400° C.; ramp from 400° C. to 1,400° C. at 6 degrees per minute; hold at 1,400 degrees for 30 minutes; and cool down by turning off the power to the furnace to allow cooling at the natural cooling rate of the furnace. During this time, the cobalt melted to help bind or cement adjacent carbide particles together within each pellet.
- FIG. 5 is a photomicrograph of the dense sintered generally spherical pellets that were formed.
- FIG. 6 is a photomicrograph of the microstructure of one of the carbide pellets.
- the hard facing tube was made of a steel sheath, with an inner diameter of 0.156 inch, an outer diameter of 0.18 inch, a thickness of 0.024 inch, and a length of 28 inches.
- FIG. 7 is a photomicrograph of a cross section of the resultant hard facing composition containing the carbide pellets of the invention as applied to the substrate.
- the thickness of this hard facing is about 0.125 inch.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
Claims (12)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/827,860 US8834786B2 (en) | 2010-06-30 | 2010-06-30 | Carbide pellets for wear resistant applications |
| DE102011101784A DE102011101784A1 (en) | 2010-06-30 | 2011-05-17 | Carbide pellets for wear-resistant applications |
| FR1155166A FR2962058A1 (en) | 2010-06-30 | 2011-06-14 | CARBIDE PELLETS FOR WEAR RESISTANT APPLICATIONS |
| CN2011101745018A CN102312147A (en) | 2010-06-30 | 2011-06-27 | The carbide spherolite that is used for wear-resistant application |
| GB1111017.8A GB2483956B (en) | 2010-06-30 | 2011-06-28 | Carbide pellets for wear resistant applications |
| US14/458,918 US9499888B2 (en) | 2010-06-30 | 2014-08-13 | Carbide pellets for wear resistant applications |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/827,860 US8834786B2 (en) | 2010-06-30 | 2010-06-30 | Carbide pellets for wear resistant applications |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/458,918 Division US9499888B2 (en) | 2010-06-30 | 2014-08-13 | Carbide pellets for wear resistant applications |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20120003488A1 US20120003488A1 (en) | 2012-01-05 |
| US8834786B2 true US8834786B2 (en) | 2014-09-16 |
Family
ID=44485333
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/827,860 Active 2031-12-04 US8834786B2 (en) | 2010-06-30 | 2010-06-30 | Carbide pellets for wear resistant applications |
| US14/458,918 Active 2030-09-29 US9499888B2 (en) | 2010-06-30 | 2014-08-13 | Carbide pellets for wear resistant applications |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/458,918 Active 2030-09-29 US9499888B2 (en) | 2010-06-30 | 2014-08-13 | Carbide pellets for wear resistant applications |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US8834786B2 (en) |
| CN (1) | CN102312147A (en) |
| DE (1) | DE102011101784A1 (en) |
| FR (1) | FR2962058A1 (en) |
| GB (1) | GB2483956B (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102014105481B4 (en) * | 2013-05-16 | 2015-01-22 | Kennametal India Limited | Process for grinding carbide and applications thereof |
| CN103691934A (en) * | 2013-12-18 | 2014-04-02 | 浙江帕特尼触头有限公司 | Powder granulating method |
| WO2015175726A1 (en) * | 2014-05-13 | 2015-11-19 | University Of Utah Research Foundation | Production of substantially spherical metal powers |
| CN104525914B (en) * | 2014-11-18 | 2017-01-04 | 西安理工大学 | Engine cam and preparation method thereof |
| WO2016118879A1 (en) * | 2015-01-22 | 2016-07-28 | University Of Utah Research Foundation | Functionally graded carbides |
| WO2017068153A1 (en) * | 2015-10-23 | 2017-04-27 | Sandvik Intellectual Property Ab | A process of manufacturing cermet or cemeted carbide component |
| CN106862551A (en) * | 2017-03-06 | 2017-06-20 | 自贡长城硬面材料有限公司 | A kind of preparation method of cermet spherolite |
| EP3563951A1 (en) | 2018-05-04 | 2019-11-06 | Magotteaux International S.A. | Composite tooth with tapered insert |
| CN109719301A (en) * | 2018-11-30 | 2019-05-07 | 蓬莱市超硬复合材料有限公司 | A kind of method of quality control preparing hard alloy roll |
| CN110000487A (en) * | 2019-04-18 | 2019-07-12 | 郑州机械研究所有限公司 | A kind of enhanced tubulose medicine core carbine abrasion-proof welding rod of matrix |
| US20200384580A1 (en) * | 2019-06-04 | 2020-12-10 | Kennametal Inc. | Composite claddings and applications thereof |
| EP3885061A1 (en) * | 2020-03-27 | 2021-09-29 | Magotteaux International S.A. | Composite wear component |
| CA3202076A1 (en) | 2020-12-10 | 2022-06-16 | Magotteaux International S.A. | Hierarchical composite wear part with structural reinforcement |
Citations (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3149411A (en) | 1962-12-21 | 1964-09-22 | Jersey Prod Res Co | Composite materials containing cemented carbides |
| US3800891A (en) * | 1968-04-18 | 1974-04-02 | Hughes Tool Co | Hardfacing compositions and gage hardfacing on rolling cutter rock bits |
| US4173685A (en) | 1978-05-23 | 1979-11-06 | Union Carbide Corporation | Coating material and method of applying same for producing wear and corrosion resistant coated articles |
| US4177324A (en) | 1978-06-30 | 1979-12-04 | Union Carbide Corporation | Hard facing of metal substrates using material containing V, W, Mo, C |
| GB2084612A (en) | 1980-10-01 | 1982-04-15 | Uddeholms Ab | Isostatic pressing of sintered crushed spherical particles |
| US4451508A (en) | 1982-06-28 | 1984-05-29 | Union Carbide Corporation | Hard facing of metal substrates using material containing VC and improved flux compositions therefor |
| US4526618A (en) | 1983-10-18 | 1985-07-02 | Union Carbide Corporation | Abrasion resistant coating composition |
| US4689077A (en) | 1985-05-20 | 1987-08-25 | Eltech Systems Corporation | Method for manufacturing a reaction-sintered metal/ceramic composite body and metal/ceramic composite body |
| US4744943A (en) | 1986-12-08 | 1988-05-17 | The Dow Chemical Company | Process for the densification of material preforms |
| US4944774A (en) | 1987-12-29 | 1990-07-31 | Smith International, Inc. | Hard facing for milled tooth rock bits |
| US4945073A (en) | 1988-09-20 | 1990-07-31 | The Dow Chemical Company | High hardness, wear resistant materials |
| US5102452A (en) * | 1989-05-24 | 1992-04-07 | Outokumpu Oy | Method for the treatment and production of free-flowing wc-ni-co powders |
| US5250355A (en) | 1991-12-17 | 1993-10-05 | Kennametal Inc. | Arc hardfacing rod |
| US5256608A (en) | 1988-09-20 | 1993-10-26 | The Dow Chemical Company | High hardness, wear resistant materials |
| US5334561A (en) | 1990-09-20 | 1994-08-02 | Shigetomo Matsui | High pressure injection nozzle |
| US5563107A (en) | 1993-04-30 | 1996-10-08 | The Dow Chemical Company | Densified micrograin refractory metal or solid solution solution (mixed metal) carbide ceramics |
| US5663512A (en) * | 1994-11-21 | 1997-09-02 | Baker Hughes Inc. | Hardfacing composition for earth-boring bits |
| US5791422A (en) | 1996-03-12 | 1998-08-11 | Smith International, Inc. | Rock bit with hardfacing material incorporating spherical cast carbide particles |
| WO2001031075A1 (en) | 1999-10-28 | 2001-05-03 | SANDVIK AB;(publ) | Cemented carbide tool for woodworking |
| US6248149B1 (en) | 1999-05-11 | 2001-06-19 | Baker Hughes Incorporated | Hardfacing composition for earth-boring bits using macrocrystalline tungsten carbide and spherical cast carbide |
| US6659206B2 (en) | 2001-10-29 | 2003-12-09 | Smith International, Inc. | Hardfacing composition for rock bits |
| US6782958B2 (en) | 2002-03-28 | 2004-08-31 | Smith International, Inc. | Hardfacing for milled tooth drill bits |
| US20070079992A1 (en) | 2005-10-11 | 2007-04-12 | Baker Hughes Incorporated | System, method, and apparatus for enhancing the durability of earth-boring bits with carbide materials |
| WO2007124523A1 (en) | 2006-05-02 | 2007-11-08 | Ceratizit Austria Gesellschaft M.B.H. | Process for producing a cemented carbide product |
| US20080127781A1 (en) | 2005-04-14 | 2008-06-05 | Ladi Ram L | Matrix drill bits and method of manufacture |
| US20100101866A1 (en) * | 2007-01-08 | 2010-04-29 | Bird Jay S | Drill bits and other downhole tools with hardfacing having tungsten carbide pellets and other hard materials |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US37127A (en) | 1862-12-09 | Improvement in grain threshers and separators | ||
| US3515540A (en) * | 1964-12-16 | 1970-06-02 | Du Pont | Mixed cobalt/tungsten carbide powders |
| US5045277A (en) * | 1990-09-10 | 1991-09-03 | Gte Products Corporation | Method of producing metal carbide grade powders and controlling the shrinkage of articles made therefrom |
| CN1211184C (en) * | 2003-01-28 | 2005-07-20 | 江汉石油钻头股份有限公司 | Tube shape tungsten carbide welding rod containing cubic boron nitride grain |
| SE0602494L (en) * | 2006-11-22 | 2008-05-23 | Sandvik Intellectual Property | Method of manufacturing a sintered body, a powder mixture and a sintered body |
| US20110195834A1 (en) | 2010-02-05 | 2011-08-11 | Kennametal, Inc. | Wear Resistant Two-Phase Binderless Tungsten Carbide and Method of Making Same |
-
2010
- 2010-06-30 US US12/827,860 patent/US8834786B2/en active Active
-
2011
- 2011-05-17 DE DE102011101784A patent/DE102011101784A1/en not_active Withdrawn
- 2011-06-14 FR FR1155166A patent/FR2962058A1/en not_active Withdrawn
- 2011-06-27 CN CN2011101745018A patent/CN102312147A/en active Pending
- 2011-06-28 GB GB1111017.8A patent/GB2483956B/en not_active Expired - Fee Related
-
2014
- 2014-08-13 US US14/458,918 patent/US9499888B2/en active Active
Patent Citations (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3149411A (en) | 1962-12-21 | 1964-09-22 | Jersey Prod Res Co | Composite materials containing cemented carbides |
| US3800891A (en) * | 1968-04-18 | 1974-04-02 | Hughes Tool Co | Hardfacing compositions and gage hardfacing on rolling cutter rock bits |
| US4173685A (en) | 1978-05-23 | 1979-11-06 | Union Carbide Corporation | Coating material and method of applying same for producing wear and corrosion resistant coated articles |
| US4177324A (en) | 1978-06-30 | 1979-12-04 | Union Carbide Corporation | Hard facing of metal substrates using material containing V, W, Mo, C |
| GB2084612A (en) | 1980-10-01 | 1982-04-15 | Uddeholms Ab | Isostatic pressing of sintered crushed spherical particles |
| US4451508A (en) | 1982-06-28 | 1984-05-29 | Union Carbide Corporation | Hard facing of metal substrates using material containing VC and improved flux compositions therefor |
| US4526618A (en) | 1983-10-18 | 1985-07-02 | Union Carbide Corporation | Abrasion resistant coating composition |
| US4689077A (en) | 1985-05-20 | 1987-08-25 | Eltech Systems Corporation | Method for manufacturing a reaction-sintered metal/ceramic composite body and metal/ceramic composite body |
| US4744943A (en) | 1986-12-08 | 1988-05-17 | The Dow Chemical Company | Process for the densification of material preforms |
| US4944774A (en) | 1987-12-29 | 1990-07-31 | Smith International, Inc. | Hard facing for milled tooth rock bits |
| US4945073A (en) | 1988-09-20 | 1990-07-31 | The Dow Chemical Company | High hardness, wear resistant materials |
| US5256608A (en) | 1988-09-20 | 1993-10-26 | The Dow Chemical Company | High hardness, wear resistant materials |
| US5102452A (en) * | 1989-05-24 | 1992-04-07 | Outokumpu Oy | Method for the treatment and production of free-flowing wc-ni-co powders |
| US5334561A (en) | 1990-09-20 | 1994-08-02 | Shigetomo Matsui | High pressure injection nozzle |
| US5250355A (en) | 1991-12-17 | 1993-10-05 | Kennametal Inc. | Arc hardfacing rod |
| US5563107A (en) | 1993-04-30 | 1996-10-08 | The Dow Chemical Company | Densified micrograin refractory metal or solid solution solution (mixed metal) carbide ceramics |
| US5612264A (en) | 1993-04-30 | 1997-03-18 | The Dow Chemical Company | Methods for making WC-containing bodies |
| US5681783A (en) | 1993-04-30 | 1997-10-28 | The Dow Chemical Company | Sintered WC-containing materials |
| US5663512A (en) * | 1994-11-21 | 1997-09-02 | Baker Hughes Inc. | Hardfacing composition for earth-boring bits |
| USRE37127E1 (en) | 1994-11-21 | 2001-04-10 | Baker Hughes Incorporated | Hardfacing composition for earth-boring bits |
| US5791422A (en) | 1996-03-12 | 1998-08-11 | Smith International, Inc. | Rock bit with hardfacing material incorporating spherical cast carbide particles |
| US6248149B1 (en) | 1999-05-11 | 2001-06-19 | Baker Hughes Incorporated | Hardfacing composition for earth-boring bits using macrocrystalline tungsten carbide and spherical cast carbide |
| WO2001031075A1 (en) | 1999-10-28 | 2001-05-03 | SANDVIK AB;(publ) | Cemented carbide tool for woodworking |
| US6659206B2 (en) | 2001-10-29 | 2003-12-09 | Smith International, Inc. | Hardfacing composition for rock bits |
| US6782958B2 (en) | 2002-03-28 | 2004-08-31 | Smith International, Inc. | Hardfacing for milled tooth drill bits |
| US20080127781A1 (en) | 2005-04-14 | 2008-06-05 | Ladi Ram L | Matrix drill bits and method of manufacture |
| US20070079992A1 (en) | 2005-10-11 | 2007-04-12 | Baker Hughes Incorporated | System, method, and apparatus for enhancing the durability of earth-boring bits with carbide materials |
| US20090260482A1 (en) | 2005-10-11 | 2009-10-22 | Baker Hughes Incorporated | Materials for enhancing the durability of earth-boring bits, and methods of forming such materials |
| WO2007124523A1 (en) | 2006-05-02 | 2007-11-08 | Ceratizit Austria Gesellschaft M.B.H. | Process for producing a cemented carbide product |
| US20100101866A1 (en) * | 2007-01-08 | 2010-04-29 | Bird Jay S | Drill bits and other downhole tools with hardfacing having tungsten carbide pellets and other hard materials |
Non-Patent Citations (2)
| Title |
|---|
| Banerjee et al, U.S. Appl. No. 12/700,991, "Wear Resistant Two-Phase Binderless Tungsten Carbide and Method of Making Same", filed Feb. 5, 2010. |
| Kennametal Inc., "Engineered Product Solutions", sales brochure, 2006, published in U.S. |
Also Published As
| Publication number | Publication date |
|---|---|
| US9499888B2 (en) | 2016-11-22 |
| GB201111017D0 (en) | 2011-08-10 |
| US20140345423A1 (en) | 2014-11-27 |
| GB2483956A (en) | 2012-03-28 |
| FR2962058A1 (en) | 2012-01-06 |
| GB2483956B (en) | 2013-02-27 |
| DE102011101784A1 (en) | 2012-01-05 |
| US20120003488A1 (en) | 2012-01-05 |
| CN102312147A (en) | 2012-01-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9499888B2 (en) | Carbide pellets for wear resistant applications | |
| US6663688B2 (en) | Sintered material of spheroidal sintered particles and process for producing thereof | |
| JP6957682B2 (en) | Manufacturing method of cemented carbide material | |
| CA2709672C (en) | Silicon carbide composite materials, earth-boring tools comprising such materials, and methods for forming the same | |
| CA2741197C (en) | Insert for an attack tool, method for making same and tools incorporating same | |
| JP6806792B2 (en) | Sintered carbide with a structure that increases toughness | |
| US20110020163A1 (en) | Super-Hard Enhanced Hard Metals | |
| CA2466866C (en) | Method of making a ceramic body of densified tungsten carbide | |
| US20120040183A1 (en) | Cemented Carbide Compositions Having Cobalt-Silicon Alloy Binder | |
| US20100104874A1 (en) | High pressure sintering with carbon additives | |
| CN103003471A (en) | Hard face structure and body comprising same | |
| JP2010537926A (en) | Polycrystalline diamond composite | |
| GB2401114A (en) | A double cemented carbide composite | |
| CA2804664A1 (en) | Hard face structure, body comprising same and method for making same | |
| CN110735075A (en) | Preparation method of WC-based hard alloys with high wear resistance | |
| US4973356A (en) | Method of making a hard material with properties between cemented carbide and high speed steel and the resulting material | |
| CA1068852A (en) | Tungsten carbide-steel alloy and method of making same | |
| GB2485896A (en) | Polycrystalline carbide and binderless carbide used in matrix bit bodies | |
| EP1935537A2 (en) | Multiple processes of high pressures and temperatures for sintered bodies | |
| WO2023114632A1 (en) | Cemented carbide and cermet compositions having a high-entropy-alloy binder | |
| GB2509244A (en) | A composite material comprising diamond-silicon carbide particles in a metal matrix | |
| Lassner et al. | Tungsten in hardmetals | |
| KR100700197B1 (en) | Process for producing cobalt-containing sintered alloy by recycling catalyst scrap containing cobalt component for desulfurization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KENNAMETAL INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIRK, TERRY WAYNE;TIAN, HONGBO;DENG, XIN;AND OTHERS;REEL/FRAME:024619/0816 Effective date: 20100629 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |