US8791536B2 - Stacked sensor packaging structure and method - Google Patents
Stacked sensor packaging structure and method Download PDFInfo
- Publication number
- US8791536B2 US8791536B2 US13/352,844 US201213352844A US8791536B2 US 8791536 B2 US8791536 B2 US 8791536B2 US 201213352844 A US201213352844 A US 201213352844A US 8791536 B2 US8791536 B2 US 8791536B2
- Authority
- US
- United States
- Prior art keywords
- image sensor
- digital signal
- signal processor
- chip package
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000004806 packaging method and process Methods 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 32
- 239000006059 cover glass Substances 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- JPGQOUSTVILISH-UHFFFAOYSA-N enflurane Chemical compound FC(F)OC(F)(F)C(F)Cl JPGQOUSTVILISH-UHFFFAOYSA-N 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920006336 epoxy molding compound Polymers 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14634—Assemblies, i.e. Hybrid structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/1469—Assemblies, i.e. hybrid integration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04073—Bonding areas specifically adapted for connectors of different types
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05541—Structure
- H01L2224/05548—Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/1015—Shape
- H01L2924/10155—Shape being other than a cuboid
- H01L2924/10158—Shape being other than a cuboid at the passive surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15172—Fan-out arrangement of the internal vias
- H01L2924/15174—Fan-out arrangement of the internal vias in different layers of the multilayer substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16151—Cap comprising an aperture, e.g. for pressure control, encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
Definitions
- the present invention relates to a chip package for an image sensor and a manufacturing method thereof.
- an image sensor is a device that changes light indicating an image of an object into an electric signal for each pixel.
- An image sensor is used for small electronic products capable of photographing still images and motion pictures, for example, digital cameras, mobile phones, PDAs (personal digital assistants), rear view monitoring cameras included in bumpers, and interphones.
- the image sensor includes a charge coupled device (CCD) and/or a complementary MOSFET oxidized semiconductor (CMOS).
- CMOS complementary MOSFET oxidized semiconductor
- the image sensor is a type of semiconductor chip.
- a semiconductor chip is packaged for protection from external shocks, the environment and the exchange of electric signals with the outside.
- An image sensor chip is connected to a digital signal processor (DSP) to process an electric signal output from the image sensor chip and to a memory to store image information.
- DSP digital signal processor
- the image sensor chip is electrically interconnected to a flexible printed circuit board (FPCB) and a hard printed circuit board (HPCB) to exchange electric signals with an electronic device outside a camera module.
- FPCB flexible printed circuit board
- HPCB hard printed circuit board
- FIGS. 1 and 2 are sectional views showing conventional chip packages for an image sensor.
- an image sensor chip 1 is wire-bonded to the upper surface of an HPCB 6 via a metal wire 3 .
- a DSP 7 is electrically connected to the HPCB 6 by being flipchip bonded to the lower surface of the HPCB 6 .
- An infrared (IR) cut filter 9 is arranged above an image sensor 2 .
- the image sensor chip 1 is arranged at the lowermost position of a housing 4 .
- a peripheral part of the upper surface of the image sensor chip 1 is electrically connected to the FPCB 8 via flip chip bonding 1 a .
- the DSP 7 is located at a portion of the FPCB 8 positioned outside the housing 4 .
- chip packages for an image sensor are known, there exists a continuous need to reduce the size of those chip packages in the interest of minimizing the electronic products in which those chip packages are housed.
- FIG. 1 is a cross-sectional view of a conventional chip package for an image sensor.
- FIG. 2 is a cross-sectional view of another conventional chip package for an image sensor.
- FIGS. 3A and 3B are cross-sectional schematic views of two different variations of a stacked chip package for an image sensor, according to exemplary embodiments of the invention.
- FIG. 4 is a schematic diagram depicting the process of assembling the stacked chip package of FIG. 3B .
- FIG. 5 depicts a cross-sectional schematic view of a stacked chip package for an image sensor (see step 5 ) according to another exemplary embodiment of the invention, and a schematic diagram depicting the process of assembling the stacked chip package.
- FIGS. 6A and 6B are cross-sectional schematic views of two different variations of a stacked chip package for an image sensor, according to yet other exemplary embodiments of the invention.
- FIGS. 7A and 7B are cross-sectional schematic views of two different variations of a stacked chip package for an image sensor, according to still other exemplary embodiments of the invention.
- FIG. 8 depicts a cross-sectional schematic view of a stacked chip package for an image sensor according to another exemplary embodiment of the invention.
- FIGS. 3A and 3B depict cross-sectional views of two different variations of a stacked chip package 10 and 10 ′, respectively, in which a DSP is embedded in a cavity formed on a lower surface of an image sensor, according to exemplary embodiments of the invention.
- the primary advantages of the stacked chip package arrangements shown in FIGS. 3A and 3B are the decreased length of the signal transfer route between the DSP and the image sensor and the reduction in overall size as compared with conventional chip packages for an image sensor.
- the stacked chip packages 10 and 10 ′ each generally comprises a lens 12 (or cover glass), a image sensor 14 mounted to the lens 12 by a resin 13 , a DSP 16 that is embedded within a recess 18 that is defined on the bottom side of the image sensor 14 , an underfill 19 coated on the bottom-side surfaces of the DSP 16 and the image sensor 14 , and an interposer/substrate 20 applied to the underfill 19 .
- a slight gap exists between the walls of the DSP 16 and the walls of the recess 18 of the image sensor 14 .
- the gap is useful for thermally isolating the DSP 16 from the image sensor 14 .
- the lower surfaces of the DSP 16 and the image sensor 14 are substantially coplanar (i.e., reside on the same plane).
- the image sensor 14 includes a plurality of vias 22 (two shown) that are defined through its thickness each of which create an electronic interconnection between a respective aluminum pad 24 that is positioned on the top side of the image sensor 14 and a respective bump 26 (or bump 26 ′ in FIG. 3B ) on the bottom side of the image sensor 14 .
- the aluminum pads (not explicitly shown) of the DSP 16 are positioned face down toward the interposer 20 .
- the bumps 28 and 28 ′ of FIGS. 3A and 3B respectively, that are positioned on the aluminum pads of the DSP 16 are positioned in contact with conductive regions on the top side of the interposer 20 .
- the underfill 19 fills in the gap between the sensor 14 and the interposer 20 as well as the gap between the DSP 16 and the interposer 20 .
- a series of solder bumps 29 that are positioned on the bottom surface of the interposer 20 are electrically connected with the conductive regions on the top surface of the interposer 20 .
- the solder bumps 29 are provided for connecting to a substrate, circuit board, or other device of an electronic component.
- the package 10 in FIG. 3A includes solder bumps 26 and 28 to accomplish electrical interconnection
- the package 10 ′ in FIG. 3B includes gold stud bumps 26 ′ and 28 ′ to accomplish electrical interconnection.
- Bonding between the image sensor 14 , the DSP 16 and the interposer 20 may be accomplished by a eutectic bonding process, a metal melting process, an atomic diffusion process, a heating process, an ultrasonic heating process and/or a thermosonic heating process, for example.
- the image sensor 14 captures an image through the lens 12 and converts the image to an analog signal.
- the analog signal is transmitted to the DSP 16 via the bumps 26 , the interposer 20 , and the bumps 28 .
- the DSP 16 processes and digitizes the analog signal, and transmits the digitized signal via the bumps 28 to the interposer 20 , and, via the bumps 29 of the interposer 20 , to a circuit an electronic device (not shown) that is connected to the bumps 29 .
- FIG. 4 is a schematic diagram depicting an exemplary process of assembling the stacked chip package 10 ′ of FIG. 3B .
- the process generally includes ten steps, which are labeled 1 through 10 . The steps are not necessarily limited to the particular sequence that is described below, and may vary from that shown and described.
- the DSP 16 is provided.
- gold stud bumps 28 ′ are added to the bottom side (i.e., the functional side pad) of the DSP 16 .
- a subassembly 30 is provided.
- the subassembly 30 includes the image sensor 14 , the lens or cover glass 12 and other components that are mounted together.
- the recess 18 is formed on the bottom side surface of the sensor 14 .
- the recess 18 may be formed by an etching process or other chemical or physical method.
- gold stud bumps 26 ′ are added to the bottom side of the image sensor 14 , thereby forming subassembly 32 .
- the interposer 20 is provided.
- an underfill layer is applied to the top surface of the interposer 20 .
- the DSP 16 is bonded to the underfill 19 by a thermosonic bonding horn 33 to form subassembly 34 .
- subassembly 32 is bonded to subassembly 34 by a thermosonic bonding horn 35 to form stacked chip package 10 ′.
- Thermosonic bonding is widely used to permanently interconnect metallized silicon integrated circuits and other components into computers as well as into a myriad of other electronic equipment.
- bonding may also be accomplished by a eutectic bonding process, a metal melting process, an atomic diffusion process, a heating process, or an ultrasonic heating process, for example.
- the underfill 19 of the stacked chip package 10 ′ undergoes curing thereby completing the fabrication steps.
- FIG. 5 depicts a cross-sectional schematic view of a stacked chip package 110 (see step 5 ) according to another exemplary embodiment of the invention.
- FIG. 5 also depicts a schematic diagram depicting the process of assembling the stacked chip package 110 .
- the stacked chip package 110 is similar to the stacked chip package 10 of FIG. 3A , with the exception that underfill 19 is replaced by a redistribution layer (RDL) 140 and a resin 142 .
- RDL redistribution layer
- the image sensor 114 of FIG. 5 includes a plurality of vias 122 (two shown) that are defined through its thickness.
- Each of the vias 122 create an electronic interconnection between a respective aluminum pad 124 that is positioned on the top side of the image sensor 114 and solder or gold bumps on the top side of the RDL 140 .
- the bumps are provided on a fan out pad on the top surface of the RDL 140 .
- thermal pads on the RDL 140 for the purpose of heat dissipation.
- the insulation layer of the RDL 140 may be composed of SiO 2 , Ajinomoto Build-up Film (ABF), or other organic materials, for example.
- the top side of the DSP 116 is adhered to the recess 118 of the image sensor 114 by a layer of resin 142 .
- the resin 142 could be a liquid type adhesive or a B-stage adhesive film, such as die attach adhesive film, for example.
- the resin 142 is thermally insulative such that it thermally isolates the DSP 116 from the image sensor 114 .
- Aluminum pads (not explicitly shown) on the bottom side of the DSP 116 are positioned face-down in contact with conductive regions on the top surface of the RDL 140 by vias that extend through the thickness of the RDL 140 .
- the RDL 140 electrically interconnects the DSP 116 to the image sensor 114 .
- a series of solder bumps 129 that are positioned on the bottom surface of the RDL 140 are electrically connected with the conductive regions on the top surface of the RDL 140 .
- the solder bumps 129 of the RDL 140 are provided for connecting to a substrate, circuit board, or other device of an electronic component.
- a subassembly 150 including the image sensor 114 , the lens 112 and other components is provided.
- the subassembly 150 is large enough to form a plurality of stacked chip packages 110 (two shown).
- a plurality of recesses 118 are formed on the bottom side surface of the sensor 114 .
- the recesses 118 may be formed by an etching process or other chemical or physical method.
- resin 142 is distributed in both recesses 118 , and two DSP's 116 (only one shown) are applied to the resin material 142 .
- step 4 the subassembly formed in step 3 is singulated, or separated, into individual chip packages.
- step 5 the top side of the RDL 140 is mounted to the bottom sides of the DSP 116 and the sensor 114 .
- the bumps 129 are then added to the bottom side of the RDL 140 , thereby completing the fabrication steps. It should be understood that the foregoing steps are not necessarily limited to a particular sequence.
- FIGS. 6A and 6B are cross-sectional schematic views of two different variations of a stacked chip package for an image sensor, according to yet other exemplary embodiments of the invention.
- the stacked chip package 210 shown in FIG. 6A is similar to the stacked chip package 10 , thus, the details of stacked chip package 10 also apply to stacked chip package 210 . Only significant differences between those chip packages will be described hereinafter.
- the components of the stacked chip package 210 are mechanically and electrically connected together by flip-chip and wire bonding. More particularly, in lieu of vias, the image sensor 214 is electrically interconnected with the substrate 220 by wire leads 245 .
- the wire leads 245 may be composed of gold, aluminum or copper, for example.
- the top side of the DSP 216 is adhered to the recess 218 of the image sensor 214 by a layer of resin 242 , similar to the resin 142 of FIG. 5 .
- the aluminum pads (not explicitly shown) of the DSP 216 are positioned face down toward the substrate 220 .
- the bumps 228 which may be composed of solder or gold, that are positioned on the aluminum pads of the DSP 216 are positioned in contact with conductive regions on the top side of the substrate 220 .
- vias and traces within the substrate 220 electrically interconnect the leads 245 of the sensor 214 with the bumps 228 of the DSP 216 .
- a die-attach adhesive 219 mounts the sensor 214 and the DSP 216 to the substrate 220 .
- the cover glass 212 is mounted to the substrate 220 by a dam 221 .
- the function of the dam 221 is to support the lens or cover glass 12 and form an air cavity in the package.
- the dam material may be BT, FR4, FR5, thermoplastic, epoxy molding compound, ceramic.
- the stacked chip package 310 shown in FIG. 6B is similar to the stacked chip package 210 of FIG. 6A , thus, the details of stacked chip packages 10 and 210 also apply to stacked chip package 310 . Only the significant differences between those chip packages will be described hereinafter.
- a liquid compound 347 mounts the cover glass 312 , the substrate 320 and the image sensor 314 together.
- the leads 345 are encapsulated within the liquid compound 347 .
- FIGS. 7A and 7B are cross-sectional schematic views of two different variations of a stacked chip package for an image sensor, according to still other exemplary embodiments of the invention.
- the stacked chip package 410 shown in FIG. 7A is similar to the stacked chip package 210 of FIG. 6A , thus, the details of stacked chip packages 10 and 210 also apply to stacked chip package 410 . Only significant differences between those chip packages will be described hereinafter.
- the primary components of the stacked chip package 10 are mechanically and electrically connected together by wire bonding.
- the DSP 416 is electrically interconnected with the substrate 420 by wire leads 455
- the image sensor 414 is electrically connected to the substrate 420 by wire leads 445 .
- the leads may be wires composed of gold, aluminum or copper, for example.
- vias and traces within the substrate 420 electrically interconnect the leads 445 of the sensor 414 with the leads 455 of the DSP 416 such that the DSP 416 and the sensor 414 are in electrical communication.
- the DSP 416 is bonded to the substrate 420 by a die attach adhesive 457 . Unlike the DSP of FIG. 6A , the DSP 416 is not bonded to the recess 418 formed in the image sensor 414 .
- the stacked chip package 510 shown in FIG. 7B is similar to the stacked chip package 310 of FIG. 6B , thus, the details of the stacked chip package 310 also apply to the stacked chip package 510 . Only significant differences between those chip packages will be described hereinafter.
- the DSP 516 is bonded to the substrate 520 by a die attach adhesive 557 .
- the DSP 516 is electrically interconnected with the substrate 520 by leads 555
- the image sensor 514 is electrically connected to the substrate 520 by leads 545 .
- vias and traces within the substrate 520 electrically interconnect the leads 545 of the sensor 514 with the leads 555 of the DSP 516 such that the DSP 516 and the sensor 514 are in electrical communication.
- FIG. 8 depicts a cross-sectional schematic view of a stacked chip package for an image sensor according to another exemplary embodiment of the invention.
- the stacked chip package 610 shown in FIG. 8 is similar to the stacked chip package 110 of FIG. 5 , thus, the details of stacked chip package 110 also apply to stacked chip package 610 . Only significant differences between those chip packages will be described hereinafter.
- the DSP 616 is indirectly connected to the bottom side of the RDL 640 by leads 642 .
- the materials of the stacked chip packages disclosed herein may vary as described hereinafter.
- the lens which may also be referred to in the art as cover glass, is optionally composed of glass.
- the image sensor may be a charge coupled device (CCD) and/or a complementary MOSFET oxidized semiconductor (CMOS).
- CMOS complementary MOSFET oxidized semiconductor
- the image sensor may be at least partially composed of Silicon material.
- the DSP may be any DSP known to those skilled in the art that is configured to convert an analog signal output from an image sensor chip to a digital signal.
- the interposer may be composed of silicon with a redistribution layer (RDL), BT, FR4, FR5, ceramic, an organic substrate, or any other material that is known to those skilled in the art.
- RDL redistribution layer
- BT BT
- FR4 FR5
- ceramic organic substrate
- organic substrate or any other material that is known to those skilled in the art.
- the terms ‘interposer’ and ‘substrate’ may be used interchangeably.
- the interposer may also be considered as a substrate.
- a substrate is a part that provides the chip package with mechanical base support and forms an electrical interface that allows access to the devices housed within the chip package.
- An interposer is an intermediate layer that is often used for interconnection routing or as a ground/power plane.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/352,844 US8791536B2 (en) | 2011-04-28 | 2012-01-18 | Stacked sensor packaging structure and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161480061P | 2011-04-28 | 2011-04-28 | |
US13/352,844 US8791536B2 (en) | 2011-04-28 | 2012-01-18 | Stacked sensor packaging structure and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120273908A1 US20120273908A1 (en) | 2012-11-01 |
US8791536B2 true US8791536B2 (en) | 2014-07-29 |
Family
ID=47067264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/352,844 Active 2032-11-17 US8791536B2 (en) | 2011-04-28 | 2012-01-18 | Stacked sensor packaging structure and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US8791536B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120248553A1 (en) * | 2009-11-19 | 2012-10-04 | Dai Nippon Printing Co., Ltd. | Sensor device and manufacturing method thereof |
US10177188B2 (en) | 2016-08-04 | 2019-01-08 | Samsung Electronics Co., Ltd. | Semiconductor package and method of fabricating the same |
US10418396B1 (en) * | 2018-04-03 | 2019-09-17 | Semiconductor Components Industries, Llc | Stacked image sensor package |
US20220084972A1 (en) * | 2019-11-04 | 2022-03-17 | Advanced Semiconductor Engineering, Inc. | Electronic device package and method for manufacturing the same |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8890047B2 (en) * | 2011-09-21 | 2014-11-18 | Aptina Imaging Corporation | Stacked-chip imaging systems |
US9013615B2 (en) * | 2011-09-21 | 2015-04-21 | Semiconductor Components Industries, Llc | Image sensor with flexible interconnect capabilities |
US9185307B2 (en) | 2012-02-21 | 2015-11-10 | Semiconductor Components Industries, Llc | Detecting transient signals using stacked-chip imaging systems |
TWI560825B (en) * | 2013-02-08 | 2016-12-01 | Xintec Inc | Chip scale package structure and manufacturing method thereof |
CN103236424A (en) * | 2013-04-16 | 2013-08-07 | 江苏物联网研究发展中心 | Wafer level packaging structure and packaging method |
CN103633036B (en) * | 2013-08-07 | 2017-03-08 | 中国科学院电子学研究所 | Electric-field sensor potted element based on highly resistant material |
US9368535B2 (en) * | 2014-02-28 | 2016-06-14 | Semiconductor Components Industries, Llc | Imaging systems with flip chip ball grid arrays |
US11310402B2 (en) * | 2015-08-25 | 2022-04-19 | Gingy Technology Inc. | Image capturing device and fingerprint image capturing device |
US20160141280A1 (en) * | 2014-11-14 | 2016-05-19 | Omnivision Technologies, Inc. | Device-Embedded Image Sensor, And Wafer-Level Method For Fabricating Same |
US9653504B1 (en) * | 2015-11-03 | 2017-05-16 | Omnivision Technologies, Inc. | Chip-scale packaged image sensor packages with black masking and associated packaging methods |
CN106449607B (en) * | 2016-11-28 | 2019-02-05 | 南通壹选工业设计有限公司 | A kind of MIM capacitor structure |
CN106449372B (en) * | 2016-11-28 | 2019-04-30 | 新昌县诺趣智能科技有限公司 | A kind of manufacturing method of MIM capacitor structure |
US10312276B2 (en) * | 2017-08-02 | 2019-06-04 | Omnivision Technologies, Inc. | Image sensor package to limit package height and reduce edge flare |
CN110290293B (en) * | 2018-03-19 | 2021-12-31 | 台湾东电化股份有限公司 | Photosensitive module |
US11081510B2 (en) * | 2018-03-19 | 2021-08-03 | Tdk Taiwan Corp. | Photosensitive module having transparent plate and image sensor |
JP2019213151A (en) * | 2018-06-08 | 2019-12-12 | ソニーセミコンダクタソリューションズ株式会社 | Imaging apparatus |
US10998361B2 (en) * | 2018-09-22 | 2021-05-04 | Omnivision Technologies, Inc. | Image-sensor package and associated method |
US11069670B2 (en) * | 2018-11-20 | 2021-07-20 | Ningbo Semiconductor International Corporation | Camera assembly and packaging method thereof, lens module, and electronic device |
CN114127940A (en) * | 2019-07-23 | 2022-03-01 | 索尼半导体解决方案公司 | Semiconductor package |
US11616026B2 (en) * | 2020-01-17 | 2023-03-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacture |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4706553A (en) | 1984-03-05 | 1987-11-17 | Phoenix Controls Corp. | Fume hood controller |
US6933617B2 (en) | 2000-12-15 | 2005-08-23 | Eaglestone Partners I, Llc | Wafer interposer assembly |
US7042077B2 (en) | 2004-04-15 | 2006-05-09 | Intel Corporation | Integrated circuit package with low modulus layer and capacitor/interposer |
US7122458B2 (en) | 2004-07-22 | 2006-10-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for fabricating pad redistribution layer |
US20080308928A1 (en) | 2007-06-13 | 2008-12-18 | Industrial Technology Research Institute | Image sensor module with a three-dimensional die-stacking structure |
US7592202B2 (en) | 2006-03-31 | 2009-09-22 | Intel Corporation | Embedding device in substrate cavity |
US20090315180A1 (en) | 2008-06-20 | 2009-12-24 | Lee Kevin J | Multi-layer thick metallization structure for a microelectronic device, intergrated circuit containing same, and method of manufacturing an integrated circuit containing same |
US7646087B2 (en) | 2005-04-18 | 2010-01-12 | Mediatek Inc. | Multiple-dies semiconductor device with redistributed layer pads |
US7701044B2 (en) | 2006-10-19 | 2010-04-20 | Samsung Techwin Co., Ltd. | Chip package for image sensor and method of manufacturing the same |
US20120194719A1 (en) | 2011-02-01 | 2012-08-02 | Scott Churchwell | Image sensor units with stacked image sensors and image processors |
-
2012
- 2012-01-18 US US13/352,844 patent/US8791536B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4706553A (en) | 1984-03-05 | 1987-11-17 | Phoenix Controls Corp. | Fume hood controller |
US4706553B1 (en) | 1984-03-05 | 1991-07-23 | Phoenix Controls Corp | |
US6933617B2 (en) | 2000-12-15 | 2005-08-23 | Eaglestone Partners I, Llc | Wafer interposer assembly |
US7042077B2 (en) | 2004-04-15 | 2006-05-09 | Intel Corporation | Integrated circuit package with low modulus layer and capacitor/interposer |
US7122458B2 (en) | 2004-07-22 | 2006-10-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for fabricating pad redistribution layer |
US7646087B2 (en) | 2005-04-18 | 2010-01-12 | Mediatek Inc. | Multiple-dies semiconductor device with redistributed layer pads |
US7592202B2 (en) | 2006-03-31 | 2009-09-22 | Intel Corporation | Embedding device in substrate cavity |
US7701044B2 (en) | 2006-10-19 | 2010-04-20 | Samsung Techwin Co., Ltd. | Chip package for image sensor and method of manufacturing the same |
US20080308928A1 (en) | 2007-06-13 | 2008-12-18 | Industrial Technology Research Institute | Image sensor module with a three-dimensional die-stacking structure |
US7663231B2 (en) | 2007-06-13 | 2010-02-16 | Industrial Technology Research Institute | Image sensor module with a three-dimensional die-stacking structure |
US20090315180A1 (en) | 2008-06-20 | 2009-12-24 | Lee Kevin J | Multi-layer thick metallization structure for a microelectronic device, intergrated circuit containing same, and method of manufacturing an integrated circuit containing same |
US20120194719A1 (en) | 2011-02-01 | 2012-08-02 | Scott Churchwell | Image sensor units with stacked image sensors and image processors |
Non-Patent Citations (1)
Title |
---|
Borthakur et al., U.S. Appl. No. 13/972,249, filed Aug. 21, 2013. |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120248553A1 (en) * | 2009-11-19 | 2012-10-04 | Dai Nippon Printing Co., Ltd. | Sensor device and manufacturing method thereof |
US9476898B2 (en) * | 2009-11-19 | 2016-10-25 | Dai Nippon Printing Co., Ltd. | Sensor device and manufacturing method thereof |
US10177188B2 (en) | 2016-08-04 | 2019-01-08 | Samsung Electronics Co., Ltd. | Semiconductor package and method of fabricating the same |
US10868073B2 (en) | 2016-08-04 | 2020-12-15 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor package |
US11482554B2 (en) | 2016-08-04 | 2022-10-25 | Samsung Electronics Co., Ltd. | Semiconductor package and method of fabricating the same |
US10418396B1 (en) * | 2018-04-03 | 2019-09-17 | Semiconductor Components Industries, Llc | Stacked image sensor package |
US20220084972A1 (en) * | 2019-11-04 | 2022-03-17 | Advanced Semiconductor Engineering, Inc. | Electronic device package and method for manufacturing the same |
US11837566B2 (en) * | 2019-11-04 | 2023-12-05 | Advanced Semiconductor Engineering, Inc. | Electronic device package and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
US20120273908A1 (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8791536B2 (en) | Stacked sensor packaging structure and method | |
US7202460B2 (en) | Camera module for compact electronic equipments | |
US10008533B2 (en) | Semiconductor package | |
US7701044B2 (en) | Chip package for image sensor and method of manufacturing the same | |
US7315078B2 (en) | Chip-stacked semiconductor package and method for fabricating the same | |
US20140264808A1 (en) | Chip arrangements, chip packages, and a method for manufacturing a chip arrangement | |
KR102005351B1 (en) | Fan-out sensor package | |
US10566369B2 (en) | Image sensor with processor package | |
KR20190072319A (en) | Fan-out sensor package | |
JP2010262992A (en) | Semiconductor module and portable apparatus | |
TWI688059B (en) | Semiconductor package structure and manufacturing method thereof | |
KR20140028700A (en) | Semiconductor pakage | |
US10115673B1 (en) | Embedded substrate package structure | |
EP2575176B1 (en) | Folded tape package for electronic devices | |
US12034029B2 (en) | Imaging device and method for producing imaging device | |
KR100526191B1 (en) | Solid-State Imaging Apparatus | |
KR20160031523A (en) | Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation | |
US7205095B1 (en) | Apparatus and method for packaging image sensing semiconductor chips | |
JP6409575B2 (en) | Multilayer semiconductor device | |
KR100541650B1 (en) | Solid-state Imaging Apparatus and Method For Manufacturing The Same | |
TWI733093B (en) | Semiconductor package structure and manufacturing method thereof | |
US8525312B2 (en) | Area array quad flat no-lead (QFN) package | |
US20230254975A1 (en) | Semiconductor packages having circuit boards | |
KR20050119101A (en) | Method for manufacturing solid-state imaging apparatus | |
JP2011096952A (en) | Circuit device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APTINA IMAGING CORPORATION, CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KINSMAN, LARRY;HSIEH, YU TE;SIGNING DATES FROM 20120113 TO 20120116;REEL/FRAME:027668/0684 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |