US8320397B2 - Backoff adjustment method for MAC system - Google Patents
Backoff adjustment method for MAC system Download PDFInfo
- Publication number
- US8320397B2 US8320397B2 US12/755,718 US75571810A US8320397B2 US 8320397 B2 US8320397 B2 US 8320397B2 US 75571810 A US75571810 A US 75571810A US 8320397 B2 US8320397 B2 US 8320397B2
- Authority
- US
- United States
- Prior art keywords
- unsuccessful transmission
- attributed
- time slots
- channel
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims abstract description 68
- 238000004891 communication Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0823—Errors, e.g. transmission errors
- H04L43/0847—Transmission error
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/407—Bus networks with decentralised control
- H04L12/413—Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
Definitions
- MAC Media Access Control
- CSMA/CA Carrier Sense Multiple Access With Collision Avoidance
- each station STA is required to listen to the channel to see whether the channel is busy or idle before sending its packets, wherein the STA is allowed to send its packets only when the channel is determined to be idle. Otherwise, a backoff mechanism is invoked. That is, if the channel is determined not to idle, i.e., busy, or there is a packet collision on the channel, then the STA sets a backoff value in its backoff counter that is randomly selected from a contention window. The backoff value is decremented by one time slot and the STA is allowed to retransmit its prior packets when the backoff value is decremented to zero.
- the embodiments herein relate to a method comprising: transmitting frames over a wireless channel after a first backoff period has elapsed; estimating a channel condition of the wireless channel over a plurality of time slots; determining, in case of an unsuccessful transmission of the frames, whether the unsuccessful transmission is attributed to a frame collision; and if the unsuccessful transmission is not attributed to a frame collision, then determining a second backoff period based on at least the estimated channel condition.
- FIG. 1 shows an illustrative embodiment of network architecture in accordance with various aspects of the present disclosure.
- FIG. 2 shows an example embodiment of a block diagram illustrating an example mobile station in accordance with various aspects of the present disclosure.
- FIG. 3 shows an illustrative embodiment of observed channel condition over a plurality of time slots.
- FIG. 4 a shows an illustrative embodiment of an example process for re-transmission using new back-off period, including determining a backoff period.
- FIG. 4 b shows an illustrative embodiment of example process for calculating a backoff period.
- FIG. 5 shows an illustrative embodiment of observed channel condition over a plurality of time slots.
- Example embodiments relate to a method comprising transmitting frames over a wireless channel after a first backoff period has elapsed; estimating a channel condition of the wireless channel over a plurality of time slots; determining, in case of an unsuccessful transmission of the frames, whether the unsuccessful transmission is attributed to a frame collision; and if the unsuccessful transmission is not attributed to a frame collision, then determining a second backoff period based on at least the estimated channel condition.
- Example embodiments also relate to a computer readable medium storing computer executable instructions, the instruction when executed configuring one or more processors to perform several functions.
- Example embodiments also relate to a system comprising a mobile station associated with a controller for a wireless communication, the mobile station comprising one or more processors configured to transmit frames over a wireless channel after a first backoff period has elapsed; estimate a channel condition of the wireless channel over a plurality of time slots; determine, in case of an unsuccessful transmission of the frames, whether the unsuccessful transmission is attributed to a frame collision; and if the unsuccessful transmission is not attributed to a frame collision, then determine a second backoff period based on at least the estimated channel condition.
- Channel error can occur when there is a packet loss or an unsuccessful transmission of packets not due to collision between packets of the contending stations, but because of poor channel conditions.
- Contention window A range of value from which a backoff period is chosen randomly.
- Backoff period A period of time set to a counter in a station. The station has not been allowed to transmit any frames over the channel until the backoff period is decremented to zero.
- Access Point Any entity that has a station (STA) functionality and provides access to the distribution services, via the WM for associated STAs.
- MS Mobile Station
- MS A type of STA that uses network communications while in motion.
- Example embodiments relate to a method and system that provide an enhanced backoff strategy wherein a backoff period may be determined based on an estimated channel condition if a transmission error is not attributed to a frame collision.
- the backoff period to be determined based on an estimated channel condition may be used by a mobile station in a wireless communication system that employs collision avoidance mechanism such as CSMA/CA.
- the mobile station estimates a channel condition over a plurality of time slots.
- a subsequent (second) backoff period to be used for retransmission of the unsuccessful frames may be determined based on the estimated channel condition.
- the cause of the unsuccessful transmission may be determined based on either the estimated channel condition or a received negative acknowledgement frame.
- Channel error may occur when a receiving station is far from a transmitting station and, therefore, signal strength is poor. Poor signal strength may also be caused by an inadequate antenna pattern.
- channel error may be caused by, for example, certain type of interference in the same frequency band.
- a channel error is detected in each of the plurality of time slots and wherein the channel condition is estimated by computing the mean of the lengths of consecutive error time slots and the variance of the mean.
- the backoff time may be calculated further based on a probability of channel error over the plurality of slots.
- the number of the plurality of time slots may be modified according to the estimated probability of channel error.
- the subsequent backoff period may be determined based on a contention window that would be increased in an exponential manner for each retransmission.
- the mobile station may distinguish a cause of an unsuccessful frame transmission and may determine a subsequent backoff period based on an estimated channel condition in case that the attempt to transmit earlier frames is unsuccessful due to a reason other than a packet collision.
- unsuccessful transmissions due to a channel error does not represent congestion of frame transmissions
- the conventional strategy doubles an earlier contention window. If a backoff period for retransmission is determined based on the doubled contention window, mobile stations have to serve such a long backoff period without congestion.
- the mobile stations can fail to transmit frames due to a channel error because the mobile stations have to serve a backoff period determined based on the doubled contention window.
- a new backoff period is determined based on an estimated channel condition rather than a doubled contention window, which can provide an improved throughput of the wireless communication system.
- a mobile station that unsuccessfully transmits frames due to a channel error does not have to serve a longer backoff period determined based on a doubled contention window.
- FIG. 1 illustrates an example architecture of a system 100 in accordance with various aspects of the present disclosure.
- the system 100 may include a controller 102 configured to wirelessly communicate with associated mobile stations 104 a , 104 b , and 104 c (hereinafter “mobile station 104 ” or “MS 104 ”).
- MS 104 may communicate with controller 102 using various protocols that employ CSMA/CA, including, for example, the IEEE 802.11a/b/g/e, IEEE 802.11p, IEEE 802.11s for sensor networks for a vehicular communication, IEEE 802.15.4 PAN, and IEEE 802.3 protocols.
- Controller 102 may be configured as an Access Point (AP) in the IEEE 802.11 standard.
- AP Access Point
- FIG. 2 is a block diagram illustrating an example MS 104 in accordance with various aspects of the present disclosure.
- MS 104 may include a transceiver 202 , a channel condition estimation module 204 , transmission error determination module 206 , and backoff period calculation module 208 .
- Transceiver 202 may transmit to and receive communications from controller 102 via the wireless channel. For example, transceiver 202 may transmit various types of MAC frames to controller 102 after serving a backoff period that may be computed according to various aspects of this disclosure. Controller 102 , upon successful receipt of the transmitted frames from MS 104 , may send a reply ACK frame to MS 104 to signify successful transmission. If controller 102 receives the frames from MS 104 with an error, then controller 102 may generate a negative ACK (NACK) frame to notify unsuccessful transmission of the frames.
- the NACK frame may be configured to include in its field an error message that indicates whether the transmission error is attributed to a frame collision or channel error. Upon the receipt of the NACK frame including the error message, MS 104 may recognize that the attempt to transmit the frames was unsuccessful and may determine whether the failure transmission occurred due to a frame collision or channel error.
- channel condition estimation module 204 may be configured to listen to the wireless channel for a predetermined observation interval.
- the observation interval includes a plurality of time slots.
- channel condition estimation module 204 may detect errors in received frames in each time slot. Whereas some of the received frames may be sent to the upper layers such as network or application layers for further processing, the other frames may be used for the error detection processing.
- Transmission error determination module 206 may determine whether the failure transmission occurred due to a frame collision or channel error such as for example an error message included in the received NACK. In another example embodiment transmission error determination module 206 may determine the cause of the transmission error based on the estimated channel condition, as further described below with reference to FIG. 5 .
- backoff period calculation module 208 may determine a next (second) backoff period to be used in re-transmitting the unsuccessful frames based on the observed channel condition.
- FIG. 3 illustrates an example of observed channel condition over 60 time slots. Although 60 is used in the example embodiment in FIG. 3 , the number of time slots used to estimate the channel condition may be more or less than 60.
- MS 102 receives frames without any error in a particular time slot (e.g., time slot 301 ), then MS 102 determines that the channel condition is good during the particular time slot. In FIG. 3 , the particular time slot determined to have a good channel condition is labeled “1.”
- MS 102 receives frames in a particular time slot with one or more errors (e.g., time slot 302 )
- MS 102 determines that the channel condition is bad during the particular time slot.
- the particular time slot determined to have a bad channel condition is labeled “0” indicating that the received frame is corrupted due to a channel error.
- the time slot labeled “0” may be herein referred to as “error time slot.”
- the channel condition estimation module 204 may distinguish the cause of the errors included in the received frames. For example, in case both of the header and data fields of the received frame are corrupted, it can be determined the error in the received frame is attributed to a frame collision. On the other hand, in case at least the header field is received correctly but the data field is corrupted, it may be determined that the error occurred due to a channel error because the header field is much shorter than the data field.
- channel condition estimation module 204 may distinguish the cause of a transmission error by using Request to Send/Clear to Send (RTS/CTS) mechanism. In this mechanism, if MS 102 receives both of a CTS message and an ACK message, channel condition estimation module 204 may determine the transmission is successful.
- RTS/CTS Request to Send/Clear to Send
- channel condition estimation module 204 may determine that the transmission is unsuccessful due to a channel error. If MS 102 does not receive either CTS nor ACK messages, channel condition estimation module 204 may determine that the transmission is unsuccessful due to a frame collision.
- channel condition estimation module 204 may estimate a channel condition based on, for example, an averaging length of consecutive error time slots.
- the sequence of time slots illustrated in FIG. 3 includes 3 sets of consecutive error time slots 305 - 308 : the first set 305 consists of 5 consecutive error time slots; the second set 306 consists of 4 consecutive error time slots; and the third set 307 consists of 6 consecutive error time slots.
- Channel condition estimation module 204 may compute the mean and variance of these lengths of the three sets of error time slots.
- the arithmetic mean of the three sets of error time slots is 5 and the variance of the mean is 2 ⁇ 3 (0.666 . . .
- channel condition estimation module 204 may compute least mean squares and its variance. Using this mean and variance of the lengths of the consecutive error slots, backoff period calculation module 208 may determine a next (second) backoff period.
- FIG. 4 a is a flow diagram illustrating a non-limiting example process for re-transmission using new back-off period, including determining a backoff period.
- FIG. 4 b is an example process for determining a backoff period.
- FIG. 4 b is a flow diagram illustrating a non-limiting example process 600 for calculating a backoff period.
- a multiple X in the above equation is determined.
- the process shown and described by the illustrative flow diagram of FIG. 4 a and FIG. 4 b may be implemented using some or all of the system components described in detail above.
- the operations illustrated in FIG. 4 a and FIG. 4 b may be performed in a different sequence, simultaneously.
- steps shown may be deleted and additional steps can be added.
- MS 104 continues to observe the channel condition and determines whether there is an error in each time slot.
- An example of observed channel condition is illustrated in FIG. 5 .
- the first 60 time slots of the sequence in FIG. 5 are the same as the sequence shown in FIG. 3 .
- MS 104 has updated the sequence by adding observed time slot 501 .
- MS 104 detects an error in time slot 501 , and, therefore, time slot 501 is labeled 0.
- MS 104 transmits frames in time slot 502 and receives, for example, a reply NACK from controller 102 , including an error message indicating the attempt to transmit the frames is unsuccessful due to a channel error or frame collision.
- transmission error determination module 206 may determine whether the transmission failure is attributed to a frame collision or channel error based on, for example, the error message included in the received NACK. Alternatively, transmission error determination module 206 may determine whether the transmission failure is attributed to a frame collision or channel error based on the mean of the consecutive error time slots. In this embodiment, MS 104 has transmitted frames in time slot 502 which follows the error time slot 501 . Given the mean of the consecutive error time slots is 5 as previously noted, it can be predicted the sequence of the consecutive error time slots starting time slot 501 would continue for 5 consecutive time slots. Based on this prediction, transmission error determination module 206 may determine that the transmission error in time slot 502 is due to a channel error.
- a channel condition estimation process can be invoked in an operation 408 .
- a channel condition is estimated by calculating the mean of the lengths of consecutive error time slots and the variance of the mean. As previously noted, in this example, the arithmetic mean of the lengths of the consecutive error time slots is 5 and the variance of the mean is 1. In an example embodiment, time slot 501 may be ignored when estimating a channel condition because time slot 501 is adjacent to the current time slot 502 and considered as a part of the current consecutive error time slots.
- a backoff period for retransmission of the earlier frames is determined based on the calculated mean and variance.
- X represents a certain multiple which may be determined, for example, by subtracting the value representing the order of the time slot that is used for the unsuccessful transmission in the current set of error time slots from the mean of the lengths of consecutive error time slots.
- MS 102 transmitted the frames in time slot 502 , which is the second time slot in the sequence of consecutive error time slots starting with time slot 501 and the mean of the consecutive error time slots is 5.
- X may be calculated by subtracting 2 from 5. Accordingly, the resulting value of X is 3.
- a backoff period is calculated based on the determined value of X according to the equation as noted above.
- the mean of the consecutive error time slots is 5 and the variance of the mean is 1.
- the backoff period is calculated by adding the mean to X multiplied by the variance.
- the resulting backoff is calculated to be 8.
- the mean of the lengths of consecutive error time slots might not well work in some cases.
- the length of error time slot 307 is ‘6’.
- a multiple of the variance of the mean may be added to the mean of the error time slot lengths.
- the value of the multiple represented by X may be chosen according to various algorithms.
- the prior unsuccessful frames may be retransmitted in an operation 412 .
- the backoff period for retransmission of the prior unsuccessful frames may be determined based on the estimated channel condition, which can facilitate enhanced data throughput of the wireless system and facilitates fair backoff time allocation for each mobile station.
- the backoff period calculation according to an example embodiment is calculated based on estimated channel conditions which reflect high channel correlation between different time slots, which may achieve better data throughput of the wireless system as compared to conventional backoff mechanisms determined without considering channel correlation between time slots.
- transmission error determination module 206 may update the sequence of the observed time slots by setting “0” in time slot 502 because it is determined that the cause of the unsuccessful frame transmission in time slot 502 is determined to be a channel error.
- time slots may be used or the number of time slots to be observed may be adjusted, for example, based on the probability of error slots over the observation interval. For example, if the ratio of the error slots in the observation interval exceeds a predetermined threshold (e.g., 40%), then the observation interval may be increased to a next higher level (e.g., 1000 time slots). The high probability of error slots may occur because of long fading. If the increased observation interval does not provide a good channel condition where the ratio of error time slots is less than the threshold, the observation interval may be repeatedly increased. Thus, in example embodiments, starting with a short period of the observation interval facilitates close approximation of the channel correlation if the channel changes quickly over the observation interval.
- a predetermined threshold e.g. 40%
- various embodiments of this disclosure may be made in hardware, firmware, software, or any suitable combination thereof. Aspects of this disclosure may also be implemented as instructions stored on a machine-readable medium, which may be read and executed by one or more processors.
- a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device).
- a machine-readable storage medium may include read only memory, random access memory, magnetic disk storage media, optical storage media, flash memory devices, and others.
- firmware, software, routines, or instructions may be described herein in terms of specific exemplary embodiments that may perform certain actions. However, it will be apparent that such descriptions are merely for convenience and that such actions in fact result from computing devices, processors, controllers, or other devices executing the firmware, software, routines, or instructions.
- a range includes each individual member.
- a group having 1-3 cells refers to groups having 1, 2, or 3 cells.
- a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Backoff period=mean+X*variance,
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/755,718 US8320397B2 (en) | 2010-04-07 | 2010-04-07 | Backoff adjustment method for MAC system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/755,718 US8320397B2 (en) | 2010-04-07 | 2010-04-07 | Backoff adjustment method for MAC system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110249568A1 US20110249568A1 (en) | 2011-10-13 |
US8320397B2 true US8320397B2 (en) | 2012-11-27 |
Family
ID=44760848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/755,718 Expired - Fee Related US8320397B2 (en) | 2010-04-07 | 2010-04-07 | Backoff adjustment method for MAC system |
Country Status (1)
Country | Link |
---|---|
US (1) | US8320397B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120263036A1 (en) * | 2011-04-14 | 2012-10-18 | Barclay Deborah L | Mechanism for wireless access networks to throttle traffic during congestion |
US11025476B2 (en) | 2014-05-13 | 2021-06-01 | Huawei Technologies Co., Ltd. | Multi-channel contention method, communications device, and wireless network system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8509198B2 (en) | 2010-08-24 | 2013-08-13 | Research In Motion Limited | System and method for uplink data transfer in dynamic timeslot reduction |
US8565197B2 (en) * | 2010-08-24 | 2013-10-22 | Blackberry Limited | System and method for uplink data transfer in dynamic timeslot reduction |
CN102573098B (en) * | 2010-12-24 | 2015-07-29 | 华为技术有限公司 | communication information sending method, device and system |
US9629150B2 (en) * | 2012-05-29 | 2017-04-18 | Atmel Corporation | Permitting media contention in the presence of conflicting different wireless operations |
US20140112153A1 (en) * | 2012-10-24 | 2014-04-24 | Electronics And Telecommunications Research Institute | Method and device for managing contention window based on transmission error detection |
PL2965586T3 (en) * | 2013-03-07 | 2017-06-30 | Qualcomm Incorporated | Flexible transmission and back-off intervals in network devices |
US10757736B2 (en) * | 2014-07-07 | 2020-08-25 | Lg Electronics Inc. | Method for supporting carrier sensing in wireless access system supporting unlicensed band, and device supporting same |
CN107154880B (en) * | 2016-03-03 | 2020-12-15 | 创新先进技术有限公司 | System monitoring method and device |
US9942150B2 (en) * | 2016-05-20 | 2018-04-10 | Macau University Of Science And Technology | Method for optimizing throughput of a network |
CN111918408B (en) * | 2020-08-06 | 2023-06-06 | 北方工业大学 | Optimization method and device based on CSMA-CA backoff algorithm |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6240460B1 (en) * | 1996-02-02 | 2001-05-29 | Fuji Xerox, Ltd. | Method and system for data transmission accordance with the form of the data transmission based on control information exchanged between applications of a data transmitter and a data receiver before data transmission is started |
-
2010
- 2010-04-07 US US12/755,718 patent/US8320397B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6240460B1 (en) * | 1996-02-02 | 2001-05-29 | Fuji Xerox, Ltd. | Method and system for data transmission accordance with the form of the data transmission based on control information exchanged between applications of a data transmitter and a data receiver before data transmission is started |
Non-Patent Citations (8)
Title |
---|
Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, IEEE JSAC, vol. 18, No. 3, pp. 535-547, Mar. 2000. |
Cali et al., IEEE 802.11 Protocol: Design and Performance Evaluation of an Adaptive Backoff Mechanism, IEEE Journal on Selected Areas in Communications, vol. 18, No. 9, Sep. 2000. |
IEEE Std 802-11, IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [ISO/IEC 8802-11: 1999], 1999 Edition. |
Malone et al., MAC Layer Channel Quality Measurement in 802.11, IEEE Communications Letters, vol. 11, Issue 2, 2007, pp. 143-145. |
Pandya et al., Loss Differentiation Based Back Off Strategy for Correlated Channels in 802.11, Wireless VITAE, 2009. |
Pang et al., Design of an Effective Loss-Distinguishable MAC Protocol for 802.11 WLAN, IEEE Communications Letters, 2005. |
Pang et al., Improvement of WLAN Contention Resolution by Loss Differentiation, IEEE Transactions on Wireless Communications, vol. 5, No. 12, Dec. 2006. |
Shamy et al., A Study on the Binary Exponential Backoff in Noisy and Heterogeneous Environment, Lecture Notes in Computer Science, Mobile Ad-hoc and Sensor Networks, Third International Conference, MSN 2007, Beijing, China, Dec. 12-14, 2007. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120263036A1 (en) * | 2011-04-14 | 2012-10-18 | Barclay Deborah L | Mechanism for wireless access networks to throttle traffic during congestion |
US8787159B2 (en) * | 2011-04-14 | 2014-07-22 | Alcatel Lucent | Mechanism for wireless access networks to throttle traffic during congestion |
US11025476B2 (en) | 2014-05-13 | 2021-06-01 | Huawei Technologies Co., Ltd. | Multi-channel contention method, communications device, and wireless network system |
Also Published As
Publication number | Publication date |
---|---|
US20110249568A1 (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8320397B2 (en) | Backoff adjustment method for MAC system | |
US8160090B2 (en) | Communication apparatus for performing contention control | |
US9295074B2 (en) | Acknowledgement, error recovery and backoff operation of uplink multi-user multiple-input-multiple-output communication in wireless networks | |
US20210409156A1 (en) | Data retransmission method and device, data response method and device, and storage medium | |
US8553548B2 (en) | Collision mitigation for multicast transmission in wireless local area networks | |
US9883530B2 (en) | Radio frame receiving method and device | |
US20140293868A1 (en) | Method and apparatus for providing feedback | |
KR101529204B1 (en) | Media Access Control apparatus and method in wireless local area network system | |
US10104689B2 (en) | Wireless shared spectrum access contention based on HARQ feedback | |
CN110859010B (en) | Conflict detection method and device for realizing data transmission | |
EP2955965A1 (en) | Medium access apparatus and method for preventing a plurality of stations in a wireless local area network from colliding with one another | |
US7969921B2 (en) | Method and system for data packet communication in wireless communication systems | |
KR20150005093A (en) | Communication method of an access point and a terminal for retransmission of multicast packet in a network including access point and a plurality of terminals | |
CN102595449A (en) | Method and system for realizing large-bandwidth carrier idle state detection | |
EP1742379A1 (en) | Transmit power control in a random access scheme | |
US20220264582A1 (en) | Method and device for processing network allocation vector | |
Alonso-Zarate et al. | Performance analysis of a persistent relay carrier sensing multiple access protocol | |
KR101139536B1 (en) | Wireless Multicast retransmissions to adjust contention window in the terminal system and its control method | |
JP4793192B2 (en) | Multiple access communication method | |
CN103248462B (en) | Method, equipment and the system that data retransmit in WLAN | |
Santos et al. | Dyn-ARF: A rate adaptation mechanism sensitive to the network load over 802.11 WLANs | |
Huang et al. | An adaptive contention window algorithm to hybrid OFDMA/CSMA mechanism in WLANs | |
KR100752360B1 (en) | Method for monitoring available resource in wireless network, and data transferring method, wireless communication terminal, network using the method | |
WEI | Mitigating the Impact of Physical Layer Capture and ACK Interference in Wireless 802.11 Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESAI, UDAY BABULAL;MERCHANT, SHABBIR NOMANBHAI;PANDYA, BHOOMEK D.;SIGNING DATES FROM 20100325 TO 20100330;REEL/FRAME:024199/0397 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CRESTLINE DIRECT FINANCE, L.P., TEXAS Free format text: SECURITY INTEREST;ASSIGNOR:EMPIRE TECHNOLOGY DEVELOPMENT LLC;REEL/FRAME:048373/0217 Effective date: 20181228 |
|
AS | Assignment |
Owner name: EMPIRE TECHNOLOGY DEVELOPMENT LLC, WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CRESTLINE DIRECT FINANCE, L.P.;REEL/FRAME:049924/0794 Effective date: 20190501 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20201127 |